1
|
Peng K, Chen X, Pei K, Wang X, Ma X, Liang C, Dong Q, Liu Z, Han M, Liu G, Yang H, Zheng M, Liu G, Gao M. Lipodystrophic gene Agpat2 deficiency aggravates hyperlipidemia and atherosclerosis in Ldlr -/- mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166850. [PMID: 37591406 DOI: 10.1016/j.bbadis.2023.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
AIMS Dysfunction of adipose tissue increases the risk of cardiovascular disease. It was well established that obesity aggravates atherosclerosis, but the effect of adipose tissue loss on atherosclerosis has been less studied. AGPAT2 is the first causative gene of congenital generalized lipodystrophy (CGL), but the role of AGPAT2 on atherosclerosis has not been reported. Hypertriglyceridemia is one of the clinical manifestations of CGL patients, but it is usually absent in CGL mouse model on a normal diet. This study will investigate the effect of Agpat2 on hyperlipidemia and atherosclerosis. METHODS AND RESULTS In this study, Agpat2 knockout (Agpat2-/-) mice were generated using CRISPR/Cas system, which showed severe loss of adipose tissue and fatty liver, consistent with previous reports. Agpat2-/- mice were then crossed with hypercholesterolemic and atherosclerotic prone LDL receptor knockout (Ldlr-/-) mice to obtain double knockout mouse model (Agpat2-/-Ldlr-/-). Plasma lipid profile, insulin resistance, fatty liver, and atherosclerotic lesions were observed after 12 weeks of the atherogenic high-fat diet (HFD) feeding. We found that compared with Ldlr-/- mice, Agpat2-/-Ldlr-/- mice showed significantly higher plasma total cholesterol and triglycerides after HFD feeding. Agpat2-/-Ldlr-/- mice also developed hyperglycemia and hyperinsulinemia, with increased pancreatic islet area. The liver weight of Agpat2-/-Ldlr-/- mice was about 4 times higher than that of Ldlr-/- mice. The liver lipid deposition was severe and Sirius red staining showed liver fibrosis. In addition, in Agpat2-/-Ldlr-/- mice, the area of atherosclerotic lesions in aortic arch and aortic root was significantly increased. CONCLUSIONS Our results show that Agpat2 deficiency led to more severe hyperlipidemia, liver fibrosis and aggravation of atherosclerosis in Ldlr-/- mice. This study provided additional insights into the role of adipose tissue in hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Kenan Peng
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Laboratory Department of Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xin Chen
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Kexin Pei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xindi Ma
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chenxi Liang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qianqian Dong
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ziwei Liu
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
2
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
3
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
4
|
Dragoljevic D, Veiga CB, Michell DL, Shihata WA, Al-Sharea A, Head GA, Murphy AJ, Kraakman MJ, Lee MKS. A spontaneously hypertensive diet-induced atherosclerosis-prone mouse model of metabolic syndrome. Biomed Pharmacother 2021; 139:111668. [PMID: 34243630 DOI: 10.1016/j.biopha.2021.111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic Syndrome (MetS) is a complex and multifactorial condition often characterised by obesity, hypertension, hyperlipidaemia, insulin resistance, glucose intolerance and fasting hyperglycaemia. Collectively, MetS can increase the risk of atherosclerotic-cardiovascular disease, which is the leading cause of death worldwide. However, no animal model currently exists to study MetS in the context of atherosclerosis. In this study we developed a pre-clinical mouse model that recapitulates the spectrum of MetS features while developing atherosclerosis. When BPHx mice were placed on a western type diet for 16 weeks, all the classical characteristics of MetS were observed. Comprehensive metabolic analyses and atherosclerotic imaging revealed BPHx mice to be obese and hypertensive, with elevated total plasma cholesterol and triglyceride levels, that accelerated atherosclerosis. Altogether, we demonstrate that the BPHx mouse has all the major components of MetS, and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Dragana Dragoljevic
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | - Camilla Bertuzzo Veiga
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | | | - Waled A Shihata
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Annas Al-Sharea
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | | | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Pirri D, Fragiadaki M, Evans PC. Diabetic atherosclerosis: is there a role for the hypoxia-inducible factors? Biosci Rep 2020; 40:BSR20200026. [PMID: 32816039 PMCID: PMC7441368 DOI: 10.1042/bsr20200026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors, including diabetes. Diabetes is associated with either an insulin deficiency in its juvenile form or with insulin resistance and obesity in Type 2 diabetes mellitus, and the latter is clustered with other comorbidities to define the metabolic syndrome. Diabetes and metabolic syndrome are complex pathologies and are associated with cardiovascular risk via vascular inflammation and other mechanisms. Several transcription factors are activated upon diabetes-driven endothelial dysfunction and drive the progression of atherosclerosis. In particular, the hypoxia-inducible factor (HIF) transcription factor family is a master regulator of endothelial biology and is raising interest in the field of atherosclerosis. In this review, we will present an overview of studies contributing to the understanding of diabetes-driven atherosclerosis, integrating the role of HIF in this disease with the knowledge of its functions in metabolic syndrome and diabetic scenario.
Collapse
Affiliation(s)
- Daniela Pirri
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| |
Collapse
|
6
|
Evidence of extensive atherosclerosis, coronary artery disease and myocardial infarction in the ApoE−/−:Ins2 mouse fed a western diet. Atherosclerosis 2018; 275:88-96. [DOI: 10.1016/j.atherosclerosis.2018.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 11/18/2022]
|
7
|
Reardon CA, Lingaraju A, Schoenfelt KQ, Zhou G, Cui C, Jacobs-El H, Babenko I, Hoofnagle A, Czyz D, Shuman H, Vaisar T, Becker L. Obesity and Insulin Resistance Promote Atherosclerosis through an IFNγ-Regulated Macrophage Protein Network. Cell Rep 2018; 23:3021-3030. [PMID: 29874587 PMCID: PMC6082182 DOI: 10.1016/j.celrep.2018.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/01/2018] [Accepted: 05/02/2018] [Indexed: 01/02/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk for atherosclerosis; however, the mechanisms underlying this relationship are poorly understood. Macrophages, which are activated in T2D and causatively linked to atherogenesis, are an attractive mechanistic link. Here, we use proteomics to show that diet-induced obesity and insulin resistance (obesity/IR) modulate a pro-atherogenic "macrophage-sterol-responsive-network" (MSRN), which, in turn, predisposes macrophages to cholesterol accumulation. We identify IFNγ as the mediator of obesity/IR-induced MSRN dysregulation and increased macrophage cholesterol accumulation and show that obesity/IR primes T cells to increase IFNγ production. Accordingly, myeloid cell-specific deletion of the IFNγ receptor (Ifngr1-/-) restores MSRN proteins, attenuates macrophage cholesterol accumulation and atherogenesis, and uncouples the strong relationship between hyperinsulinemia and aortic root lesion size in hypercholesterolemic Ldlr-/- mice with obesity/IR, but does not affect these parameters in Ldlr-/- mice without obesity/IR. Collectively, our findings identify an IFNγ-macrophage pathway as a mechanistic link between obesity/IR and accelerated atherogenesis.
