1
|
Nguyen TK, Paone S, Baxter AA, Mayfosh AJ, Phan TK, Chan E, Peter K, Poon IKH, Thomas SR, Hulett MD. Heparanase promotes the onset and progression of atherosclerosis in apolipoprotein E gene knockout mice. Atherosclerosis 2024; 392:117519. [PMID: 38581737 DOI: 10.1016/j.atherosclerosis.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.
Collapse
Affiliation(s)
- Tien K Nguyen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alyce J Mayfosh
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Enoch Chan
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Shane R Thomas
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
2
|
Urschel K, Hug KP, Zuo H, Büttner M, Furtmair R, Kuehn C, Stumpfe FM, Botos B, Achenbach S, Yuan Y, Dietel B, Tauchi M. The Shear Stress-Regulated Expression of Glypican-4 in Endothelial Dysfunction In Vitro and Its Clinical Significance in Atherosclerosis. Int J Mol Sci 2023; 24:11595. [PMID: 37511353 PMCID: PMC10380765 DOI: 10.3390/ijms241411595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Katharina Urschel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Karsten P. Hug
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Hanxiao Zuo
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Michael Büttner
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Roman Furtmair
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Constanze Kuehn
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Florian M. Stumpfe
- Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054 Erlangen, Germany;
| | - Balaz Botos
- Department of Vascular and Endovascular Surgery, General Hospital Nuremberg, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Stephan Achenbach
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Yan Yuan
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Miyuki Tauchi
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| |
Collapse
|
3
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
4
|
Ham H, Xu Y, Haller CA, Dai E, Stancanelli E, Liu J, Chaikof EL. Design of an Ultralow Molecular Weight Heparin That Resists Heparanase Biodegradation. J Med Chem 2023; 66:2194-2203. [PMID: 36706244 DOI: 10.1021/acs.jmedchem.2c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heparanase, an endo-β-d-glucuronidase produced by a variety of cells and tissues, cleaves the glycosidic linkage between glucuronic acid (GlcA) and a 3-O- or 6-O-sulfated glucosamine, typified by the disaccharide -[GlcA-GlcNS3S6S]-, which is found within the antithrombin-binding domain of heparan sulfate or heparin. As such, all current forms of heparin are susceptible to degradation by heparanase with neutralization of anticoagulant properties. Here, we have designed a heparanase-resistant, ultralow molecular weight heparin as the structural analogue of fondaparinux that does not contain an internal GlcA residue but otherwise displays potent anticoagulant activity. This heparin oligosaccharide was synthesized following a chemoenzymatic scheme and displays nanomolar anti-FXa activity yet is resistant to heparanase digestion. Inhibition of thrombus formation was further demonstrated after subcutaneous administration of this compound in a murine model of venous thrombosis. Thrombus inhibition was comparable to that observed for enoxaparin with a similar effect on bleeding time.
Collapse
Affiliation(s)
- Hyunok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering at Harvard University; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology; Department of Surgery, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
6
|
Zhang X, Ren Z, Xu W, Jiang Z. Necroptosis in atherosclerosis. Clin Chim Acta 2022; 534:22-28. [PMID: 35809652 DOI: 10.1016/j.cca.2022.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease, is a leading cause of death worldwide. Vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs) and macrophages play extremely vital roles in the formation of atherosclerotic plaques and subsequent atherosclerosis. Necroptosis, a caspase-independent programmed cell necrosis, occurs in advanced atherosclerotic plaques and has been implicated in VEC, VSMC and macrophage function. Although necroptosis may have considered as a defensive line against intracellular infection, it can induce a pro-inflammatory state, which will accelerate the disease process. Accordingly, necroptosis plays an important pathophysiologic role. In this review, we explore the role of necroptosis in VECs, VSMCs and macrophages in atherosclerotic plaques and their connection to atherosclerosis.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Wenxin Xu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Jin K, Bardes EE, Mitelpunkt A, Wang JY, Bhatnagar S, Sengupta S, Krummel DP, Rothenberg ME, Aronow BJ. An interactive single cell web portal identifies gene and cell networks in COVID-19 host responses. iScience 2021; 24:103115. [PMID: 34522848 PMCID: PMC8428985 DOI: 10.1016/j.isci.2021.103115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have provided single-cell transcriptome profiles of host responses to SARS-CoV-2 infection. Critically lacking however is a data mine that allows users to compare and explore cell profiles to gain insights and develop new hypotheses. To accomplish this, we harmonized datasets from COVID-19 and other control condition blood, bronchoalveolar lavage, and tissue samples, and derived a compendium of gene signature modules per cell type, subtype, clinical condition, and compartment. We demonstrate approaches to interacting with, exploring, and functional evaluating these modules via a new interactive web portal ToppCell (http://toppcell.cchmc.org/). As examples, we develop three hypotheses: (1) alternatively-differentiated monocyte-derived macrophages form a multicelllar signaling cascade that drives T cell recruitment and activation; (2) COVID-19-generated platelet subtypes exhibit dramatically altered potential to adhere, coagulate, and thrombose; and (3) extrafollicular B maturation is driven by a multilineage cell activation network that expresses an ensemble of genes strongly associated with risk for developing post-viral autoimmunity.
Collapse
Affiliation(s)
- Kang Jin
- Division of Biomedical Informatics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Informatics, University of Cincinnati,
Cincinnati, OH 45229, USA
| | - Eric E. Bardes
- Division of Biomedical Informatics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH 45229, USA
| | - Alexis Mitelpunkt
- Division of Biomedical Informatics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH 45229, USA
- Pediatric Rehabilitation, Dana-Dwek Children's Hospital, Tel Aviv Medical
Center, Tel Aviv, 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801,
Israel
| | - Jake Y. Wang
- Division of Biomedical Informatics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH 45229, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH 45229, USA
- Department of Electrical Engineering and Computer Science, University of
Cincinnati, Cincinnati, OH 45221, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati
Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
45229, USA
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH 45229, USA
- Department of Electrical Engineering and Computer Science, University of
Cincinnati, Cincinnati, OH 45221, USA
- Department of Pediatrics, University of Cincinnati School of Medicine,
Cincinnati, OH 45256, USA
| |
Collapse
|
8
|
Ham HO, Haller CA, Su G, Dai E, Patel MS, Liu DR, Liu J, Chaikof EL. A rechargeable anti-thrombotic coating for blood-contacting devices. Biomaterials 2021; 276:121011. [PMID: 34303154 PMCID: PMC8405571 DOI: 10.1016/j.biomaterials.2021.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022]
Abstract
Despite the potential of anti-thrombogenic coatings, including heparinized surfaces, to improve the performance of blood-contacting devices, the inevitable deterioration of bioactivity remains an important factor in device failure and related thrombotic complications. As a consequence, the ability to restore the bioactivity of a surface coating after implantation of a blood-contacting device provides a potentially important strategy to enhance its clinical performance. Here, we report the regeneration of a multicomponent anti-thrombogenic coating through use of an evolved sortase A to mediate reversible transpeptidation. Both recombinant thrombomodulin and a chemoenzymatically synthesized ultra-low molecular weight heparin were repeatedly and selectively immobilized or removed in a sequential, alternating, or simultaneous manner. The generation of activated protein C (aPC) and inhibition of activated factor X (FXa) was consistent with the molecular composition of the surface. The fabrication of a rechargeable anti-thrombogenic surface was demonstrated on an expanded polytetrafluoroethylene (ePTFE) vascular graft with reconstitution of the surface bound coating 4 weeks after in vivo implantation in a rat model.
