1
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
2
|
Ceylan Hİ, Silva AF, Ramirez-Campillo R, Murawska-Ciałowicz E. Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:323. [PMID: 38785805 PMCID: PMC11117522 DOI: 10.3390/biology13050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise offers health benefits, including improved circulating BDNF levels and cognitive function, but the specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear. Understanding this can guide interventions to enhance brain health and counter potential cognitive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and regular physical exercise on circulating BDNF in individuals with obesity. The target population comprised individuals classified as overweight or obese, encompassing both acute and chronic protocols involving all training methods. A comprehensive search was conducted across computerized databases, including PubMed, Academic Search Complete, and Web of Science, in August 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95% CI = -0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and type when studying neurobiological responses in obesity and exercise research. The study's results have implications for exercise prescription in obesity management and highlight the need for tailored interventions to optimize neurotrophic responses. Future research should focus on elucidating the adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise in this population. However, further research is needed considering limitations such as the potential age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact circulating BDNF.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile;
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
3
|
De Ryck E, Ghosh M, Nawrot TS, Reimann B, Koppen G, Verachtert E, Devlieger R, Godderis L, Pauwels S. Effects of exposure to environmental factors on obesity-related growth parameters and leptin (LEP) methylation in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123465. [PMID: 38309423 DOI: 10.1016/j.envpol.2024.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The prevalence of childhood obesity is rapidly increasing. Therefore, gaining more information on the role of environmental parameters is key. With overexpression of leptin (encoded by LEP) in obesity, LEP methylation might be altered by environmental exposures. This study aims to assess effects of ambient air pollution and nearby greenness on obesity-related growth and LEP methylation in early childhood. We monitored 120 mother-child pairs from conception until the age of five. Buccal swabs and anthropometric measurements of the children were taken at six months, one year, and five years old. Buccal DNA was extracted to determine LEP methylation levels. Estimates of air pollution and nearby greenness were calculated using high-resolution models. Effects of air pollution and nearby greenness on growth or LEP methylation were investigated using linear mixed effects models. Positive associations were shown for air pollution between conception and age one on impedance in six-month-olds and one-year-olds in the crude model. PM with aerodynamic diameter ≤10 (PM10) and ≤2.5 μm (PM2.5) positively associated with waist-hip-ratio and waist circumference at age five in the fully adjusted model. In early childhood, closest distance to forest negatively, and urban green and forest positively associated with weight-for-length, body mass index, and fat percentage in five-year-olds in the fully adjusted model. No significant associations for noise, and walkability on growth were seen. Negative associations were shown for smaller green clusters and positive associations for greater green clusters on LEP methylation in one-year-olds. For forest distance, walkability, noise, or all green on LEP methylation, no significant associations were found. Evidence is provided that ambient air pollution might have a significant effect on impedance and waist-hip-ratio, suggesting an increased risk of childhood obesity. Based on LEP methylation, greater green clusters might associate with a decreased risk of childhood obesity, while smaller green clusters showed the opposite.
Collapse
Affiliation(s)
- Evi De Ryck
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Tim S Nawrot
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, 3590, Hasselt, Belgium.
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, 3590, Hasselt, Belgium.
| | - Gudrun Koppen
- Unit Environmental Risk and Health, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Els Verachtert
- Environmental Modelling Unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Roland Devlieger
- Department of Development and Regeneration, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Obstetrics and Gynaecology, UZ Leuven - University Hospitals of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Lode Godderis
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Interleuvenlaan 58, 3001, Heverlee, Belgium.
| | - Sara Pauwels
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; Unit Environmental Risk and Health, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
4
|
Hardiany NS, Dewi PKK, Dewi S, Tejo BA. Exploration of neuroprotective effect from Coriandrum sativum L. ethanolic seeds extracts on brain of obese rats. Sci Rep 2024; 14:603. [PMID: 38182767 PMCID: PMC10770154 DOI: 10.1038/s41598-024-51221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated β-galactoside/SA-β-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = < 0.001), SA-β-Gal activity (p = 0.010), and increased GSH concentration (p = 0.047) in the brain of obese rats; however, the decrease of IL-6, NSE, and p16 as well as the increase of catalase specific activity and BDNF expression were not significant. Moreover, the mature/pro-BDNF ratio was significantly higher in the brains of non-obese rats, both given the control diet and the high-fat diet compared to the control. Our results suggest that obese rats benefited from consuming CSES, showing improved oxidative stress levels, reduced cellular senescence and increased endogenous antioxidants, making CSES a potential neuroprotective agent.
Collapse
Affiliation(s)
- Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Putri Krishna Kumara Dewi
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
- Medical Biochemistry Division, Department of Biomedical Science, Faculty of Medicine, Universitas Pendidikan Ganesha, Bali, 81116, Indonesia
| | - Syarifah Dewi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Bimo A Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
5
|
Pérez-Gutiérrez AM, Rovira P, Gutiérrez B, Cervilla JA, Zarza-Rebollo JA, Molina E, Rivera M. Influence of BDNF Val66Met genetic polymorphism in Major Depressive Disorder and Body Mass Index: Evidence from a meta-analysis of 6481 individuals. J Affect Disord 2024; 344:458-465. [PMID: 37820958 DOI: 10.1016/j.jad.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) and obesity are global health problems that frequently co-occur. Among shared etiological factors, genetic variation at the brain-derived neurotrophic factor (BDNF) gene is interesting since its implication in energy balance regulation, food intake and synaptic function. Thus, the aim of this study was to investigate the influence of the BDNF Val66Met polymorphism in relation to MDD and body mass index (BMI) in two large independent cohorts. METHODS The sample consisted of 2646 individuals with MDD and 3835 controls from the PISMA-ep and Radiant studies. Linear regressions were performed to test the association between the polymorphism and BMI and the interaction between the polymorphism and MDD on BMI. A meta-analysis across cohorts was conducted. RESULTS No association was found between the polymorphism and BMI. However, we found an association with MDD, showing these individuals higher BMI than controls in both cohorts. No differences were found in BMI depending on Val66Met genotype and no interaction between this polymorphism and MDD in relation to BMI was found. Although a tendency towards an interaction was found in the Radiant sample, the results of the meta-analysis did not support this finding. LIMITATIONS The use of self-reported height and weight measures to calculate BMI values. CONCLUSIONS We provide evidence for an association between BMI and MDD confirming previous results. Our meta-analysis including two large cohorts showed no interaction between BDNF, BMI and MDD. Future studies will be needed to confirm the role of this polymorphism in the relationship between BMI and MDD.
Collapse
Affiliation(s)
- A M Pérez-Gutiérrez
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - P Rovira
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain; Vicerectorat de Recerca, Investigadora postdoctoral Margarita Salas, Universitat de Barcelona, Barcelona, Spain
| | - B Gutiérrez
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - J A Cervilla
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - J A Zarza-Rebollo
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - E Molina
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Enfermería, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.
| | - M Rivera
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, Spain.
| |
Collapse
|
6
|
Heald A, Qin R, Loureiro CM, Williams R, Devaney Dopson C, Gibson JM, Narayanan RP, Fachim H, McCay K, Ollier W. A study to investigate genetic factors associated with weight gain in people with diabetes: analysis of polymorphisms in four relevant genes. Adipocyte 2023; 12:2236757. [PMID: 37582184 PMCID: PMC10431742 DOI: 10.1080/21623945.2023.2236757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Weight change is often seen in people with diabetes. We investigated the effects of genes associated with weight change/glucose handling/insulin-signalling. MATERIALS/METHODS DNA from diabetes individuals and non-diabetes individuals, plus clinical data, were available from the DARE study (n = 379 individuals: T1D n = 111; T2D n = 222; controls n = 46). Weight gain was assessed by temporal change of Body Mass Index (BMI). Genotyping was performed for CAV1rs926198, LEPRrs1137101, BDNFrs6265 and FTOrs9939609. RESULTS No differences in genotype distributions were observed for the four SNPs in all groups un-stratified by weight gain. Following stratification differences in genotype distribution were observed. For those BMI relatively stable; controls showed a difference in genotype distributions versus T1D (CAV1rs926198, LEPRrs1137101). In T2D vs controls, significant differences were observed in genotype distribution for all four genes. For BMI increase, the only difference by category was LEPRrs1137101 (bothT1D/T2D vs controls). In BMI-stable groups, CAV1rs926198, T1D individuals showed lower T allele frequency (p=0.004) vs non-diabetes and for LEPRrs1137101 a higher G allele frequency versus controls (p=0.002). For T2D, CAV1rs926198, T allele frequency was lower in T2D than controls (p=0.005). For LEPR rs1137101, the G allele frequency was higher than in controls (p=0.004). In those with BMI increase, LEPRrs1137101 T1D individuals had higher G allele frequency versus controls (p=0.002) as did T2D vs controls (p=0.03). CONCLUSION Differences in allele frequency were seen between diabetes individuals and non-diabetes diagnosed at baseline in relation to the likelihood of BMI increase of >10%. It is established that the G allele of LEPRrs1137101 is associated with weight gain/obesity. However, this is the first report of CAV1rs926198 polymorphism being associated with weight stability/gain in diabetes.