Collapse
Affiliation(s)
- Catherine A Reardon
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Amulya Lingaraju
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kelly Q Schoenfelt
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Guolin Zhou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Chang Cui
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah Jacobs-El
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Ilona Babenko
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Czyz
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Howard Shuman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Committe on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lev Becker
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
9
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
10
|
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34:113-32. [PMID: 26914991 PMCID: PMC4834612 DOI: 10.1002/cbf.3173] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease.
Collapse
Affiliation(s)
- H G Tsang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - N A Rashdan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - C B A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - K M Summers
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - V E MacRae
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| |
Collapse
|
11
|
Heinonen SE, Genové G, Bengtsson E, Hübschle T, Åkesson L, Hiss K, Benardeau A, Ylä-Herttuala S, Jönsson-Rylander AC, Gomez MF. Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. J Diabetes Res 2015; 2015:404085. [PMID: 25785279 PMCID: PMC4345079 DOI: 10.1155/2015/404085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/26/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a lifelong, incapacitating metabolic disease associated with chronic macrovascular complications (coronary heart disease, stroke, and peripheral vascular disease) and microvascular disorders leading to damage of the kidneys (nephropathy) and eyes (retinopathy). Based on the current trends, the rising prevalence of diabetes worldwide will lead to increased cardiovascular morbidity and mortality. Therefore, novel means to prevent and treat these complications are needed. Under the auspices of the IMI (Innovative Medicines Initiative), the SUMMIT (SUrrogate markers for Micro- and Macrovascular hard end points for Innovative diabetes Tools) consortium is working on the development of novel animal models that better replicate vascular complications of diabetes and on the characterization of the available models. In the past years, with the high level of genomic information available and more advanced molecular tools, a very large number of models has been created. Selecting the right model for a specific study is not a trivial task and will have an impact on the study results and their interpretation. This review gathers information on the available experimental animal models of diabetic macrovascular complications and evaluates their pros and cons for research purposes as well as for drug development.
Collapse
Affiliation(s)
- Suvi E. Heinonen
- Bioscience, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, 43183 Mölndal, Sweden
- *Suvi E. Heinonen:
| | - Guillem Genové
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| | - Thomas Hübschle
- R&D Diabetes Division, Translational Medicine, Sanofi-Aventis, 65926 Frankfurt am Main, Germany
| | - Lina Åkesson
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| | - Katrin Hiss
- R&D Diabetes Division, Translational Medicine, Sanofi-Aventis, 65926 Frankfurt am Main, Germany
| | - Agnes Benardeau
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Pharmaceutical Division, pRED, CV and Metabolic Disease, Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Ann-Cathrine Jönsson-Rylander
- Bioscience, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, 43183 Mölndal, Sweden
| | - Maria F. Gomez
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| |
Collapse
|
12
|
Rensing KL, de Jager SC, Stroes ES, Vos M, Twickler MT, Dallinga-Thie GM, de Vries CJ, Kuiper J, Bot I, von der Thüsen JH. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice. Cardiovasc Res 2013; 101:277-87. [DOI: 10.1093/cvr/cvt252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Scott NJA, Cameron VA, Raudsepp S, Lewis LK, Simpson ER, Richards AM, Ellmers LJ. Generation and characterization of a mouse model of the metabolic syndrome: apolipoprotein E and aromatase double knockout mice. Am J Physiol Endocrinol Metab 2012; 302:E576-84. [PMID: 22185842 DOI: 10.1152/ajpendo.00222.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to create a comprehensive mouse model of the metabolic syndrome by crossing aromatase-deficient (ArKO) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. Successive crossbreeding of ArKO with ApoE(-/-)-deficient mice generated double knockout, MetS-Tg mice. The phenotypic characteristics of the MetS-Tg mice were assessed at 3, 6, and 12 mo of age and compared with age- and sex-matched wild-type (WT) controls. Blood pressure and heart rate were recorded by a noninvasive, computerized tail-cuff system. Oral glucose and intraperitoneal insulin tolerance tests were performed. Serum cholesterol levels were measured by a combined quantitative colorimetric assay. Plasma adiponectin, C-reactive protein (CRP), insulin, interleukin-6 (IL-6), leptin, resistin, and tumor necrosis factor-α (TNF-α) were measured by multiplexed ELISA. MetS-Tg mice displayed significantly increased body weight, central obesity, and elevated blood pressure at all three ages compared with WT mice. Elevated serum cholesterol was associated with higher triglycerides and LDL/VLDL cholesterol particles and was accompanied by a decrease in HDL and histological evidence of fatty liver. MetS-Tg mice of all ages showed impaired glucose tolerance. At 12 mo, MetS-Tg mice had elevated plasma levels of CRP, IL-6, leptin, and TNF-α, but resistin levels were largely unchanged. We now report that this combination of gene knockouts produces a novel strain of mice that display the diverse clinical features of the metabolic syndrome, including central obesity, progressive hypertension, an adverse serum lipid profile, fatty liver, glucose intolerance, insulin resistance, and evidence of an inflammatory state.