Collapse
Affiliation(s)
- Hyun Ok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC, 27599, USA
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Madhukar S Patel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC, 27599, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovasc Disord 2021; 21:329. [PMID: 34218797 PMCID: PMC8256614 DOI: 10.1186/s12872-021-02146-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heart failure (HF) is a heterogeneous clinical syndrome and affects millions of people all over the world. HF occurs when the cardiac overload and injury, which is a worldwide complaint. The aim of this study was to screen and verify hub genes involved in developmental HF as well as to explore active drug molecules. METHODS The expression profiling by high throughput sequencing of GSE141910 dataset was downloaded from the Gene Expression Omnibus (GEO) database, which contained 366 samples, including 200 heart failure samples and 166 non heart failure samples. The raw data was integrated to find differentially expressed genes (DEGs) and were further analyzed with bioinformatics analysis. Gene ontology (GO) and REACTOME enrichment analyses were performed via ToppGene; protein-protein interaction (PPI) networks of the DEGs was constructed based on data from the HiPPIE interactome database; modules analysis was performed; target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed; hub genes were validated; molecular docking studies was performed. RESULTS A total of 881 DEGs, including 442 up regulated genes and 439 down regulated genes were observed. Most of the DEGs were significantly enriched in biological adhesion, extracellular matrix, signaling receptor binding, secretion, intrinsic component of plasma membrane, signaling receptor activity, extracellular matrix organization and neutrophil degranulation. The top hub genes ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 were identified from the PPI network. Module analysis revealed that HF was associated with adaptive immune system and neutrophil degranulation. The target genes, miRNAs and TFs were identified from the target gene-miRNA regulatory network and target gene-TF regulatory network. Furthermore, receiver operating characteristic (ROC) curve analysis and RT-PCR analysis revealed that ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 might serve as prognostic, diagnostic biomarkers and therapeutic target for HF. The predicted targets of these active molecules were then confirmed. CONCLUSION The current investigation identified a series of key genes and pathways that might be involved in the progression of HF, providing a new understanding of the underlying molecular mechanisms of HF.
Collapse
Affiliation(s)
- Vijayakrishna Kolur
- Vihaan Heart Care & Super Specialty Centre, Vivekananda General Hospital, Deshpande Nagar, Hubli, Karnataka, 580029, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
10
|
Jin K, Bardes EE, Mitelpunkt A, Wang JY, Bhatnagar S, Sengupta S, Krummel DP, Rothenberg ME, Aronow BJ. Implicating Gene and Cell Networks Responsible for Differential COVID-19 Host Responses via an Interactive Single Cell Web Portal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.07.447287. [PMID: 34127975 PMCID: PMC8202427 DOI: 10.1101/2021.06.07.447287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies have provided single-cell transcriptome profiles of host responses to SARS-CoV-2 infection. Critically lacking however is a datamine that allows users to compare and explore cell profiles to gain insights and develop new hypotheses. To accomplish this, we harmonized datasets from COVID-19 and other control condition blood, bronchoalveolar lavage, and tissue samples, and derived a compendium of gene signature modules per cell type, subtype, clinical condition, and compartment. We demonstrate approaches to probe these via a new interactive web portal (http://toppcell.cchmc.org/COVID-19). As examples, we develop three hypotheses: (1) a multicellular signaling cascade among alternatively differentiated monocyte-derived macrophages whose tasks include T cell recruitment and activation; (2) novel platelet subtypes with drastically modulated expression of genes responsible for adhesion, coagulation and thrombosis; and (3) a multilineage cell activator network able to drive extrafollicular B maturation via an ensemble of genes strongly associated with risk for developing post-viral autoimmunity.
Collapse
Affiliation(s)
- Kang Jin
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Eric E. Bardes
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Alexis Mitelpunkt
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Pediatric Rehabilitation, Dana-Dwek Children’s Hospital, Tel Aviv Medical Center, Tel Aviv, 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Jake Y. Wang
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45256, USA
- Lead contact
| |
Collapse
|
11
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
12
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Ostrovsky O, Vlodavsky I, Nagler A. Mechanism of HPSE Gene SNPs Function: From Normal Processes to Inflammation, Cancerogenesis and Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:231-249. [PMID: 32274712 DOI: 10.1007/978-3-030-34521-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) is the substitution of a single nucleotide, stably inherited, highly abundant, and distributed throughout the genome. Up today 9746 SNPs were found in the HPSE gene. During 12 years 21 SNPs were analyzed in normal and pathological samples. The most prominent SNPs are rs4693608, rs11099592, rs4693084, and rs4364254. These SNPs were found in correlation with heparanase mRNA and protein expression among healthy persons. Moreover, an association of the HPSE gene SNPs with inflammatory processes, cancer development and progression was detected. SNP investigation allowed the identification of strong HPSE gene enhancer in the intron 2. In normal leukocytes, heparanase binds to the enhancer region and regulates HPSE gene expression via negative feedback in rs4693608 SNP-dependent manner. In malignant cells, heparanase halted self-regulation of the enhancer region. Instead of heparanase, the helicase-like transcription factor (HLTF) binds to the regulatory region. These and subsequent studies will elucidate how modification in the HPSE enhancer region could be applied to develop new approaches for cancer treatment.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Haifa, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
14
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Vlodavsky I, Sanderson RD, Ilan N. Forty Years of Basic and Translational Heparanase Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:3-59. [PMID: 32274705 PMCID: PMC7142273 DOI: 10.1007/978-3-030-34521-1_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes key developments in the heparanase field obtained 20 years prior to cloning of the HPSE gene and nearly 20 years after its cloning. Of the numerous publications and review articles focusing on heparanase, we have selected those that best reflect the progression in the field as well as those we regard important accomplishments with preference to studies performed by scientists and groups that contributed to this book. Apart from a general 'introduction' and 'concluding remarks', the abstracts of these studies are presented essentially as published along the years. We apologize for not being objective and not being able to include some of the most relevant abstracts and references, due to space limitation. Heparanase research can be divided into two eras. The first, initiated around 1975, dealt with identifying the enzyme, establishing the relevant assay systems and investigating its biological activities and significance in cancer and other pathologies. Studies performed during the first area are briefly introduced in a layman style followed by the relevant abstracts presented chronologically, essentially as appears in PubMed. The second era started in 1999 when the heparanase gene was independently cloned by 4 research groups [1-4]. As expected, cloning of the heparanase gene boosted heparanase research by virtue of the readily available recombinant enzyme, molecular probes, and anti-heparanase antibodies. Studies performed during the second area are briefly introduced followed by selected abstracts of key findings, arranged according to specific topics.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
16
|
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P. Glycosylation changes in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:111-156. [PMID: 31997767 DOI: 10.1016/bs.apcsb.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in a number of inflammatory diseases. Pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of glycan chains, inducing the expression of specific carbohydrate antigens at the cell surface that can be recognized by different types of lectins or by bacterial adhesins, contributing to the development of diseases. Glycosylation can also regulate biological functions of immune cells by recruiting leukocytes to inflammation sites with pro- or anti-inflammatory effects. Cell surface proteoglycans provide a large panel of binding sites for many mediators of inflammation, and regulate their bio-availability and functions. In this review, we summarize the current knowledge of the glycosylation changes occurring in mucin type O-linked glycans, glycosaminoglycans, as well as in glycosphingolipids, with a particular focus on cystic fibrosis and neurodegenerative diseases, and their consequences on cell interactions and disease progression.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Sumeyye Cavdarli