Collapse
Affiliation(s)
- Adrian Heald
- Department of Endocrinology and Diabetes, Salford Royal Hospital, Salford, UK
| | - Rui Qin
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Camila M. Loureiro
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo, Brazil
| | - Richard Williams
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Applied Research Collaboration Greater Manchester, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - J Martin Gibson
- Department of Endocrinology and Diabetes, Salford Royal Hospital, Salford, UK
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Ram Prakash Narayanan
- St Helens and Knowsley Hospitals NHS Trust, St Helens Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Helene Fachim
- Department of Endocrinology and Diabetes, Salford Royal Hospital, Salford, UK
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Kevin McCay
- NIHR Greater Manchester Patient Safety Translational Research Centre, The University of Manchester, Manchester, UK
| | - William Ollier
- NIHR Greater Manchester Patient Safety Translational Research Centre, The University of Manchester, Manchester, UK
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
7
|
DastAmooz S, Broujeni ST, Sarahian N. A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields. J Public Health Afr 2023; 14:2347. [PMID: 37538938 PMCID: PMC10395370 DOI: 10.4081/jphia.2023.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 08/05/2023] Open
Abstract
Background In previous researches, electromagnetic fields have been shown to adversely affect the behavior and biology of humans and animals; however, body growth and brain-derived neurotrophic factor levels were not evaluated. Objective The original investigation aimed to examine whether Electromagnetic Fields (EMF) exposure had adverse effects on spatial learning and motor function in rats and if physical activity could diminish the damaging effects of EMF exposure. In this study, we measured anthropometric measurements and brain-derived neurotrophic factor (BDNF) levels in pregnant rats' offspring to determine if Wi-Fi EMF also affected their growth. These data we report for the first time in this publication. Methods Twenty Albino-Wistar pregnant rats were divided randomly into EMF and control (CON) groups, and after delivery, 12 male fetuses were randomly selected. For assessing the body growth change of offspring beginning at delivery, then at 21 postnatal days, and finally at 56 post-natal days, the crown-rump length of the body was assessed using a digital caliper. Examining BDNF factor levels, an Enzyme-linked immunosorbent assay ELISA kit was taken. Bodyweight was recorded by digital scale. Results Outcomes of the anthropometric measurements demonstrated that EMF blocked body growth in rats exposed to EMF. The results of the BDNF test illustrated that the BDNF in the EMF liter group was remarkably decreased compared to the CON group. The results indicate that EMF exposure could affect BDNF levels and harm body growth in pregnant rats' offspring. Conclusions The results suggest that EMF exposure could affect BDNF levels and impair body growth in pregnant rats' offspring.
Collapse
Affiliation(s)
- Sima DastAmooz
- Department of Sport Science and Physical Education, Chinese University of Hong Kong, China
| | - Shahzad Tahmasebi Broujeni
- Department of Behavioral and Cognitive Sciences in Sport, Faculty of Sport Sciences and Health, University of Tehran, Iran
| | - Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
9
|
Trinh S, Keller L, Herpertz-Dahlmann B, Seitz J. The role of the brain-derived neurotrophic factor (BDNF) in anorexia nervosa. Psychoneuroendocrinology 2023; 151:106069. [PMID: 36878115 DOI: 10.1016/j.psyneuen.2023.106069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is a growth factor belonging to the neurotrophin family which plays a pivotal role in the differentiation, survival, and plasticity of neurons in the central nervous system. Evidence suggests that BDNF is an important signal molecule in the regulation of energy balance and thus implicated in body weight control. The discovery of BDNF-expressing neurons in the paraventricular hypothalamus which is important in the regulation of energy intake, physical activity, and thermogenesis gives more evidence to the suggested participation of BDNF in eating behavior. Until now it remains questionable whether BDNF can be used as a reliable biomarker for eating disorders such as anorexia nervosa (AN) as available findings on BDNF levels in patients with AN are ambiguous. AN is an eating disorder characterized by a pathological low body weight in combination with a body image disturbance typically developing during adolescence. A severe drive for thinness leads to restrictive eating behavior often accompanied by physical hyperactivity. During therapeutic weight restoration an increase of BDNF expression levels seems desirable as it might improve neuronal plasticity and survival which is essential for learning processes and thereby essential for the success of the psychotherapeutic treatment of patients. On the contrary, the well-known anorexigenic effect of BDNF might favor relapse in patients as soon as the BDNF levels significantly increase during weight rehabilitation. The present review summarizes the association between BDNF and general eating behavior and especially focuses on the eating disorder AN. In this regard findings from preclinical AN studies (activity-based anorexia model) are outlined as well.
Collapse
Affiliation(s)
- Stefanie Trinh
- Institute for Neuroanatomy, University Hospital, RWTH University Aachen, Wendlingweg 2, Aachen D-52074, Germany.
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| |
Collapse
|
10
|
Kuang X, Li K, Shi Y, Shao X, Li H, Li D. Gene-diet interaction in response to defatted flaxseed flour supplementation on obesity-related traits in Chinese overweight and obese adults: A randomized controlled trial. Nutrition 2023; 105:111870. [PMID: 36368262 DOI: 10.1016/j.nut.2022.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Effects of dietary fiber on obesity-related traits in previous studies were inconsistent. The aim of the present study was to explore whether variants in genes related to satiety and appetite can modulate the effect of dietary fiber on obesity-related traits. Fifty-one overweight or obese adults were randomly allocated to two groups to consume control biscuits (n = 24) or biscuits containing defatted flaxseed flour (n = 27) at breakfast for 8 wk. Four single-nucleotide polymorphisms related to satiety and appetite were genotyped: rs11076023 on the FTO gene, rs16147 on the NPY gene, rs155971 on the PCSK1 gene, and rs6265 on the BDNF gene. A linear regression model was used to evaluate the gene-diet interaction between obesity-related traits. Compared with control biscuits, defatted flaxseed-flour biscuits significantly reduced body weight (P = 0.001) and body mass index (BMI) (P = 0.001) in A-allele carriers (AA + AT) of rs11076023 on the FTO gene but not in non-carriers (TT) (P for the interaction = 0.005 and 0.006) and decreased fasting serum glucose in participants with CC genotype (P = 0.019) but had less effect in T-allele carriers (TT + TC) (P = 0.021) of rs16147 on the NPY gene (P for the interaction = 0.002). Compared with the control biscuits, defatted flaxseed flour significantly reduced body weight (P < 0.001) in T-allele carriers (TT + TC) of rs155971 on the PCSK1 gene but not in non-carriers (CC) (P for the interaction = 0.041) and reduced body weight (P = 0.001) and BMI (P < 0.001) in A-allele carriers (AA + AG) of rs6265 on the BDNF gene but not non-carriers (GG) (P for the interaction = 0.017 and 0.018). Variants of genes related to satiety and appetite could modulate the effect of defatted flaxseed flour on obesity-related traits.
