1
|
Grasse N, Massei R, Seiwert B, Scholz S, Escher BI, Reemtsma T, Fu Q. Impact of Biotransformation on Internal Concentrations and Specificity Classification of Organic Chemicals in the Zebrafish Embryo ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17898-17907. [PMID: 39315645 PMCID: PMC11465767 DOI: 10.1021/acs.est.4c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Internal concentrations (ICs) are crucial for linking exposure to effects in the development of New Approach Methodologies. ICs of chemicals in aquatic organisms are primarily driven by hydrophobicity and modulated by biotransformation and efflux. Comparing the predicted baseline to observed toxicity enables the estimation of effect specificity, but biological processes can lead to overestimating ICs and bias the specificity assessment. To evaluate the prediction of a mass balance model (MBM) and the impact of biotransformation on ICs, experimental ICs of 63 chemicals in zebrafish embryos were compared to predictions with physicochemical properties as input parameters. Experimental ICs of 79% (50 of 63) of the chemicals deviated less than 10-fold from predictions, and the remaining 13 deviated up to a factor of 90. Using experimental ICs changed the classification for 19 chemicals, with ICs 5 to 90 times lower than predicted, showing the bias of specificity classification. Uptake kinetics of pirinixic acid, genistein, dexamethasone, ethoprophos, atorvastatin, and niflumic acid were studied over a 96 h exposure period, and transformation products (TPs) were elucidated using suspect- and nontarget screening with UPLC-HRMS. 35 TPs (5 to 8 TPs per compound) were tentatively identified and semiquantified based on peak areas, suggesting that biotransformation may partly account for the overpredictions of ICs.
Collapse
Affiliation(s)
- Nico Grasse
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Riccardo Massei
- Department
of Ecotoxicology, Helmholtz-Centre for Environmental
Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department
of Ecotoxicology, Helmholtz-Centre for Environmental
Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Thorsten Reemtsma
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute
for Analytical Chemistry, University of
Leipzig, Linnestrasse
3, 04103 Leipzig, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
2
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
3
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
4
|
Pandey NK, Murmu A, Banjare P, Matore BW, Singh J, Roy PP. Integrated predictive QSAR, Read Across, and q-RASAR analysis for diverse agrochemical phytotoxicity in oat and corn: A consensus-based approach for risk assessment and prioritization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12371-12386. [PMID: 38228952 DOI: 10.1007/s11356-024-31872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
In the modern fast-paced lifestyle, time-efficient and nutritionally rich foods like corn and oat have gained popularity for their amino acids and antioxidant contents. The increasing demand for these cereals necessitates higher production which leads to dependency on agrochemicals, which can pose health risks through residual present in the plant products. To first report the phytotoxicity for corn and oat, our study employs QSAR, quantitative Read-Across and quantitative RASAR (q-RASAR). All developed QSAR and q-RASAR models were equally robust (R2 = 0.680-0.762, Q2Loo = 0.593-0.693, Q2F1 = 0.680-0.860) and find their superiority in either oat or corn model, respectively, based on MAE criteria. AD and PRI had been performed which confirm the reliability and predictability of the models. The mechanistic interpretation reveals that the symmetrical arrangement of electronegative atoms and polar groups directly influences the toxicity of compounds. The final phytotoxicity and prioritization are performed by the consensus approach which results into selection of 15 most toxic compounds for both species.
Collapse
Affiliation(s)
- Nilesh Kumar Pandey
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Anjali Murmu
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | | | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
5
|
Nöth J, Busch W, Tal T, Lai C, Ambekar A, Kießling TR, Scholz S. Analysis of vascular disruption in zebrafish embryos as an endpoint to predict developmental toxicity. Arch Toxicol 2024; 98:537-549. [PMID: 38129683 PMCID: PMC10794345 DOI: 10.1007/s00204-023-03633-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Inhibition of angiogenesis is an important mode of action for the teratogenic effect of chemicals and drugs. There is a gap in the availability of simple, experimental screening models for the detection of angiogenesis inhibition. The zebrafish embryo represents an alternative test system which offers the complexity of developmental differentiation of an entire organism while allowing for small-scale and high-throughput screening. Here we present a novel automated imaging-based method to detect the inhibition of angiogenesis in early life stage zebrafish. Video subtraction was used to identify the location and number of functional intersegmental vessels according to the detection of moving blood cells. By exposing embryos to multiple tyrosine kinase inhibitors including SU4312, SU5416, Sorafenib, or PTK787, we confirmed that this method can detect concentration-dependent inhibition of angiogenesis. Parallel assessment of arterial and venal aorta ruled out a potential bias by impaired heart or blood cell development. In contrast, the histone deacetylase inhibitor valproic acid did not affect ISV formation supporting the specificity of the angiogenic effects. The new test method showed higher sensitivity, i.e. lower effect concentrations, relative to a fluorescent reporter gene strain (Tg(KDR:EGFP)) exposed to the same tyrosine kinase inhibitors indicating that functional effects due to altered tubulogenesis or blood transport can be detected before structural changes of the endothelium are visible by fluorescence imaging. Comparison of exposure windows indicated higher specificity for angiogenesis when exposure started at later embryonic stages (24 h post-fertilization). One of the test compounds was showing particularly high specificity for angiogenesis effects (SU4312) and was, therefore, suggested as a model compound for the identification of molecular markers of angiogenic disruption. Our findings establish video imaging in wild-type strains as viable, non-invasive, high-throughput method for the detection of chemical-induced angiogenic disruption in zebrafish embryos.