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kenji Uchimura
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Fabrice Allain
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Philippe Delannoy
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
17
|
Jana S, Zhang H, Lopaschuk GD, Freed DH, Sergi C, Kantor PF, Oudit GY, Kassiri Z. Disparate Remodeling of the Extracellular Matrix and Proteoglycans in Failing Pediatric Versus Adult Hearts. J Am Heart Assoc 2019; 7:e010427. [PMID: 30371322 PMCID: PMC6404896 DOI: 10.1161/jaha.118.010427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Dilated cardiomyopathy (DCM) is a common cause of heart failure in adult and pediatric patients, but the underlying mechanism may vary in adults and children, with few studies conducted to date. The objective of the present study was to determine whether differential remodeling of the extracellular matrix contributes to the differences between pediatric and adult DCM hearts. Methods and Results Explanted hearts were procured from adult (age, 46–61 years) and pediatric (age, 2–8) patients with DCM‐related heart failure and nonfailing control hearts. Fibrillar and nonfibrillar extracellular matrix (proteoglycans, glycosaminoglycans, glycoprotein), their regulatory enzymes (matrix metalloproteinases, disintegrin and metalloproteinases, and disintegrin and metalloproteinases with a thrombospondin domain), and their inhibitors (tissue inhibitor of metalloproteinases) were assessed. Pediatric DCM hearts exhibited less fibrosis compared with adult DCMs. Total glycosaminoglycans increased similarly in both DCM groups but exhibited a significantly lower affinity for transforming growth factor‐β in adult DCMs versus pediatric DCMs, resulting in increased bioavailability of transforming growth factor‐β1 and a significantly higher activity of the Smad2/3 pathway in adult DCMs. Glycosylated biglycan and versican, and cleaved thrombospondin‐1 increased in both DCMs. Protein expression of disintegrin and metalloproteinases with thrombospondin domains (‐1, ‐2, ‐4, ‐7) and disintegrin and metalloproteinases (‐12, ‐15, ‐17, ‐19) were altered differently in pediatric and adult control and failing hearts. Total matrix metalloproteinase activity increased in both DCMs. Tissue inhibitor of metalloproteinase levels were altered similarly with heart failure in both age groups, and only tissue inhibitor of metalloproteinase 3 decreased in both DCM groups. Conclusions Differential remodeling of glycosaminoglycans in pediatric DCMs versus adult DCMs could underlie the enhanced activation of the transforming growth factor‐β pathway, leading to more fibrosis in adult DCM hearts. The distinct remodeling of the fibrillar and nonfibrillar extracellular matrix between pediatric and adult DCM hearts highlights a distinct pathophysiological basis for these cohorts.
Collapse
Affiliation(s)
- Sayantan Jana
- 1 Department of Physiology Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Hao Zhang
- 2 Department of Medicine Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Gary D Lopaschuk
- 3 Department of Pediatrics Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Darren H Freed
- 1 Department of Physiology Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,5 Division of Cardiac Surgery Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Consolato Sergi
- 4 Department of Laboratory Medicine and Pathology Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Paul F Kantor
- 3 Department of Pediatrics Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Gavin Y Oudit
- 2 Department of Medicine Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Zamaneh Kassiri
- 1 Department of Physiology Faculty of Medicine and Dentistry University of Alberta Edmonton AB.,6 Cardiovascular Research Centre Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| |
Collapse
|
18
|
Dual roles of heparanase in human carotid plaque calcification. Atherosclerosis 2019; 283:127-136. [DOI: 10.1016/j.atherosclerosis.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
|
19
|
Abstract
Heparin and heparan sulfate (HS) are polydisperse mixtures of polysaccharide chains between 5 and 50 kDa. Sulfate modifications to discreet regions along the chains form protein binding sites involved in cell signaling cascades and other important cellular physiological and pathophysiological functions. Specific protein affinities of the chains vary among different tissues and are determined by the arrangements of sulfated residues in discreet regions along the chains which in turn appear to be determined by the expression levels of particular enzymes in the biosynthetic pathway. Although not all the rules governing synthesis and modification are known, analytical procedures have been developed to determine composition, and all of the biosynthetic enzymes have been identified and cloned. Thus, through cell engineering, it is now possible to direct cellular synthesis of heparin and HS to particular compositions and therefore particular functional characteristics. For example, directing heparin producing cells to reduce the level of a particular type of polysaccharide modification may reduce the risk of heparin induced thrombocytopenia (HIT) without reducing the potency of anticoagulation. Similarly, HS has been linked to several biological areas including wound healing, cancer and lipid metabolism among others. Presumably, these roles involve specific HS compositions that could be produced by engineering cells. Providing HS reagents with a range of identified compositions should help accelerate this research and lead to new clinical applications for specific HS compositions. Here I review progress in engineering CHO cells to produce heparin and HS with compositions directed to improved properties and advancing medical research.
Collapse
|
20
|
Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, Baker AB. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Front Cardiovasc Med 2018; 5:153. [PMID: 30417001 PMCID: PMC6214344 DOI: 10.3389/fcvm.2018.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Seaweed-derived polysaccharides including agar and alginate, have found widespread applications in biomedical research and medical therapeutic applications including wound healing, drug delivery, and tissue engineering. Given the recent increases in the incidence of diabetes, obesity and hyperlipidemia, there is a pressing need for low cost therapeutics that can economically and effectively slow the progression of atherosclerosis. Marine polysaccharides have been consumed by humans for millennia and are available in large quantities at low cost. Polysaccharides such as fucoidan, laminarin sulfate and ulvan have shown promise in reducing atherosclerosis and its accompanying risk factors in animal models. However, others have been tested in very limited context in scientific studies. In this review, we explore the current state of knowledge for these promising therapeutics and discuss the potential and challenges of using seaweed derived polysaccharides as therapies for atherosclerosis.
Collapse
Affiliation(s)
- Nikita P Patil
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Victoria Le
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Emily Y Yang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States.,Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States.,Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
21
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
22
|
Bayam E, Kalçık M, Gürbüz AS, Yesin M, Güner A, Gündüz S, Gürsoy MO, Karakoyun S, Cerşit S, Kılıçgedik A, Candan Ö, Yaman A, Özkan M. The relationship between heparanase levels, thrombus burden and thromboembolism in patients receiving unfractionated heparin treatment for prosthetic valve thrombosis. Thromb Res 2018; 171:103-110. [PMID: 30273810 DOI: 10.1016/j.thromres.2018.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/08/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Procoagulant activity of heparanase has been recently described in several arterial and venous thrombotic disorders. In this study, we aimed to investigate the role of heparanase with regard to thrombus burden, thromboembolism, and treatment success with unfractionated heparin (UFH) in patients with prosthetic valve thrombosis (PVT). METHODS This study enrolled 79 PVT patients who received UFH for PVT and 82 controls. Plasma samples which were collected from patients both at baseline and after the UFH treatment and from controls at baseline only, were tested for heparanase levels by heparanase enzyme-linked immunosorbent assay. RESULTS The PVT group included 18 obstructive and 61 non-obstructive PVT patients who received UFH infusions for a median duration of 15 (7-20) days. The UFH treatment was successful in 37 (46.8%) patients. Baseline heparanase levels were significantly higher in the patient group than in the controls [0.29 (0.21-0.71) vs. 0.25 (0.17-0.33) ng/mL; p = 0.002]. Baseline heparanase levels were significantly higher in obstructive PVT patients. There was a significant increase in heparanase levels after UFH treatment. Post-UFH heparanase levels were higher in patients who experienced treatment failure compared to successfully treated group. Baseline and post-UFH heparanase levels were significantly higher in patients with a thrombus area ≥1 cm2 and with a recent history of thromboembolism. CONCLUSIONS Increased heparanase levels may be one of the esoteric causes for PVT. UFH treatment may trigger an increase in heparanase levels which may affect the treatment success. Increased heparanase levels may be associated with high risk of thromboembolism and increased thrombus burden in PVT patients.
