1
|
Vergès B. Cardiovascular disease in type 1 diabetes, an underestimated danger: Epidemiological and pathophysiological data. Atherosclerosis 2024; 394:117158. [PMID: 37369617 DOI: 10.1016/j.atherosclerosis.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease (CV) is a common complication of type 1 diabetes (T1D) and a leading cause of death. T1D patients are more likely to develop CV disease (CVD) early in life and show a reduction of life expectancy of at least 11 years. Patients with a young age of T1D onset have a substantially higher CV risk. The reasons for increased atherosclerosis in T1D patients are not entirely explained. In addition to the typical CV risk factors, long-term hyperglycemia has a significant impact by inducing oxidative stress, vascular inflammation, monocyte adhesion, arterial wall thickening and endothelial dysfunction. Additionally, CVD in T1D is also associated with nephropathy. However, CVD risk is still significantly increased in T1D patients, in good glycemic control without additional CV risk factors, indicating the involvement of supplementary potential factors. By increasing oxidative stress, vascular inflammation, and endothelial dysfunction, hypoglycemia and glucose variability may exacerbate CVD. Moreover, significant qualitative and functional abnormalities of lipoproteins are present in even well-controlled T1D patients and are likely to play a role in the development of atherosclerosis and the promotion of CVD. According to recent research, immune system dysfunction, which is typical of auto-immune T1D, may also promote CVD, likely via inflammatory pathways. In addition, T1D patients who are overweight or obese exhibit an additional CV risk due to pathophysiological mechanisms that are similar to those seen in T2D.
Collapse
Affiliation(s)
- Bruno Vergès
- Endocrinology-Diabetology Department, University-Hospital of Dijon, Dijon, France; INSERM LNC-UMR1231, Medicine University, 21000 Dijon, France; Service Endocrinologie, Diabétologie et Maladies Métaboliques, CHU-Dijon, 14 rue Gaffarel, F-21000 Dijon, France.
| |
Collapse
|
2
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
4
|
Denimal D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants (Basel) 2023; 13:57. [PMID: 38247481 PMCID: PMC10812436 DOI: 10.3390/antiox13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: high-density lipoproteins (HDLs) exhibit antioxidant and anti-inflammatory properties that play an important role in preventing the development of atherosclerotic lesions and possibly also diabetes. In turn, both type 1 diabetes (T1D) and type 2 diabetes (T2D) are susceptible to having deleterious effects on these HDL functions. The objectives of the present review are to expound upon the antioxidant and anti-inflammatory functions of HDLs in both diabetes in the setting of atherosclerotic cardiovascular diseases and discuss the contributions of these HDL functions to the onset of diabetes. (2) Methods: this narrative review is based on the literature available from the PubMed database. (3) Results: several antioxidant functions of HDLs, such as paraoxonase-1 activity, are compromised in T2D, thereby facilitating the pro-atherogenic effects of oxidized low-density lipoproteins. In addition, HDLs exhibit diminished ability to inhibit pro-inflammatory pathways in the vessels of individuals with T2D. Although the literature is less extensive, recent evidence suggests defective antiatherogenic properties of HDL particles in T1D. Lastly, substantial evidence indicates that HDLs play a role in the onset of diabetes by modulating glucose metabolism. (4) Conclusions and perspectives: impaired HDL antioxidant and anti-inflammatory functions present intriguing targets for mitigating cardiovascular risk in individuals with diabetes. Further investigations are needed to clarify the influence of glycaemic control and nephropathy on HDL functionality in patients with T1D. Furthermore, exploring the effects on HDL functionality of novel antidiabetic drugs used in the management of T2D may provide intriguing insights for future research.