Collapse
Affiliation(s)
- Julia Nöth
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Chih Lai
- University of St. Thomas, St. Paul, MN, USA
| | - Akhil Ambekar
- University of St. Thomas, St. Paul, MN, USA
- Duke University, A.I. Health Fellow-Associate in Research, Durham, NC, USA
| | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| |
Collapse
|
6
|
Zheng ZY, Ni HG. Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167590. [PMID: 37802352 DOI: 10.1016/j.scitotenv.2023.167590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov-Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.
Collapse
Affiliation(s)
- Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
7
|
Beckers LM, Altenburger R, Brack W, Escher BI, Hackermüller J, Hassold E, Illing G, Krauss M, Krüger J, Michaelis P, Schüttler A, Stevens S, Busch W. A data-derived reference mixture representative of European wastewater treatment plant effluents to complement mixture assessment. ENVIRONMENT INTERNATIONAL 2023; 179:108155. [PMID: 37688808 DOI: 10.1016/j.envint.2023.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential. Toxicological relevant effects of this reference mixture were measured in eight organism- and cell-based bioassays and compared with predicted mixture effects, which were calculated based on effect data of single chemicals retrieved from literature or different databases, and via quantitative structure-activity relationships (QSARs). The results show that the EWERBmix supports the identification of substances which should be considered in future monitoring efforts. It provides measures to estimate wastewater background concentrations in rivers under consideration of respective dilution factors, and to assess the extent of mixture risks to be expected from European WWTP effluents. The EWERBmix presents a reasonable proxy for regulatory authorities to develop and implement assessment approaches and regulatory measures to address mixture risks. The highlighted data gaps should be considered for prioritization of effect testing of most prevalent and relevant individual organic micropollutants of WWTP effluent background pollution. The here provided approach and EWERBmix are available for authorities and scientists for further investigations. The approach presented can furthermore serve as a roadmap guiding the development of archetypic background mixtures for other sources, geographical settings and chemical compounds, e.g. inorganic pollutants.
Collapse
Affiliation(s)
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Enken Hassold
- German Environment Agency - UBA, Dessau-Rosslau, Germany
| | - Gianina Illing
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Janet Krüger
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Paul Michaelis
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Sarah Stevens
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Wibke Busch
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
8
|
Guo M, Xu Z, Zhang H, Mei J, Xie J. The Effects of Acute Exposure to Ammonia on Oxidative Stress, Hematological Parameters, Flesh Quality, and Gill Morphological Changes of the Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2023; 13:2534. [PMID: 37570342 PMCID: PMC10417668 DOI: 10.3390/ani13152534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ammonia is considered to be the major chemical pollutant causing fish poisoning in aquaculture. This research aimed to evaluate the impact of acute ammonia exposure on the large yellow croaker's meat quality, gill morphology, liver oxidative stress, and hematological parameters. The fish were exposed to total ammonia nitrogen concentrations of 0, 2.96, 5.92, and 8.87 mg/L for 48 h, respectively. The findings demonstrated that all ammonia-exposed fish had higher liver lactate dehydrogenase and glutamic oxalate transaminase activities. The glucose, blood urea nitrogen, and creatinine levels in 8.87 mg/L total ammonia nitrogen (TAN) were higher than other samples. The total protein, albumin, and triglyceride levels in serum decreased significantly in ammonia-exposed samples. After 48 h of ammonia exposure, superoxide dismutase activities showed a 76.1%, 118.0%, and 156.8% increase when fish were exposed to 2.96, 5.92, and 8.87 mg/L TAN, respectively. Catalase activities and glutathione contents were considerably higher (p < 0.05) in all ammonia-treated samples compared to 0 mg/L TAN. The ammonia-treated gill lamellae become thicker, shorter, and curved. Additionally, the ammonia exposure resulted in the accumulation of free amino acids and the loss of nucleotides. The inosine monophosphate and adenosine monophosphate contents in the flesh were decreased after 12 h of exposure to 2.96, 5.92, and 8.87 mg/L ammonia compared to the control group. Overall, large yellow croakers exposed to ammonia for 6 h presented not only changes in serum composition but also oxidative stress, liver and gill tissue damage and flesh quality deterioration.
