1
|
Alvarez-Jimenez L, Morales-Palomo F, Moreno-Cabañas A, Ortega JF, Mora-Rodríguez R. Effects of statin therapy on glycemic control and insulin resistance: A systematic review and meta-analysis. Eur J Pharmacol 2023; 947:175672. [PMID: 36965747 DOI: 10.1016/j.ejphar.2023.175672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
AIMS To update the evidence about the diabetogenic effect of statins. METHODS We searched for randomized-controlled trials reporting the effects of statin therapy on glycosylated hemoglobin (HbA1c) and/or homeostatic model insulin resistance (i.e., HOMA-IR) as indexes of diabetes. Studies were classified between the ones testing normal vs individuals with already altered glycemic control (HbA1c ≥ 6.5%; and HOMA-IR ≥ 2.15). Furthermore, studies were separated by statin type and dosage prescribed. Data are presented as mean difference (MD) and 95% confidence intervals. RESULTS A total of 67 studies were included in the analysis (>25,000 individuals). In individuals with altered glycemic control, statins increased HbA1c levels (MD 0.21%, 95% CI 0.16-to-0.25) and HOMA-IR index (MD 0.31, 95% CI 0.24-to-0.38). In individuals with normal glycemic control, statin increased HbA1c (MD 1.33%, 95% CI 1.31-to-1.35) and HOMA-IR (MD 0.49, 95% CI 0.41-to-0.58) in comparison to the placebo groups. The dose or type of statins did not modulate the diabetogenic effect. CONCLUSIONS Statins, slightly but significantly raise indexes of diabetes in individuals with adequate or altered glycemic control. The diabetogenic effect does not seem to be influenced by the type or dosage of statin prescribed.
Collapse
Affiliation(s)
- Laura Alvarez-Jimenez
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Juan F Ortega
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Ricardo Mora-Rodríguez
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain.
| |
Collapse
|
2
|
Ying Q, Ronca A, Chan DC, Pang J, Favari E, Watts GF. Effect of a PCSK9 inhibitor and a statin on cholesterol efflux capacity: A limitation of current cholesterol-lowering treatments? Eur J Clin Invest 2022; 52:e13766. [PMID: 35294778 PMCID: PMC9541635 DOI: 10.1111/eci.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cellular cholesterol efflux is a key step in reverse cholesterol transport that may impact on atherosclerotic cardiovascular risk. The process may be reliant on the availability of apolipoprotein (apo) B-100-containing lipoproteins to accept cholesterol from high-density lipoprotein. Evolocumab and atorvastatin are known to lower plasma apoB-100-containing lipoproteins that could impact on cholesterol efflux capacity (CEC). METHODS We conducted a 2-by-2 factorial trial of the effects of subcutaneous evolocumab (420 mg every 2 weeks) and atorvastatin (80 mg daily) for 8 weeks on CEC in 81 healthy, normolipidaemic men. The capacity of whole plasma and apoB-depleted plasma, including ATP-binding cassette transporter A1 (ABCA1)-mediated and passive diffusion, to efflux cholesterol, was measured. RESULTS Evolocumab and atorvastatin independently decreased whole plasma CEC (main effect p < .01 for both). However, there were no significant effects of evolocumab and atorvastatin on apoB-depleted plasma, ABCA1-mediated and passive diffusion-mediated CEC (p > .05 in all). In the three intervention groups combined, the reduction in whole plasma CEC was significantly correlated with the corresponding reduction in plasma apoB-100 concentration (r = .339, p < .01). In the evolocumab monotherapy group, the reduction in whole plasma CEC was also significantly correlated with the corresponding reduction in plasma lipoprotein(a) concentration (r = .487, p < .05). CONCLUSIONS In normolipidaemic men, evolocumab and atorvastatin decrease the capacity of whole plasma to efflux cellular cholesterol. These effects may be chiefly owing to a fall in the availability of apoB-100-containing lipoproteins. Reduction in circulating lipoprotein(a) may also contribute to the decrease in whole plasma cholesterol efflux with evolocumab monotherapy.
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Naresh S, Bitla AR, Rao PVLNS, Sachan A, Amancharla YL. Efficacy of oral rosuvastatin intervention on HDL and its associated proteins in men with type 2 diabetes mellitus. Endocrine 2021; 71:76-86. [PMID: 32895874 DOI: 10.1007/s12020-020-02472-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE High-density lipoprotein (HDL) undergoes structural and functional modification in patients with type 2 diabetes mellitus (T2DM). There are limited data on effect of rosuvastatin on HDL-associated proteins and the antiatherogenic effects of rosuvastatin. The present study intended to study the efficacy of rosuvastatin intervention on HDL-associated proteins and its other antiatherogenic effects in men with T2DM. METHODS Men with T2DM on oral antidiabetic treatment, with LDL-C levels > 75 mg/dL and willing for rosuvastatin intervention (20 mg/day orally for a period of 12 weeks), were included. Fasting glucose, lipid profile were measured using standard methods. Oxidized low-density lipoprotein (oxLDL), oxidized HDL (oxHDL), paraoxonase-1 (PON-1), tumour necrosis factor-α (TNF-α) and lecithin:cholesterol acyltransferase (LCAT) in serum were measured by ELISA; serum myeloperoxidase (MPO) by spectrophotometric method and cholesterol efflux by fluorometric assay. Carotid intima-media thickness (cIMT) measurement to assess vascular health status was done using doppler. RESULTS Rosuvastatin produced a significant decrease (p < 0.05) in lipids (total cholesterol, triglycerides, LDL-C); oxidative stress (oxLDL, oxHDL, MPO); inflammation (TNF-α); LCAT concentration; cIMT; significant increase in antiatherogenic HDL and cholesterol efflux (p < 0.05) and no change in apoA-I levels from baseline to 12 weeks of follow-up. A decrease in MPO activity was found to be independently associated with an increase in cholesterol efflux. CONCLUSIONS Post intervention there is a quantitative and qualitative improvement in HDL, which helps in its reverse cholesterol transport (RCT) and antioxidant functions. Improvement in HDL functions and suppression of inflammation by rosuvastatin lead to regression in cIMT, which is beneficial in decreasing the progression of cardiovascular disease (CVD) in men with diabetes.
Collapse
Affiliation(s)
- Sriram Naresh
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| | - P V L N Srinivasa Rao
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Alok Sachan
- Department of Endocrinology and Metabolism, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Yadagiri Lakshmi Amancharla
- Department of Radiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
4
|
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr Med Chem 2019; 26:1610-1630. [DOI: 10.2174/0929867325666180316115726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eleonora Giorgio
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Usefulness of apolipoprotein B-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads. Biosci Rep 2019; 39:BSR20190213. [PMID: 30867253 PMCID: PMC6443949 DOI: 10.1042/bsr20190213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol efflux capacity (CEC) in atherosclerotic lesions is the main anti-atherosclerotic function of high-density lipoprotein (HDL). In recent studies, apolipoprotein (apo) B-depleted serum (BDS) obtained with the polyethylene glycol (PEG) precipitation method is used as a cholesterol acceptor (CA) substitution for HDL isolated by ultracentrifugation. However, the suitability of BDS as a CA is controversial. In the present study, CEC obtained from BDS (BDS-CEC) was evaluated based on a parameter, defined as whole-CEC, which was calculated by multiplying CEC obtained using fixed amounts of HDL by cholesterol concentration to HDL-cholesterol (HDL-C) levels in the serum. Significant correlation (r = 0.633) was observed between both CECs. To eliminate systematic errors from possible contamination with serum proteins and low-density lipoprotein (LDL) or very-LDL (VLDL) in BDS-CEC, the deviation of each CEC-BDS from the regression equation was compared with serum protein, LDL, and triglyceride (TG) levels. No correlation was observed between the deviation and the levels of each of these serum components, indicating that the deviations do not derive from systematic error. Further, to evaluate the effects of serum protein on the results, we measured BDS-CEC of reconstituted serum samples prepared using combinations of five levels of serum proteins with five levels of HDL-C. No significant change in BDS-CEC was observed in any combination. These results indicate that BDS-CEC reflects not only the function of HDL but also its concentration in serum.