Collapse
Affiliation(s)
- Damien Denimal
- Unit 1231, Center for Translational and Molecular Medicine, University of Burgundy, 21000 Dijon, France;
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21079 Dijon, France
| |
Collapse
|
5
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
6
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Denimal D. Carbamylated lipoproteins in diabetes. World J Diabetes 2023; 14:159-169. [PMID: 37035232 PMCID: PMC10075031 DOI: 10.4239/wjd.v14.i3.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Diabetic dyslipidemia is characterized by quantitative and qualitative abnor-malities in lipoproteins. In addition to glycation and oxidation, carbamylation is also a post-translational modification affecting lipoproteins in diabetes. Patients with type 2 diabetes (T2D) exhibit higher levels of carbamylated low-density lipoproteins (cLDL) and high-density lipoproteins (cHDL). Accumulating evidence suggests that cLDL plays a role in atherosclerosis in diabetes. cLDL levels have been shown to predict cardiovascular events and all-cause mortality. cLDL facilitates immune cell recruitment in the vascular wall, promotes accumulation of lipids in macrophages, and contributes to endothelial dysf-unction, endothelial nitric oxide-synthase (eNOS) inactivation and endothelial repair defects. Lastly, cLDL induces thrombus formation and platelet aggregation. On the other hand, recent data have demonstrated that cHDL serum level is independently associated with all-cause and cardiovascular-related mortality in T2D patients. This relationship may be causative since the atheroprotective properties of HDL are altered after carbamylation. Thus, cHDL loses the ability to remove cholesterol from macrophages, to inhibit monocyte adhesion and recruitment, to induce eNOS activation and to inhibit apoptosis. Taken together, it seems very likely that the abnormalities in the biological functions of LDL and HDL after carbamylation contribute to atherosclerosis and to the elevated cardiovascular risk in diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- Department of Biochemistry, University Hospital of Dijon, Dijon 21079, France
- INSERM LNC UMR1231, University of Burgundy, Dijon 21078, France
| |
Collapse
|
8
|
Kurano M, Tsukamoto K, Sakai E, Yatomi Y. Differences in the Distribution of Ceramides and Sphingosine among Lipoprotein and Lipoprotein-Depleted Fractions in Patients with Type 2 Diabetes Mellitus. J Atheroscler Thromb 2022; 29:1727-1758. [PMID: 35082227 PMCID: PMC9881536 DOI: 10.5551/jat.63249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM In addition to the quantity and quality, the carriers, such as lipoproteins and albumin, can affect the physiological properties and clinical significance of lipids. This study aimed to elucidate the modulation of the levels of ceramides and sphingosine, which are considered as proatherosclerotic lipids, in lipoproteins and lipoprotein-depleted fractions in subjects with type 2 diabetes. METHODS We separated the serum samples collected from healthy subjects (n=22) and subjects with type 2 diabetes (n=39) into Triglyceride (TG)-rich lipoproteins (TRL), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and lipoprotein-depleted fractions via ultracentrifugation. Then, we measured the levels of six species of ceramides, sphingosine, and dihydrosphingosine via LC-MS/MS and statistically analyzed them to identify the sphingolipids in each fraction, which are associated with diabetes as well as cardiovascular and renal complications. RESULTS In subjects with diabetes, the levels of sphingosine and dihydrosphingosine in the TRL, LDL, and lipoprotein-depleted fractions were higher, whereas those in the HDL were lower. In addition, the ceramide levels in HDL were lower, whereas those in lipoprotein-depleted fractions were higher. Furthermore, The levels of ceramides in lipoproteins, especially LDL, were negatively associated with the presence of cardiovascular diseases and stage 4 diabetic nephropathy. CONCLUSIONS The contents of ceramides and sphingosine in lipoproteins and lipoprotein-depleted fractions were differently modulated in diabetes and associated with cardiovascular diseases and diabetic nephropathy. The carrier might be an important factor for the biological properties and clinical significance of these sphingolipids.