Collapse
Affiliation(s)
- Meijie Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
| | - Zhenkun Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
| | - Hongzhi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
9
|
Wang S, Zhang X, Xu X, Su L, Zhao YH, Martyniuk CJ. Comparison of modes of toxic action between Rana chensinensis tadpoles and Limnodrilus hoffmeisteri worms based on interspecies correlation, excess toxicity and QSAR for class-based compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106130. [PMID: 35248894 DOI: 10.1016/j.aquatox.2022.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Insecticides, fungicides, dinitrobenzenes, resorcinols, phenols and anilines are widely used in agricultural and industrial productions. However, their modes of toxic action are unclear in some nontarget organisms, such as worms and tadpoles. In this study, acute toxicity data was experimentally collected for Limnodrilus hoffmeisteri worms and Rana chensinensis tadpoles, respectively. Interspecies correlation and excess toxicity were calculated to determine modes of action (MOAs) between the two species for class-based compounds. The result showed that, although the interspecies correlation of toxicity between the tadpoles and worms is significant with a coefficient of determination (R2) of 0.83, tadpoles are more sensitive than the worms and toxicity values between these two species are not identical with an overall 0.43 log unit difference. Regression analysis revealed that the toxicity of nonpolar narcotics or baseline compounds is linearly related to hydrophobicity for both the tadpoles and worms and the two baseline models are parallel, suggesting that these nonpolar narcotics share the same MOA between the two species. The difference of baseline toxicities between the two species is attributed to differences in bioconcentration factors. Analysis of the excess toxicity calculated from the toxicity ratio (TR) suggested that phenols and anilines can be classified as polar narcotics, not only to fish, but also to the tadpoles and worms. These compounds are more toxic than the baseline compounds and quantitative structure-activity relationship (QSAR) models show that their toxicity is linearly related to chemical hydrophobicity and polarity. Analysis of the excess toxicity reveals that aminophenols and resorcinols can be classified as reactive compounds, and insecticides and fungicides can be classified as specifically-acting compounds for both species. These compounds exhibited significantly greater toxic effect to both the tadpoles and worms. QSAR models have been developed to describe the toxic mechanisms for nonpolar narcotics, polar narcotics, reactive chemicals and specifically-acting compounds, and a theoretical equation has been derived to explain the effect of bio-uptake and interaction of the chemical with target receptors for both tadpole and worm toxicity. Our study reveals that tadpole toxicity can be estimated from worm toxicity data and the two species can serve as surrogates for each other in the safety evaluation of organic pollutants.
Collapse
Affiliation(s)
- Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun, Jilin 130117, PR China
| | - Xiao Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun, Jilin 130117, PR China
| | - Xiaotian Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun, Jilin 130117, PR China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun, Jilin 130117, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun, Jilin 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Grouping of chemicals into mode of action classes by automated effect pattern analysis using the zebrafish embryo toxicity test. Arch Toxicol 2022; 96:1353-1369. [PMID: 35254489 PMCID: PMC9013687 DOI: 10.1007/s00204-022-03253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
A central element of high throughput screens for chemical effect assessment using zebrafish is the assessment and quantification of phenotypic changes. By application of an automated and more unbiased analysis of these changes using image analysis, patterns of phenotypes may be associated with the mode of action (MoA) of the exposure chemical. The aim of our study was to explore to what extent compounds can be grouped according to their anticipated toxicological or pharmacological mode of action using an automated quantitative multi-endpoint zebrafish test. Chemical-response signatures for 30 endpoints, covering phenotypic and functional features, were generated for 25 chemicals assigned to 8 broad MoA classes. Unsupervised clustering of the profiling data demonstrated that chemicals were partially grouped by their main MoA. Analysis with a supervised clustering technique such as a partial least squares discriminant analysis (PLS-DA) allowed to identify markers with a strong potential to discriminate between MoAs such as mandibular arch malformation observed for compounds interfering with retinoic acid signaling. The capacity for discriminating MoAs was also benchmarked to an available battery of in vitro toxicity data obtained from ToxCast library indicating a partially similar performance. Further, we discussed to which extent the collected dataset indicated indeed differences for compounds with presumably similar MoA or whether other factors such as toxicokinetic differences could have an important impact on the determined response patterns.
Collapse
|
11
|
Halbach K, Aulhorn S, Lechtenfeld OJ, Lecluse M, Leippe S, Reemtsma T, Seiwert B, Wagner S, König J, Luckenbach T. Zebrafish Oatp1d1 Acts as a Cellular Efflux Transporter of the Anionic Herbicide Bromoxynil. Chem Res Toxicol 2022; 35:315-325. [PMID: 34990119 DOI: 10.1021/acs.chemrestox.1c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxicokinetics (TK) of ionic compounds in the toxico-/pharmacological model zebrafish embryo (Danio rerio) depend on absorption, distribution, metabolism, and elimination (ADME) processes. Previous research indicated involvement of transport proteins in the TK of the anionic pesticide bromoxynil in zebrafish embryos. We here explored the interaction of bromoxynil with the organic anion-transporting polypeptide zebrafish Oatp1d1. Mass spectrometry imaging revealed accumulation of bromoxynil in the gastrointestinal tract of zebrafish embryos, a tissue known to express Oatp1d1. In contrast to the Oatp1d1 reference substrate bromosulfophthalein (BSP), which is actively taken up by transfected HEK293 cells overexpressing zebrafish Oatp1d1, those cells accumulated less bromoxynil than empty vector-transfected control cells. This indicates cellular efflux of bromoxynil by Oatp1d1. This was also seen for diclofenac but not for carbamazepine, examined for comparison. Correspondingly, internal concentrations of bromoxynil and diclofenac in the zebrafish embryo were increased when coexposed with BSP, inhibiting the activities of various transporter proteins, including Oatp1d1. The effect of BSP on accumulation of bromoxynil and diclofenac was enhanced in further advanced embryo stages, indicating increased efflux activity in those stages. An action of Oatp1d1 as an efflux transporter of ionic environmental compounds in zebrafish embryos should be considered in future TK assessments.