Collapse
|
6
|
Gebhard C, Rhainds D, He G, Rodés-Cabau J, Lavi S, Spence JD, Title L, Kouz S, L'Allier PL, Grégoire J, Ibrahim R, Cossette M, Guertin MC, Beanlands R, Rhéaume E, Tardif JC. Elevated level of lecithin:cholesterol acyltransferase (LCAT) is associated with reduced coronary atheroma burden. Atherosclerosis 2018; 276:131-139. [DOI: 10.1016/j.atherosclerosis.2018.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
7
|
Jung KY, Kim KM, Han SK, Yun HM, Oh TJ, Choi SH, Park KS, Jang HC, Lim S. Effect of Rosuvastatin on Cholesterol Efflux Capacity and Endothelial Function in Type 2 Diabetes Mellitus and Dyslipidemia. Circ J 2018; 82:1387-1395. [PMID: 28943594 DOI: 10.1253/circj.cj-17-0411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Quality and quantity of high-density lipoprotein cholesterol (HDL-C) may be associated with cardiovascular risk. We investigated the effect of rosuvastatin on cholesterol efflux (CE) for HDL function and vascular health. METHODS AND RESULTS We enrolled 30 dyslipidemic patients with type 2 diabetes mellitus and 20 healthy subjects as controls. Vascular health was assessed on flow-medicated dilation (FMD), nitroglycerin-induced dilatation of the brachial artery and carotid artery intima-media thickness (cIMT). These parameters were compared between patients and controls, and between baseline and at 12 weeks of treatment with rosuvastatin 20 mg. Age and body mass index were 49.8±11.3 years and 25.8±3.7 kg/m2in the patients, and 28.8±3.2 years and 22.4±2.4 kg/m2in the controls, respectively. The biomarkers related to lipid and glucose metabolism and lipoprotein (a), high-sensitivity C-reactive protein, and cIMT were significantly higher, and CE and FMD were significantly lower in the patients than in the controls. In the patients, rosuvastatin 20 mg decreased low-density lipoprotein cholesterol by 54.1% and increased HDL-C by 4.8%. The CE increased significantly after rosuvastatin treatment (12.26±2.72% vs. 14.05±4.14%). FMD also increased, and lipoprotein (a) and cIMT decreased significantly and were associated with changes of CE. CONCLUSIONS Rosuvastatin-induced changes in HDL function are significantly associated with cardiovascular benefit.
Collapse
Affiliation(s)
- Kyong Yeun Jung
- Department of Internal Medicine, Eulji General Hospital
- Department of Internal Medicine, Seoul National University Bundang Hospital
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Sun Kyoung Han
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Han Mi Yun
- Physiologic Diagnostic Laboratory, Vascular Laboratory, Seoul National University Bundang Hospital
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| |
Collapse
|
8
|
Sarzynski MA, Ruiz-Ramie JJ, Barber JL, Slentz CA, Apolzan JW, McGarrah RW, Harris MN, Church TS, Borja MS, He Y, Oda MN, Martin CK, Kraus WE, Rohatgi A. Effects of Increasing Exercise Intensity and Dose on Multiple Measures of HDL (High-Density Lipoprotein) Function. Arterioscler Thromb Vasc Biol 2018; 38:943-952. [PMID: 29437573 PMCID: PMC5864525 DOI: 10.1161/atvbaha.117.310307] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/24/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Measures of HDL (high-density lipoprotein) function are associated with cardiovascular disease. However, the effects of regular exercise on these measures is largely unknown. Thus, we examined the effects of different doses of exercise on 3 measures of HDL function in 2 randomized clinical exercise trials. APPROACH AND RESULTS Radiolabeled and boron dipyrromethene difluoride-labeled cholesterol efflux capacity and HDL-apoA-I (apolipoprotein A-I) exchange were assessed before and after 6 months of exercise training in 2 cohorts: STRRIDE-PD (Studies of Targeted Risk Reduction Interventions through Defined Exercise, in individuals with Pre-Diabetes; n=106) and E-MECHANIC (Examination of Mechanisms of exercise-induced weight compensation; n=90). STRRIDE-PD participants completed 1 of 4 exercise interventions differing in amount and intensity. E-MECHANIC participants were randomized into 1 of 2 exercise groups (8 or 20 kcal/kg per week) or a control group. HDL-C significantly increased in the high-amount/vigorous-intensity group (3±5 mg/dL; P=0.02) of STRRIDE-PD, whereas no changes in HDL-C were observed in E-MECHANIC. In STRRIDE-PD, global radiolabeled efflux capacity significantly increased 6.2% (SEM, 0.06) in the high-amount/vigorous-intensity group compared with all other STRRIDE-PD groups (range, -2.4 to -8.4%; SEM, 0.06). In E-MECHANIC, non-ABCA1 (ATP-binding cassette transporter A1) radiolabeled efflux significantly increased 5.7% (95% CI, 1.2-10.2%) in the 20 kcal/kg per week group compared with the control group, with no change in the 8 kcal/kg per week group (2.6%; 95% CI, -1.4 to 6.7%). This association was attenuated when adjusting for change in HDL-C. Exercise training did not affect BODIPY-labeled cholesterol efflux capacity or HDL-apoA-I exchange in either study. CONCLUSIONS Regular prolonged vigorous exercise improves some but not all measures of HDL function. Future studies are warranted to investigate whether the effects of exercise on cardiovascular disease are mediated in part by improving HDL function. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifiers: NCT00962962 and NCT01264406.
Collapse
Affiliation(s)
- Mark A Sarzynski
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.).
| | - Jonathan J Ruiz-Ramie
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Jacob L Barber
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Cris A Slentz
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - John W Apolzan
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Robert W McGarrah
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Melissa N Harris
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Timothy S Church
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Mark S Borja
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Yumin He
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Michael N Oda
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Corby K Martin
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - William E Kraus
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Anand Rohatgi
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| |
Collapse
|
9
|
Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol J Cardiol 2017; 18:116-121. [PMID: 28554988 PMCID: PMC5731260 DOI: 10.14744/anatoljcardiol.2017.7669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: This study investigated the effects of garlic on brachial endothelial function and THP-1 macrophage cholesterol efflux (CE) and examined whether garlic modulates ATP-binding cassette (ABC) A1 and ABCG1 mRNA expressions in peripheral blood mononuclear cells (PBMCs) isolated from patients with coronary artery disease (CAD). Methods: In this randomized, placebo-controlled trial, patients with CAD were randomly divided into two groups: those receiving garlic powder or placebo tablets twice daily for 3 months. Brachial flow-mediated dilation (FMD) was assessed using ultrasound. Fasting blood samples were collected before and after period and PBMC and plasma were isolated. Human THP-1 monocytes were differentiated into macrophages, labeled with 3H-cholesterol, and incubated with plasma samples, and CE was assessed. ABCA1 and ABCG1 mRNA expressions were determined in PBMCs. Results: After 3 months, brachial FMD values significantly improved (50.7%) in the garlic group compared with those in the placebo group (p=0.016). High-sensitive C-reactive protein (hs-CRP) levels significantly decreased in the garlic group, but the difference between the two groups was not statistically significant. No significant difference was observed with regard to CE and ABCA1 and ABCG1 mRNA expressions in PBMCs. CE was negatively correlated with hs-CRP levels. Conclusion: Short-term treatment with garlic may improve the endothelial function and may affect hs-CRP levels; however, it could neither significantly improve THP-1 macrophage CE nor affect ABCA1 or ABCG1 expressions in PBMCs.