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Molecular Characterization of Plasma HDL, LDL, and VLDL Lipids Cargos from Atherosclerotic Patients with Advanced Carotid Lesions: A Preliminary Report. Int J Mol Sci 2022; 23:ijms232012449. [PMID: 36293312 PMCID: PMC9604033 DOI: 10.3390/ijms232012449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Carotid atherosclerosis represents a relevant healthcare problem, since unstable plaques are responsible for approximately 15% of neurologic events, namely transient ischemic attack and stroke. Although statins treatment has proven effective in reducing LDL-cholesterol and the onset of acute clinical events, a residual risk may persist suggesting the need for the detection of reliable molecular markers useful for the identification of patients at higher risk regardless of optimal medical therapy. In this regard, several lines of evidence show a relationship among specific biologically active plasma lipids, atherosclerosis, and acute clinical events. We performed a Selected Reaction Monitoring-based High Performance Liquid Chromatography-tandem Mass Spectrometry (SRM-based HPLC-MS/MS) analysis on plasma HDL, LDL, and VLDL fractions purified, by isopycnic salt gradient ultracentrifugation, from twenty-eight patients undergoing carotid endarterectomy, having either a “hard” or a “soft” plaque, with the aim of characterizing the specific lipidomic patterns associated with features of carotid plaque instability. One hundred and thirty lipid species encompassing different lipid (sub)classes were monitored. Supervised multivariate analysis showed that lipids belonging to phosphatidylethanolamine (PE), sphingomyelin (SM), and diacylglycerol (DG) classes mostly contribute to discrimination within each lipoprotein fraction according to the plaque typology. Differential analysis evidenced a significant dysregulation of LDL PE (38:6), SM (32:1), and SM (32:2) between the two groups of patients (adj. p-value threshold = 0.05 and log2FC ≥ |0.58|). Using this approach, some LDL-associated markers of plaque vulnerability have been identified, in line with the current knowledge of the key roles of these phospholipids in lipoprotein metabolism and cardiovascular disease. This proof-of-concept study reports promising results, showing that lipoprotein lipidomics may present a valuable approach for identifying new biomarkers of potential clinical relevance.
Collapse
|
10
|
Zhang J, Xiao Y, Hu J, Liu S, Zhou Z, Xie L. Lipid metabolism in type 1 diabetes mellitus: Pathogenetic and therapeutic implications. Front Immunol 2022; 13:999108. [PMID: 36275658 PMCID: PMC9583919 DOI: 10.3389/fimmu.2022.999108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease with insulin deficiency due to pancreatic β cell destruction. Multiple independent cohort studies revealed specific lipid spectrum alterations prior to islet autoimmunity in T1DM. Except for serving as building blocks for membrane biogenesis, accumulative evidence suggests lipids and their derivatives can also modulate different biological processes in the progression of T1DM, such as inflammation responses, immune attacks, and β cell vulnerability. However, the types of lipids are huge and majority of them have been largely unexplored in T1DM. In this review, based on the lipid classification system, we summarize the clinical evidence on dyslipidemia related to T1DM and elucidate the potential mechanisms by which they participate in regulating inflammation responses, modulating lymphocyte function and influencing β cell susceptibility to apoptosis and dysfunction. This review systematically recapitulates the role and mechanisms of various lipids in T1DM, providing new therapeutic approaches for T1DM from a nutritional perspective.
Collapse
|
11
|
Abrahams C, Woudberg NJ, Lecour S. Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage? Lipids Health Dis 2022; 21:85. [PMID: 36050733 PMCID: PMC9434835 DOI: 10.1186/s12944-022-01694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Carmelita Abrahams
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Nicholas J Woudberg
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa.