Collapse
Affiliation(s)
- Nicola J A Scott
- Dept. of Medicine, Univ. of Otago-Christchurch, Christchurch, NZ.
| | | | | | | | | | | | | |
Collapse
|
14
|
Impact of macrophage inflammatory protein-1α deficiency on atherosclerotic lesion formation, hepatic steatosis, and adipose tissue expansion. PLoS One 2012; 7:e31508. [PMID: 22359597 PMCID: PMC3281060 DOI: 10.1371/journal.pone.0031508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 01/11/2012] [Indexed: 12/30/2022] Open
Abstract
Macrophage inflammatory protein-1α (CCL3) plays a well-known role in infectious and viral diseases; however, its contribution to atherosclerotic lesion formation and lipid metabolism has not been determined. Low density lipoprotein receptor deficient (LDLR−/−) mice were transplanted with bone marrow from CCL3−/− or C57BL/6 wild type donors. After 6 and 12 weeks on western diet (WD), recipients of CCL3−/− marrow demonstrated lower plasma cholesterol and triglyceride concentrations compared to recipients of C57BL/6 marrow. Atherosclerotic lesion area was significantly lower in female CCL3−/− recipients after 6 weeks and in male CCL3−/− recipients after 12 weeks of WD feeding (P<0.05). Surprisingly, male CCL3−/− recipients had a 50% decrease in adipose tissue mass after WD-feeding, and plasma insulin, and leptin levels were also significantly lower. These results were specific to CCL3, as LDLR−/− recipients of monocyte chemoattractant protein−/− (CCL2) marrow were not protected from the metabolic consequences of high fat feeding. Despite these improvements in LDLR−/− recipients of CCL3−/− marrow in the bone marrow transplantation (BMT) model, double knockout mice, globally deficient in both proteins, did not have decreased body weight, plasma lipids, or atherosclerosis compared with LDLR−/− controls. Finally, there were no differences in myeloid progenitors or leukocyte populations, indicating that changes in body weight and plasma lipids in CCL3−/− recipients was not due to differences in hematopoiesis. Taken together, these data implicate a role for CCL3 in lipid metabolism in hyperlipidemic mice following hematopoietic reconstitution.
Collapse
|
15
|
Heinonen SE, Merentie M, Hedman M, Mäkinen PI, Loponen E, Kholová I, Bosch F, Laakso M, Ylä-Herttuala S. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice. Cardiovasc Diabetol 2011; 10:59. [PMID: 21718508 PMCID: PMC3141395 DOI: 10.1186/1475-2840-10-59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100). Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12), diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II) in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14) and age-matched C57Bl/6 mice (n = 15) were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60%) and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80%) despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.
Collapse
Affiliation(s)
- Suvi E Heinonen
- Department of Biotechnology and Molecular Medicine at A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kennedy AJ, Ellacott KLJ, King VL, Hasty AH. Mouse models of the metabolic syndrome. Dis Model Mech 2010; 3:156-66. [PMID: 20212084 DOI: 10.1242/dmm.003467] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome (MetS) is characterized by obesity concomitant with other metabolic abnormalities such as hypertriglyceridemia, reduced high-density lipoprotein levels, elevated blood pressure and raised fasting glucose levels. The precise definition of MetS, the relationships of its metabolic features, and what initiates it, are debated. However, obesity is on the rise worldwide, and its association with these metabolic symptoms increases the risk for diabetes and cardiovascular disease (among many other diseases). Research needs to determine the mechanisms by which obesity and MetS increase the risk of disease. In light of this growing epidemic, it is imperative to develop animal models of MetS. These models will help determine the pathophysiological basis for MetS and how MetS increases the risk for other diseases. Among the various animal models available to study MetS, mice are the most commonly used for several reasons. First, there are several spontaneously occurring obese mouse strains that have been used for decades and that are very well characterized. Second, high-fat feeding studies require only months to induce MetS. Third, it is relatively easy to study the effects of single genes by developing transgenic or gene knockouts to determine the influence of a gene on MetS. For these reasons, this review will focus on the benefits and caveats of the most common mouse models of MetS. It is our hope that the reader will be able to use this review as a guide for the selection of mouse models for their own studies.
Collapse
Affiliation(s)
- Arion J Kennedy
- Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
17
|
Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010; 30:742-8. [PMID: 20110573 DOI: 10.1161/atvbaha.109.201095] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Naringenin is a citrus flavonoid that potently inhibits the assembly and secretion of apolipoprotein B100-containing lipoproteins in cultured hepatocytes and improves the dyslipidemia and insulin resistance in a mouse model of the metabolic syndrome. In the present study, we used low-density lipoprotein receptor-null mice fed a high-fat diet (Western, TD96125) to test the hypothesis that naringenin prevents atherosclerosis. METHODS AND RESULTS Three groups (chow, Western, and Western plus naringenin) were fed ad libitum for 6 months. The Western diet increased fasting plasma triglyceride (TG) (5-fold) and cholesterol (8-fold) levels compared with chow, whereas the addition of naringenin significantly decreased both lipids by 50%. The Western-fed mice developed extensive atherosclerosis in the aortic sinus because plaque area was increased by 10-fold compared with chow-fed animals. Quantitation of fat-soluble dye (Sudan IV)-stained aortas, prepared en face, revealed that Western-fed mice also had a 10-fold increase in plaque deposits throughout the arch and in the abdominal sections of the aorta, compared with chow. Atherosclerosis in both areas was significantly decreased by more than 70% in naringenin-treated mice. Consistent with quantitation of aortic lesions, the Western-fed mice had a significant 6-fold increase in cholesterol and a 4-fold increase in TG deposition in the aorta compared with chow-fed mice. Both were reduced more than 50% by naringenin. The Western diet induced extensive hepatic steatosis, with a 10-fold increase in both TG and cholesteryl ester mass compared with chow. The addition of naringenin decreased both liver TG and cholesteryl ester mass by 80%. The hyperinsulinemia and obesity that developed in Western-fed mice was normalized by naringenin to levels observed in chow-fed mice. CONCLUSIONS These in vivo studies demonstrate that the citrus flavonoid naringenin ameliorates the dyslipidemia in Western-fed low-density lipoprotein receptor-null mice, leading to decreased atherosclerosis; and suggests a potential therapeutic strategy for the hyperlipidemia and increased risk of atherosclerosis associated with insulin resistance.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Vascular Biology Group, Robarts Research Institute, The University of Western Ontario, 100 Perth Dr, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Johnson LA, Maeda N. Macrovascular complications of diabetes in atherosclerosisprone mice. Expert Rev Endocrinol Metab 2010; 5:89-98. [PMID: 30934383 DOI: 10.1586/eem.09.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The well-established relationship between diabetes and cardiovascular complications, combined with the rapidly increasing prevalence of diabetes, has created a pressing need for better understanding of the mechanisms of diabetic atherosclerosis. Multiple metabolic and diabetes-specific factors have been associated with accelerated atherosclerosis, including dyslipidemia, oxidative stress, inflammation, vascular cell dysfunction and coagulopathy. This discussion highlights selected studies in which researchers have employed mouse models of diabetic atherosclerosis in an attempt to examine these mechanisms and test potential therapeutic and preventative measures.