Collapse
Affiliation(s)
- Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Silke Aulhorn
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Oliver Jens Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Marion Lecluse
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Sophia Leippe
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, D-04317 Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| |
Collapse
|
12
|
Prediction of pEC50(M) and molecular docking study for the selective inhibition of arachidonate 5-lipoxygenase. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Lee J, Braun G, Henneberger L, König M, Schlichting R, Scholz S, Escher BI. Critical Membrane Concentration and Mass-Balance Model to Identify Baseline Cytotoxicity of Hydrophobic and Ionizable Organic Chemicals in Mammalian Cell Lines. Chem Res Toxicol 2021; 34:2100-2109. [PMID: 34357765 DOI: 10.1021/acs.chemrestox.1c00182] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All chemicals can interfere with cellular membranes and this leads to baseline toxicity, which is the minimal toxicity any chemical elicits. The critical membrane burden is constant for all chemicals; that is, the dosing concentrations to trigger baseline toxicity decrease with increasing hydrophobicity of the chemicals. Quantitative structure-activity relationships, based on hydrophobicity of chemicals, have been established to predict nominal concentrations causing baseline toxicity in human and mammalian cell lines. However, their applicability is limited to hydrophilic neutral compounds. To develop a prediction model that includes more hydrophobic and charged organic chemicals, a mass balance model was applied for mammalian cells (AREc32, AhR-CALUX, PPARγ-BLA, and SH-SY5Y) considering different bioassay conditions. The critical membrane burden for baseline toxicity was converted into nominal concentration causing 10% cytotoxicity by baseline toxicity (IC10,baseline) using a mass balance model whose main chemical input parameter was the liposome-water partition constants (Klip/w) for neutral chemicals or the speciation-corrected Dlip/w(pH 7.4) for ionizable chemicals plus the bioassay-specific protein, lipid, and water contents of cells and media. In these bioassay-specific models, log(1/IC10,baseline) increased with increasing hydrophobicity, and the relationship started to level off at log Dlip/w around 2. The bioassay-specific models were applied to 392 chemicals covering a broad range of hydrophobicity and speciation. Comparing the predicted IC10,baseline and experimental cytotoxicity IC10, known baseline toxicants and many additional chemicals were identified as baseline toxicants, while the others were classified based on specificity of their modes of action in the four cell lines, confirming excess toxicity of some fungicides, antibiotics, and uncouplers. Given the similarity of the bioassay-specific models, we propose a generalized baseline-model for adherent human cell lines: log[1/IC10,baseline (M)] = 1.23 + 4.97 × (1 - e-0.236 log Dlip/w). The derived models for baseline toxicity may serve for specificity analysis in reporter gene and neurotoxicity assays as well as for planning the dosing for cell-based assays.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, DE-04318 Leipzig, Germany.,Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Scharrenbergstrasse 94-96, DE-72076 Tübingen, Germany
| |
Collapse
|
14
|
Fu Q, Scheidegger A, Laczko E, Hollender J. Metabolomic Profiling and Toxicokinetics Modeling to Assess the Effects of the Pharmaceutical Diclofenac in the Aquatic Invertebrate Hyalella azteca. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7920-7929. [PMID: 34086445 DOI: 10.1021/acs.est.0c07887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exposure of ecologically critical invertebrate species to biologically active pharmaceuticals poses a serious risk to the aquatic ecosystem. Yet, the fate and toxic effects of pharmaceuticals on these nontarget aquatic invertebrates and the underlying mechanisms are poorly studied. Herein, we investigated the toxicokinetic (TK) processes (i.e., uptake, biotransformation, and elimination) of the pharmaceutical diclofenac and its biotransformation in the freshwater invertebrate Hyalella azteca. We further employed mass spectrometry-based metabolomics to assess the toxic effects of diclofenac on the metabolic functions of H. azteca exposed to environmentally relevant concentrations (10 and 100 μg/L). The TK results showed a quick uptake of diclofenac by H. azteca (maximum internal concentration of 1.9 μmol/kg) and rapid formation of the conjugate diclofenac taurine (maximum internal concentration of 80.6 μmol/kg), indicating over 40 times higher accumulation of diclofenac taurine than that of diclofenac in H. azteca. Depuration kinetics demonstrated that the elimination of diclofenac taurine was 64 times slower than diclofenac in H. azteca. Metabolomics results suggested that diclofenac inhibited prostaglandin synthesis and affected the carnitine shuttle pathway at environmentally relevant concentrations. These findings shed light on the significance of the TK process of diclofenac, especially the formation of diclofenac taurine, as well as the sublethal effects of diclofenac on the bulk metabolome of H. azteca. Combining the TK processes and metabolomics provides complementary insights and thus a better mechanistic understanding of the effects of diclofenac in aquatic invertebrates.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Andreas Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, ETH, University of Zurich, 8057 Zurich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Chang ED, Town RM, Owen SF, Hogstrand C, Bury NR. Effect of Water pH on the Uptake of Acidic (Ibuprofen) and Basic (Propranolol) Drugs in a Fish Gill Cell Culture Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6848-6856. [PMID: 33724810 DOI: 10.1021/acs.est.0c06803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water pH is predicted to affect the uptake of ionizable pharmaceuticals in fish. The current study used an in vitro primary fish gill cell culture system to assess the effect of pH values in the range of 4.5-8.75 on the uptake rates of the base propranolol (pKa 9.42) and the acid ibuprofen (pKa 4.59). The rate-limiting step in the uptake was the diffusive supply flux of the unionized form from the water to the apical membrane, with subsequent rapid transfer across the epithelium. Computed uptake rate based on the unionized fraction best described the uptake of propranolol and ibuprofen over the range of pH values 5-8 and 6-8.75, respectively. For ibuprofen, the computed uptake rate overestimated the uptake below pH 6 where the unionized fraction increased from 4% at pH 6 to 55% at pH 4.5. As the unionized fraction increased, the uptake rate plateaued suggesting a saturation of the transport process. For both drugs, large variations in the uptake occur with only small fluctuations in pH values. This occurs between pH values 6 and 8, which is the pH range acceptable in regulatory test guidelines and seen in most of our freshwaters.