Collapse
Affiliation(s)
- Emrah Bayam
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Macit Kalçık
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey.
| | - Ahmet Seyfeddin Gürbüz
- Department of Cardiology, Necmeddin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Mahmut Yesin
- Department of Cardiology, Kars Harakani State Hospital, Kars, Turkey
| | - Ahmet Güner
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Sabahattin Gündüz
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Ozan Gürsoy
- Department of Cardiology, Izmir Katip Çelebi University Atatürk Training and Research Hospital, Izmir, Turkey
| | - Süleyman Karakoyun
- Department of Cardiology, Kars Kafkas University, Faculty of Medicine, Kars, Turkey
| | - Sinan Cerşit
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Alev Kılıçgedik
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Özkan Candan
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Ali Yaman
- Department of Biochemistry, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Özkan
- Department of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey; Division of Health Sciences, Ardahan University, Ardahan, Turkey
| |
Collapse
|
23
|
Muhammad RS, Abu-Saleh N, Kinaneh S, Agbaria M, Sabo E, Grajeda-Iglesias C, Volkova N, Hamoud S. Heparanase inhibition attenuates atherosclerosis progression and liver steatosis in E 0 mice. Atherosclerosis 2018; 276:155-162. [PMID: 30075439 DOI: 10.1016/j.atherosclerosis.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Increased oxidative stress is associated with accelerated atherosclerosis. Emerging evidence highlights the role of heparanase in atherogenesis, where heparanase inhibitor PG545 reduces oxidative stress in apolipoprotein E deficient mice (E0 mice). Herein, we studied the effects of PG545 on atherosclerosis progression in E0 mice. METHODS Male E0 mice fed a high-fat diet (n = 20) were divided into 3 groups treated with weekly intraperitoneal injections of either low (0.2 mg/mouse) or high dose (0.4 mg/mouse)PG545 or normal saline (controls) for twelve weeks. Body weight and food intake were measured weekly. At the end of the treatment period, blood pressure was measured, animals were sacrificed and serum samples were collected and assessed for biochemical parameters and oxidative stress. Aortic vessels and livers were collected for atherosclerotic plaques and histopathological analysis, respectively. RESULTS Blood pressure decreased in mice treated with low, but not high dose of PG545. In addition, heparanase inhibition caused a dose-dependent reduction in serum oxidative stress, total cholesterol, low-density lipoproteins, triglycerides, high-density lipoproteins, and aryl esterase activity. Although food intake was not reduced by PG545, body weight gain was significantly attenuated in PG545 treated groups. Both doses of PG545 caused a marked reduction in aortic wall thickness and atherosclerosis development, and liver steatosis. Liver enzymes and serum creatinine were not affected by PG545. CONCLUSIONS Heparanase inhibition by PG545 caused a significant reduction in lipid profile and serum oxidative stress along with attenuation of atherosclerosis, aortic wall thickness, and liver steatosis. Moreover, PG545 attenuated weight gain without reducing food intake. Collectively, these findings suggest that heparanase blockade is highly effective in slowing atherosclerosis formation and progression, and decreasing liver steatosis.
Collapse
Affiliation(s)
- Rabia Shekh Muhammad
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine Haifa, Israel
| | - Niroz Abu-Saleh
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mohammad Agbaria
- Department of Internal Medicine A, Rambam Health Care Campus, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Nina Volkova
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine Haifa, Israel; Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
24
|
Ostrovsky O, Grushchenko-Polaq AH, Beider K, Mayorov M, Canaani J, Shimoni A, Vlodavsky I, Nagler A. Identification of strong intron enhancer in the heparanase gene: effect of functional rs4693608 variant on HPSE enhancer activity in hematological and solid malignancies. Oncogenesis 2018; 7:51. [PMID: 29955035 PMCID: PMC6023935 DOI: 10.1038/s41389-018-0060-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/03/2018] [Accepted: 05/20/2018] [Indexed: 01/10/2023] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate (HS) proteoglycans and releases HS-bound cytokines, chemokines, and bioactive growth-promoting factors. Heparanase plays an important role in the nucleus as part of an active chromatin complex. Our previous studies revealed that rs4693608 correlates with heparanase levels and increased risk of acute and extensive chronic graft vs. host disease (GVHD). Discrepancy between recipient and donor in this SNP significantly affected the risk of acute GVHD. In the present study, we analyzed the HPSE gene region, including rs4693608, and demonstrated that this region exhibits SNPs-dependent enhancer activity. Analysis of nuclear proteins from normal leukocytes revealed their binding to DNA probe of both alleles with higher affinity to allele G. All malignant cell lines and leukemia samples disclosed a shift of the main bands in comparison to normal leukocytes. At least five additional shifted bands were bound to allele A while allele G probe was bound to only one main DNA/protein complex. Additional SNPs rs4693083, rs4693084, and rs4693609 were found in strong linkage disequilibrium (LD) with rs11099592 (exon 7). Only rs4693084 affected protein binding to DNA in cell lines and leukemia samples. As a result of the short distance between rs4693608 and rs4693084, both SNPs may be included in a common DNA/protein complex. DNA pull-down assay revealed that heparanase is involved in self-regulation by negative feedback in rs4693608-dependent manner. During carcinogenesis, heparanase self-regulation is discontinued and the helicase-like transcription factor begins to regulate this enhancer region. Altogether, our study elucidates conceivable mechanism(s) by which rs4693608 SNP regulates HPSE gene expression and the associated disease outcome.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | - Katia Beider
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Margarita Mayorov
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Canaani
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Avichai Shimoni
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
25
|
Zhao RR, Ackers-Johnson M, Stenzig J, Chen C, Ding T, Zhou Y, Wang P, Ng SL, Li PY, Teo G, Rudd PM, Fawcett JW, Foo RS. Targeting Chondroitin Sulfate Glycosaminoglycans to Treat Cardiac Fibrosis in Pathological Remodeling. Circulation 2018; 137:2497-2513. [DOI: 10.1161/circulationaha.117.030353] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
Background:
Heart failure is a leading cause of mortality and morbidity, and the search for novel therapeutic approaches continues. In the monogenic disease mucopolysaccharidosis VI, loss-of-function mutations in arylsulfatase B lead to myocardial accumulation of chondroitin sulfate (CS) glycosaminoglycans, manifesting as myriad cardiac symptoms. Here, we studied changes in myocardial CS in nonmucopolysaccharidosis failing hearts and assessed its generic role in pathological cardiac remodeling.
Methods:
Healthy and diseased human and rat left ventricles were subjected to histological and immunostaining methods to analyze glycosaminoglycan distribution. Glycosaminoglycans were extracted and analyzed for quantitative and compositional changes with Alcian blue assay and liquid chromatography–mass spectrometry. Expression changes in 20 CS-related genes were studied in 3 primary human cardiac cell types and THP-1–derived macrophages under each of 9 in vitro stimulatory conditions. In 2 rat models of pathological remodeling induced by transverse aortic constriction or isoprenaline infusion, recombinant human arylsulfatase B (rhASB), clinically used as enzyme replacement therapy in mucopolysaccharidosis VI, was administered intravenously for 7 or 5 weeks, respectively. Cardiac function, myocardial fibrosis, and inflammation were assessed by echocardiography and histology. CS-interacting molecules were assessed with surface plasmon resonance, and a mechanism of action was verified in vitro.