Collapse
Affiliation(s)
- Lance A Johnson
- a Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | - Nobuyo Maeda
- b Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
19
|
Saraswathi V, Morrow JD, Hasty AH. Dietary fish oil exerts hypolipidemic effects in lean and insulin sensitizing effects in obese LDLR-/- mice. J Nutr 2009; 139:2380-6. [PMID: 19864403 PMCID: PMC2777481 DOI: 10.3945/jn.109.111567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obesity is often associated with dyslipidemia, insulin resistance, and hypertension. Together, these metabolic perturbations greatly increase the risk of developing cardiovascular disease and diabetes. Although fish oil is a well-established hypolipidemic agent, the mechanisms by which it mediates its lipid-lowering effects are not clear. In addition, it has not been established whether dietary fish oil has different effects in lean and obese mice. LDL receptor deficient (LDLR-/-) and leptin deficient mice on a LDLR-/- background (ob/ob;LDLR-/-) were fed a high fat diet (39% total fat) supplemented with 6% olive oil or fish oil for 6 wk. Fish oil supplementation resulted in lower concentrations of plasma total cholesterol (P < 0.01), triglycerides (P < 0.01), and free fatty acids (P < 0.001) in lean LDLR-/- mice, but not in ob/ob;LDLR-/- mice. In contrast, a fish oil diet did not modulate insulin sensitivity in lean LDLR-/- mice, but it improved insulin sensitivity in ob/ob;LDLR-/- mice (P < 0.05) compared with olive oil fed ob/ob;LDLR-/- mice. Interestingly, plasma adiponectin concentrations were significantly higher and hepatic steatosis was reduced in both mouse models upon fish oil feeding. Finally, fish oil fed LDLR-/- mice exhibited higher hepatic AMP activated protein kinase (AMPK) phosphorylation (P < 0.05), whereas AMPK phosphorylation was not elevated by fish oil feeding in ob/ob;LDLR-/- mice. Taken together, our data suggest that fish oil reduces hepatic steatosis in both lean and obese mice, has potent plasma lipid lowering effects in lean mice, and exerts insulin sensitizing effects in obese mice.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Molecular Physiology and Biophysics and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jason D. Morrow
- Department of Molecular Physiology and Biophysics and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232,To whom correspondence should be addressed.
| |
Collapse
|
20
|
Li S, Sun Y, Liang CP, Thorp EB, Han S, Jehle AW, Saraswathi V, Pridgen B, Kanter JE, Li R, Welch CL, Hasty AH, Bornfeldt KE, Breslow JL, Tabas I, Tall AR. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res 2009; 105:1072-82. [PMID: 19834009 DOI: 10.1161/circresaha.109.199570] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE The complications of atherosclerosis are a major cause of death and disability in type 2 diabetes. Defective clearance of apoptotic cells by macrophages (efferocytosis) is thought to lead to increased necrotic core formation and inflammation in atherosclerotic lesions. OBJECTIVE To determine whether there is defective efferocytosis in a mouse model of obesity and atherosclerosis. METHODS AND RESULTS We quantified efferocytosis in peritoneal macrophages and in atherosclerotic lesions of obese ob/ob or ob/ob;Ldlr(-/-) mice and littermate controls. Peritoneal macrophages from ob/ob and ob/ob;Ldlr(-/-) mice showed impaired efferocytosis, reflecting defective phosphatidylinositol 3-kinase activation during uptake of apoptotic cells. Membrane lipid composition of ob/ob and ob/ob;Ldlr(-/-) macrophages showed an increased content of saturated fatty acids (FAs) and decreased omega-3 FAs (eicosapentaenoic acid and docosahexaenoic acid) compared to controls. A similar defect in efferocytosis was induced by treating control macrophages with saturated free FA/BSA complexes, whereas the defect in ob/ob macrophages was reversed by treatment with eicosapentaenoic acid/BSA or by feeding ob/ob mice a fish oil diet rich in omega-3 FAs. There was also defective macrophage efferocytosis in atherosclerotic lesions of ob/ob;Ldlr(-/-) mice and this was reversed by a fish oil-rich diet. CONCLUSIONS The findings suggest that in obesity and type 2 diabetes elevated levels of saturated FAs and/or decreased levels of omega-3 FAs contribute to decreased macrophage efferocytosis. Beneficial effects of fish oil diets in atherosclerotic cardiovascular disease may involve improvements in macrophage function related to reversal of defective efferocytosis and could be particularly important in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Suzhao Li
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Han S, Liang CP, Westerterp M, Senokuchi T, Welch CL, Wang Q, Matsumoto M, Accili D, Tall AR. Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. J Clin Invest 2009; 119:1029-41. [PMID: 19273907 DOI: 10.1172/jci36523] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 01/14/2009] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes is associated with accelerated atherogenesis, which may result from a combination of factors, including dyslipidemia characterized by increased VLDL secretion, and insulin resistance. To assess the hypothesis that both hepatic and peripheral insulin resistance contribute to atherogenesis, we crossed mice deficient for the LDL receptor (Ldlr-/- mice) with mice that express low levels of IR in the liver and lack IR in peripheral tissues (the L1B6 mouse strain). Unexpectedly, compared with Ldlr-/- controls, L1B6Ldlr-/- mice fed a Western diet showed reduced VLDL and LDL levels, reduced atherosclerosis, decreased hepatic AKT signaling, decreased expression of genes associated with lipogenesis, and diminished VLDL apoB and lipid secretion. Adenovirus-mediated hepatic expression of either constitutively active AKT or dominant negative glycogen synthase kinase (GSK) markedly increased VLDL and LDL levels such that they were similar in both Ldlr-/- and L1B6Ldlr-/- mice. Knocking down expression of hepatic IR by adenovirus-mediated shRNA decreased VLDL triglyceride and apoB secretion in Ldlr-/- mice. Furthermore, knocking down hepatic IR expression in either WT or ob/ob mice reduced VLDL secretion but also resulted in decreased hepatic Ldlr protein. These findings suggest a dual action of hepatic IR on lipoprotein levels, in which the ability to increase VLDL apoB and lipid secretion via AKT/GSK is offset by upregulation of Ldlr.