Collapse
Affiliation(s)
- Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, China; School of Public Health, Qingdao University, Qingdao, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yan Shi
- Institute of Nutrition and Health, Qingdao University, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, China; School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, China; School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, China; School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Ceccarini MR, Bertelli M, Albi E, Dalla Ragione L, Beccari T. Gene Variants Involved in the Etiopathogenesis of Eating Disorders: Neuropeptides, Neurotransmitters, Hormones, and Their Receptors. Eat Disord 2023:75-94. [DOI: 10.1007/978-3-031-16691-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
13
|
Bilu C, Einat H, Zimmet P, Kronfeld-Schor N. Circadian rhythms-related disorders in diurnal fat sand rats under modern lifestyle conditions: A review. Front Physiol 2022; 13:963449. [PMID: 36160856 PMCID: PMC9489903 DOI: 10.3389/fphys.2022.963449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Modern lifestyle reduces environmental rhythmicity and may lead to circadian desynchrony. We are exposed to poor day-time lighting indoors and excessive night-time artificial light. We use air-conditioning to reduce ambient temperature cycle, and food is regularly available at all times. These disruptions of daily rhythms may lead to type 2 diabetes mellitus (T2DM), obesity, cardiometabolic diseases (CMD), depression and anxiety, all of which impose major public health and economic burden on societies. Therefore, we need appropriate animal models to gain a better understanding of their etiologic mechanisms, prevention, and management.We argue that the fat sand rat (Psammomys obesus), a diurnal animal model, is most suitable for studying the effects of modern-life conditions. Numerous attributes make it an excellent model to study human health disorders including T2DM, CMD, depression and anxiety. Here we review a comprehensive series of studies we and others conducted, utilizing the fat sand rat to study the underlying interactions between biological rhythms and health. Understanding these interactions will help deciphering the biological basis of these diseases, which often occur concurrently. We found that when kept in the laboratory (compared with natural and semi-wild outdoors conditions where they are diurnal), fat sand rats show low amplitude, nocturnal or arrhythmic activity patterns, dampened daily glucose rhythm, glucose intolerance, obesity and decreased survival rates. Short photoperiod acclimation exacerbates these pathologies and further dampens behavioral and molecular daily rhythms, resulting in CMD, T2DM, obesity, adipocyte dysfunction, cataracts, depression and anxiety. Increasing environmental rhythmicity by morning bright light exposure or by access to running wheels strengthens daily rhythms, and results in higher peak-to-trough difference in activity, better rhythmicity in clock genes expression, lower blood glucose and insulin levels, improved glucose tolerance, lower body and heart weight, and lower anxiety and depression. In summary, we have demonstrated that fat sand rats living under the correspondent of “human modern lifestyle” conditions exhibit dampened behavioral and biological rhythms and develop circadian desynchrony, which leads to what we have named “The Circadian Syndrome”. Environmental manipulations that increase rhythmicity result in improvement or prevention of these pathologies. Similar interventions in human subjects could have the same positive results and further research on this should be undertaken.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
- *Correspondence: Carmel Bilu,
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
14
|
Sahin E, Saglam N, Erdem S, Alvuroglu E, Abidin I, Yulug E, Alver A. 7,8-Dihydroxyflavone alleviates Endoplasmic Reticulum Stress in cafeteria diet-induced metabolic syndrome. Life Sci 2022; 306:120781. [PMID: 35835252 DOI: 10.1016/j.lfs.2022.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
AIMS Prolonged Endoplasmic Reticulum Stress (ERS) is involved in the pathogenesis of metabolic syndrome, including type-2 diabetes mellitus, cardiovascular diseases, atherosclerosis, obesity, and fatty liver disease. There have been significant efforts to discover molecules to treat ERS and/or to ameliorate associate symptoms. In this study, we investigated the effect of 7,8-Dihydroxyflavone (7,8-DHF) on ERS in liver and pancreas tissues in a cafeteria (CAF) diet induced metabolic syndrome model. MAIN METHODS Male C57BL/6 mice were fed CAF diet for 16 weeks and 7,8-DHF was administered intraperitoneally (5 mg/kg/day) for last four weeks. 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) in liver and pancreas tissues, insulin and interleukin-1β (IL-1β) in serum were analyzed by ELISA method and serum biochemistry parameters were analyzed with autoanalyzer. GRP78 and CHOP gene expression levels were determined by qRT-PCR. In addition, histopathological analyzes were performed on liver and pancreas tissues. KEY FINDINGS Findings revealed that CAF diet caused metabolic abnormalities, insulin resistance and inflammation in serum and triggered ERS in pancreas and liver tissues. 7,8-DHF treatment significantly reduced metabolic abnormalities by reducing serum biochemical parameters, HOMO-IR and IL-1β levels. qRT-PCR and ELISA results indicated that 7,8-DHF treatment down-regulated GRP78 and CHOP expression and protein levels in the liver and GRP78 expression in pancreas. Efficiency of 7,8-DHF in these tissues was also demonstrated by histopathological tests. SIGNIFICANCE In conclusion, CAF diet-induced metabolic syndrome model, 7,8-DHF suppressed ERS and ERS-induced metabolic disorders in both liver and pancreas. Therefore, 7,8-DHF may potentially be a novel therapeutic compound to ameliorate ERS and related metabolic symptoms.
Collapse
Affiliation(s)
- Elif Sahin
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon, Turkiye.
| | - Neslihan Saglam
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon, Turkiye
| | - Seniz Erdem
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon, Turkiye
| | - Elif Alvuroglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Ismail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
15
|
The Effect of Endurance Training on Serum BDNF Levels in the Chronic Post-Stroke Phase: Current Evidence and Qualitative Systematic Review. J Clin Med 2022; 11:jcm11123556. [PMID: 35743624 PMCID: PMC9225034 DOI: 10.3390/jcm11123556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Research in modern neurorehabilitation focusses on cognitive and motor recovery programmes tailored to each stroke patient, with particular emphasis on physiological parameters. The objectives of this review were to determine whether a single bout of endurance activity or long-term endurance activity regulates exercise-dependent serum brain-derived neurotrophic factor (BDNF) levels and to evaluate the methodological quality of the studies. To assess the effectiveness of endurance exercise among patients in the chronic post-stroke phase, a systematic review was performed, including searching EBSCOhost, PEDro, PubMed, and Scopus for articles published up to the end of October 2021. The PRISMA 2020 outline was used, and this review was registered on PROSPERO. Of the 180 papers identified, seven intervention studies (comprising 200 patients) met the inclusion criteria. The methodological quality of these studies was evaluated by using the Physiotherapy Evidence Database (PEDro) criteria. The effect of exercise was evaluated in four studies with a single bout of endurance activity, two studies with long-term endurance activity, and one study with a single bout of endurance activity as well as long-term endurance activity. The results of our systematic review provide evidence that endurance exercise might augment the peripheral BDNF concentration in post-stroke individuals.
Collapse
|
16
|
Akça İİ, Bodur A, Kahraman C, Abidin İ, Aydın-Abidin S, Alver A. The regulation of adipokines related to obesity and diabetes is sensitive to BDNF levels and adipose tissue location. Hormones (Athens) 2022; 21:295-303. [PMID: 35298831 DOI: 10.1007/s42000-022-00364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The role of BDNF in adipose tissue metabolism is poorly understood. We investigated the effects of decreased levels of BDNF on the expression of major adipokines in different fat depots (e.g., subcutaneous and epididymal) of mouse groups fed three different diet protocols. METHODS BDNF heterozygous (+ / -) mice were used to evaluate the effect of reduced BDNF levels. Six groups of C57BL/6 J breed wild type (WT) and BDNF (+ / -) mice were formed. These groups were fed, respectively, a control diet (CD), a high-fat diet (HFD), and a high-sucrose diet (HSD) for 4 months. Serum samples and adipose tissues were used for biochemical assays. The serum concentrations and tissue expression levels of leptin, adiponectin, and resistin were measured. RESULTS Compared to the CD-fed WT group (control group), serum leptin and leptin expression levels were found to be higher in all experimental groups. Serum adiponectin levels were lower in the BDNF (+ / -) groups and HFD-fed WT group than in the control group. Epididymal adiponectin expression was found to be lower in the HFD-fed BDNF (+ / -) group and higher in HSD-fed groups than in the control group. Compared to the control group, adiponectin expression increased in the WT groups in subcutaneous adipose tissue. Serum resistin levels were elevated in the HFD-fed groups. Resistin expression in epididymal adipose tissue was lower in the CD-fed and HFD-fed groups than in the control group. CONCLUSIONS BDNF levels and diet differentially affect the expression of adipokines in different fat tissues in the body. BDNF may play a protective role in obesity and diabetes.