Results:
Failing human hearts displayed significant perivascular and interstitial CS accumulation, particularly in regions of intense fibrosis. Relative composition of CS disaccharides remained unchanged. Transforming growth factor–β induced CS upregulation in cardiac fibroblasts. CS accumulation was also observed in both the pressure-overload and the isoprenaline models of pathological remodeling in rats. Early treatment with rhASB in the transverse aortic constriction model and delayed treatment in the isoprenaline model proved rhASB to be effective at preventing cardiac deterioration and augmenting functional recovery. Functional improvement was accompanied by reduced myocardial inflammation and overall fibrosis. Tumor necrosis factor–α was identified as a direct binding partner of CS glycosaminoglycan chains, and rhASB reduced tumor necrosis factor–α—induced inflammatory gene activation in vitro in endothelial cells and macrophages.
Conclusions:
CS glycosaminoglycans accumulate during cardiac pathological remodeling and mediate myocardial inflammation and fibrosis. rhASB targets CS effectively as a novel therapeutic approach for the treatment of heart failure.
Collapse
Affiliation(s)
- Rong-Rong Zhao
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Justus Stenzig
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.S.)
| | - Chen Chen
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
| | - Tao Ding
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Yue Zhou
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Peipei Wang
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Shi Ling Ng
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
| | - Peter Y. Li
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Gavin Teo
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
| | - Pauline M. Rudd
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
- Glycoscience Group, National Institute for Bioprocessing, Research and Training, Dublin, Ireland (P.M.R.)
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, United Kingdom (J.W.F.)
| | - Roger S.Y. Foo
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
| |
Collapse
|
26
|
Ozkok A, Ozkok S, Takır M, Yakar Hİ, Kanbay A. Serum heparanase levels are associated with endothelial dysfunction in patients with obstructive sleep apnea. CLINICAL RESPIRATORY JOURNAL 2017; 12:1693-1699. [PMID: 29087043 DOI: 10.1111/crj.12731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Obstructive sleep apnea syndrome (OSAS) is well-known to be associated with high risk for cardiovascular (CV) diseases. Heparanase has been recently shown to be related to increased inflammation and vulnerability of the atherosclerotic plaques. Herein we aimed to investigate the relationships between OSAS, heparanase and endothelial dysfunction. MATERIALS AND METHODS A total of 120 patients with varying severity of OSAS and 31 controls without OSAS were enrolled. Flow-mediated dilatation (FMD) was measured as an indicator of endothelial dysfunction. Serum heparanase levels were measured with ELISA. RESULTS Serum heparanase levels increased in a stepwise fashion from controls to patients with more severe OSAS. When FMD was compared with controls and various degrees of severity of OSAS, a stepwise decrease in FMD was observed. Serum heparanase levels were found to be significantly associated with apnea hypopnea index (AHI) (r = .57, P < .001) and FMD (r= -.37, P < .001) in patients with OSAS. Serum heparanase levels were significantly associated with hemoglobin-A1c and body mass index in patients with OSAS. Serum heparanase and uric acid levels were independent predictors of FMD in linear regression analysis (R2 = .506, P < .001; P < .001 and P = .001 respectively). CONCLUSIONS Serum heparanase levels were significantly increased in patients with OSAS and associated with the severity of OSAS (AHI) and endothelial dysfunction (FMD). Increased heparanase activity in OSAS may be related to increased cardiovascular risk in patients with OSAS.
Collapse
Affiliation(s)
- Abdullah Ozkok
- Section of Nephorology, Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Sercin Ozkok
- Department of Radiology, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Mumtaz Takır
- Section of Endocrinology, Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Halil İbrahim Yakar
- Faculty of Medicine, Department of Pulmonary Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Asiye Kanbay
- Faculty of Medicine, Department of Pulmonary Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
27
|
Heparanase Inhibition Reduces Glucose Levels, Blood Pressure, and Oxidative Stress in Apolipoprotein E Knockout Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7357495. [PMID: 29226146 PMCID: PMC5684525 DOI: 10.1155/2017/7357495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/07/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
Background Atherosclerosis is a multifactorial process. Emerging evidence highlights a role of the enzyme heparanase in various disease states, including atherosclerosis formation and progression. Objective The aim of the study was to investigate the effect of heparanase inhibition on blood pressure, blood glucose levels, and oxidative stress in apoE−/− mice. Methods Male apoE−/− mice were divided into two groups: one treated by the heparanase inhibitor PG545, administered intraperitoneally weekly for seven weeks, and the other serving as control group (injected with saline). Blood pressure was measured a day before sacrificing the animals. Serum glucose levels and lipid profile were measured. Assessment of oxidative stress was performed as well. Results PG545 significantly lowered blood pressure and serum glucose levels in treated mice. It also caused significant reduction of the serum oxidative stress. For safety concerns, liver enzymes were assessed, and PG545 caused significant elevation only of alanine aminotransferase, but not of the other hepatic enzymes. Conclusion Heparanase inhibition by PG545 caused marked reduction of blood pressure, serum glucose levels, and oxidative stress in apolipoprotein E deficient mice, possibly via direct favorable metabolic and hemodynamic changes caused by the inhibitor. Possible hepatotoxic and weight wasting effects are subject for future investigation.
Collapse
|
28
|
Hu Y, Atik A, Yu H, Li T, Zhang B, Li D, Cai N, Yu Y, Chen J, Li G, Yuan L. Serum heparanase concentration and heparanase activity in patients with retinal vein occlusion. Acta Ophthalmol 2017; 95:e62-e66. [PMID: 27418016 DOI: 10.1111/aos.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the serum heparanase concentration and heparanase activity of the patients with central retinal vein occlusion (CRVO) or branch retinal vein occlusion (BRVO). METHODS This prospective study included 23 CRVO patients, 13 BRVO patients and 28 control subjects. Serum heparanase concentration was measured by ELISA. Serum heparanase activity was determined using a heparan degrading enzyme assay kit (Mountain View, CA, USA). Multivariate logistic regression was used to adjust for the possible confounding factors when comparing the difference in serum heparanase concentration and activity between patients with RVO and control subjects. RESULTS Patients with CRVO (3.963 ± 0.816 U/l) or BRVO (3.371 ± 1.522 U/l) had significantly higher levels of heparanase protein compared to controls (1.055 ± 0.902 U/l). This significance remained after adjusting for aforementioned confounding factors (CRVO versus control, p = 0.000, 95%CI: 2.450-4.488; BRVO versus control, p = 0.006, 95%CI: 0.776-4.050). Patients with CRVO (0.3587 ± 0.1498 U/ml) or BRVO (0.3616 ± 0.0570 U/ml) had significantly higher levels of heparanase activity compared to controls (0.1449 ± 0.0952 U/ml). The significance was maintained after adjusting for the aforementioned confounding factors (CRVO versus control, p = 0.012, 95%CI: 0.036-0.275; BRVO versus control, p = 0.000, 95%CI: 0.150-0.395). There was no significant difference in serum heparanase protein levels and activities between CRVO and BRVO groups before and after confounding factor adjustment. CONCLUSION Our study provides the first direct clinical link between systemic heparanase protein levels and heparanase activity with RVO, suggesting a critical role for heparanase in the pathophysiology of RVO.