Collapse
Affiliation(s)
- Elisabeth Dohmann Chang
- Department of Nutritional Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Stewart F Owen
- AstraZeneca, Global Sustainability, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | - Christer Hogstrand
- Department of Nutritional Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nic R Bury
- Department of Nutritional Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- University of Suffolk, School of Engineering, Arts, Science and Technology, James Hehir Building, Suffolk Sustainability Institute, University Quays, Ipswich, Suffolk IP3 0AQ, United Kingdom
- Suffolk Sustainability, University of Suffolk, Waterfront Building, Neptune Quay, Ipswich IP4 1QJ, U.K
| |
Collapse
|
16
|
Evaluation of molecular structure based descriptors for the prediction of pEC50(M) for the selective adenosine A2A Receptor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Zhou L, Fan D, Yin W, Gu W, Wang Z, Liu J, Xu Y, Shi L, Liu M, Ji G. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals. BMC Bioinformatics 2021; 22:151. [PMID: 33761866 PMCID: PMC7992851 DOI: 10.1186/s12859-020-03903-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/24/2020] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND A number of predictive models for aquatic toxicity are available, however, the accuracy and extent of easy to use of these in silico tools in risk assessment still need further studied. This study evaluated the performance of seven in silico tools to daphnia and fish: ECOSAR, T.E.S.T., Danish QSAR Database, VEGA, KATE, Read Across and Trent Analysis. 37 Priority Controlled Chemicals in China (PCCs) and 92 New Chemicals (NCs) were used as validation dataset. RESULTS In the quantitative evaluation to PCCs with the criteria of 10-fold difference between experimental value and estimated value, the accuracies of VEGA is the highest among all of the models, both in prediction of daphnia and fish acute toxicity, with accuracies of 100% and 90% after considering AD, respectively. The performance of KATE, ECOSAR and T.E.S.T. is similar, with accuracies are slightly lower than VEGA. The accuracy of Danish Q.D. is the lowest among the above tools with which QSAR is the main mechanism. The performance of Read Across and Trent Analysis is lowest among all of the tested in silico tools. The predictive ability of models to NCs was lower than that of PCCs possibly because never appeared in training set of the models, and ECOSAR perform best than other in silico tools. CONCLUSION QSAR based in silico tools had the greater prediction accuracy than category approach (Read Across and Trent Analysis) in predicting the acute toxicity of daphnia and fish. Category approach (Read Across and Trent Analysis) requires expert knowledge to be utilized effectively. ECOSAR performs well in both PCCs and NCs, and the application shoud be promoted in both risk assessment and priority activities. We suggest that distribution of multiple data and water solubility should be considered when developing in silico models. Both more intelligent in silico tools and testing are necessary to identify hazards of Chemicals.
Collapse
Affiliation(s)
- Linjun Zhou
- Nanjing Tech University, Nanjing, 211816, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wen Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yanhua Xu
- Nanjing Tech University, Nanjing, 211816, China.