Collapse
Affiliation(s)
- İmran İnce Akça
- Department of Medical Biochemistry, Faculty of Medicine, Tokat Gaziosmanpasa University, 60100, Tokat, Turkey.
| | - Akın Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Rumeli University, İstanbul, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydın-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
17
|
Selvaraju V, Babu JR, Geetha T. Salivary Neurotrophins Brain-Derived Neurotrophic Factor and Nerve Growth Factor Associated with Childhood Obesity: A Multiplex Magnetic Luminescence Analysis. Diagnostics (Basel) 2022; 12:diagnostics12051130. [PMID: 35626286 PMCID: PMC9140051 DOI: 10.3390/diagnostics12051130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is linked with higher inflammatory markers and is characterized by chronic low-grade inflammation. Neurotrophins brain-derived neurotrophic factor (BDNF) and β-nerve growth factor (β-NGF), in addition to their neuronal functions, act on several immune cells and have been recently designated as metabokines due to their regulatory role in energy homeostasis and food intake. The current study evaluates the salivary BDNF and β-NGF and their association with anthropometric measurement, blood pressure, and salivary insulin in children. Anthropometric measurements and saliva samples were obtained from 76 children, aged 6–10 years. Multiplex analysis was carried out for the salivary analysis of BDNF, NGF, and insulin by human magnetic Luminex performance assay. Statistical analysis was performed to analyze the best fit diagnostic value for biomarkers and the relationship of the neurotrophic levels of BDNF and NGF with obesity measures and blood pressure. Salivary BDNF and β-NGF showed a significantly higher concentration in obese children than normal-weight children. Both neurotrophins are positively associated with obesity anthropometric measures, blood pressure, and salivary insulin. Multinominal regression analysis reported a significant association between salivary BDNF, β-NGF, insulin, and systolic pressure adjusted for age, gender, income, and maternal education. The salivary concentration of BDNF and NGF was higher in obese children, and it is positively associated with anthropometric measures, suggesting that neurotrophins can be used as a non-invasive predictor of obesity-related complications in children.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (V.S.); (J.R.B.)
| | - Jeganathan R. Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (V.S.); (J.R.B.)
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (V.S.); (J.R.B.)
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-334-844-7418
| |
Collapse
|
18
|
High maternal BMI and low maternal blood BDNF may determine the limit of detection of amniotic fluid BDNF throughout gestation: Analysis of mother-fetus trios and literature review. PLoS One 2022; 17:e0265186. [PMID: 35271679 PMCID: PMC8912268 DOI: 10.1371/journal.pone.0265186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Objective An increasing number of studies show the importance of brain-derived neurotrophic factor (BDNF) acting at the feto-placental interface, however, only a few studies describe BDNF levels in amniotic fluid (AF). Methods In this cross-sectional, prospective study, 109 maternal blood-amniotic fluid pairs (including 66 maternal blood-fetal-blood-amniotic fluid trios) were analyzed. BDNF concentrations were measured with a commercially available immunoassay. Results In 71 AF from 109 samples, AF-BDNF concentrations were below the lowest limit of Quantitation (LLoQ) of 1.19 pg/ml (group A), leaving 38 samples with measurable BDNF concentrations (group B). Patients in group A showed significantly higher maternal BMI before pregnancy (mean±SD 26.3± 6.7 (kg/m2) vs. 23.8 ±4.5 (kg/m2) p = 0.04) and lower maternal blood BDNF concentrations than the other group (mean±SD 510.6 ± 554.7 pg/ml vs. mean±SD 910.1± 690.1 pg/ml; p<0.0001). Spearman correlation showed a negative correlation between maternal BMI before pregnancy and maternal BDNF concentrations (r = -0.25, p = 0.01). Conclusion Our study is the first to correlate AF-BDNF samples with the corresponding maternal and fetal blood-BDNF samples. The significant negative correlation between maternal BMI before pregnancy and maternal BDNF and AF-BDNF concentrations below the limit of detection has to be evaluated in further studies.
Collapse
|
19
|
Associations between Gene-Gene Interaction and Overweight/Obesity of 12-Month-Old Chinese Infants. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1499454. [PMID: 35295960 PMCID: PMC8920651 DOI: 10.1155/2022/1499454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Background Childhood overweight and obesity (OW/OB) is a worldwide public health problem, and its genetic risks remain unclear. Objectives To investigate risks of OW/OB associated with genetic variances in SEC16B rs543874 and rs10913469, BDNF rs11030104 and rs6265, NT5C2 rs11191580, PTBP2 rs11165675, ADCY9 rs2531995, FAM120A rs7869969, KCNQ1 rs2237892, and C4orf33 rs2968990 in Chinese infants at 12-month old. Methods We conducted a case-control study with 734 infants included at delivery and followed up to 12-month old. The classification and regression tree analysis were used to generate the structure of the gene-gene interactions, while the unconditional multivariate logistic regression models were applied to analyze the single SNP, gene-gene interactions, and cumulative effects of the genotypes on OW/OB, adjusted for potential confounders. Results There were 219 (29.84%) OW/OB infants. Rs543874 G allele and rs11030104 AA genotype increased the risk of OW/OB in 12-month-old infants (P < 0.05). Those carrying both rs11030104 AA genotype and rs10913469 C allele had 4.3 times greater OW/OB than those carrying rs11030104 G allele, rs11191580 C allele, rs11165675 A allele, and rs543874 AA genotype. Meanwhile, the risk of OW/OB increased with the number of the risk genotypes individuals harbored. Conclusions Rs543874, rs11030104, and rs11191580 were associated with OW/OB in 12-month-old Chinese infants, and the three SNPs together with rs10913469 and rs11165675 had a combined effect on OW/OB.
Collapse
|
20
|
de León-Guerrero SD, Salazar-León J, Meza-Sosa KF, Valle-Garcia D, Aguilar-León D, Pedraza-Alva G, Pérez-Martínez L. An enriched environment reestablishes metabolic homeostasis by reducing obesity-induced inflammation. Dis Model Mech 2022; 15:274225. [PMID: 35112705 PMCID: PMC9227715 DOI: 10.1242/dmm.048936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Obesity can lead to chronic inflammation in different tissues, generating insulin and leptin resistance and alterations in glucose and lipid metabolism, favoring the development of degenerative diseases, including type II diabetes. Congruently, the inflammatory signaling inhibition prevents the development of obesity and restores insulin sensitivity. Via the enhancement of central nervous system activity, an enriched environment (EE) has beneficial effects on learning and memory as well as on immune cell functions and inflammation in different disease models. Here, we explored whether an EE can restore energy balance in obese mice that previously presented metabolic alterations. We discovered that an EE improved glucose metabolism, increased insulin signaling in liver, and reduced hepatic steatosis and inflammation, and increased lipolysis and browning in the white adipose tissue of high-fat diet (HFD)-fed mice. Finally, we found reduced inflammatory signaling and increased anorexigenic signaling in the hypothalamus of HFD-fed mice exposed to an EE. These data indicate that an EE is able to restore the metabolic imbalance caused by HFD feeding. Thus, we propose EE as a novel therapeutic approach for treating obesity-related metabolic alterations. This article has an associated First Person interview with the first author of the paper. Summary: A series of physiological, histochemical and molecular analyses reveal that enriched environment decreases inflammation in adipose tissue and in hypothalamus, re-establishing glucose metabolism in metabolically compromised mice.
Collapse
Affiliation(s)
- Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - David Valle-Garcia
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Diana Aguilar-León
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Tlalpan, Ciudad de México, CP 14000, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| |
Collapse
|
21
|
Bhatti SI, Mindikoglu AL. The impact of dawn to sunset fasting on immune system and its clinical significance in Covid-19 pandemic. Metabol Open 2021; 13:100162. [PMID: 34977523 PMCID: PMC8713419 DOI: 10.1016/j.metop.2021.100162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Dawn to sunset fasting, a type of intermittent fasting commonly practiced in the month of Ramadan, requires fasting from dawn to sunset without food or liquid intake. Dawn and dusk are two transition time zones of the day that play a critical role in the human circadian rhythm. Practicing dawn to sunset fasting requires the alignment of mealtimes and wake-sleep times with the human biological dawn and dusk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs immune cell responses at multiple levels and leads to severe Coronavirus Disease 2019 (COVID-19). It generates high levels of pro-inflammatory cytokines and chemokines, also known as a cytokine storm, leads to mitochondrial dysfunction and generation of excessive amounts of mitochondrial reactive oxygen species, downregulates autophagy to escape detection for unchecked replication, and alters gut microbiome composition. Severe cases of COVID-19 have been associated with several comorbidities that impair immune responses (e.g., obesity, diabetes, malignancy) and blood laboratory abnormalities (e.g., elevated procalcitonin, C-reactive protein, interleukin-6 (IL-6), leukocytosis, lymphopenia). Several studies of dawn to sunset fasting showed anti-inflammatory effect by suppressing several pro-inflammatory cytokines, reducing oxidative stress, inducing a proteome response associated with increased autophagy, remodeling the gut microbiome, and improving the components of metabolic syndrome (e.g., obesity, blood glucose levels, blood pressure, lipids). In conclusion, dawn to sunset fasting has the potential to optimize the immune system function against SARS-CoV-2 during the COVID-19 pandemic as it suppresses chronic inflammation and oxidative stress, improves metabolic profile, and remodels the gut microbiome. This review presents scientific literature related to the effects of dawn to sunset fasting on the immune system. Studies are needed to assess and confirm the potential benefits of dawn to sunset fasting against SARS-CoV-2.