Collapse
Affiliation(s)
- Yijun Hu
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Alp Atik
- Royal Victorian Eye and Ear Hospital; Melbourne Victoria Australia
| | - Honghua Yu
- Department of Ophthalmology; General Hospital of Guangzhou Military Command of PLA; Guangzhou China
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Boyong Zhang
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Dongli Li
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Ning Cai
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Yang Yu
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Jing Chen
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Guodong Li
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang China
| | - Ling Yuan
- Department of Ophthalmology; The First Affiliated Hospital of Kunming Medical University; Kunming China
| |
Collapse
|
29
|
Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 2016; 29:54-75. [PMID: 27912844 DOI: 10.1016/j.drup.2016.10.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Heparanase expression is enhanced in almost all cancers examined including various carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently demonstrated that upregulation of heparanase expression correlates with increased tumor size, tumor angiogenesis, enhanced metastasis and poor prognosis. In contrast, knockdown of heparanase or treatments of tumor-bearing mice with heparanase-inhibiting compounds, markedly attenuate tumor progression further underscoring the potential of anti-heparanase therapy for multiple types of cancer. Heparanase neutralizing monoclonal antibodies block myeloma and lymphoma tumor growth and dissemination; this is attributable to a combined effect on the tumor cells and/or cells of the tumor microenvironment. In fact, much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis and chemoresistance. The repertoire of the physio-pathological activities of heparanase is expanding. Specifically, heparanase regulates gene expression, activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and non-enzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive inflammatory responses, tumor survival, growth, dissemination and drug resistance; but in the same time, may fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, stress response, and heparan sulfate turnover. Heparanase is upregulated in response to chemotherapy in cancer patients and the surviving cells acquire chemoresistance, attributed, at least in part, to autophagy. Consequently, heparanase inhibitors used in tandem with chemotherapeutic drugs overcome initial chemoresistance, providing a strong rationale for applying anti-heparanase therapy in combination with conventional anti-cancer drugs. Heparin-like compounds that inhibit heparanase activity are being evaluated in clinical trials for various types of cancer. Heparanase neutralizing monoclonal antibodies are being evaluated in pre-clinical studies, and heparanase-inhibiting small molecules are being developed based on the recently resolved crystal structure of the heparanase protein. Collectively, the emerging premise is that heparanase expressed by tumor cells, innate immune cells, activated endothelial cells as well as other cells of the tumor microenvironment is a master regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a prime target for therapy.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Preeti Singh
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Lilach Gutter-Kapon
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ralph D Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
30
|
Monteforte AJ, Lam B, Das S, Mukhopadhyay S, Wright CS, Martin PE, Dunn AK, Baker AB. Glypican-1 nanoliposomes for potentiating growth factor activity in therapeutic angiogenesis. Biomaterials 2016; 94:45-56. [PMID: 27101205 DOI: 10.1016/j.biomaterials.2016.03.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Therapeutic angiogenesis is a highly appealing concept for treating tissues that become ischemic due to vascular disease. A major barrier to the clinical translation of angiogenic therapies is that the patients that are in the greatest need of these treatments often have long term disease states and co-morbidities, such as diabetes and obesity, that make them resistant to angiogenic stimuli. In this study, we identified that human patients with type 2 diabetes have reduced levels of glypican-1 in the blood vessels of their skin. The lack of this key co-receptor in the tissue may make the application of exogenous angiogenic growth factors or cell therapies ineffective. We created a novel therapeutic enhancer for growth factor activity consisting of glypican-1 delivered in a nanoliposomal carrier (a "glypisome"). Here, we demonstrate that glypisomes enhance FGF-2 mediated endothelial cell proliferation, migration and tube formation. In addition, glypisomes enhance FGF-2 trafficking by increasing both uptake and endosomal processing. We encapsulated FGF-2 or FGF-2 with glypisomes in alginate beads and used these to deliver localized growth factor therapy in a murine hind limb ischemia model. Co-delivery of glypisomes with FGF-2 markedly increased the recovery of perfusion and vessel formation in ischemic hind limbs of wild type and diabetic mice in comparison to mice treated with FGF-2 alone. Together, our findings support that glypisomes are effective means for enhancing growth factor activity and may improve the response to local angiogenic growth factor therapies for ischemia.
Collapse
Affiliation(s)
- Anthony J Monteforte
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Brian Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Catherine S Wright
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Patricia E Martin
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
31
|
Perisic L, Aldi S, Sun Y, Folkersen L, Razuvaev A, Roy J, Lengquist M, Åkesson S, Wheelock CE, Maegdefessel L, Gabrielsen A, Odeberg J, Hansson GK, Paulsson-Berne G, Hedin U. Gene expression signatures, pathways and networks in carotid atherosclerosis. J Intern Med 2016; 279:293-308. [PMID: 26620734 DOI: 10.1111/joim.12448] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Embolism from unstable atheromas in the carotid bifurcation is a major cause of stroke. Here, we analysed gene expression in endarterectomies from patients with symptomatic (S) and asymptomatic (AS) carotid stenosis to identify pathways linked to plaque instability. METHODS Microarrays were prepared from plaques (n = 127) and peripheral blood samples (n = 96) of S and AS patients. Gene set enrichment, pathway mapping and network analyses of differentially expressed genes were performed. RESULTS These studies revealed upregulation of haemoglobin metabolism (P = 2.20E-05) and bone resorption (P = 9.63E-04) in S patients. Analysis of subgroups of patients indicated enrichment of calcification and osteoblast differentiation in S patients on statins, as well as inflammation and apoptosis in plaques removed >1 month compared to <2 weeks after symptom. By prediction profiling, a panel of 30 genes, mostly transcription factors, discriminated between plaques from S versus AS patients with 78% accuracy. By meta-analysis, common gene networks associated with atherosclerosis mapped to hypoxia, chemokines, calcification, actin cytoskeleton and extracellular matrix. A set of dysregulated genes (LMOD1, SYNPO2, PLIN2 and PPBP) previously not described in atherosclerosis were identified from microarrays and validated by quantitative PCR and immunohistochemistry. CONCLUSIONS Our findings confirmed a central role for inflammation and proteases in plaque instability, and highlighted haemoglobin metabolism and bone resorption as important pathways. Subgroup analysis suggested prolonged inflammation following the symptoms of plaque instability and calcification as a possible stabilizing mechanism by statins. In addition, transcriptional regulation may play an important role in the determination of plaque phenotype. The results from this study will serve as a basis for further exploration of molecular signatures in carotid atherosclerosis.
Collapse
Affiliation(s)
- L Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - S Aldi
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Y Sun
- Translational Science Center, Personalized Healthcare and Biomarkers, R&D, Astra Zeneca, Stockholm, Sweden
| | - L Folkersen
- Department of Molecular Genetics, Novo Nordisk, Copenhagen, Denmark.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - A Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - J Roy
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - M Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - S Åkesson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - C E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - L Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - A Gabrielsen
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - J Odeberg
- Department of Medicine, Karolinska Institute, Stockholm, Sweden.,Science for Life Laboratory, Department of Proteomics, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - G K Hansson
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - U Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling. Cell Metab 2014; 20:813-826. [PMID: 25440058 PMCID: PMC4254584 DOI: 10.1016/j.cmet.2014.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/30/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are an important constituent of the macrophage glycocalyx and extracellular microenvironment. To examine their role in atherogenesis, we inactivated the biosynthetic gene N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) in macrophages and crossbred the strain to Ldlr(-/-) mice. When placed on an atherogenic diet, Ldlr(-/-)Ndst1(f/f)LysMCre(+) mice had increased atherosclerotic plaque area and volume compared to Ldlr(-/-) mice. Diminished sulfation of heparan sulfate resulted in enhanced chemokine expression; increased macrophages in plaques; increased expression of ACAT2, a key enzyme in cholesterol ester storage; and increased foam cell conversion. Motif analysis of promoters of upregulated genes suggested increased type I interferon signaling, which was confirmed by elevation of STAT1 phosphorylation induced by IFN-β. The proinflammatory macrophages derived from Ndst1(f/f)LysMCre(+) mice also sensitized the animals to diet-induced obesity. We propose that macrophage HSPGs control basal activation of macrophages by maintaining type I interferon reception in a quiescent state through sequestration of IFN-β.