Collapse
|
10
|
Kini AS, Vengrenyuk Y, Shameer K, Maehara A, Purushothaman M, Yoshimura T, Matsumura M, Aquino M, Haider N, Johnson KW, Readhead B, Kidd BA, Feig JE, Krishnan P, Sweeny J, Milind M, Moreno P, Mehran R, Kovacic JC, Baber U, Dudley JT, Narula J, Sharma S. Intracoronary Imaging, Cholesterol Efflux, and Transcriptomes After Intensive Statin Treatment. J Am Coll Cardiol 2017; 69:628-640. [DOI: 10.1016/j.jacc.2016.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
|
11
|
Abstract
PURPOSE OF REVIEW Low HDL-cholesterol (HDL-C) levels are predictive of incident atherosclerotic cardiovascular disease events. However, the use of medication to raise HDL-C levels has not consistently shown clinical benefit. As a result, studies have shifted toward HDL function, specifically cholesterol efflux, which has been inversely associated with prevalent subclinical atherosclerosis as well as subsequent atherosclerotic cardiovascular disease events. The purpose of this review is to summarize the effects of current medications and interventions on cholesterol efflux capacity. RECENT FINDINGS Medications for cardiovascular health, including statins, fibrates, niacin, and novel therapeutics, are reviewed for their effect on cholesterol efflux. Differences in population studied and assay used are addressed appropriately. Lifestyle interventions, including diet and exercise, are also included in the review. SUMMARY The modification of cholesterol efflux capacity (CEC) by current medications and interventions has been investigated in both large randomized control trials and smaller observational cohorts. This review serves to compile the results of these studies and evaluate CEC modulation by commonly used medications. Altering CEC could be a novel therapeutic approach to improving cardiovascular risk profiles.
Collapse
Affiliation(s)
- Nicholas Brownell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
12
|
Apro J, Tietge UJF, Dikkers A, Parini P, Angelin B, Rudling M. Impaired Cholesterol Efflux Capacity of High-Density Lipoprotein Isolated From Interstitial Fluid in Type 2 Diabetes Mellitus-Brief Report. Arterioscler Thromb Vasc Biol 2016; 36:787-91. [PMID: 27034474 PMCID: PMC4845764 DOI: 10.1161/atvbaha.116.307385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Patients with type 2 diabetes mellitus (T2D) have an increased risk of cardiovascular disease, the mechanism of which is incompletely understood. Their high-density lipoprotein (HDL) particles in plasma have been reported to have impaired cholesterol efflux capacity. However, the efflux capacity of HDL from interstitial fluid (IF), the starting point for reverse cholesterol transport, has not been studied. We here investigated the cholesterol efflux capacity of HDL from IF and plasma from T2D patients and healthy controls. Approach and Results— HDL was isolated from IF and peripheral plasma from 35 T2D patients and 35 age- and sex-matched healthy controls. Cholesterol efflux to HDL was determined in vitro, normalized for HDL cholesterol, using cholesterol-loaded macrophages. Efflux capacity of plasma HDL was 10% lower in T2D patients than in healthy controls, in line with previous observations. This difference was much more pronounced for HDL from IF, where efflux capacity was reduced by 28% in T2D. Somewhat surprisingly, the efflux capacity of HDL from IF was lower than that of plasma HDL, by 15% and 32% in controls and T2D patients, respectively. Conclusion— These data demonstrate that (1) HDL from IF has a lower cholesterol efflux capacity than plasma HDL and (2) the efflux capacity of HDL from IF is severely impaired in T2D when compared with controls. Because IF comprises the compartment where reverse cholesterol transport is initiated, the marked reduction in cholesterol efflux capacity of IF-HDL from T2D patients may play an important role for their increased risk to develop atherosclerosis.
Collapse
Affiliation(s)
- Johanna Apro
- From the Metabolism Unit (J.A., P.P., B.A., M.R.) and KI/AZ Integrated CardioMetabolic Center (J.A., B.A., M.R.), Department of Medicine and Department of Biosciences and Nutrition (J.A., B.A., M.R.), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden. Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (U.J.F.T., A.D.); and Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden (P.P.).
| | - Uwe J F Tietge
- From the Metabolism Unit (J.A., P.P., B.A., M.R.) and KI/AZ Integrated CardioMetabolic Center (J.A., B.A., M.R.), Department of Medicine and Department of Biosciences and Nutrition (J.A., B.A., M.R.), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden. Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (U.J.F.T., A.D.); and Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden (P.P.)
| | - Arne Dikkers
- From the Metabolism Unit (J.A., P.P., B.A., M.R.) and KI/AZ Integrated CardioMetabolic Center (J.A., B.A., M.R.), Department of Medicine and Department of Biosciences and Nutrition (J.A., B.A., M.R.), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden. Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (U.J.F.T., A.D.); and Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden (P.P.)
| | - Paolo Parini
- From the Metabolism Unit (J.A., P.P., B.A., M.R.) and KI/AZ Integrated CardioMetabolic Center (J.A., B.A., M.R.), Department of Medicine and Department of Biosciences and Nutrition (J.A., B.A., M.R.), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden. Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (U.J.F.T., A.D.); and Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden (P.P.)
| | - Bo Angelin
- From the Metabolism Unit (J.A., P.P., B.A., M.R.) and KI/AZ Integrated CardioMetabolic Center (J.A., B.A., M.R.), Department of Medicine and Department of Biosciences and Nutrition (J.A., B.A., M.R.), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden. Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (U.J.F.T., A.D.); and Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden (P.P.)
| | - Mats Rudling
- From the Metabolism Unit (J.A., P.P., B.A., M.R.) and KI/AZ Integrated CardioMetabolic Center (J.A., B.A., M.R.), Department of Medicine and Department of Biosciences and Nutrition (J.A., B.A., M.R.), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden. Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (U.J.F.T., A.D.); and Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden (P.P.)