Collapse
Affiliation(s)
- Sundus I Bhatti
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
23
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
24
|
Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
|
26
|
Alkan I, Altunkaynak BZ, Gültekin Gİ, Bayçu C. Hippocampal neural cell loss in high-fat diet-induced obese rats-exploring the protein networks, ultrastructure, biochemical and bioinformatical markers. J Chem Neuroanat 2021; 114:101947. [PMID: 33766576 DOI: 10.1016/j.jchemneu.2021.101947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity, which has become one of the main health problems, results from irregular and unhealthy nutrition. In particular, an increase in the intake of high-fat foods leads to obesity and associated disorders. It is noteworthy to specify that obese individuals have memory problems. This study aims to examine the effects of high-fat diet on hippocampus, with stereological, histopathological methods and STRING bioinformatic tool. METHODS Female Adult Sprague Dawley rats (n = 20) were equally divided into control (CONT) and high-fat diet (HFD) groups. The control group was given standard rat pellet feed, while the high-fat diet group was fed with a 40 % fat content for 2 months. Following the feeding program, rats were sacrificed. The collected blood samples were analyzed biochemically to determine the level of oxidative stress while performing a stereological and histopathological examination of the brain tissues. Functional protein-protein networks for BDNF, C-Fos, CAT, LPO, SOD and MPO by gene ontology (GO) enrichment analysis were evaluated. FINDINGS The number of neurons decreased in the HFD group compared to the CONT group. Damage to the histological structure of the hippocampus region; such as degenerate neurons, damaged mitochondria and extended cisterns of the endoplasmic reticulum was observed. Although C-Fos level and oxidative stress parameters increased in HFD group, BDNF level decreased. While BDNF and C-Fos were observed in pathways related to neuron death, oxidative stress and memory, BDNF was pronounced in the mitochondria, and C-Fos in the endoplasmic reticulum. DISCUSSION This study shows that changes in both BDNF and C-Fos levels in obesity due to high-fat diet increase oxidative stress and cause neuron damage in the hippocampus.
Collapse
Affiliation(s)
- Işınsu Alkan
- Dept of Basic Medical Sciences, Dentistry Faculty, Nevşehir Hacı Bektaş Veli University, Nevşehir Turkey
| | - Berrin Zuhal Altunkaynak
- Depts of Histology and Embryology and Physiology Departments, Medical Faculty, Istanbul Okan University, İstanbul, Turkey.
| | - Güldal İnal Gültekin
- Physiology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| | - Cengiz Bayçu
- Histology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| |
Collapse
|
27
|
Is Serum BDNF Altered in Acute, Short- and Long-Term Recovered Restrictive Type Anorexia Nervosa? Nutrients 2021; 13:nu13020432. [PMID: 33572701 PMCID: PMC7910942 DOI: 10.3390/nu13020432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin involved in the regulation of food intake and body weight, has been implicated in the development and maintenance of Anorexia nervosa (AN). The majority of previous studies reported lower BDNF levels in acutely underweight AN patients (acAN) and increasing levels after weight rehabilitation. Here, we investigated serum BDNF concentrations in the largest known AN sample to date, both before and after weight restoration therapy. Serum BDNF was measured in 259 female volunteers: 77 in-patient acAN participants of the restrictive type (47 reassessed after short-term weight rehabilitation), 62 individuals long-term recovered from AN, and 120 healthy controls. We validated our findings in a post-hoc mega-analysis in which we reanalyzed combined data from the current sample and those from our previous study on BDNF in AN (combined sample: 389 participants). All analyses carefully accounted for known determinants of BDNF (age, sex, storage time of blood samples). We further assessed relationships with relevant clinical variables (body-mass-index, physical activity, symptoms). Contrary to our hypotheses, we found zero significant differences in either cross-sectional or longitudinal comparisons and no significant relationships with clinical variables. Together, our study suggests that BDNF may not be a reliable state- or trait-marker in AN after all.
Collapse
|
28
|
Chan G, Rosic T, Pasyk S, Dehghan M, Samaan Z. Exploring the Impact of Modifiable Factors on Serum BDNF in Psychiatric Patients and Community Controls. Neuropsychiatr Dis Treat 2021; 17:545-554. [PMID: 33628025 PMCID: PMC7898784 DOI: 10.2147/ndt.s295026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been a focus of psychiatric research for the past two decades. BDNF has been shown to impact neural function and development. Studies have investigated serum BDNF as a biomarker for psychiatric disorders such as depression and schizophrenia. In some studies, investigators attempt to control for variables such as smoking status, exercise, or diet. However, the relationship between these factors and BDNF is not clearly established. Furthermore, some studies have questioned whether a difference in the impact of BDNF exists between psychiatric and healthy populations. PURPOSE We aim to examine the association between serum BDNF levels and modifiable risk factors such as body mass index (BMI), smoking, exercise levels, and diet. Subsequently, we aim to examine whether the relationship between these risk factors and serum BDNF is different between psychiatric and control populations. PATIENTS AND METHODS We use cross-sectional data from an age- and sex-matched case-control study of participants with psychiatric inpatients and community controls without psychiatric diagnoses. Participants completed comprehensive assessments at study enrolment including sociodemographic information, smoking status, exercise, diet, and BMI. Serum BDNF levels were collected from participants. Linear regression analysis was performed to determine the association between modifiable factors and serum BDNF level. RESULTS A significant association was found between sedentary activity level and lower serum BDNF levels (Beta coefficient = -2.49, 95% confidence interval [CI] -4.70, -0.28, p = 0.028). Subgroup analysis demonstrated that this association held for psychiatric inpatients but not for community controls; it also held in females (Beta coefficient = -3.18, 95% CI -6.29, -0.07, p = 0.045) but not in males (Beta coefficient = -1.42, 95% CI -4.61, 1.78, p = 0.383). Antidepressant use had a significantly different association between male (Beta coefficient = 3.20, 95% CI 0.51, 5.88, p = 0.020) and female subgroups (Beta coefficient = -3.10, 95% CI -5.75, -0.46, p = 0.022). No significant association was found between other factors and serum BDNF. CONCLUSION Sedentary activity level may lead to lower serum BDNF levels in individuals with psychiatric diagnoses. Our findings support the notion that physical activity can provide a positive impact as part of treatment for psychiatric illness.
Collapse
Affiliation(s)
- Galen Chan
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tea Rosic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Stanislav Pasyk
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Mahshid Dehghan
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
29
|
Marcos-Pasero H, Aguilar-Aguilar E, Ikonomopoulou MP, Loria-Kohen V. BDNF Gene as a Precision Skill of Obesity Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:233-248. [PMID: 34453302 DOI: 10.1007/978-3-030-74046-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scarcity of the results obtained for the treatment of obesity leads us to consider new strategies, contemplating all the factors involved in the development of the disease. One of the key molecules for controlling body weight and energy homeostasis is the brain-derived neurotrophic factor (BDNF). This work summarizes the mechanisms in which BDNF gene regulates this multifactorial disease. In addition, we discuss the role of other BDNF polymorphisms as genetic determinants of obesity. In this context, a total of 14 SNPs near or inside BDNF/BDNF-AS related to BMI were identified in various GWASs. Finally, we assess gene-diet interaction as a novel tool to prevent obesity and formulate solid and personalized nutritional management. Our research group has performed the first study on the association of BDNF-AS rs925946 polymorphism and calcium intake as potential modulators of the nutritional status. Although these results should be confirmed in future studies, they open the path for new prevention opportunities.