Collapse
Affiliation(s)
- Seongah Han
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168th St., New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bartels ED, Bang CA, Nielsen LB. Early atherosclerosis and vascular inflammation in mice with diet-induced type 2 diabetes. Eur J Clin Invest 2009; 39:190-9. [PMID: 19260948 DOI: 10.1111/j.1365-2362.2009.02086.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Obesity and type 2 diabetes increase the risk of atherosclerosis. It is unknown to what extent this reflects direct effects on the arterial wall or secondary effects of hyperlipidaemia. MATERIALS AND METHODS The effect of obesity and type 2 diabetes on the development of atherosclerosis and inflammation, in the absence or presence of hyperlipidaemia, was assed in wild-type (n = 36) and human apolipoprotein B (apoB) transgenic mice (n = 27) that were fed normal chow or 60% fat for 12 months. RESULTS Fat-feeding caused obesity, glucose intolerance and elevated plasma leptin and soluble vascular cell adhesion molecule-1 (sVCAM-1) in both wild-type and apoB transgenic mice. In wild-type mice, plasma very low-density lipoprotein cholesterol (VLDL-C) and low-density lipoprotein cholesterol (LDL-C) were unaffected by fat-feeding. ApoB transgenic mice had mildly elevated plasma LDL-C (approximately 1 mmol L(-1)), which was slightly increased by fat-feeding. Sixty-four per cent of fat-fed wild-type mice vs. 7% of chow-fed wild-type mice had lipid-staining intimal lesions in the aortic root (P = 0.002). Eighty-six per cent of fat-fed apoB transgenic mice had lipid-staining lesions and the median lesion area was 8.0 times higher than in fat-fed wild-type mice (P = 0.001). Intracellular adhesion molecule-1 staining of the aortic endothelium was most pronounced in the fat-fed apoB transgenic mice. CONCLUSIONS Our findings suggest that diet-induced type 2 diabetes causes early atherosclerosis in the absence of dyslipidaemia, and that even a moderate level of LDL-C markedly augments this effect.
Collapse
Affiliation(s)
- E D Bartels
- Rigshospitalet, University Hospital of Copenhagen and University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
23
|
Iwasaki Y, Nishiyama M, Taguchi T, Asai M, Yoshida M, Kambayashi M, Terada Y, Hashimoto K. Insulin exhibits short-term anti-inflammatory but long-term proinflammatory effects in vitro. Mol Cell Endocrinol 2009; 298:25-32. [PMID: 18955107 DOI: 10.1016/j.mce.2008.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 01/04/2023]
Abstract
Although insulin is indispensable for maintaining glucose homeostasis, it is still controversial whether or not a high concentration of insulin is deleterious. We examined the effect of insulin on the transcriptional activity of NF-kappaB, which mediates the expression of a variety of inflammation/coagulation-related genes using hepatocyte cell lines in vitro. We found that insulin (1 nM) alone caused minimal increase in NF-kappaB-mediated transcription. On the other hand, when cells were simultaneously treated with proinflammatory cytokines such as TNFalpha, the following dual effect of insulin was observed: short-term (6h) suppressive, and long-term (36 h or later) stimulatory effects. The former effect was transient and appears to be mediated by the phosphatidylinositol 3 kinase (PI(3)K) signaling pathway. The latter effect, in contrast, was more pronounced, enhancing the TNFalpha-stimulated NF-kappaB-dependent transcription by more than sevenfold. This positive effect was NF-kappaB-specific, and was eliminated by mitogen-activated protein kinase (MAPK) inhibitors. Altogether, our data suggest that insulin has short-term anti-inflammatory but long-term proinflammatory effects. From a clinical standpoint, this implies that low basal and periodically high plasma insulin is beneficial, whereas a sustained rise in plasma insulin, as often seen in patients with obesity, may induce atherothrombotic disorders, because of the NF-kappaB-mediated overexpression of proinflammatory/procoagulant/antifibrinolytic proteins in the liver.
Collapse
Affiliation(s)
- Yasumasa Iwasaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 2008; 50 Suppl:S178-82. [PMID: 19060252 DOI: 10.1194/jlr.r800070-jlr200] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Given the multiple differences between mice and men, it was once thought that mice could not be used to model atherosclerosis, principally a human disease. Apolipoprotein E-deficient (apoEKO) mice have convincingly changed this view, and the ability to model human-like plaques in these mice has provided scientists a platform to study multiple facets of atherogenesis and to explore potential therapeutic interventions. In addition to its well-established role in lipoprotein metabolism, recent observations of reduced adiposity and improved glucose homeostasis in apoEKO mice suggest that apoE may also play a key role in energy metabolism in peripheral organs, including adipose tissue. Finally, along with apoEKO mice, knockin mice expressing human apoE isoforms in place of endogenous mouse apoE have provided insights into how quantitative and qualitative genetic alterations interact with the environment in the pathogenesis of complex human diseases.
Collapse
Affiliation(s)
- Avani A Pendse
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | |
Collapse
|
25
|
González-Navarro H, Vinué A, Vila-Caballer M, Fortuño A, Beloqui O, Zalba G, Burks D, Díez J, Andrés V. Molecular Mechanisms of Atherosclerosis in Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2008; 28:2187-94. [DOI: 10.1161/atvbaha.108.175299] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective—
The mechanisms underlying accelerated atherosclerosis in metabolic syndrome (MetS) patients remain poorly defined. In the mouse, complete disruption of insulin receptor substrate-2 (
Irs2
) causes insulin resistance, MetS-like manifestations, and accelerates atherosclerosis. Here, we performed human, mouse, and cell culture studies to gain insight into the contribution of defective
Irs2
signaling to MetS-associated alterations.
Methods and Results—
In circulating leukocytes from insulin-resistant MetS patients,
Irs2
and
Akt2
mRNA levels inversely correlate with plasma insulin levels and HOMA index and are reduced compared to insulin-sensitive MetS patients. Notably, a moderate reduction in
Irs2
expression in fat-fed
apolipoprotein E-null
mice lacking one allele of
Irs2
(
apoE
−/−
Irs2
+/−
) accelerates atherosclerosis compared to
apoE-null
controls, without affecting plaque composition. Partial
Irs2
inactivation also increases CD36 and SRA scavenger receptor expression and modified LDL uptake in macrophages, diminishes
Akt2
and
Ras
expression in aorta, and enhances expression of the proatherogenic cytokine MCP1 in aorta and primary vascular smooth muscle cells (VSMCs) and macrophages. Inhibition of AKT or ERK1/2, a downstream target of RAS, upregulates
Mcp1
in VSMCs.
Conclusions—
Enhanced levels of MCP1 resulting from reduced IRS2 expression and accompanying defects in AKT2 and Ras/ERK1/2 signaling pathways may contribute to accelerated atherosclerosis in MetS states.