| |
Collapse
|
12
|
Denimal D, Monier S, Simoneau I, Duvillard L, Vergès B, Bouillet B. HDL functionality in type 1 diabetes: enhancement of cholesterol efflux capacity in relationship with decreased HDL carbamylation after improvement of glycemic control. Cardiovasc Diabetol 2022; 21:154. [PMID: 35962339 PMCID: PMC9375300 DOI: 10.1186/s12933-022-01591-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Background Reduced cholesterol efflux capacity (CEC) of HDLs is likely to increase cardiovascular risk in type 1 diabetes (T1D). We aimed to assess whether improvement of glycemic control in T1D patients is associated with changes in CEC in relation with changes in carbamylation of HDLs. Methods In this open-label trial, 27 uncontrolled T1D patients were given a three-month standard medical intervention to improve glycemic control. HDL fraction was isolated from plasma, and CEC was measured on THP-1 macrophages. Carbamylation of HDLs was evaluated by an immunoassay. Control HDLs from healthy subjects were carbamylated in vitro with potassium cyanate. Results HbA1c decreased from 11.4% [10.2–12.9] (median [1st–3rd quartiles]) at baseline to 8.1% [6.6–9.0] after the three-month intervention (P < 0.00001). The CEC of HDLs increased after intervention in 19 (70%) patients (P = 0.038). At the same time, the carbamylation of HDLs decreased in 22 (82%) patients after intervention (P = 0.014). The increase in CEC significantly correlated with the decrease in carbamylated HDLs (r = −0.411, P = 0.034), even after adjustment for the change in HbA1c (β = −0.527, P = 0.003). In vitro carbamylation of control HDLs decreased CEC by 13% (P = 0.041) and 23% (P = 0.021) using 1 and 10 mmol/L of potassium cyanate, respectively. Conclusions The improvement of CEC in relation to a decrease in the carbamylation of HDLs may likely contribute to the beneficial cardiovascular effect of glycemic control in T1D patients. Trial registration: NCT02816099 ClinicalTrials.gov.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM LNC UMR1231, University of Burgundy, Dijon, France. .,Department of Biochemistry - Plateforme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France.
| | - Serge Monier
- INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Isabelle Simoneau
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| | - Laurence Duvillard
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Biochemistry - Plateforme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France
| | - Bruno Vergès
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| | - Benjamin Bouillet
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| |
Collapse
|
13
|
Baker NL, Hammad SM, Hunt KJ, Semler A, Klein RL, Lopes-Virella MF. Plasma apoM Levels and Progression to Kidney Dysfunction in Patients With Type 1 Diabetes. Diabetes 2022; 71:1795-1799. [PMID: 35554520 PMCID: PMC9490352 DOI: 10.2337/db21-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022]
Abstract
Apolipoprotein M (apoM), primarily carried by HDL, has been associated with several conditions, including cardiovascular disease and diabetic nephropathy. This study proposes to examine whether plasma apoM levels are associated with the development of diabetic kidney disease, assessed as progression to macroalbuminuria (MA) and chronic kidney disease (CKD). Plasma apoM was measured using an enzyme immunoassay in 386 subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) cohort at DCCT entry and closeout and the concentrations used to determine the association with risk of progression to kidney dysfunction from the time of measurement through 18 years of EDIC follow-up. apoM levels, at DCCT baseline, were higher in patients who developed CKD than in those who retained normal renal function. At DCCT closeout, participants who progressed to MA, CKD, or both MA and CKD also had significantly higher apoM levels than those who remained normal, and increased levels of apoM were associated with increased risk of progression to both MA (risk ratio [RR] 1.30 [95% CI 1.01, 1.66]) and CKD (RR 1.69 [95% CI 1.18, 2.44]). Our results strongly suggest that alterations in apoM and therefore in the composition and function of HDL in type 1 diabetes are present early in the disease process and are associated with the development of nephropathy.