Collapse
Affiliation(s)
- Helena Marcos-Pasero
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Elena Aguilar-Aguilar
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Maria P Ikonomopoulou
- Translational Venomics Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain. .,Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
30
|
Association of the Brain-derived Neurotrophic Factor Val66Met Polymorphism with Body Mass Index, Fasting Glucose Levels and Lipid Status in Adolescents. Balkan J Med Genet 2020; 23:77-82. [PMID: 32953413 PMCID: PMC7474215 DOI: 10.2478/bjmg-2020-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has an important role in energy balance. It suppresses food intake, reduces hepatic glucose production and converts white fat into brown fat in adipose tissue, leading to energy dissipation, lowered blood glucose and a lean phenotype. Studies have shown that the single nucleotide polymorphism (SNP) Val66Met within BDNF may be associated with obesity, insulin sensitivity, type 2 diabetes mellitus (T2DM) and dyslipidemia. The objective of the study was to investigate the association of the Val66Met polymorphism with body mass index (BMI), fasting glucose levels and lipid profile in Serbian adolescents. The study included 308 randomly selected healthy adolescents, 153 (49.68%) boys and 155 girls (50.32%), 15 years of age. Data including age, gender, height, weight, lipid profile and fasting glucose were recorded. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. No association of this polymorphism was found with BMI and lipid profile. However, significant association was observed between this polymorphism and fasting blood glucose (FBG). Carriers of a Val/Val genotype had significantly higher mean values of fasting glucose level compared to carriers of Val/ Met and Met/Met genotypes (p = 0.01). To confirm these results multiple linear regression analysis was performed. Body mass index and gender were taken as covariates. Carriers of the Val/Val genotype had significantly higher levels of FBG (β = -0.152, p = 0.02). A statistically significant association between BMI and glucose level was also observed (β = 0.124,p = 0.033). This polymorphism could be associated with fasting glucose level in Serbian adolescents, thus further research would be of great interest to validate these results.
Collapse
|
31
|
BDNF and orexin-A response to aerobic exercise are moderated by the meal consumption before exercise in overweight men: Effect of high-carbohydrate, high-protein and high-fat meals. Sci Sports 2020. [DOI: 10.1016/j.scispo.2020.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
33
|
McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and meta-analysis. Neurobiol Learn Mem 2020; 175:107298. [PMID: 32822863 DOI: 10.1016/j.nlm.2020.107298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Neurotrophins are signalling molecules involved in the formation and maintenance of synapses in the brain. They can cross the blood-brain barrier and be detected in peripheral blood, suggesting they may be a potential biomarker for brain health and function. In this review, the available literature was systematically searched for studies comparing peripheral neurotrophins levels with MRI and cognitive measures in healthy adults. Twenty-four studies were identified, six of which included a neuroimaging outcome. Fifteen studies measuring cognition were eligible for meta-analysis. The majority of studies measured levels of brain-derived neurotrophic factor (BDNF), with few assessing other neurotrophins. Results revealed BDNF is related to some neuroimaging outcomes, with some studies suggesting older age may be an important factor. A higher proportion of studies who had older samples observed significant effects between cognition and neurotrophin levels. When cognitive studies were pooled together in a meta-analysis, there was a weak non-significant effect between BDNF and cognitive outcomes. There was also a high level of heterogeneity between cognitive studies. Results indicated that gender was a notable source of the heterogeneity, but additional studies employing relevant covariates are necessary to better characterise the inter-relationship between circulating neurotrophins and cognition.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia; Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
34
|
Blanco AM, Bertucci JI, Hatef A, Unniappan S. Feeding and food availability modulate brain-derived neurotrophic factor, an orexigen with metabolic roles in zebrafish. Sci Rep 2020; 10:10727. [PMID: 32612127 PMCID: PMC7329848 DOI: 10.1038/s41598-020-67535-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point to a role for brain-derived neurotrophic factor (BDNF) on feeding in mammals. However, its role on energy balance is unclear. Moreover, whether BDNF regulates energy homeostasis in non-mammals remain unknown. This research aimed to determine whether BDNF is a metabolic peptide in zebrafish. Our results demonstrate that BDNF mRNAs and protein, as well as mRNAs encoding its receptors trkb2, p75ntra and p75ntrb, are detectable in the zebrafish brain, foregut and liver. Intraperitoneal injection of BDNF increased food intake at 1, 2 and 6 h post-administration, and caused an upregulation of brain npy, agrp and orexin, foregut ghrelin, and hepatic leptin mRNAs, and a reduction in brain nucb2. Fasting for 7 days increased bdnf and p75ntrb mRNAs in the foregut, while decreased bdnf, trkb2, p75ntra and p75ntrb mRNAs in the brain and liver. Additionally, the expression of bdnf and its receptors increased preprandially, and decreased after a meal in the foregut and liver. Finally, we observed BDNF-induced changes in the expression and/or activity of enzymes involved in glucose and lipid metabolism in the liver. Overall, present results indicate that BDNF is a novel regulator of appetite and metabolism in fish, which is modulated by energy intake and food availability.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
35
|
Colitti M, Montanari T. Brain-derived neurotrophic factor modulates mitochondrial dynamics and thermogenic phenotype on 3T3-L1 adipocytes. Tissue Cell 2020; 66:101388. [PMID: 32933711 DOI: 10.1016/j.tice.2020.101388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a growing threat. In recent years, the finding of functional brown adipose tissue (BAT) in adult humans implemented the studies of anti-obesity therapies based on triggering energy expenditure. The activation of BAT thermogenesis and the recruitment of brite (brown-in-white) adipocytes are under noradrenergic control. Brain-derived neurotrophic factor (BDNF), if centrally administered, enhances thermogenesis through sympathetic activation, but its direct effect on adipocytes is still unclear. The phenotypic change from fat storing to thermogenic adipocytes is recognized by the presence of multilocular lipid droplets (LDs) and fissed mitochondria that tend to surround LDs, maximizing the efficiency of fatty acid release for thermogenesis. BDNF treatment on differentiated 3T3-L1 adipocytes was compared to negative (CTRL) and positive (norepinephrine, NE) controls. BDNF significantly increased small globular mitochondria percentage (>150% CTRL), while the area surface and elongation index of branched tubules were respectively 55% and 10% lower than NE. Canonical discriminant analysis of mitochondria morphological data clearly separated differentially treated cells with 85% of the total variance. The expression of brown markers and mitochondrial dynamic genes was significantly affected by BDNF. Investigating the pathways involved in adipocyte BDNF stimulation could clarify its role in thermogenesis and its possible local regulation.
Collapse
Affiliation(s)
- M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - T Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
36
|
Kundap UP, Paudel YN, Shaikh MF. Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review. Pharmaceuticals (Basel) 2020; 13:ph13060106. [PMID: 32466498 PMCID: PMC7345684 DOI: 10.3390/ph13060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020. Based on the selection criteria, 23 eligible articles were chosen and are discussed in the current review. Critical analysis of the selected literature delineated several available approaches that have been modeled into metabolic epilepsy and pointed out several drawbacks associated with the currently available models. The result describes available models of metabolic dysfunction associated with epileptic disorder, such as mitochondrial respiration deficits, Lafora disease (LD) model-altered glycogen metabolism, causing epilepsy, glucose transporter 1 (GLUT1) deficiency, adiponectin responsive seizures, phospholipid dysfunction, glutaric aciduria, mitochondrial disorders, pyruvate dehydrogenase (PDH) α-subunit gene (PDHA1), pyridoxine dependent epilepsy (PDE), BCL2-associated agonist of cell death (BAD), Kcna1 knock out (KO), and long noncoding RNAs (lncRNA) cancer susceptibility candidate 2 (lncRNA CASC2). Finally, the review highlights certain focus areas that may increase the possibilities of developing more suitable animal models and underscores the importance of the rationalization of animal models and evaluation methods for studying ME. The review also suggests the pressing need of developing precise robust animal models and evaluation methods for investigating ME.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; (U.P.K.); (Y.N.P.)