Collapse
Affiliation(s)
- Herminia González-Navarro
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Ángela Vinué
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Marian Vila-Caballer
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Ana Fortuño
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Oscar Beloqui
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Guillermo Zalba
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Deborah Burks
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Javier Díez
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Vicente Andrés
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| |
Collapse
|
26
|
|
27
|
Surmi BK, Atkinson RD, Gruen ML, Coenen KR, Hasty AH. The role of macrophage leptin receptor in aortic root lesion formation. Am J Physiol Endocrinol Metab 2008; 294:E488-95. [PMID: 18182468 DOI: 10.1152/ajpendo.00374.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma leptin is often elevated in obese individuals, and previous studies have suggested leptin as a factor that links obesity and atherosclerosis. Because macrophages play a key role in atherogenesis and are responsive to leptin, we hypothesized that leptin increases aortic root lesion formation, in part, through macrophage leptin receptor (LepR). Three different bone marrow transplantation studies were conducted in which bone marrow, with or without LepR, was transplanted into lethally irradiated 1) LDL receptor-deficient (LDLR(-/-)) mice with moderate hyperleptinemia due to Western diet (WD) feeding, 2) LDLR(-/-) mice with WD feeding plus pharmacologically induced hyperleptinemia (daily injection of 125 microg leptin), or 3) obese, hyperleptinemic, LepR-deficient LDLR(-/-) (LepR(db/db);LDLR(-/-)) mice. Minor differences in plasma parameters such as cholesterol, triglycerides, and insulin were observed in some groups; however, a consistent trend for the role of LepR on these parameters was not detected. In each of the studies, macrophage LepR expression did not have an effect on aortic root atherosclerotic lesion formation. These results suggest that nonhematopoietic cells may have a more significant role than macrophages in leptin-mediated effects on aortic root lesion formation.
Collapse
Affiliation(s)
- Bonnie K Surmi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
28
|
Lloyd DJ, McCormick J, Helmering J, Kim KW, Wang M, Fordstrom P, Kaufman SA, Lindberg RA, Véniant MM. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48-/-Lepob/ob mice devoid of ApoE or Ldlr. Am J Physiol Endocrinol Metab 2008; 294:E496-505. [PMID: 18160459 DOI: 10.1152/ajpendo.00509.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The metabolic syndrome is a group of disorders including obesity, insulin resistance, atherogenic dyslipidemia, hyperglycemia, and hypertension. To date, few animal models have been described to recapitulate the phenotypes of the syndrome. In this study, we generated and characterized two lines of triple-knockout mice that are deficient in either apolipoprotein E (Apoe(-/-)) or low-density lipoprotein receptor (Ldlr(-/-)) and express no leptin (Lep(ob/ob)) or apolipoprotein B-48 but exclusively apolipoprotein B-100 (Apob(100/100)). These two lines are referred to as Apoe triple-knockout-Apoe 3KO (Apoe(-/-)Apob(100/100)Lep(ob/ob)) and Ldlr triple-knockout-Ldlr 3KO (Ldlr(-/-)Apob(100/100)Lep(ob/ob)) mice. Both lines develop obesity, hyperinsulinemia, hyperlipidemia, hypertension, and atherosclerosis. However, only Apoe 3KO mice are hyperglycemic and glucose intolerant and are more obese than Ldlr 3KO mice. To evaluate the utility of these lines as pharmacological models, we treated both with leptin and found that leptin therapy ameliorated most metabolic derangements. Leptin was more effective in improving glucose tolerance in Ldlr 3KO than Apoe 3KO animals. The reduction of plasma cholesterol by leptin in Ldlr 3KO mice can be accounted for by its suppressive effect on food intake. However, in Apoe 3KO mice, leptin further reduced plasma cholesterol independently of its effect on food intake, and this improvement correlated with a smaller plaque lesion area. These effects suggest a direct role of leptin in modulating VLDL levels and, likewise, the lesion areas in VLDL-enriched animals. These two lines of mice represent new models with features of the metabolic syndrome and will be useful in testing therapies targeted for combating the human condition.
Collapse
Affiliation(s)
- David J Lloyd
- Department of Metabolic Disorders, Amgen Incorporated, Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Atkinson RD, Coenen KR, Plummer MR, Gruen ML, Hasty AH. Macrophage-derived apolipoprotein E ameliorates dyslipidemia and atherosclerosis in obese apolipoprotein E-deficient mice. Am J Physiol Endocrinol Metab 2008; 294:E284-90. [PMID: 18029445 DOI: 10.1152/ajpendo.00601.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that macrophage-derived apolipoprotein E (apoE) reduces atherosclerotic lesion formation in lean apoE-deficient ((-/-)) mice. apoE has also been demonstrated to play a role in adipocyte differentiation and lipid accumulation. Because the prevalence of obesity has grown to epidemic proportions, we sought to determine whether macrophage-derived apoE could impact atherosclerotic lesion formation or adipose tissue expansion and inflammation in obese apoE(-/-) mice. To this end, we transplanted obese leptin-deficient (ob/ob) apoE(-/-) mice with bone marrow from either ob/ob;apoE(-/-) or ob/ob;apoE(+/+) donors. There were no differences in body weight, total body adipose tissue, or visceral fat pad mass between recipient groups. The presence of macrophage-apoE had no impact on adipose tissue macrophage content or inflammatory cytokine expression. Recipients of apoE(+/+) marrow demonstrated 3.7-fold lower plasma cholesterol (P < 0.001) and 1.7-fold lower plasma triglyceride levels (P < 0.01) by 12 wk after transplantation even though apoE was present in plasma at concentrations <10% of wild-type levels. The reduced plasma lipids reflected a dramatic decrease in very low density lipoprotein and a mild increase in high-density lipoprotein levels. Atherosclerotic lesion area was >10-fold lower in recipients of ob/ob;apoE(+/+) marrow (P < 0.005). Similar results were seen in leptin receptor-deficient (db/db) apoE(-/-) mice. Finally, when bone marrow transplantation was performed in 4-mo-old ob/ob;apoE(-/-) and db/db;apoE(-/-) mice with preexisting lesions, recipients of apoE(+/+) marrow had a 2.8-fold lower lesion area than controls (P = 0.0002). These results demonstrate that macrophage-derived apoE does not impact adipose tissue expansion or inflammatory status; however, even very low levels of macrophage-derived apoE are capable of reducing plasma lipids and atherosclerotic lesion area in obese mice.