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Mingqing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| |
Collapse
|
18
|
Escher BI, Neale PA. Effect-Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:487-499. [PMID: 33252775 DOI: 10.1002/etc.4944] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 05/12/2023]
Abstract
Effect-based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays, such as hormone-receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read-across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all active chemicals. The specificity ratio is the ratio between the predicted baseline toxicity of a chemical in a given bioassay and its measured specific endpoint. Unlike many previous read-across methods to derive EBTs, the proposed method accounts for mixture effects and includes all chemicals, not only high-potency chemicals. The EBTs were derived from a cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT was scaled by the median of the log-normal distribution of specificity ratios to derive the EBT for effects specific for each bioassay. We illustrate the new approach using the example of the AREc32 assay, indicative of the oxidative stress response, and 2 nuclear receptor assays targeting the peroxisome proliferator-activated receptor gamma and the arylhydrocarbon receptor. The EBTs were less conservative than previously proposed but were able to differentiate untreated and insufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface water. Environ Toxicol Chem 2021;40:487-499. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
19
|
Wang J, Yang Y, Huang Y, Zhang X, Huang Y, Qin WC, Wen Y, Zhao YH. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111046. [PMID: 32888614 DOI: 10.1016/j.ecoenv.2020.111046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Agricultural pesticides serve as effective controls of unwanted weeds and pests. However, these same chemicals can exert toxic effects in non-target organisms. To determine chemical modes of action, the toxicity ratio (TR) and critical body residues (CBRs) of 57 pesticides were calculated for Daphnia magna. Results showed that the CBR values of inert compounds were close to a constant while the CBR values of pesticides varied over a wider range. Although herbicides are categorized as specifically-acting compounds to plants, herbicides did not exhibit excess toxicity to Daphnia magna and were categorized as inert compounds with an average logTR = 0.41, which was less than a threshold of one. Conversely, fungicides and insecticides exhibited strong potential for toxic effects to Daphnia magna with an average logTR >2. Many of these chemicals act via disruption of the nervous, respiratory, or reproductive system, with high ligand-receptor binding activity which leads to higher toxicity for Daphnia magna. Molecular docking using acetylcholinesterase revealed that fungicides and insecticides bind more easily with the biological macromolecule when compared with inert compounds. Quantitative structure-activity relationship (QSAR) analysis revealed that the toxicity of fungicides was mainly dependent upon the heat of formation and polar surface area, while the toxicity of insecticides was more related to hydrogen-bond properties. This comprehensive analysis reveals that there are specific differences in toxic mechanisms between fungicides and insecticides. These results are useful for determining relative risk associated with pesticide exposure to aquatic crustaceans, such as Daphnia magna.
Collapse
Affiliation(s)
- Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Xiao Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Wei C Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yang Wen
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, School of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, 136000, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| |
Collapse
|
20
|
Escher BI, Henneberger L, König M, Schlichting R, Fischer FC. Cytotoxicity Burst? Differentiating Specific from Nonspecific Effects in Tox21 in Vitro Reporter Gene Assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:77007. [PMID: 32700975 PMCID: PMC7377237 DOI: 10.1289/ehp6664] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND High-throughput screening of chemicals with in vitro reporter gene assays in Tox21 has produced a large database on cytotoxicity and specific modes of action. However, the validity of some of the reported activities is questionable due to the "cytotoxicity burst," which refers to the supposition that many stress responses are activated in a nonspecific way at concentrations close to cell death. OBJECTIVES We propose a pragmatic method to identify whether reporter gene activation is specific or cytotoxicity-triggered by comparing the measured effects with baseline toxicity. METHODS Baseline toxicity, also termed narcosis, is the minimal toxicity any chemical causes. Quantitative structure-activity relationships (QSARs) developed for baseline toxicity in mammalian reporter gene cell lines served as anchors to define the chemical-specific threshold for the cytotoxicity burst and to evaluate the degree of specificity of the reporter gene activation. Measured 10% effect concentrations were related to measured or QSAR-predicted 10% cytotoxicity concentrations yielding specificity ratios (SR). We applied this approach to our own experimental data and to ∼ 8,000 chemicals that were tested in six of the high-throughput Tox21 reporter gene assays. RESULTS Confirmed baseline toxicants activated reporter gene activity around cytotoxic concentrations triggered by the cytotoxicity burst. In six Tox21 assays, 37%-87% of the active hits were presumably caused by the cytotoxicity burst (SR < 1 ) and only 2%-14% were specific with SR ≥ 10 against experimental cytotoxicity but 75%-97% were specific against baseline toxicity. This difference was caused by a large fraction of chemicals showing excess cytotoxicity. CONCLUSIONS The specificity analysis for measured in vitro effects identified whether a cytotoxicity burst had likely occurred. The SR-analysis not only prevented false positives, but it may also serve as measure for relative effect potency and can be used for quantitative in vitro-in vivo extrapolation and risk assessment of chemicals. https://doi.org/10.1289/EHP6664.