| |
Collapse
|
13
|
Gomaraschi M, Adorni MP, Banach M, Bernini F, Franceschini G, Calabresi L. Effects of established hypolipidemic drugs on HDL concentration, subclass distribution, and function. Handb Exp Pharmacol 2015; 224:593-615. [PMID: 25523003 DOI: 10.1007/978-3-319-09665-0_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The knowledge of an inverse relationship between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and rates of cardiovascular disease has led to the concept that increasing plasma HDL-C levels would be protective against cardiovascular events. Therapeutic interventions presently available to correct the plasma lipid profile have not been designed to specifically act on HDL, but have modest to moderate effects on plasma HDL-C concentrations. Statins, the first-line lipid-lowering drug therapy in primary and secondary cardiovascular prevention, have quite modest effects on plasma HDL-C concentrations (2-10%). Fibrates, primarily used to reduce plasma triglyceride levels, also moderately increase HDL-C levels (5-15%). Niacin is the most potent available drug in increasing HDL-C levels (up to 30%), but its use is limited by side effects, especially flushing.The present chapter reviews the effects of established hypolipidemic drugs (statins, fibrates, and niacin) on plasma HDL-C levels and HDL subclass distribution, and on HDL functions, including cholesterol efflux capacity, endothelial protection, and antioxidant properties.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
14
|
Triolo M, Annema W, de Boer JF, Tietge UJF, Dullaart RPF. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur J Clin Invest 2014; 44:240-8. [PMID: 24325778 DOI: 10.1111/eci.12226] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/07/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND The importance of functional properties of high-density lipoproteins (HDL) for atheroprotection is increasingly recognized. We determined the impact of lipid-lowering therapy on 3 key HDL functionalities in Type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS A placebo-controlled, randomized cross-over study (three 8-week treatment periods with simvastatin (40 mg daily), bezafibrate (400 mg daily), alone and in combination) was carried out in 14 men with T2DM. Cholesterol efflux was determined using human THP-1 monocyte-derived macrophages, HDL antioxidative capacity was measured as inhibition of low-density lipoprotein oxidation in vitro, and HDL anti-inflammatory capacity was assessed as suppression of thrombin-induced monocyte chemotactic protein 1 expression in human umbilical vein endothelial cells. Pre-β-HDL was assayed using crossed immunoelectrophoresis. RESULTS While cholesterol efflux increased in response to simvastatin, bezafibrate and combination treatment (+12 to +23%; anova, P = 0.001), HDL antioxidative capacity (P = 0.23) and HDL anti-inflammatory capacity (P = 0.15) did not change significantly. Averaged changes in cellular cholesterol efflux during active treatment were correlated positively with changes in HDL cholesterol, apoA-I and pre-β-HDL (P < 0.05 to P < 0.001). There were no inter-relationships between changes in the three HDL functionalities during treatment (P > 0.10). Changes in HDL antioxidative capacity and anti-inflammatory capacity were also unrelated to changes in HDL cholesterol and apoA-I, while changes in HDL antioxidative capacity were related inversely to pre-β-HDL (P < 0.05). CONCLUSION Simvastatin and bezafibrate increase cholesterol efflux, parallel to HDL cholesterol and apoA-I responses. The antioxidative and anti-inflammatory properties of HDL are not to an important extent affected by these therapeutic interventions.
Collapse
Affiliation(s)
- Michela Triolo
- Department of Endocrinology, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The reduction in cardiovascular disease risk by statins is well established. This risk reduction has mostly been attributed to decreases in plasma LDL cholesterol and other pleiotropic effects of statins. Emerging evidence indicates that statins exert multiple effects on lipoprotein metabolism, including chylomicrons and HDLs. RECENT FINDINGS Kinetic and in-vitro studies have documented that the effects of statins on the metabolism of different lipoproteins are for the most part the direct consequence of cholesterol biosynthesis inhibition and the subsequent change in transcription factors and cell signaling, regulating different aspects of lipoprotein metabolism. Differences in pharmacokinetics and pharmacodynamics among statins lead to diverse biological outcomes. SUMMARY The current review summarizes recent experimental evidence highlighting the different effects of statins on cellular pathways regulating gene expression. Understanding the basic mechanisms by which different statins regulate lipoprotein metabolism will lead to improved strategies for the prevention and treatment of specific lipoprotein disorders.
Collapse
Affiliation(s)
- Stefania Lamon-Fava
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.
| |
Collapse
|
16
|
Chan DC, Hoang A, Barrett PHR, Wong ATY, Nestel PJ, Sviridov D, Watts GF. Apolipoprotein B-100 and apoA-II kinetics as determinants of cellular cholesterol efflux. J Clin Endocrinol Metab 2012; 97:E1658-66. [PMID: 22745238 DOI: 10.1210/jc.2012-1522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Cellular cholesterol efflux is a key step in reverse cholesterol transport and may depend on the metabolism of apolipoprotein (apo) B-100, apoA-I, and apoA-II. OBJECTIVE We examined the associations between cholesterol efflux and plasma concentrations and kinetics of very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL)-apoB-100, high-density lipoprotein (HDL)-apoA-I, and HDL-apoA-II in men. DESIGN, SUBJECTS, AND METHODS: Thirty men were recruited from the community with a wide range of body mass index. The capacity of plasma and HDL to efflux cholesterol was measured ex vivo. Apolipoprotein kinetics were measured using stable isotope techniques and multicompartmental modeling. RESULTS Cholesterol efflux to whole plasma was correlated with plasma levels of cholesterol, triglyceride, apoB-100, insulin, cholesteryl ester transfer protein, and lecithin-cholesterol acyltransferase, body mass index and waist circumference (P < 0.05 in all). Cholesterol efflux was inversely correlated with the fractional catabolic rate (FCR) of VLDL (r = -0.728), IDL (r = -0.662), and LDL-apoB-100 (r = -0.479) but positively correlated with the FCR (r = 0.438) and production rate (r = 0.468) of HDL-apoA-II. In multiple regression analysis, the concentration and FCR of VLDL-apoB-100 (β-coefficient = 0.708 and -0.518, respectively) and IDL-apoB-100 (β-coefficient = 0.354 and -0.447, respectively) were independent predictors of cholesterol efflux. The association of cholesterol efflux with apoB-100 metabolism was diminished after removal of apoB-100-containing lipoproteins from plasma prior to efflux. All associations, except for cholesteryl ester transfer protein, were lost when cholesterol efflux to isolated HDL was tested. CONCLUSIONS The plasma concentration and kinetics of apoB-100-containing lipoproteins are significant predictors of the capacity of whole plasma to effect cellular cholesterol efflux.
Collapse
Affiliation(s)
- Dick C Chan
- School of Medicine and Pharmacology, University of Western Australia, Royal Perth Hospital, G.P.O. Box X2213, Perth, Western Australia 6847, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Low H, Hoang A, Forbes J, Thomas M, Lyons JG, Nestel P, Bach LA, Sviridov D. Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models. Diabetologia 2012; 55:2513-21. [PMID: 22572804 DOI: 10.1007/s00125-012-2570-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/05/2012] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS We investigated the contribution of AGEs to the impairment of reverse cholesterol transport (RCT) variables in diabetic individuals and in two animal models of diabetic obesity and of renal impairment. METHODS The capacity of plasma and HDL from 26 individuals with moderately controlled type 2 diabetes to support cholesterol efflux was compared with 26 age- and sex-matched individuals without diabetes. We also compared the rates of RCT in vivo in two animal models: db/db mice and mice with chronic renal failure. RESULTS Diabetic individuals had characteristic dyslipidaemia and higher levels of plasma AGEs. The capacity of whole plasma, ApoB-depleted plasma and isolated HDL to support cholesterol efflux was greater for diabetic patients compared with controls despite their lower HDL-cholesterol levels. The capacity of plasma to support cholesterol efflux correlated with plasma levels of cholesteryl ester transfer protein and levels of ApoB, but not with levels of AGE. RCT was severely impaired in db/db mice despite elevated HDL-cholesterol levels and no change in AGE concentration, whereas RCT in uraemic mice was unaffected despite elevated AGE levels. CONCLUSIONS/INTERPRETATION AGEs are unlikely to contribute significantly to the impairment of RCT in type 2 diabetes.