Collapse
Affiliation(s)
- Robin D Atkinson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
30
|
Heinonen SE, Leppänen P, Kholová I, Lumivuori H, Häkkinen SK, Bosch F, Laakso M, Ylä-Herttuala S. Increased atherosclerotic lesion calcification in a novel mouse model combining insulin resistance, hyperglycemia, and hypercholesterolemia. Circ Res 2007; 101:1058-67. [PMID: 17872464 DOI: 10.1161/circresaha.107.154401] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
No mouse model is currently available where the induction of type 2 diabetes on an atherosclerotic background could be achieved without significant concomitant changes in plasma lipid levels. We crossbred 2 genetically modified mouse strains to achieve a model expressing both atherosclerosis and characteristics of type 2 diabetes. For atherosclerotic background we used low-density lipoprotein receptor-deficient mice synthetizing only apolipoprotein B100 (LDLR(-/-) ApoB(100/100)). Diabetic background was obtained from transgenic mice overexpressing insulin-like growth factor-II (IGF-II) in pancreatic beta cells. Thorough phenotypic characterization was performed in 6- and 15-month-old mice on both normal and high-fat Western diet. Results indicated that IGF-II transgenic LDLR(-/-)ApoB(100/100) mice demonstrated insulin resistance, hyperglycemia, and mild hyperinsulinemia compared with hypercholesterolemic LDLR(-/-)ApoB(100/100) controls. In addition, old IGF-II/LDLR(-/-)ApoB(100/100) mice displayed significantly increased lesion calcification, which was more related to insulin resistance than glucose levels, and significantly higher baseline expression in aorta of several genes related to calcification and inflammation. Lipid levels of IGF-II/LDLR(-/-)ApoB(100/100) mice did not differ from LDLR(-/-)ApoB(100/100) controls at any time. In conclusion, type 2 diabetic factors induce increased calcification and lesion progression without any lipid changes in a new mouse model of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Suvi E Heinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, PO Box 1627, FI-70211, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stein O, Stein Y. Resistance to obesity and resistance to atherosclerosis: is there a metabolic link? Nutr Metab Cardiovasc Dis 2007; 17:554-559. [PMID: 17555952 DOI: 10.1016/j.numecd.2007.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/14/2007] [Accepted: 01/26/2007] [Indexed: 11/26/2022]
Abstract
AIM This review deals with the question whether resistance to obesity affects resistance to atherosclerosis. DATA SYNTHESIS Resistance to diet-induced obesity in inbred mouse strains involves an adequate response to Leptin, the main regulator of the energy balance cycle. Leptin, an adipokine with both central and peripheral targets, regulates food intake and energy expenditure. Adequate response to leptin involves repression of stearoyl-CoA desaturase, activation of Amp-activated protein-kinase and uncoupling proteins, resulting in fatty acid oxidation and energy expenditure. Most of the obesity-resistant strains are also resistant to atherosclerosis, but so far no information concerning the response to the leptin cycle is available in these strains when bred onto a LDLR(-/-) or apoE(-/-) background. Recent studies in mouse strains on an atherosclerosis permissive background have identified genetic links between obesity and atherosclerosis. Moreover, information derived from studies on mice was applied in order to learn about the metabolic effectors in humans and is included in this review. CONCLUSIONS The data presented in this review provide recent information concerning metabolic pathways that play an important role in the regulation of energy balance, a prerequisite for resistance to obesity. Hopefully they will provide a background for future genetic studies involved in resistance to atherosclerosis.
Collapse
Affiliation(s)
- Olga Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
32
|
Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56:2328-38. [PMID: 17575085 DOI: 10.2337/db07-0056] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Type 2 diabetes is often accompanied by abnormal blood lipid and lipoprotein levels, but most studies on the link between hyperlipidemia and diabetes have focused on free fatty acids (FFAs). In this study, we examined the relationship between cholesterol and insulin secretion from pancreatic beta-cells that is independent of the effects of FFAs. RESEARCH DESIGN AND METHODS Several methods were used to modulate cholesterol levels in intact islets and cultured beta-cells, including a recently developed mouse model that exhibits elevated cholesterol but normal FFA levels. Acute and metabolic alteration of cholesterol was done using pharmacological reagents. RESULTS We found a direct link between elevated serum cholesterol and reduced insulin secretion, with normal secretion restored by cholesterol depletion. We further demonstrate that excess cholesterol inhibits secretion by downregulation of metabolism through increased neuronal nitric oxide synthase dimerization. CONCLUSIONS This direct effect of cholesterol on beta-cell metabolism opens a novel set of mechanisms that may contribute to beta-cell dysfunction and the onset of diabetes in obese patients.
Collapse
Affiliation(s)
- Mingming Hao
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
33
|
Coenen KR, Hasty AH. Obesity potentiates development of fatty liver and insulin resistance, but not atherosclerosis, in high-fat diet-fed agouti LDLR-deficient mice. Am J Physiol Endocrinol Metab 2007; 293:E492-9. [PMID: 17566116 DOI: 10.1152/ajpendo.00171.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is increasing at an alarming rate, and its related disorders are placing a considerable strain on our healthcare system. Although they are not always coincident, obesity is often accompanied by hyperlipidemia. Both obesity and hyperlipidemia are independently associated with atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and insulin resistance (IR). Thus, we sought to determine the relative contributions of obesity and hyperlipidemia to these associated pathologies. Obese agouti (A(y)/a) mice and their littermate controls (a/a) were placed on an LDL receptor (LDLR)(-/-) background. At 4 mo of age, mice were either maintained on chow diet (CD) or placed on Western diet (WD) for 12 wk. These genetic and dietary manipulations yielded four experimental groups: 1) lean, a/a;LDLR(-/-)CD; 2) genetic-induced obesity (GIO), A(y)/a;LDLR(-/-)CD; 3) diet-induced obesity (DIO), a/a;LDLR(-/-)WD; and 4) genetic- plus diet-induced obesity (GIO/DIO), A(y)/a;LDLR(-/-)WD. Lipoprotein profiles revealed increased VLDL and LDL particles in WD-fed mice compared with CD-fed controls. The hyperlipidemia present in this mouse model was the result of both increased hepatic triglyceride production and delayed lipoprotein clearance from the plasma. Both WD-fed groups exhibited similar levels of atherosclerotic lesion area, with increased obesity in the GIO/DIO group having no impact on atherogenesis. However, the severe obesity in the GIO/DIO group did aggravate NAFLD and IR. These findings suggest that, although obesity and hyperlipidemia exert individual pathological effects, the combination of the two has the potential to exert an additive effect on NAFLD and IR but not atherosclerosis in this mouse model.