Collapse
|
33
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Pisano C, Vlodavsky I, Ilan N, Zunino F. The potential of heparanase as a therapeutic target in cancer. Biochem Pharmacol 2014; 89:12-9. [PMID: 24565907 DOI: 10.1016/j.bcp.2014.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022]
Abstract
Heparanase has generated substantial interest as therapeutic target for antitumor therapy, because its activity is implicated in malignant behavior of cancer cells and in tumor progression. Increased heparanase expression was found in numerous tumor types and correlates with poor prognosis. Heparanase, an endoglucuronidase responsible for heparan sulfate cleavage, regulates the structure and function of heparan sulfate proteoglycans, leading to disassembly of the extracellular matrix. The action of heparanase is involved in multiple regulatory events related, among other effects, to augmented bioavailability of growth factors and cytokines. Inhibitors of heparanase suppress tumor growth, angiogenesis and metastasis by modulating growth factor-mediated signaling, ECM barrier function and cell interactions in the tumor microenvironment. Therefore, targeting heparanase has potential implications for anti-tumor, anti-angiogenic and anti-inflammatory therapies. Current approaches for heparanase inhibition include development of chemically modified heparins, small molecule inhibitors and neutralizing antibodies. The available evidence supports the emerging utility of heparanase inhibition as a promising antitumor strategy, specifically in rational combination with other agents. The recent studies with compounds designed to block heparanase (e.g., modified heparins) provide a rational basis for their therapeutic application and optimization.
Collapse
Affiliation(s)
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Haifa, Israel
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
35
|
Novick D, Barak S, Ilan N, Vlodavsky I. Heparanase interacts with resistin and augments its activity. PLoS One 2014; 9:e85944. [PMID: 24465803 PMCID: PMC3897609 DOI: 10.1371/journal.pone.0085944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/04/2013] [Indexed: 01/31/2023] Open
Abstract
In an attempt to isolate a heparanase receptor, postulated to mediate non-enzymatic functions of the heparanase protein, we utilized human urine collected from healthy volunteers. Affinity chromatography of this rich protein source on immobilized heparanase revealed resistin as a heparanase binding protein. Co-immunoprecipitation and ELISA further confirmed the interaction between heparanase and resistin. Importantly, we found that heparanase potentiates the bioactivity of resistin in its standard bioassay in which monocytic human leukemia cell line, THP1, differentiates into adherent macrophage-like foam cells. It is thus conceivable that this newly identified complex of heparanase and resistin exerts a stimulatory effect also in various inflammatory conditions known to be affected by the two proteins.
Collapse
Affiliation(s)
- Daniela Novick
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (DN); (IV)
| | - Sara Barak
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
- * E-mail: (DN); (IV)
| |
Collapse
|
36
|
Ostrovsky O, Shimoni A, Baryakh P, Morgulis Y, Mayorov M, Beider K, Shteingauz A, Ilan N, Vlodavsky I, Nagler A. Modification of heparanase gene expression in response to conditioning and LPS treatment: strong correlation to rs4693608 SNP. J Leukoc Biol 2013; 95:677-88. [PMID: 24319286 DOI: 10.1189/jlb.0313147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of HSPGs, important structural and functional components of the ECM. Cleavage of HS leads to loss of the structural integrity of the ECM and release of HS-bound cytokines, chemokines, and bioactive angiogenic- and growth-promoting factors. Our previous study revealed a highly significant correlation of HPSE gene SNPs rs4693608 and rs4364254 and their combination with the risk of developing GVHD. We now demonstrate that HPSE is up-regulated in response to pretransplantation conditioning, followed by a gradual decrease thereafter. Expression of heparanase correlated with the rs4693608 HPSE SNP before and after conditioning. Moreover, a positive correlation was found between recipient and donor rs4693608 SNP discrepancy and the time of neutrophil and platelet recovery. Similarly, the discrepancy in rs4693608 HPSE SNP between recipients and donors was found to be a more significant factor for the risk of aGVHD than patient genotype. The rs4693608 SNP also affected HPSE gene expression in LPS-treated MNCs from PB and CB. Possessors of the AA genotype exhibited up-regulation of heparanase with a high ratio in the LPS-treated MNCs, whereas individuals with genotype GG showed down-regulation or no effect on HPSE gene expression. HPSE up-regulation was mediated by TLR4. The study emphasizes the importance of rs4693608 SNP for HPSE gene expression in activated MNCs, indicating a role in allogeneic stem cell transplantation, including postconditioning, engraftment, and GVHD.
Collapse
Affiliation(s)
- Olga Ostrovsky
- 1.Dept. of Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lerner I, Zcharia E, Neuman T, Hermano E, Rubinstein AM, Vlodavsky I, Elkin M. Heparanase is preferentially expressed in human psoriatic lesions and induces development of psoriasiform skin inflammation in mice. Cell Mol Life Sci 2013; 71:2347-2357. [PMID: 24169805 DOI: 10.1007/s00018-013-1496-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/06/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
Abstract
Heparanase is the sole mammalian endoglycosidase that selectively degrades heparan sulfate, the key polysaccharide associated with the cell surface and extracellular matrix of a wide range of tissues. Extensively studied for its capacity to promote cancer progression, heparanase enzyme was recently implicated as an important determinant in several inflammatory disorders as well. Applying immunohistochemical staining, we detected preferential expression of heparanase by epidermal keratinocytes in human psoriatic lesions. To investigate the role of the enzyme in the pathogenesis of psoriasis, we utilized heparanase transgenic mice in a model of 12-O-tetradecanoyl phorbol 12-myristate 13-acetate-induced cutaneous inflammation. We report that over-expression of the enzyme promotes development of mouse skin lesions that strongly recapitulate the human disease in terms of histomorphological appearance and molecular/cellular characteristics. Importantly, heparanase of epidermal origin appears to facilitate abnormal activation of skin-infiltrating macrophages, thus generating psoriasis-like inflammation conditions, characterized by induction of STAT3, enhanced NF-κB signaling, elevated expression of TNF-α and increased vascularization. Taken together, our results reveal, for the first time, involvement of heparanase in the pathogenesis of psoriasis and highlight a role for the enzyme in facilitating abnormal interactions between immune and epithelial cell subsets of the affected skin. Heparanase inhibitors (currently under clinical testing in malignant diseases) could hence turn highly beneficial in psoriatic patients as well.
Collapse
Affiliation(s)
- Immanuel Lerner
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Eyal Zcharia
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Tzahi Neuman
- Dept. of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Esther Hermano
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ariel M Rubinstein
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Michael Elkin
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
38
|
Perisic L, Hedin E, Razuvaev A, Lengquist M, Osterholm C, Folkersen L, Gillgren P, Paulsson-Berne G, Ponten F, Odeberg J, Hedin U. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33:2432-43. [PMID: 23908247 DOI: 10.1161/atvbaha.113.301743] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Carotid plaque instability is a major cause of ischemic stroke, but detailed knowledge about underlying molecular pathways is still lacking. Here, we evaluated large-scale transcriptomic and protein expression profiling in a biobank of carotid endarterectomies followed by characterization of identified candidates, as a platform for discovery of novel proteins differentially regulated in unstable carotid lesions. APPROACH AND RESULTS Genes highly upregulated in symptomatic versus asymptomatic plaques were selected from Affymetrix microarray analyses (n=127 plaques), and tissue microarrays constructed from 34 lesions were assayed for 21 corresponding proteins by immunohistochemistry. Quantification of stainings demonstrated differential expression of CD36, CD137, and DOCK7 (P<0.05) in unstable versus stable lesions and the most significant upregulation of a proprotein convertase, PCSK6 (P<0.0001). Increased expression of PCSK6 in symptomatic lesions was verified by quantitative real-time polymerase chain reaction (n=233), and the protein was localized to smooth muscle α-actin positive cells and extracellular matrix of the fibrous cap by immunohistochemistry. PCSK6 expression positively correlated to genes associated with inflammation, matrix degradation, and mitogens in microarrays. Stimulation of human carotid smooth muscle cells in vitro with cytokines caused rapid induction of PCSK6 mRNA. CONCLUSIONS Using a combination of transcriptomic and tissue microarray profiling, we demonstrate a novel approach to identify proteins differentially expressed in unstable carotid atherosclerosis. The proprotein convertase PCSK6 was detected at increased levels in the fibrous cap of symptomatic carotid plaques, possibly associated with key processes in plaque rupture such as inflammation and extracellular matrix remodeling. Further studies are needed to clarify the role of PCSK6 in atherosclerosis.