Collapse
Affiliation(s)
- H Low
- Baker Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yun KH, Shin SN, Ko JS, Rhee SJ, Kim NH, Oh SK, Jeong JW. Rosuvastatin-induced high-density lipoprotein changes in patients who underwent percutaneous coronary intervention for non-ST-segment elevation acute coronary syndrome. J Cardiol 2012; 60:383-8. [PMID: 22884684 DOI: 10.1016/j.jjcc.2012.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/16/2012] [Accepted: 06/30/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Clinical significance of statin-induced high-density lipoprotein cholesterol (HDL-C) changes is not well known. We investigated the factors affecting rosuvastatin-induced HDL-C changes and their correlation with 12-month major adverse cardiovascular events (MACE) in patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS) and percutaneous coronary intervention (PCI). MATERIALS AND METHODS We analyzed 556 consecutive NSTE-ACS patients who underwent PCI and received rosuvastatin 10mg before discharge. We measured serum lipids, including total cholesterol, triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), and HDL-C at baseline and at 4 weeks. The relationship between on-treatment lipid levels, baseline lipid levels, and 12-month MACE was assessed. RESULTS Rosuvastatin treatment increased the mean HDL-C concentration by 1.1 ± 9.8 mg/dl (4.3 ± 23.0%). HDL-C was increased in 312 patients (56.1%), but decreased in 244 patients (43.9%) after statin treatment. Changes in HDL-C during first month were inversely correlated with baseline HDL-C levels (r=-0.379, p<0.001). The patients with increased HDL-C showed higher baseline TG levels but lower on-treatment TG levels. Changes in TG were correlated with changes in HDL-C (r=-0.212, p<0.001). The incidence of 12-month MACE according to changes in HDL-C was similar between the two groups (11.9% vs. 12.3%, p=0.875). Multivariate analysis revealed that baseline HDL-C level was the only significant predictor of rosuvastatin-induced HDL-C changes. CONCLUSION Baseline HDL-C concentration was an independent predictor of rosuvastatin-induced HDL-C changes. Statin-induced HDL-C changes did not predict 12-month MACE in patients with NSTE-ACS.
Collapse
Affiliation(s)
- Kyeong Ho Yun
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
19
|
Nestel P, Hoang A, Sviridov D, Straznicky N. Cholesterol efflux from macrophages is influenced differentially by plasmas from overweight insulin-sensitive and -resistant subjects. Int J Obes (Lond) 2011; 36:407-13. [PMID: 21876547 DOI: 10.1038/ijo.2011.170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In vitro measurements of cholesterol efflux from macrophages have recently been shown to associate with cardiovascular risk. We investigated whether cholesterol efflux from macrophages incubated with plasmas from overweight/obese subjects with metabolic syndrome was influenced by the presence of insulin resistance. METHODS Plasmas were obtained from 47 men and women with metabolic syndrome, of whom 25 were found to be insulin resistant (IR) and 22 insulin sensitive (IS) (Matsuda, De Fronzo equation based on oral glucose tolerance test). Activated human macrophage THP-1 cells in which cholesterol had been radiolabelled were incubated with the subjects' plasmas to allow calculation of % cholesterol efflux. RESULTS Body mass index and waist measurements, as well as plasma lipid levels, did not differ between the two groups. Homeostatic model assessment-insulin resistance value as well as plasma insulin and leptin concentrations were higher in IR subjects. Cholesterol efflux was found to be significantly greater with plasmas from IR subjects (9.1%) than from IS subjects (6.7%) (P=0.005). Further, cholesterol efflux was significantly inversely associated with insulin sensitivity index (P<0.001), directly with arterial insulin concentration (P<0.001) and directly with cholesteryl ester transfer protein (CETP) mass (P=0.044). CONCLUSION Plasmas from overweight subjects with insulin resistance induced greater in vitro cholesterol efflux compared with IS subjects. Efflux inversely correlated with insulin sensitivity suggesting an increase in reverse cholesterol transport in the IR state that may lead to greater transfer of cholesterol to apoB lipoproteins from high-density lipoproteins via CETP as a factor in the association between IR and atherosclerosis.
Collapse
Affiliation(s)
- P Nestel
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
20
|
Sviridov D. Fenofibrate, homocysteine, cholesterol efflux and primum non nocere. Atherosclerosis 2011; 219:24-5. [PMID: 21752378 DOI: 10.1016/j.atherosclerosis.2011.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, PO Box 6492, St. Kilda Central, Melbourne 8008, VIC, Australia.
| |
Collapse
|
21
|
Relationships between cholesterol efflux and high-density lipoprotein particles in patients with type 2 diabetes mellitus. J Clin Lipidol 2011; 5:467-73. [PMID: 22108150 DOI: 10.1016/j.jacl.2011.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND High-density lipoprotein (HDL) encompasses a heterogeneous population of lipoproteins with differences in functionality. The impact of HDL heterogeneity on its ability to support HDL-mediated cholesterol efflux has not been previously studied in patients with type 2 diabetes mellitus (T2DM). OBJECTIVES To examine the relationships between various HDL subtypes and cholesterol efflux from macrophages in patients with T2DM. METHODS Lipoprotein molecular profiles of 44 patients were studied by NMR spectroscopy. Cholesterol efflux was expressed as percentage efflux of radioactivity from lipid-laden THP-1 macrophages preincubated with (3)H-cholesterol and then incubated with serum depleted of apolipoprotein B to provide an HDL-enriched acceptor medium. RESULTS There was a predominance of small HDL particles (59%) and small putatively atherogenic low-density lipoprotein particles (56%). Neither HDL-C nor ApoA-I concentrations showed statistically significant correlations with percentage cholesterol efflux, but a significant positive relationship was found with the total HDL particle concentration (r = 0.41, P = .005) contributed to largely by medium HDL particles (r = 0.41, P = .006). The correlation between medium-sized HDL particle concentration remained significantly associated with cholesterol efflux when assessed with the use of a linear regression model that included all the HDL lipoprotein subclass concentrations as well as apolipoprotein A-I. Importantly, no statistically significant association was observed between the number of small HDL particles and cholesterol efflux. Hemoglobin A1c showed a significant inverse correlation with cholesterol efflux (r = -0.31, P = .04). CONCLUSION In patients with moderately controlled type 2 diabetes mellitus, cholesterol efflux from macrophages incubated with apolipoprotein B-depleted plasmas correlated significantly and positively with the concentration of total and medium-sized HDL and not with that of the smallest particles.
Collapse
|
22
|
Hoang A, Drew BG, Low H, Remaley AT, Nestel P, Kingwell BA, Sviridov D. Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur Heart J 2011; 33:657-65. [PMID: 21498847 DOI: 10.1093/eurheartj/ehr103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Infusion of reconstituted HDL (rHDL) leads to changes in HDL metabolism as well as to an increased capacity of plasma to support cholesterol efflux providing an opportunity to investigate mechanisms linking cholesterol efflux to changes in plasma HDL. METHODS AND RESULTS Patient plasmas after infusion of rHDL were tested ex vivo for their capacity to stimulate cholesterol efflux. Reconstituted HDL enhanced mobilization of cholesterol from tissues in vivo as shown by rising HDL cholesterol concentrations over the infusion period. Infusion of rHDL in vivo led to increased cholesterol efflux ex vivo; surprisingly, removing apoB-containing lipoproteins while preserving all HDL subfractions eliminated this increase. Infusion of rHDL led to the remodelling of plasma HDL; however, the capacity of plasma to support cholesterol efflux did not correlate with changes in the concentrations of any of HDL subfractions. Unmodified rHDL accounted for only a proportion of the increment in cholesterol efflux capacity. Furthermore, studies using HeLa and BHK cells overexpressing ABCA1, ABCG1, and SR-B1 showed that the contribution of these cellular mediators of cholesterol efflux to the enhanced capacity of plasma for the efflux was minimal. CONCLUSION Enhanced cholesterol efflux from tissues requires the presence of apoB-containing lipoproteins and may involve enhanced flow of cholesterol through multiple components of the reverse cholesterol transport pathway rather than being determined by a specific HDL subfraction.