Collapse
Affiliation(s)
- Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Kelly J. Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Andrea Semler
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard L. Klein
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
- Corresponding author: Maria F. Lopes-Virella,
| |
Collapse
|
14
|
A meal rich in palm oil or butter modifies the sphingolipid profile of postprandial triglyceride-rich lipoproteins from type 2 diabetic women. Biochimie 2022; 203:11-19. [PMID: 35817131 DOI: 10.1016/j.biochi.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Elevated concentrations of triglyceride-rich lipoproteins (TGRL) in the fasting and postprandial states are risk factors for cardiovascular events, especially in type 2 diabetes (T2D). T2D modifies the lipid composition of plasma and lipoproteins and some sphingolipids (SP) have been validated as potent predictive biomarkers of cardiovascular disease occurrence. The main objectives of the present study were to characterize the plasma SP profile in fasting T2D patients and to determine whether SP are modified in postprandial TGRL from these patients compared to fasting TGRL. In a randomized parallel-group study, 30 T2D women ingested a breakfast including 20g lipids from either hazelnut cocoa palm oil-rich spread (Palm Nut) or Butter. Plasma was collected and TGRL were isolated by ultracentrifugation at fasting and 4h after the meal. Fasting samples of 6 control subjects from another cohort were analyzed for comparison. SP were analyzed by tandem mass spectrometry. Plasma from fasting T2D patients had higher ceramide (Cer) and ganglioside GM3 concentrations, and lower concentrations of sphingosylphosphorylcholine vs healthy subjects. In postprandial TGRL from T2D patients compared to those in the fasting state, Cer concentrations and especially C16:0, C24:1 and C24:0 molecular species, increased after the Palm Nut or Butter breakfast. A positive correlation was observed in the Palm Nut group between changes (Δ4h-fasting) of summed C16:0+C22:0+C24:1+C24:0 Cer concentrations in TGRL, and changes in plasma TG, TGRL-TG and TGRL-C16:0 concentrations. Altogether in T2D, the altered profile of plasma SP and the increased Cer concentrations in postprandial TGRL could contribute to the increased atherogenicity of TGRL.
Collapse
|
15
|
Hammad SM, Hunt KJ, Baker NL, Klein RL, Lopes-Virella MF. Diabetes and kidney dysfunction markedly alter the content of sphingolipids carried by circulating lipoproteins. J Clin Lipidol 2022; 16:173-183. [DOI: 10.1016/j.jacl.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
16
|
Semler A, Hammad S, Lopes-Virella MF, Klein RL, Huang Y. Deoxysphingolipids Upregulate MMP-1, Downregulate TIMP-1, and Induce Cytotoxicity in Human Schwann Cells. Neuromolecular Med 2021; 24:352-362. [PMID: 34853975 DOI: 10.1007/s12017-021-08698-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Sphingolipids are a heterogeneous class of lipids and essential components of the plasma membrane and plasma lipoproteins. Studies have shown that plasma deoxysphingolipid (DSL), a newly identified sphingolipid class, is increased in diabetic patients and associated with diabetic neuropathy. However, it remains unknown if there is a causal relationship between plasma DSL increase and diabetic neuropathy. Since matrix metalloproteinases (MMPs) play an important role in diabetic neuropathy by degrading extracellular matrix in the peripheral nervous system, we investigated the effect of DSLs on the expression of MMPs and tissue inhibitor of metalloproteinase (TIMPs), and cytotoxicity in human Schwann cells. We quantified protein secretion, gene expression, and collagenase activity, and performed cytotoxicity assays. Results showed that DSLs upregulated MMP-1, downregulated TIMP-1, and induced cytotoxicity in Schwann cells. Furthermore, we quantified DSLs in VLDL, LDL, HDL2, and HDL3 isolated from type 2 diabetes mellitus (T2DM) patients with or without neuropathy. Interestingly, lipidomic analysis showed that only HDL2 isolated from T2DM patients with neuropathy contains significantly higher level of DSLs than that isolated from T2DM patients without neuropathy. Additionally, results showed that HDL2 isolated from T2DM patients with neuropathy was more potent than that isolated from T2DM patients without neuropathy in upregulating MMP-1, downregulating TIMP-1, and stimulating collagenase activity in Schwann cell. Taken together, this study demonstrated for the first time a potential causal relationship between DSLs and diabetic neuropathy and that DSL-containing HDL2 from T2DM patients with neuropathy was more potent than that from T2DM patients without neuropathy in stimulating collagenase activity.