Collapse
Affiliation(s)
- Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Fabian C. Fischer
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
21
|
Fu Q, Fedrizzi D, Kosfeld V, Schlechtriem C, Ganz V, Derrer S, Rentsch D, Hollender J. Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4400-4408. [PMID: 32036646 DOI: 10.1021/acs.est.9b07127] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biotransformation plays a crucial role in regulating the bioaccumulation potential and toxicity of organic compounds in organisms but is, in general, poorly understood for emerging contaminants. Here, we have used diclofenac as a model compound to study the impact of biotransformation on the bioaccumulation potential and toxicity in two keystone aquatic invertebrates: Gammarus pulex and Hyalella azteca. In both species, diclofenac was transformed into several oxidation products and conjugates, including two novel products, that is, diclofenac taurine conjugate (DCF-M403) and unexpected diclofenac methyl ester (DCF-M310.03). The ratios of biotransformation products to parent compound were 12-17 for DCF-M403 and 0.01-0.7 for DCF-M310.03 after 24 h exposure. Bioconcentration factors (BCFs) of diclofenac were 0.5 and 3.2 L kgww-1 in H. azteca and G. pulex, respectively, whereas BCFs of DCF-M310.03 was 164.5 and 104.7 L kgww-1, respectively, representing a 25- to 110-fold increase. Acute toxicity of DCF-M310.03 was also higher than the parent compound in both species, which correlated well with the increased bioconcentration potential. The LC50 of diclofenac in H. azteca was 216 mg L-1, while that of metabolite DCF-M310.03 was reduced to only 0.53 mg L-1, representing a 430-fold increase in acute toxicity compared to diclofenac. DCF-M403 is less toxic than its parent compound toward H. azteca, which may be linked to its slightly lower hydrophobicity. Furthermore, the transformation of diclofenac to its methyl ester derivative was explored in crude invertebrate extracts spiked with an S-adenosylmethionine cofactor, revealing possible catalysis by an S-adenosylmethionine-dependent carboxylic acid methyltransferase. Methylation of diclofenac was further detected in fish hepatocytes and human urine, indicating a broader relevance. Therefore, potentially methylated metabolites of polar contaminants should be considered for a comprehensive risk assessment in the future.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Davide Fedrizzi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Verena Kosfeld
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- Institute for Environmental Research (Biology V) 52074 Aachen, Germany
| | - Christian Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- Institute for Environmental Research (Biology V) 52074 Aachen, Germany
| | - Vera Ganz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Samuel Derrer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Daniel Rentsch
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
22
|
Sun M, Duker RQ, Gillissen F, Van den Brink PJ, Focks A, Rico A. Influence of pH on the toxicity of ionisable pharmaceuticals and personal care products to freshwater invertebrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110172. [PMID: 31978762 DOI: 10.1016/j.ecoenv.2020.110172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The majority of pharmaceuticals and personal health-care products are ionisable molecules at environmentally relevant pHs. The ionization state of these molecules in freshwater ecosystems may influence their toxicity potential to aquatic organisms. In this study we evaluated to what extent varying pH conditions may influence the toxicity of the antibiotic enrofloxacin (ENR) and the personal care product ingredient triclosan (TCS) to three freshwater invertebrates: the ephemeropteran Cloeon dipterum, the amphipod Gammarus pulex and the snail Physella acuta. Acute toxicity tests were performed by adjusting the water pH to four nominal levels: 6.5, 7.0, 7.5 and 8.0. Furthermore, we tested the efficiency of three toxicity models with different assumptions regarding the uptake and toxicity potential of ionisable chemicals with the experimental data produced in this study. The results of the toxicity tests indicate that pH fluctuations of only 1.5 units can influence EC50-48 h and EC50-96 h values by a factor of 1.4-2.7. Overall, the model that only focuses on the fraction of neutral chemical and the model that takes into account ion-trapping of the test molecules showed the best performance, although present limitations to perform risk assessments across a wide pH range (i.e., well above or below the substance pKa). Under such conditions, the model that takes into account the toxicity of the neutral and the ionized chemical form is preferred. The results of this study show that pH fluctuations can have a considerable influence on toxicity thresholds, and should therefore be taken into account for the risk assessment of ionisable pharmaceuticals and personal health-care products. Based on our results, an assessment factor of at least three should be used to account for toxicity differences between standard laboratory and field pH conditions. The models evaluated here can be used to perform refined risk assessments by taking into account the influence of temporal and spatial pH fluctuations on aquatic toxicity.
Collapse
Affiliation(s)
- Ming Sun
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Rahmat Quaigrane Duker
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Frits Gillissen
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
23
|
Finizio A, Di Nica V, Rizzi C, Villa S. A quantitative structure-activity relationships approach to predict the toxicity of narcotic compounds to aquatic communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110068. [PMID: 31841895 DOI: 10.1016/j.ecoenv.2019.110068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Species may vary markedly in terms of their sensitivity to toxicants, and such variation can be described through the species sensitivity distribution (SSD) approach. Using SSD cumulative functions, it is possible to calculate the hazardous concentration for 5% of the species (HC5), namely the contaminant concentration at which 5% of species will be affected. HC5 is often utilised to derive the predicted no-effect concentration, or the concentration at which a chemical will likely have no toxic effects on the different species present in an ecosystem. However, the lack of sufficient ecotoxicological data frequently obstructs the derivation of SSD curves and consequently the HC5. In the last 30 years, quantitative structure-activity relationship (QSAR) models have been widely used to predict the toxicity of chemicals to single species. The aim of this study was to evaluate the possibility of extending the applicability domain of these models from single species to the community level by predicting the HC5 values for aquatic communities and bypassing the need to derive SSD curves. This approach's practical advantage is that it would allow information on the toxicity of contaminants to be obtained on a hierarchical scale (aquatic community), which is ecologically more relevant than on the scale of single species, without the need for a robust toxicity data set. In the first part of the study, two simple QSAR models were developed for narcotic and polar narcotic compounds. Then, the QSAR model developed for narcotic compounds was utilised to define the baseline toxicity for aquatic communities and to calculate the toxicity ratios for various specifically acting compounds (insecticides and herbicides).
Collapse
Affiliation(s)
- Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, P.zza della Scienza 1, Milano, 20126, Italy.