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
| | - Yam Nath Paudel
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; (U.P.K.); (Y.N.P.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
- Correspondence: ; Tel.: +60-3-551-44-483
| |
Collapse
|
37
|
D'Addario C, Zaplatic E, Giunti E, Pucci M, Micioni Di Bonaventura MV, Scherma M, Dainese E, Maccarrone M, Nilsson IA, Cifani C, Fadda P. Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int J Eat Disord 2020; 53:432-446. [PMID: 32275093 DOI: 10.1002/eat.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Lipid Neurochemistry Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ida A Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
38
|
Liu H, Sun Y, Zhang X, Li S, Hu D, Xiao L, Chen Y, He L, Wang DW. Integrated Analysis of Summary Statistics to Identify Pleiotropic Genes and Pathways for the Comorbidity of Schizophrenia and Cardiometabolic Disease. Front Psychiatry 2020; 11:256. [PMID: 32425817 PMCID: PMC7212438 DOI: 10.3389/fpsyt.2020.00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified abundant risk loci associated with schizophrenia (SCZ), cardiometabolic disease (CMD) including body mass index, coronary artery diseases, type 2 diabetes, low- and high-density lipoprotein, total cholesterol, and triglycerides. Although recent studies have suggested that genetic risk shared between these disorders, the pleiotropic genes and biological pathways shared between them are still vague. Here we integrated comprehensive multi-dimensional data from GWAS, expression quantitative trait loci (eQTL), and gene set database to systematically identify potential pleiotropic genes and biological pathways shared between SCZ and CMD. By integrating the results from different approaches including FUMA, Sherlock, SMR, UTMOST, FOCUS, and DEPICT, we revealed 21 pleiotropic genes that are likely to be shared between SCZ and CMD. These genes include VRK2, SLC39A8, NT5C2, AMBRA1, ARL6IP4, OGFOD2, PITPNM2, CDK2AP1, C12orf65, ABCB9, SETD8, MPHOSPH9, FES, FURIN, INO80E, YPEL3, MAPK3, SREBF1, TOM1L2, GATAD2A, and TM6SF2. In addition, we also performed the gene-set enrichment analysis using the software of GSA-SNP2 and MAGMA with GWAS summary statistics and identified three biological pathways (MAPK-TRK signaling, growth hormone signaling, and regulation of insulin secretion signaling) shared between them. Our study provides insights into the pleiotropic genes and biological pathways underlying mechanisms for the comorbidity of SCZ and CMD. However, further genetic and functional studies are required to validate the role of these potential pleiotropic genes and pathways in the etiology of the comorbidity of SCZ and CMD, which should provide potential targets for future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hao Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinxin Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
39
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
40
|
Ceccarini MR, Tasegian A, Franzago M, Patria FF, Albi E, Codini M, Conte C, Bertelli M, Dalla Ragione L, Stuppia L, Beccari T. 5-HT2AR and BDNF gene variants in eating disorders susceptibility. Am J Med Genet B Neuropsychiatr Genet 2020; 183:155-163. [PMID: 31746551 DOI: 10.1002/ajmg.b.32771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/09/2019] [Accepted: 11/01/2019] [Indexed: 11/10/2022]
Abstract
Evidence from family and twin studies points to a genetic contribution to the etiology of eating disorders (EDs), confirmed by the association of several single nucleotide polymorphisms (SNPs) with this group of disorders. Previous reports have suggested that the serotonin receptor (5-HT2AR) and brain-derived neurotrophic factor (BDNF) genes could be both involved in EDs susceptibility. In order to provide further evidence about such association, we focused our attention on two SNPs located in these genes carrying out a genetic association study on a large Italian cohort composed of 556 ED patients and 355 controls (CTRs). Obtained results confirm the presence of an association between 5-HT2AR and BDNF genes and the susceptibility to EDs.
Collapse
Affiliation(s)
| | - Anna Tasegian
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy.,Aging and Translational Medicine Research Center (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy
| | - F Filomena Patria
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Matteo Bertelli
- MAGI Euregio, Non Profit Genetic Testing Laboratory, Research Unit, Bolzano, Italy
| | - Laura Dalla Ragione
- University of Campus Biomedico, Dipartimento di Scienze e Tecnologie per l'uomo e l'ambiente, Rome, Italy
| | - Liborio Stuppia
- Aging and Translational Medicine Research Center (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy.,Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Li N, Cao T, Wu X, Tang M, Xiang D, Cai H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front Pharmacol 2020; 10:1669. [PMID: 32116676 PMCID: PMC7011106 DOI: 10.3389/fphar.2019.01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic side effects such as weight gain and disturbed lipid metabolism are often observed in the treatment of atypical antipsychotic drugs (AAPDs), which contribute to an excessive prevalence of metabolic syndrome among schizophrenic patients. Great individual differences are observed but the underlying mechanisms are still uncertain. Research on pharmacogenomics indicates that gene polymorphisms involved in the pathways controlling food intake and lipid metabolism may play a significant role. In this review, relevant genes (HTR2C, DRD2, LEP, NPY, MC4R, BDNF, MC4R, CNR1, INSIG2, ADRA2A) and genetic polymorphisms related to metabolic side effects of AAPDs especially dyslipidemia were summarized. Apart from clinical studies, in vitro and in vivo evidence is also analyzed to support related theories. The association of central and peripheral mechanisms is emphasized, enabling the possibility of using peripheral gene expression to predict the central status. Novel methodological development of pharmacogenomics is in urgent need, so as to provide references for individualized medication and further to shed some light on the mechanisms underlying AAPD-induced lipid disturbances.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
42
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
43
|
Cırrık S, Hacioglu G, Abidin İ, Aydın-Abidin S, Noyan T. Endoplasmic reticulum stress in the livers of BDNF heterozygous knockout mice. Arch Physiol Biochem 2019; 125:378-386. [PMID: 30039987 DOI: 10.1080/13813455.2018.1489850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Involvement of endoplasmic reticulum (ER) stress and brain-derived neurotrophic factor (BDNF) in hepatic lipid metabolism has been reported previously. Objective: The effects of chronic BDNF deficiency on ER stress response in the livers were examined in this study. Methods: BDNF(+/-) mice, characterised by BDNF deficiency, and their wild-type (WT) littermates were used. The ER stress was induced by tunicamycin (Tm) (0.5 mg/kg, intraperitoneal). Animals were divided into four groups; WT, WT + Tm, BDNF(+/-), and BDNF(+/-)+Tm. Results: At the basal conditions, BDNF deficiency did not affect hepatic cell death or lipid accumulation. However, during ER stress, BDNF(+/-)+Tm group showed increased apoptosis, GADD153 immunostaining, sterol regulatory element-binding protein-1c (SREBP-1c) level, and steatosis compared to the WT + Tm group. Conclusion: Endogenous BDNF might be protective against apoptosis through GADD153 suppression and steatosis via SREBP-1c suppression during ER stress. This effect of BDNF might be clinically important for type 2 diabetes and obesity, which are related with both ER stress and BDNF deficiency.
Collapse
Affiliation(s)
- Selma Cırrık
- a Department of Physiology, Faculty of Medicine, Ordu University , Ordu , Turkey
| | - Gulay Hacioglu
- b Department of Physiology, Faculty of Medicine, Giresun University , Giresun , Turkey
| | - İsmail Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Selcen Aydın-Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Tevfik Noyan
- d Department of Medical Biochemistry, Faculty of Medicine, Ordu University , Ordu , Turkey
| |
Collapse
|
44
|
Physical Exercise Affects Adipose Tissue Profile and Prevents Arterial Thrombosis in BDNF Val66Met Mice. Cells 2019; 8:cells8080875. [PMID: 31405230 PMCID: PMC6721716 DOI: 10.3390/cells8080875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue accumulation is an independent and modifiable risk factor for cardiovascular disease (CVD). The recent CVD European Guidelines strongly recommend regular physical exercise (PE) as a management strategy for prevention and treatment of CVD associated with metabolic disorders and obesity. Although mutations as well as common genetic variants, including the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, are associated with increased body weight, eating and neuropsychiatric disorders, and myocardial infarction, the effect of this polymorphism on adipose tissue accumulation and regulation as well as its relation to obesity/thrombosis remains to be elucidated. Here, we showed that white adipose tissue (WAT) of humanized knock-in BDNFVal66Met (BDNFMet/Met) mice is characterized by an altered morphology and an enhanced inflammatory profile compared to wild-type BDNFVal/Val. Four weeks of voluntary PE restored the adipocyte size distribution, counteracted the inflammatory profile of adipose tissue, and prevented the prothrombotic phenotype displayed, per se, by BDNFMet/Met mice. C3H10T1/2 cells treated with the Pro-BDNFMet peptide well recapitulated the gene alterations observed in BDNFMet/Met WAT mice. In conclusion, these data indicate the strong impact of lifestyle, in particular of the beneficial effect of PE, on the management of arterial thrombosis and inflammation associated with obesity in relation to the specific BDNF Val66Met mutation.