Collapse
Affiliation(s)
- Ljubica Perisic
- From the Department of Molecular Medicine and Surgery (L.P., E.H., A.R., M.L., C.O., U.H.), and Department of Medicine (G.P.-B., J.O.), Karolinska Institute, Stockholm, Sweden; Department of Molecular Genetics, Novo Nordisk, Copenhagen, Denmark (L.F.); Department of Surgery, Södersjukhuset, Stockholm, Sweden (P.G.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (F.P.); and Department of Proteomics, Royal Institute of Technology, Stockholm, Sweden (J.O.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meirovitz A, Goldberg R, Binder A, Rubinstein AM, Hermano E, Elkin M. Heparanase in inflammation and inflammation-associated cancer. FEBS J 2013; 280:2307-19. [PMID: 23398975 PMCID: PMC3651782 DOI: 10.1111/febs.12184] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/29/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Recent years have seen a growing body of evidence that enzymatic remodeling of heparan sulfate proteoglycans profoundly affects a variety of physiological and pathological processes, including inflammation, neovascularization, and tumor development. Heparanase is the sole mammalian endoglycosidase that cleaves heparan sulfate. Extensively studied in cancer progression and aggressiveness, heparanase was recently implicated in several inflammatory disorders as well. Although the precise mode of heparanase action in inflammatory reactions is still not completely understood, the fact that heparanase activity is mechanistically important both in malignancy and in inflammation argues that this enzyme is a candidate molecule linking inflammation and tumorigenesis in inflammation-associated cancers. Elucidation of the specific effects of heparanase in cancer development, particularly when inflammation is a causal factor, will accelerate the development of novel therapeutic/chemopreventive interventions and help to better define target patient populations in which heparanase-targeting therapies could be particularly beneficial.
Collapse
Affiliation(s)
- Amichay Meirovitz
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Vlodavsky I, Blich M, Li JP, Sanderson RD, Ilan N. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013; 32:241-51. [PMID: 23499530 DOI: 10.1016/j.matbio.2013.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 01/24/2013] [Accepted: 03/04/2013] [Indexed: 01/04/2023]
Abstract
Heparanase, the sole mammalian endoglycosidase degrading heparan sulfate, is causally involved in cancer metastasis, angiogenesis, inflammation and kidney dysfunction. Despite the wide occurrence and impact of heparan sulfate proteoglycans in vascular biology, the significance of heparanase in vessel wall disorders is underestimated. Blood vessels are highly active structures whose morphology rapidly adapts to maintain vascular function under altered systemic and local conditions. In some pathologies (restenosis, thrombosis, atherosclerosis) this normally beneficial adaptation may be detrimental to overall function. Enzymatic dependent and independent effects of heparanase on arterial structure mechanics and repair closely regulate arterial compliance and neointimal proliferation following endovascular stenting. Additionally, heparanase promotes thrombosis after vascular injury and contributes to a pro-coagulant state in human carotid atherosclerosis. Importantly, heparanase is closely associated with development and progression of atherosclerotic plaques, including stable to unstable plaque transition. Consequently, heparanase levels are markedly increased in the plasma of patients with acute myocardial infarction. Noteworthy, heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression towards vulnerability. Together, heparanase emerges as a regulator of vulnerable lesion development and potential target for therapeutic intervention in atherosclerosis and related vessel wall complications.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel.
| | | | | | | | | |
Collapse
|
41
|
Goldberg R, Meirovitz A, Hirshoren N, Bulvik R, Binder A, Rubinstein AM, Elkin M. Versatile role of heparanase in inflammation. Matrix Biol 2013; 32:234-240. [PMID: 23499528 DOI: 10.1016/j.matbio.2013.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022]
Abstract
Heparanase is the only known mammalian endoglycosidase capable of degrading heparan sulfate glycosaminoglycan, both in extracellular space and within the cells. It is tightly implicated in cancer progression and over the past few decades significant progress has been made in elucidating the multiple functions of heparanase in malignant tumor development, neovascularization and aggressive behavior. Notably, current data show that in addition to its well characterized role in cancer, heparanase activity may represent an important determinant in the pathogenesis of several inflammatory disorders, such as inflammatory lung injury, rheumatoid arthritis and chronic colitis. Nevertheless, the precise mode of heparanase action in inflammatory reactions remains largely unclear and recent observations suggest that heparanase can either facilitate or limit inflammatory responses, when tissue/cell-specific contextual cues may dictate an outcome of heparanase action in inflammation. In this review the involvement of heparanase in modulation of inflammatory reactions is discussed through a few illustrative examples, including neuroinflammation, sepsis-associated lung injury and inflammatory bowel disease. We also discuss possible action of the enzyme in coupling inflammation and tumorigenesis in the setting of inflammation-triggered cancer.
Collapse
Affiliation(s)
- Rachel Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amichay Meirovitz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Nir Hirshoren
- Department of Otolaryngology, Head & Neck Surgery, Hadassah Hospital, Jerusalem 91120, Israel
| | - Raanan Bulvik
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Adi Binder
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ariel M Rubinstein
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Michael Elkin
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
42
|
Qin Q, Niu J, Wang Z, Xu W, Qiao Z, Gu Y. Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway. Cardiovasc Diabetol 2013; 12:37. [PMID: 23442498 PMCID: PMC3637127 DOI: 10.1186/1475-2840-12-37] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/18/2013] [Indexed: 11/30/2022] Open
Abstract
Background Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling molecules including AKT pathway independent of enzymatic activity. However, virtually nothing is presently known the role of HPA during macrophage migration exposed to AGEs involving signal pathway. Methods These studies were carried out in Ana-1 macrophages. Macrophage viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. HPA and AKT protein expression in macrophages are analysed by Western blotting and HPA mRNA expression by real time quantitative RT-PCR. Release of HPA was determined by ELISA. Macrophage migration was assessed by Transwell assays. Results HPA protein and mRNA were found to be increased significantly in AGEs-treated macrophages. Pretreatment with anti-HPA antibody which recognizes the nonenzymatic terminal of HPA prevented AGEs-induced AKT phosphorylation and macrophage migration. LY294002 (PI3k/AKT inhibitor) inhibited AGEs-induced macrophage migration. Furthermore, pretreatment with anti-receptor for advanced glycation end products (RAGE) antibody attenuated AGEs-induced HPA expression, AKT phosphorylation and macrophage migration. Conclusions These data indicate that AGEs-induced macrophage migration is dependent on HPA involving RAGE-HPA-PI3K/AKT pathway. The nonenzymatic activity of HPA may play a key role in AGEs-induced macrophage migration associated with inflammation in diabetic vascular complication.
Collapse
Affiliation(s)
- Qiaojing Qin
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|