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, P.zza della Scienza 1, Milano, 20126, Italy
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano Bicocca, P.zza della Scienza 1, Milano, 20126, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano Bicocca, P.zza della Scienza 1, Milano, 20126, Italy
| |
Collapse
|
24
|
Escher BI, Abagyan R, Embry M, Klüver N, Redman AD, Zarfl C, Parkerton TF. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:269-286. [PMID: 31569266 DOI: 10.1002/etc.4602] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 05/19/2023]
Abstract
Ionizable organic chemicals (IOCs) such as organic acids and bases are an important substance class requiring aquatic hazard evaluation. Although the aquatic toxicity of IOCs is highly dependent on the water pH, many toxicity studies in the literature cannot be interpreted because pH was not reported or not kept constant during the experiment, calling for an adaptation and improvement of testing guidelines. The modulating influence of pH on toxicity is mainly caused by pH-dependent uptake and bioaccumulation of IOCs, which can be described by ion-trapping and toxicokinetic models. The internal effect concentrations of IOCs were found to be independent of the external pH because of organisms' and cells' ability to maintain a stable internal pH milieu. If the external pH is close to the internal pH, existing quantitative structure-activity relationships (QSARs) for neutral organics can be adapted by substituting the octanol-water partition coefficient by the ionization-corrected liposome-water distribution ratio as the hydrophobicity descriptor, demonstrated by modification of the target lipid model. Charged, zwitterionic and neutral species of an IOC can all contribute to observed toxicity, either through concentration-additive mixture effects or by interaction of different species, as is the case for uncoupling of mitochondrial respiration. For specifically acting IOCs, we recommend a 2-step screening procedure with ion-trapping/QSAR models used to predict the baseline toxicity, followed by adjustment using the toxic ratio derived from in vitro systems. Receptor- or plasma-binding models also show promise for elucidating IOC toxicity. The present review is intended to help demystify the ecotoxicity of IOCs and provide recommendations for their hazard and risk assessment. Environ Toxicol Chem 2020;39:269-286. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ruben Abagyan
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Nils Klüver
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
25
|
Jia Q, Liu T, Yan F, Wang Q. Norm Index-Based QSAR Model for Acute Toxicity of Pesticides Toward Rainbow Trout. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:352-358. [PMID: 31634980 DOI: 10.1002/etc.4621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The aquatic ecological environment is being threatened from overuse of pesticides, and the aquatic toxicity toward rainbow trout (Oncorhynchus mykiss) plays a significant role in environmental risk assessment of agrochemicals. In the present study, 2 norm index formulas were developed, from which several norm descriptors were derived. A quantitative structure-activity relationship (QSAR) model was established for the prediction of acute toxicity (median lethal concentration) toward rainbow trout of various pesticides. Results indicated that the present QSAR model presented an R2 of 0.8053. Meanwhile, internal validation (QLOO2 = 0.7606), external validation (Rtraining2 = 0.8011, Rtesting2 = 0.8108), Y-randomization test, and applicability domain analysis further demonstrated the stability, reliability, and wide application domain of the present QSAR model. Accordingly, these norm descriptors might be applicable to the structures of pesticides for predicting the acute toxicity to aquatic organism. Environ Toxicol Chem 2020;39:352-358. © 2019 SETAC.
Collapse
Affiliation(s)
- Qingzhu Jia
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Ting Liu
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Fangyou Yan
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Qiang Wang
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| |
Collapse
|
26
|
Abstract
A major goal of translational toxicology is to identify adverse chemical effects and determine whether they are conserved or divergent across experimental systems. Translational toxicology encompasses assessment of chemical toxicity across multiple life stages, determination of toxic mode-of-action, computational prediction modeling, and identification of interventions that protect or restore health following toxic chemical exposures. The zebrafish is increasingly used in translational toxicology because it combines the genetic and physiological advantages of mammalian models with the higher-throughput capabilities and genetic manipulability of invertebrate models. Here, we review recent literature demonstrating the power of the zebrafish as a model for addressing all four activities of translational toxicology. Important data gaps and challenges associated with using zebrafish for translational toxicology are also discussed.
Collapse
Affiliation(s)
- Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Permoserstraβe 15 04318 Leipzig, Germany
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| | - Bianca Yaghoobi
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Pamela J. Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| |
Collapse
|
27
|
Stenzel A, Wirt H, Patten A, Theodore B, King-Heiden T. Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reprod Toxicol 2019; 87:79-86. [PMID: 31102721 DOI: 10.1016/j.reprotox.2019.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 01/05/2023]
Abstract
Developmental exposure to endocrine disruptors can cause organizational changes resulting in latent and transgenerational disease. We exposed zebrafish to environmentally relevant concentrations of triclosan during the critical period of metamorphosis and somatic sex differentiation to determine effects on metamorphosis and reproduction. We use biological and morphological biomarkers to predict potential modes of action. Larval exposure to environmentally relevant concentrations of triclosan was sufficient to cause adverse effects in adults and their offspring. TCS exposure delays metamorphosis and impairs fecundity and fertility. Offspring from TCS-exposed fish show decreased survival and delayed maturation, but their reproductive capacity is not altered. Delays in metamorphosis in conjunction with morphological indicators suggest that toxicity may result from lowered thyroid hormones in parental fish. This work illustrates the importance of evaluating the latent effects of early exposure to environmental contaminants, and that further studies to evaluate the effects of triclosan on the thyroid axis are warranted.
Collapse
Affiliation(s)
- Amanda Stenzel
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Heidi Wirt
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Alyssa Patten
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Briannae Theodore
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Tisha King-Heiden
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States.
| |
Collapse
|