Collapse
Affiliation(s)
- Anh Hoang
- Baker Heart and Diabetes Institute, PO Box 6492, St. Kilda Rd Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang J, Li LJ, Wang K, He YC, Sheng YC, Xu L, Huang XH, Guo F, Zheng QS. Race differences: modeling the pharmacodynamics of rosuvastatin in Western and Asian hypercholesterolemia patients. Acta Pharmacol Sin 2011; 32:116-25. [PMID: 21151159 DOI: 10.1038/aps.2010.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To evaluate race differences in the pharmacodynamics of rosuvastatin in Western and Asian hypercholesterolemia patients using a population pharmacodynamic (PPD) model generated and validated using published clinical efficacy trials. METHODS Published studies randomized trials with rosuvastatin treatment for at least 4 weeks in hypercholesterolemia patients were used for model building and validation. Population pharmacodynamic analyses were performed to describe the dose-response relationship with the mean values of LDL-C reduction (%) from dose-ranging trials using NONMEM software. Baseline LDL-C and race were analyzed as the potential covariates. Model robustness was evaluated using the bootstrap method and the data-splitting method, and Monte Carlo simulation was performed to assess the predictive performance of the PPD model with the mean effects from the one-dose trials. RESULTS Of the 36 eligible trials, 14 dose-ranging trials were used in model development and 22 one-dose trials were used for model prediction. The dose-response of rosuvastatin was successfully described by a simple E(max) model with a fixed E(0), which provided a common E(max) and an approximate twofold difference in ED(50) for Westerners and Asians. The PPD model was demonstrated to be stable and predictive. CONCLUSION The race differences in the pharmacodynamics of rosuvastatin are consistent with those observed in the pharmacokinetics of the drug, confirming that there is no significant difference in the exposure-response relationship for LDL-C reduction between Westerners and Asians. The study suggests that for a new compound with a mechanism of action similar to that of rosuvastatin, its efficacy in Western populations plus its pharmacokinetics in bridging studies in Asian populations may be used to support a registration of the new compound in Asian countries.
Collapse
|
24
|
Osei-Hwedieh DO, Amar M, Sviridov D, Remaley AT. Apolipoprotein mimetic peptides: Mechanisms of action as anti-atherogenic agents. Pharmacol Ther 2010; 130:83-91. [PMID: 21172387 DOI: 10.1016/j.pharmthera.2010.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022]
Abstract
Apolipoprotein mimetic peptides are short synthetic peptides that share structural, as well as biological features of native apolipoproteins. The early positive clinical trials of intravenous preparations of apoA-I, the main protein component of high density lipoproteins (HDL), have stimulated great interest in the use of apolipoprotein mimetic peptides as possible therapeutic agents. Currently, there are a wide variety of apolipoprotein mimetic peptides at various stages of drug development. These peptides typically have been designed to either promote cholesterol efflux or act as anti-oxidants, but they usually exert other biological effects, such as anti-inflammatory and anti-thrombotic effects. Uncertainty about which of these biological properties is the most important for explaining their anti-atherogenic effect is a major unresolved question in the field. Structure-function studies relating the in vitro properties of these peptides to their ability to reduce atherosclerosis in animal models may uncover the best rationale for the design of these peptides and may lead to a better understanding of the mechanisms behind the atheroprotective effect of HDL.
Collapse
Affiliation(s)
- David O Osei-Hwedieh
- Lipoprotein Metabolism Section, Cardio-pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
25
|
Karalis IK, Bergheanu SC, Wolterbeek R, Dallinga-Thie GM, Hattori H, van Tol A, Liem AH, Wouter Jukema J. Effect of increasing doses of Rosuvastatin and Atorvastatin on apolipoproteins, enzymes and lipid transfer proteins involved in lipoprotein metabolism and inflammatory parameters. Curr Med Res Opin 2010; 26:2301-13. [PMID: 20731529 DOI: 10.1185/03007995.2010.509264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
UNLABELLED This paper contains detailed results of a sub-population of the prospective randomized RADAR (Rosuvastatin and Atorvastatin in different Dosages And Reverse cholesterol transport) study. OBJECTIVE Statin treatment results in substantially decreased incidence of cardiovascular events but the exact pathophysiological mechanism of their beneficial effect is yet unclear. We aimed to examine the effects of up-titrated doses of two widely used statins (atorvastatin (ATOR) and rosuvastatin (ROSU)) on parameters involved in lipoprotein metabolism, in patients with low high density lipoprotein cholesterol values (HDL-C). RESEARCH DESIGN AND METHODS In this RADAR substudy, 80 patients, aged 40-80 years, with known cardiovascular disease and low HDL-C (<1.0 mmol/l), were randomized to receive, after an initial 6 week dietary run-in phase, either ATOR 20 mg (n = 41) or ROSU 10 mg (n = 39). The doses were up-titrated (in 6 week intervals) to 80 mg of ATOR or 40 mg of ROSU at 12 weeks. Serum lipoproteins and lipoprotein metabolism parameters were measured at baseline and at 6 and 18 weeks of follow up. RESULTS Both statins significantly reduced total cholesterol (TChol) and non-HDL-C values with ROSU being more effective for the doses studied (p < 0.05). No statistically significant effect on HDL-C was observed for either statin. Apolipoproteins (apo) B, CI, CIII, AV and E were significantly reduced in both groups (p < 0.05), while the ratio of HDL particles containing both apoAI and apoAII (LpAI-AII) over HDL containing apoAI alone (LpAI) was changed for both statins with the decrease of LpAI being more prominent in the ATOR group (p = 0.028). Cholesterol ester transfer protein (CETP) mass and activity, phospholipid transfer protein (PLTP) activity and lipoprotein-associated phospholipase A2 (Lp-PLA2) mass and activity were all significantly reduced in both treatment groups over the follow-up period (p < 0.001). ATOR displayed a more prominent decrease of PLTP activity compared to ROSU (p = 0.043), while ROSU displayed a more prominent decrease of Lp-PLA2 activity compared to ATOR (p = 0.04). Both statins effectively reduced, in a dose-dependent way, high sensitivity C-reactive protein values over time, while no effect on the levels of circulating inter cellular adhesion molecule 1 (cICAM-1) was observed. CONCLUSIONS The effects of statin treatment extend further and beyond a mere TChol and LDL cholesterol reduction, as demonstrated by the aforementioned alterations of lipoproteins, enzymes and lipid transfer proteins involved in lipoprotein metabolism and pro-atherogenic and inflammatory molecules. ROSU and ATOR displayed a similar pattern of effect on lipid metabolism with discrete differences in the magnitude of this effect in certain variables. Despite the limitations of small population size and lack of clinical end points, reported data provide an insight for the possible pathophysiological mechanisms implicated in the effect of increasing dosages of different statin treatments.