Collapse
|
45
|
Zamani M, Hosseini SV, Behrouj H, Erfani M, Dastghaib S, Ahmadi M, Shamsdin SA, Mokarram P. BDNF Val66Met genetic variation and its plasma level in patients with morbid obesity: A case-control study. Gene 2019; 705:51-54. [PMID: 31004714 DOI: 10.1016/j.gene.2019.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
Obesity is a major public health concern worldwide. Genetic, behavioral, and environmental factors contribute to the multifactorial etiology of obesity. Evidence suggests an association between human Brain-Derived Neurotrophic Factor (BDNF) Val66Met single nucleotide polymorphism (SNP) and obesity. Reduced plasma BDNF levels have also been reported in patients with eating disorders and obesity. We aimed to evaluate the BDNF Val66Met (rs6265) SNP and also plasma BDNF levels in morbidly obese patients compared with healthy normal controls in southern Iran. One hundred morbidly obese patients and one hundred eight healthy normal controls were enrolled. Blood-derived DNA samples were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and confirmed by DNA sequencing. Plasma BDNF levels were evaluated using a commercially available sandwich enzyme-linked immunosorbent assay (ELISA) kit for human BDNF. Data analysis was performed by SPSS software, version 18.0. Genotype distribution was not significantly different between obese patients and controls. However, plasma BDNF levels were significantly lower in obese patients compared with controls. Interestingly, a significant association was found between BDNF Val66Met SNP and plasma BDNF levels. No relationship was observed between BDNF Val66Met SNP and all assessed demographic and clinical characteristics of obese patients. It seems that plasma BDNF levels were associated with both obesity and BDNF Val66Met SNP. However, this association was not found between BDNF Val66Met SNP and obesity. Further studies with larger sample sizes are needed for more detailed assessment of this genetic variation as a potential biomarker for obesity.
Collapse
Affiliation(s)
- Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Ahmadi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
46
|
Liu M, Tso P, Woods SC. Receptor CD36 links a risk-associated allele to obesity and metabolic disorders. J Biol Chem 2019; 293:13349-13350. [PMID: 30143599 DOI: 10.1074/jbc.h118.004818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice harboring a particular allele of the human brain-derived neurotropic factor (BDNFM/M mice) develop extreme obesity and insulin resistance when fed a high-fat diet. The underlying mechanisms of this genetic risk factor for obesity are unclear. In the current issue of JBC, Yang et al. report that pharmacological inhibition of integral membrane protein CD36 significantly reduces body weight gain and improves glucose tolerance in BDNFM/M mice. Targeting CD36 may therefore be a promising strategy to improve metabolic dysfunctions and normalize risk factors in obese individuals.
Collapse
Affiliation(s)
- Min Liu
- From the Department of Pathology and Laboratory Medicine and
| | - Patrick Tso
- From the Department of Pathology and Laboratory Medicine and
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237
| |
Collapse
|
47
|
Yang F, Wang K, Du X, Deng H, Wu HE, Yin G, Ning Y, Huang X, Teixeira AL, de Quevedo J, Soares JC, Li X, Lang X, Zhang XY. Sex difference in the association of body mass index and BDNF levels in Chinese patients with chronic schizophrenia. Psychopharmacology (Berl) 2019; 236:753-762. [PMID: 30456540 DOI: 10.1007/s00213-018-5107-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVE Schizophrenia displays sex differences in many aspects. Decreased brain-derived neurotrophic factor (BDNF) levels have been reported to be associated with high body weight or obesity as well as other psychopathological aspects in schizophrenia patients. This study aimed to explore sex differences in the relationship between serum BDNF levels and obesity in patients with chronic schizophrenia. METHODS We recruited 132 Chinese patients with chronic schizophrenia (98 males and 34 females) and compared sex differences in the body mass index (BMI), obesity, serum BDNF levels, and their associations. Psychopathology symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). A regression model with various demographic and clinical variables was applied to predict the serum levels of BDNF. RESULTS Female patients had a higher rate of obesity and higher BMI, but lower BDNF levels than male schizophrenia patients. A significantly negative correlation was observed between BMI and BDNF levels only in female patients but not in male patients. The multiple regression model with demographic and clinical variables significantly predicted BDNF levels only in female patients, with a medium size effect. And only in female patients, BMI made a significant contribution to this prediction. CONCLUSION Our results indicate significant sex differences in the obesity, BMI, BDNF levels, and their association in chronic patients with schizophrenia, showing a significant inverse correlation between BMI and BDNF levels only in female patients. Thus, sex needs to be considered when assessing the relationship between BDNF and metabolic syndromes in schizophrenia.
Collapse
Affiliation(s)
- Fang Yang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Keming Wang
- Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Huiqiong Deng
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guangzhong Yin
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xingbing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - João de Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaosi Li
- Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - XiaoE Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, 85 Jiefang Southern Road, Taiyuan, 030001, Shanxi, China.
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
48
|
de Oliveira C, de Freitas JS, Macedo IC, Scarabelot VL, Ströher R, Santos DS, Souza A, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides 2019; 73:1-10. [PMID: 30446297 DOI: 10.1016/j.npep.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Obesity is a multifactorial disease associated with metabolic dysfunction and the prevention and treatment of obesity are often unsatisfactory. Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique that has proven promising in the treatment of eating disorders such as obesity. We investigate the effects of tDCS on locomotor and exploratory activities, anxiety-like and feeding behavior, and levels of brain-derived neurotrophic factor (BDNF), IL (interleukin)-10, IL-1β, and tumor necrosis factor-alpha (TNF-α) in the cerebral cortex of obese rats. A total of 40 adult male Wistar rats were used in our study. Animals were divided into groups of three or four animals per cage and allocated to four treatment groups: standard diet plus sham tDCS treatment (SDS), standard diet plus tDCS treatment (SDT), hypercaloric diet plus sham tDCS treatment (HDS), hypercaloric diet plus tDCS treatment (HDT). After 40 days on a hypercaloric diet and/or standard diet were to assessed the locomotor and exploratory activity and anxiety-like behavior to by the open field (OF) and elevated plus maze (EPM) tests respectively before and after exposure to tDCS treatment. The experimental groups were submitted to active or sham treatment tDCS during eight days. Palatable food consumption test (PFT) was performed 24 h after the last tDCS session under fasting and feeding conditions. Obese animals submitted to tDCS treatment showed a reduction in the Lee index, visceral adipose tissue weight, and food craving. In addition, bicephalic tDCS decreased the cerebral cortex levels of IL-1β and TNF-α in these animals. Exposure to a hypercaloric diet produced an anxiolytic effect, which was reversed by bicephalic tDCS treatment. These results suggest that, in accordance with studies in humans, bicephalic tDCS could modulate biometric and inflammatory parameters, as well as anxiety-like and feeding behavior, of rats subjected to the consumption of a hypercaloric diet.
Collapse
Affiliation(s)
- Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice Soares de Freitas
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Isabel Cristina Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Iraci L S Torres
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
49
|
Expression of brain-derived neurotrophic factor (BDNF) and its naturally occurring antisense in breast cancer samples. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
50
|
Nanri A, Kochi T, Eguchi M, Kabe I, Mizoue T. Demographic and lifestyle correlates of brain-derived neurotrophic factor in a working population: The Furukawa Nutrition and Health Study. Psychiatry Res 2019; 272:581-586. [PMID: 30616127 DOI: 10.1016/j.psychres.2018.12.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022]
Abstract
This study aimed to examine the cross-sectional association of demographic and lifestyle factors with serum brain-derived neurotrophic factor (BDNF) concentrations in a Japanese working population. Participants were 1678 men and 172 women aged 19-69 years who received health check-ups and participated in a nutrition and health survey. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression (CES-D) scale. Dietary intake was assessed using a validated self-administered diet history questionnaire. Serum BDNF concentrations were measured using a solid phase sandwich enzyme-linked immunosorbent assay. Multiple linear regression analysis was used to estimate the mean and 95% confidence interval of serum BDNF concentrations according to demographic and lifestyle factors. Higher body mass index (BMI) was significantly associated with higher circulating BDNF concentrations. Current smokers had significantly higher mean BDNF concentrations than never-smokers. BDNF concentrations were not associated with folate and 25-hydroxyvitamin D concentrations in serum, or dietary eicosapentaenoic acid and docosahexaenoic acid intake. Serum BDNF concentrations were not associated with depressive symptoms or CES-D score per se. In this study, higher BMI and smoking were associated with higher concentrations of serum BDNF, while nutrients that have been linked to depression were not associated with BDNF concentrations among Japanese workers.
Collapse
Affiliation(s)
- Akiko Nanri
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan; Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takeshi Kochi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Masafumi Eguchi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Isamu Kabe
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|