Collapse
Affiliation(s)
- Kimberly R Coenen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
34
|
Coenen KR, Gruen ML, Hasty AH. Obesity causes very low density lipoprotein clearance defects in low-density lipoprotein receptor-deficient mice. J Nutr Biochem 2007; 18:727-35. [PMID: 17418556 DOI: 10.1016/j.jnutbio.2006.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/20/2006] [Accepted: 12/06/2006] [Indexed: 11/29/2022]
Abstract
We have reported that obese leptin-deficient mice (ob/ob) lacking the low-density lipoprotein receptor (LDLR(-/-)) develop severe hyperlipidemia and spontaneous atherosclerosis. In the present study, we show that obese leptin receptor-deficient mice (db/db) lacking LDLR have a similar phenotype, even in the presence of elevated plasma leptin levels. We investigated the mechanism for the hyperlipidemia in obese LDLR(-/-) mice by comparing lipoprotein production and clearance rates in C57BL/6, ob/ob, LDLR(-/-) and ob/ob;LDLR(-/-) mice. Hepatic triglyceride production rates were equally increased ( approximately 1.4-fold, P<.05) in both LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob mice. LDL clearance was decreased ( approximately 1.3- fold, P<.01) to a similar extent in LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob controls. While VLDL clearance was delayed in LDLR(-/-) compared to C57BL/6 and ob/ob mice (2-fold, P<.001), this delay was exaggerated in ob/ob;LDLR(-/-) mice (3.8-fold, P<001). The VLDL clearance defects were due to decreased hepatic uptake compared to C57BL/6 (54% and 26% for LDLR(-/-) and ob/ob;LDLR(-/-), respectively, P<.001). When VLDL was collected from C57BL/6, ob/ob, LDLR(-/-), and ob/ob;LDLR(-/-) donors and injected into LDLR(-/-) recipient mice, counts remaining in the liver were 1.4-fold elevated in mice receiving LDLR(-/-) VLDL and 2-fold increased in mice receiving ob/ob;LDLR(-/-) VLDL compared to controls receiving C57BL/6 VLDL (P<.01). Thus, the increase in plasma lipoproteins in ob/ob;LDLR(-/-) mice is caused by delayed VLDL clearance. This appears to be due to defects in both the liver and the lipoproteins themselves in these obese mice.
Collapse
Affiliation(s)
- Kimberly R Coenen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
35
|
Wu KK, Huan Y. Diabetic atherosclerosis mouse models. Atherosclerosis 2006; 191:241-9. [PMID: 16979174 DOI: 10.1016/j.atherosclerosis.2006.08.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/20/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Coronary heart disease (CHD) due to atherosclerosis is the leading cause of death in the USA, and accelerated CHD has emerged as a leading cause of morbidity and mortality in diabetic patients in the USA and worldwide. This has highlighted the importance and urgency of studying the mechanism of diabetic atherosclerosis and exploring therapeutic options. Due to its unique advantages over other animal models, the mouse is the most used model for studying the mechanism of diabetes-accelerated atherosclerosis and exploring effective therapeutic approaches. In the past decade, several diabetic atherosclerosis mouse models have been established. Currently, however, there is no ideal animal model for diabetic atherosclerosis. To determine the characteristics of the models that more closely resemble human diabetic atherosclerosis disease, this review focuses on the common diabetic atherosclerosis mouse models with respect to the following issues: (1) whether the mice retain diabetic condition; (2) whether the diabetes accelerates atherosclerosis or increases atherogenic inflammation; (3) whether these factors respond to medical interventions. The discussion is aimed at identifying different diabetic mouse models and their features, in order to heighten awareness of the appropriate models that may provide useful tools for studying the mechanism of diabetes-accelerated atherosclerosis and evaluating therapeutic options.
Collapse
MESH Headings
- Aldehyde Reductase/genetics
- Aldehyde Reductase/metabolism
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/chemically induced
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/genetics
- Dietary Carbohydrates/administration & dosage
- Dietary Fats/administration & dosage
- Disease Models, Animal
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Streptozocin
Collapse
Affiliation(s)
- Kenneth K Wu
- Department of Cardiovascular Disease, Merck Research Laboratories, RY 80W-250, 126 East Lincoln Avenue, Rahway, NJ 07065, USA.
| | | |
Collapse
|
36
|
Hasty AH, Gruen ML, Terry ES, Surmi BK, Atkinson RD, Gao L, Morrow JD. Effects of vitamin E on oxidative stress and atherosclerosis in an obese hyperlipidemic mouse model. J Nutr Biochem 2006; 18:127-33. [PMID: 16781857 DOI: 10.1016/j.jnutbio.2006.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/30/2006] [Indexed: 11/20/2022]
Abstract
Vitamin E is a natural antioxidant that has been used in animal and human studies to determine its potential in reducing cardiovascular risk; however, a detailed study in an established obese model of atherosclerosis has yet to be performed. In our current study, we show that obesity and hyperlipidemia cause a synergistic, age-related increase in urinary isoprostane levels in mice deficient in both leptin and low-density lipoprotein receptor (ob/ob;LDLR-/-). Based upon this observation, we hypothesized that vitamin E supplementation would induce potent antiatherogenic effects in this model. Lean and obese LDLR-/- mice were provided vitamin E (2000 IU/kg) in a Western-type high-fat diet for 12 weeks. Plasma lipid parameters, such as total cholesterol (TC), triglyceride (TG) and free fatty acid, were significantly higher in obese mice compared to lean mice at baseline (P<.001). Western-type diet (WD) feeding caused an increase in TC levels in all groups (P<.001); however, TG (P<.001) and free fatty acid (P<.01) were elevated only in lean mice following WD feeding. Vitamin E supplementation neither influenced any of these parameters nor reduced urinary isoprostanes in lean or obese mice. Vitamin E supplementation in ob/ob;LDLR-/- mice resulted in a trend toward a reduction in atherosclerotic lesion area (P=.10), although no differences in lesion area were noted in lean LDLR-/- animals. These data provide evidence that vitamin E supplementation is not sufficient to reduce extreme elevations in systemic oxidative stress due to hyperlipidemia and obesity and, thus, may not be cardioprotective in this setting.
Collapse
Affiliation(s)
- Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|