Collapse
|
26
|
Holleboom A, Kuivenhoven J, Vergeer M, Hovingh G, van Miert J, Wareham N, Kastelein J, Khaw KT, Boekholdt S. Plasma levels of lecithin:cholesterol acyltransferase and risk offuture coronary artery disease in apparently healthy men and women: aprospective case-control analysis nested in the EPIC-Norfolk populationstudy. J Lipid Res 2010; 51:416-21. [DOI: 10.1194/p900038-jlr200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
27
|
Baker WL, Talati R, White CM, Coleman CI. Differing effect of statins on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Res Clin Pract 2010; 87:98-107. [PMID: 19913318 DOI: 10.1016/j.diabres.2009.10.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND To determine whether individual statins had differing effects on insulin sensitivity (IS) in patients without pre-existing diabetes mellitus. METHODS A systematic literature search of MEDLINE, EMBASE and Cochrane CENTRAL was conducted through December 2008. Trials were included if they compared pravastatin, atorvastatin, rosuvastatin or simvastatin to placebo/control, excluded patients with diabetes, and reported data on insulin sensitivity/resistance. IS data was pooled and evaluated as standardized mean differences (SMDs) and 95% confidence interval (CI) using a random-effects model. RESULTS 16 studies (n=1146) were included, with patients receiving pravastatin in three trials (n=164), atorvastatin in five trials (n=315), rosuvastatin in five trials (n=419), and simvastatin in five trials (n=369). When pooled as a class, statins had no significant impact on IS as compared with placebo/control [SMD -0.084 (95% CI -0.210 to 0.042); p=0.19]. Pravastatin was found to significantly improved IS [SMD 0.342 (95% CI 0.032-0.621); p=0.03], whereas simvastatin significantly worsened IS [SMD -0.321 (95% CI -0.526 to -0.117); p=0.03]. CONCLUSIONS Statins do not appear to demonstrate a 'class effect' on IS in patients without diabetes. Differences between individual statins likely exist that may partially explain the findings of previously conducted meta-analyses examining the impact of statins on the development of diabetes.
Collapse
Affiliation(s)
- William L Baker
- University of Connecticut School of Pharmacy, Storrs, CT, USA.
| | | | | | | |
Collapse
|
28
|
Yamashita S, Tsubakio-Yamamoto K, Ohama T, Nakagawa-Toyama Y, Nishida M. Molecular Mechanisms of HDL-Cholesterol Elevation by Statins and Its Effects on HDL Functions. J Atheroscler Thromb 2010; 17:436-51. [DOI: 10.5551/jat.5405] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Dallinga-Thie G, van Tol A, Dullaart R. Plasma pre β-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus: Role of phospholipid transfer protein. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:714-8. [DOI: 10.1016/j.bbalip.2009.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 11/27/2022]
|
30
|
Rosenson RS, Otvos JD, Hsia J. Effects of rosuvastatin and atorvastatin on LDL and HDL particle concentrations in patients with metabolic syndrome: a randomized, double-blind, controlled study. Diabetes Care 2009; 32:1087-91. [PMID: 19265025 PMCID: PMC2681027 DOI: 10.2337/dc08-1681] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the effects of statin therapy on lipoprotein particle concentrations in patients with the metabolic syndrome. Changes in lipoprotein particle concentration may predict the risk of coronary heart disease more accurately than lipoprotein cholesterol levels. RESEARCH DESIGN AND METHODS Patients with dyslipidemia and the metabolic syndrome (n = 318) were randomly assigned in a double-blind study comparing 10 mg rosuvastatin (RSV), 10 mg atorvastatin, or placebo daily for 6 weeks. From weeks 6 to 12, patients in the RSV and placebo groups received 20 mg RSV, whereas the ATV group increased their dose to 20 mg daily. Lipoprotein particle concentrations were measured by nuclear magnetic resonance spectroscopy, LDL cholesterol was measured by beta-quantification, and other lipoproteins were measured by standard methods at baseline, 6 weeks, and 12 weeks. Lipoprotein levels were compared by analysis of covariance. RESULTS Statins reduced LDL particle concentration less than LDL cholesterol (-30 to -38 vs. -38 to -51%). Reductions were greater with RSV than with ATV (P < 0.05 for LDL particle concentration and P < 0.001 for LDL cholesterol). Most patients attained LDL cholesterol <2.59 mmol/l (100 mg/dl) at 12 weeks (80% with RSV and 59% with ATV; P = 0.003), but only 27% of patients receiving RSV and 19% receiving ATV attained the goal of LDL particle concentration <1,000 nmol/l (P = 0.07). CONCLUSIONS In patients with the metabolic syndrome, statin-induced changes in LDL cholesterol do not accurately reflect changes in LDL particle concentration. Consequently, despite attainment of LDL cholesterol goals, these patients may retain considerable residual coronary heart disease risk.
Collapse
Affiliation(s)
- Robert S. Rosenson
- University of Michigan, Ann Arbor, Michigan; ,Corresponding author: Robert S. Rosenson,
| | | | | |
Collapse
|
31
|
Vergès B, Florentin E, Baillot-Rudoni S, Petit JM, Brindisi MC, Pais de Barros JP, Lagrost L, Gambert P, Duvillard L. Rosuvastatin 20 mg restores normal HDL-apoA-I kinetics in type 2 diabetes. J Lipid Res 2009; 50:1209-15. [PMID: 19168444 DOI: 10.1194/jlr.p800040-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catabolism of HDL particles is accelerated in type 2 diabetes, leading to a reduction in plasma residence time, which may be detrimental. Rosuvastatin is the most powerful statin to reduce LDL-cholesterol, but its effects on HDL metabolism in type 2 diabetes remain unknown. We performed a randomized double-blind cross-over trial of 6-week treatment period with placebo or rosuvastatin 20 mg in eight patients with type 2 diabetes. An in vivo kinetic study of HDL-apolipoprotein A-I (apoA-I) with (13)C leucine was performed at the end of each treatment period. Moreover, a similar kinetic study was carried out in eight nondiabetic normolipidemic controls. Rosuvastatin significantly reduced plasma LDL-cholesterol (-51%), triglycerides (TGs) (-38%), and HDL-TG (-23%). HDL-apoA-I fractional catabolic rate (FCR) was decreased by rosuvastatin (0.25 +/- 0.06 vs. 0.32 +/- 0.07 pool/day, P = 0.011), leading to an increase in plasma HDL-apoA-I residence time (4.21 +/- 1.02 vs. 3.30 +/- 0.73 day, P = 0.011). Treatment with rosuvastatin was associated with a concomitant reduction of HDL-apoA-I production rate. The decrease in HDL-apoA-I FCR, induced by rosuvastatin, was correlated with the reduction of plasma TGs and HDL-TG. HDL apoA-I FCR and production rate values in diabetic patients on rosuvastatin were not different from those found in controls. Rosuvastatin is responsible for a 22% reduction of HDL-apoA-I FCR and restores to normal the increased HDL turnover observed in type 2 diabetes. These kinetic modifications may have beneficial effects by increasing HDL plasma residence time.
Collapse
Affiliation(s)
- Bruno Vergès
- Service Endocrinologie, Diabétologie et Maladies Métaboliques, Centre Hospitalier Universitaire de Dijon, 21033 Dijon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, Werdan K, Maegdefessel L, Raaz U, Rupprecht HJ, Munzel T, Jiang XC. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res 2008; 50:723-9. [PMID: 19001358 DOI: 10.1194/jlr.m800414-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transferprotein (PLTP) mediates both net transfer and exchange of phospholipids between different lipoproteins. Although many studies have investigated the role of PLTP in atherogenesis, the role of PLTP in atherosclerotic diseases is unclear. We investigated the association of serum PLTP activity with the incidence of a combined endpoint (myocardial infarction and cardiovascular death) and its relation to other markers of atherosclerosis in 1,085 patients with angiographically documented coronary artery disease (CAD). In the median follow-up of 5.1 years, 156 patients had suffered from the combined endpoint of myocardial infarction or cardiovascular death including 47 of 395 patients who were on statins at baseline. In Kaplan-Meyer analyses serum PLTP activity was not associated with the combined endpoint in all patients. However, in the subgroup of patients receiving statins at baseline, PLTP was shown to be a significant predictor of cardiovascular outcome (P = 0.019), and this also remained stable in univariate (P = 0.027) and multivariate cox regression analyses (P = 0.041) including potential confounders (classical risk factors, HDL cholesterol (HDL-C), and others). We showed in our study that, under statin treatment, high plasma PLTP activity was related to fatal and nonfatal cardiovascular events in CAD patients.
Collapse
Affiliation(s)
- Axel Schlitt
- Department of Medicine III, Martin Luther-University Halle-Wittenberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ooi EMM, Watts GF, Chan DC, Chen MM, Nestel PJ, Sviridov D, Barrett PHR. Dose-dependent effect of rosuvastatin on VLDL-apolipoprotein C-III kinetics in the metabolic syndrome. Diabetes Care 2008; 31:1656-61. [PMID: 18509206 PMCID: PMC2494658 DOI: 10.2337/dc08-0358] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dysregulated apolipoprotein (apo)C-III metabolism may account for hypertriglyceridemia and increased cardiovascular risk in the metabolic syndrome. This study investigated the dose-dependent effect of rosuvastatin on VLDL apoC-III transport in men with the metabolic syndrome. RESEARCH DESIGN AND METHODS Twelve men with the metabolic syndrome were studied in a randomized double-blind crossover trial of 5-week intervention periods with placebo, 10 mg rosuvastatin, or 40 mg rosuvastatin, with 2-week placebo washouts between each period. VLDL apoC-III kinetics were examined using a stable isotope method and compartmental modeling at the end of each intervention period. RESULTS Compared with placebo, there was a significant dose-dependent reduction with rosuvastatin in plasma triglyceride and VLDL apoC-III concentrations. Rosuvastatin significantly (P < 0.05) increased VLDL apoC-III fractional catabolic rate (FCR) and decreased its production rate, with a significant (P < 0.05) dose-related effect. With 40 mg rosuvastatin, changes in VLDL apoC-III concentration were inversely associated with changes in VLDL apoC-III FCR and positively associated with VLDL apoC-III production rate (P < 0.05). Changes in VLDL apoC-III concentration and production rate were positively correlated with changes in VLDL apoB concentration and production rate and inversely correlated with VLDL apoB FCR (P < 0.05). Similar associations were observed with 10 mg rosuvastatin but were either less or not statistically significant. CONCLUSIONS In this study, rosuvastatin decreased the production and increased the catabolism of VLDL apoC-III, a mechanism that accounted for the significant reduction in VLDL apoC-III and triglyceride concentrations. This has implications for the management of cardiometabolic risk in obese subjects with the metabolic syndrome.
Collapse
Affiliation(s)
- Esther M M Ooi
- Metabolic Research Centre, School of Medicine and Pharmacology, Royal Perth Hospital, Universityof Western Australia, Perth, Western Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To review new data concerning HDL metabolism and cardiovascular disease, the concept of HDL 'functionality', and HDL kinetics in the metabolic syndrome. RECENT FINDINGS HDL-apoA-I and apoA-II may be better predictors of cardiovascular disease than HDL-cholesterol. Cholesteryl ester transfer protein inhibition with torcetrapib does not benefit cardiovascular disease; whether this is related to 'congestion' of HDL transport or a specific off-target vasopressor effect remains unclear. Accelerated catabolism of HDL particles in metabolic syndrome could be due to increased hepatic secretion of apoB and apoC-III, hepatic steatosis, and low plasma adiponectin. The role of serum amyloid A and homocysteine is uncertain. In metabolic syndrome, therapies that could favourably alter HDL transport include weight loss, fish oils, higher dose statins, and fibrates; 'balancing feedback' may offset reduced catabolism of HDL, fenofibrate being the only agent hitherto shown to increase apoA-I production. SUMMARY Elevating HDL-apoA-I and apoA-II may be a more important therapeutic objective than increased HDL-cholesterol. Recent studies underscore the potential value of studying HDL functionality, particularly in the metabolic syndrome. Reverse cholesterol transport can only be reliably probed at present by studying the kinetics of HDL particles or apolipoproteins; new methods are needed for investigating cellular and whole body cholesterol turnover. In metabolic syndrome, HDL-raising therapies have differential impact on HDL kinetics, the optimal endpoint being to increase transport and concentration with unchanged or accelerated catabolism.
Collapse
Affiliation(s)
- Gerald F Watts
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | | | | |
Collapse
|
35
|
Mukhamedova N, Escher G, D'Souza W, Tchoua U, Grant A, Krozowski Z, Bukrinsky M, Sviridov D. Enhancing apolipoprotein A-I-dependent cholesterol efflux elevates cholesterol export from macrophages in vivo. J Lipid Res 2008; 49:2312-22. [PMID: 18622028 DOI: 10.1194/jlr.m800095-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight proteins potentially involved in cholesterol efflux [ABCA1, ABCG1, CYP27A1, phospholipid transfer protein (PLTP), scavenger receptor type BI (SR-BI), caveolin-1, cholesteryl ester transfer protein, and apolipoprotein A-I (apoA-I)] were overexpressed alone or in combination in RAW 264.7 macrophages. When apoA-I was used as an acceptor, overexpression of the combination of ABCA1, CYP27A1, PLTP, and SR-BI (Combination I) enhanced the efflux by 4.3-fold. It was established that the stimulation of efflux was due to increased abundance of ABCA1 and increased apoA-I binding to non-ABCA1 sites on macrophages. This combination caused only a small increase of the efflux to isolated HDL. When HDL was used as an acceptor, overexpression of caveolin-1 or a combination of caveolin-1 and SR-BI (Combination II) was the most active, doubling the efflux to HDL, without affecting the efflux to apoA-I. When tested in the in vivo mouse model of cholesterol efflux, overexpression of ABCA1 and Combination I elevated cholesterol export from macrophages to plasma, liver, and feces, whereas overexpression of caveolin-1 or Combination II did not have an effect. We conclude that pathways of cholesterol efflux using apoA-I as an acceptor make a predominant contribution to cholesterol export from macrophages in vivo.
Collapse
|
36
|
Spotlight on HDL-raising therapies: insights from the torcetrapib trials. ACTA ACUST UNITED AC 2008; 5:329-36. [PMID: 18431367 DOI: 10.1038/ncpcardio1191] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/18/2008] [Indexed: 11/08/2022]
Abstract
Subnormal levels of HDL cholesterol constitute a major cardiovascular risk factor. Inhibitors of cholesteryl ester transfer protein (CETP) are presently the most potent HDL-raising agents. Torcetrapib was the first CETP inhibitor to enter a large-scale, prospective, placebo-controlled interventional trial, which was prematurely terminated in December 2006 because of excess cardiovascular and noncardiovascular mortality in the active treatment group. Therapy with torcetrapib was associated with considerable increases in aldosterone level and blood pressure and changes in serum electrolytes indicative of mineralocorticoid excess. These findings indicate that torcetrapib has off-target toxic effects unrelated to HDL raising that involve the activation of mineralocorticoid receptors by aldosterone and result in the induction of hypertension. In contrast with torcetrapib, other CETP inhibitors such as JTT-705 and MK-825 do not increase blood pressure in humans, an observation which discounts a class effect. The available data do not, however, exclude potential adverse effects of CETP inhibition such as the generation of HDL particles that have deficient biological activities and a deleterious impact on reverse cholesterol transport and steroid metabolism. Normalization of both defective HDL function and diminished HDL levels should, therefore, be the focus of pharmacological HDL raising in future studies.
Collapse
|
37
|
Sviridov D, Mukhamedova N, T. Remaley A, Chin-Dusting J, Nestel P. Antiatherogenic Functionality of High Density Lipoprotein: How Much versus How Gooden-subtitle=. J Atheroscler Thromb 2008; 15:52-62. [DOI: 10.5551/jat.e571] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|