Collapse
Affiliation(s)
- Andrea Semler
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Samar Hammad
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA.,Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard L Klein
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA.,Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA. .,Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
18
|
Patanapirunhakit P, Karlsson H, Mulder M, Ljunggren S, Graham D, Freeman D. Sphingolipids in HDL - Potential markers for adaptation to pregnancy? Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158955. [PMID: 33933650 DOI: 10.1016/j.bbalip.2021.158955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Abstract
Plasma high density lipoprotein (HDL) exhibits many functions that render it an effective endothelial protective agent and may underlie its potential role in protecting the maternal vascular endothelium during pregnancy. In non-pregnant individuals, the HDL lipidome is altered in metabolic disease compared to healthy individuals and is linked to reduced cholesterol efflux, an effect that can be reversed by lifestyle management. Specific sphingolipids such as sphingosine-1-phosphate (S1P) have been shown to mediate the vaso-dilatory effects of plasma HDL via interaction with the endothelial nitric oxide synthase pathway. This review describes the relationship between plasma HDL and vascular function during healthy pregnancy and details how this is lost in pre-eclampsia, a disorder of pregnancy associated with widespread endothelial dysfunction. Evidence of a role for HDL sphingolipids, in particular S1P and ceramide, in cardiovascular disease and in healthy pregnancy and pre-eclampsia is discussed. Available data suggest that HDL-S1P and HDL-ceramide can mediate vascular protection in healthy pregnancy but not in preeclampsia. HDL sphingolipids thus are of potential importance in the healthy maternal adaptation to pregnancy.
Collapse
Affiliation(s)
- Patamat Patanapirunhakit
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Monique Mulder
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Dilys Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Wang X, Lam SM, Cao M, Wang T, Wang Z, Yu M, Li B, Zhang H, Ping F, Song G, Feng K, Zhang Q, Xu J, Zhou L, Deng M, Zhai X, Xiao X, Shui G. Localized increases in CEPT1 and ATGL elevate plasmalogen phosphatidylcholines in HDLs contributing to atheroprotective lipid profiles in hyperglycemic GCK-MODY. Redox Biol 2021; 40:101855. [PMID: 33450726 PMCID: PMC7810764 DOI: 10.1016/j.redox.2021.101855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/03/2023] Open
Abstract
Glucokinase-maturity onset diabetes of the young (GCK-MODY) represents a rare genetic disorder due to mutation in the glucokinase (GCK) gene. The low incidence of vascular complications in GCK-MODY makes it a natural paradigm for interrogating molecular mechanisms promoting vascular health under prolonged hyperglycemia. Clinical rate of misdiagnosis has remained high, and a reliable serum lipid biomarker that precedes genetic screening can facilitate correct diagnosis and treatment. Herein, we comprehensively quantitated 565 serum lipids from 25 classes in 105 subjects (42 nondiabetic controls, 30 GC K-MODY patients, 33 drug-naïve, and newly-onset T2D patients). At false-discovery rate (FDR) < 0.05, several phosphatidylcholines (PCs) and plasmalogen PCs were specifically increased in GCK-MODY, while triacylglycerols (TAGs) and diacylglycerols (DAGs) were reduced. Correlation matrices between lipids uncovered coregulation between plasmalogen PCs (PCps) and glycerolipid precursors was distinctly enhanced in GCK-MODY compared to T2D. Strengthened positive correlations between serum PCps and circulating HDLs was specifically observed in hyperglycemic subjects (i.e. T2D and GCK-MODY) compared to normglycemic controls, suggesting that HDL-PCps may elicit distinct physiological effects under hyperglycemia. Amongst GCK-MODY patients, individuals harboring variants of GCK mutations with elevated PCps also exhibited higher HDLs. Isolated HDLs displayed localized increases (p < 0.05) in very-long-chain PUFA-PCs and PCps in GCK-MODY. Protein analyses revealed elevated levels of HDL-resident ATGL (P = 0.003) and CEPT1 (P < 0.0001), which mediate critical steps of PCps production along the TAG-DAG-PC axis, in GCK-MODY relative to T2D. A panel of four lipids differentiated GCK-MODY from T2D with AUC of 0.950 (95% CI 0.903–9.997). This study provides the first evidence that enhanced recruitment of CEPT1 and ATGL onto HDLs essentially underlie the atheroprotective profiles associated with GCK-MODY. Resultant increases in the production of HDL-PCps and PUFA-PCs provides an active, circulating form of protection towards the vasculature of GCK-MODY, thereby lowering the incidence of vascular complications despite chronic exposure to hyperglycemia since birth.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, People's Republic of China
| | - Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhixin Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Miao Yu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, People's Republic of China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Fan Ping
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guangyao Song
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Kai Feng
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qian Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Jianping Xu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Liyuan Zhou
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Mingqun Deng
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xiao Zhai
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xinhua Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Exploratory analysis of large-scale lipidome in large cohorts: are we any closer of finding lipid-based markers suitable for CVD risk stratification and management? Anal Chim Acta 2020; 1142:189-200. [PMID: 33280696 DOI: 10.1016/j.aca.2020.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVD) remain the biggest cause of deaths worldwide and a major socio-economic impact to society. In this work, we conducted an unbiased exploratory analysis of the large-scale lipidome in human plasma samples from patients with fatal and non-fatal CVD from large cohorts. The exploratory analysis included data from 10,349 individuals from 20 countries in Asia, Australasia, Europe and North America (ADVANCE cohort), and thus representative of the worldwide population. Through the analysis of hazard ratios (HR), we found 306 lipids relevant in CV Death and 294 lipids relevant in CV Events of which 262 lipids were common to fatal and non-fatal events followed over time (3, 5 and 8 years). Our exploratory analysis reveals that, over time, the plasma lipid signature found in non-fatal CVD events is similar to that preceding CVD death. Among the common lipid signature, we found that sphingolipids (HexCer, SM, Cer and other glycosphingolipids) and phospholipids (PC and PE) were strongly associated with CVD events outcome, while polyunsaturated plasmenyl PC and PE lipids were inversely associated with CV outcome. The restricted panel of specific lipids has the potential to improve CVD risk stratification and management, and significantly reduce the time involved in the analysis and data treatment in low-resolution MS instruments making plasma lipidomics a cost-efficient approach for clinical scenario. In our view, once standardized clinical, analytical and data reporting guidelines are implemented worldwide, lipid-based discriminators can be routinely applied in the CVD risk stratification and improve the performance of current clinical, biochemical and imaging diagnostic tools assisting the decision-making process particularly in patients with multiple co-morbidities.
Collapse
|
21
|
Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158823. [PMID: 33010452 PMCID: PMC7695620 DOI: 10.1016/j.bbalip.2020.158823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes mellitus (T1DM) is associated with metabolic changes leading to alterations in glucose and lipid handling. While T1DM-associated effects on many major plasma lipids have been characterised, such effects on plasma free fatty acids (FFA) have not been fully examined. Using gas chromatography–mass spectrometry, we measured the plasma concentrations of FFA species in individuals with T1DM (n = 44) and age/sex-matched healthy controls (n = 44). Relationships between FFA species and various parameters were evaluated. Plasma concentrations of myristate (14:0), palmitoleate (16:1), palmitate (16:0), linoleate (18:2), oleate (18:1c9), cis-vaccenate (18:1c11), eicosapentaenoate (20:5), arachidonate (20:4) and docosahexanoate (22:6) were reduced in the T1DM group (p < 0.0001 for all, except p = 0.0020 for eicosapentaenoate and p = 0.0068 for arachidonate); α-linolenate (18:3) and dihomo-γ-linolenate (20:3) concentrations were unchanged. The saturated/unsaturated FFA ratio, n-3/n-6 ratio, de novo lipogenesis index (palmitate (main lipogenesis product)/linoleate (only found in diet)) and elongase index (oleate/palmitoleate) were increased in the T1DM group (p = 0.0166, p = 0.0089, p < 0.0001 and p = 0.0008 respectively). The stearoyl-CoA desaturase 1 (SCD1) index 1 (palmitoleate/palmitate) and index 2 (oleate/stearate) were reduced in T1DM (p < 0.0001 for both). The delta-(5)-desaturase (D5D) index (arachidonate/dihomo-γ-linolenate) was unchanged. Age and sex had no effect on plasma FFA concentrations in T1DM, while SCD1 index 1 was positively correlated (p = 0.098) and elongase index negatively correlated with age (p = 0.0363). HbA1c was negatively correlated with all plasma FFA concentrations measured except α-linolenate and dihomo-γ-linolenate. Correlations were observed between plasma FFA concentrations and cholesterol and HDL concentrations, but not LDL concentration or diabetes duration. Collectively, these results aid our understanding of T1DM and its effects on lipid metabolism. Plasma concentrations of major FFA species are lower in T1DM compared to controls. Plasma FFA concentrations negatively correlates with HbA1c in T1DM. The SCD1 index is reduced in T1DM. Lipogenesis, elongase, n3/n6, saturated/unsaturated indices are increased in T1DM. Collectively, the data highlight specific changes in lipid metabolism in T1DM
Collapse
|
22
|
Cardiovascular disease in type 1 diabetes: A review of epidemiological data and underlying mechanisms. DIABETES & METABOLISM 2020; 46:442-449. [PMID: 32998054 DOI: 10.1016/j.diabet.2020.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is highly prevalent in patients with type 1 diabetes (T1D) and a major cause of mortality. CVD arises earlier in life in T1D patients and is responsible for a significant reduction of at least 11 years' life expectancy. Also, the incidence of CVD is much more pronounced in patients with T1D onset at an earlier age. However, the factors responsible for increased atherosclerosis and CVD in T1D are not yet totally clarified. In addition to the usual cardiovascular (CV) risk factors, chronic hyperglycaemia plays an important role by promoting oxidative stress, vascular inflammation, monocyte adhesion, arterial wall thickening and endothelial dysfunction. Diabetic nephropathy and cardiac autonomic neuropathy are also associated with increased CVD in T1D. In fact, the CVD risk remains significantly increased even in well-controlled T1D patients who have no additional CV risk factors, indicating that other potential factors are likely to be involved. Hypoglycemia and glucose variability could enhance CV disease by promoting oxidative stress, vascular inflammation and endothelial dysfunction. Furthermore, even well-controlled T1D patients show significant qualitative and functional abnormalities of lipoproteins that are likely to be implicated in the development of atherosclerosis and premature CVD. In addition, recent data suggest that a dysfunctional immune system, which is typical of autoimmune T1D, might also promote CVD possibly through inflammatory pathways. Moreover, overweight and obese T1D patients can manifest additional CV risk through pathophysiological mechanisms resembling those observed in type 2 diabetes (T2D).
Collapse
|
23
|
Vergès B. Dyslipidemia in Type 1 Diabetes: AMaskedDanger. Trends Endocrinol Metab 2020; 31:422-434. [PMID: 32217073 DOI: 10.1016/j.tem.2020.01.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) patients show lipid disorders which are likely to play a role in their increased cardiovascular (CV) disease risk. Quantitative abnormalities of lipoproteins are noted in T1D with poor glycemic control. In T1D with optimal glycemic control, triglycerides and LDL-cholesterol are normal or slightly decreased whereas HDL-cholesterol is normal or slightly increased. T1D patients, even with good glycemic control, show several qualitative and functional abnormalities of lipoproteins that are potentially atherogenic. An association between these abnormalities and CV disease risk has been reported in recent studies. Although the mechanisms underlying T1D dyslipidemia remain unclear, the subcutaneous route of insulin administration, that is responsible for peripheral hyperinsulinemia, is likely to be an important factor.
Collapse
Affiliation(s)
- Bruno Vergès
- Service Endocrinologie, Diabétologie, et Maladies Métaboliques, Centre Hospitalier Universitaire (CHU), Institut National de la Santé et de la Recherche Médicale (INSERM) Lipides, Nutrition, Cancer (LNC)-Unité Mixte de Recherche (UMR) 1231, University of Burgundy, 21000 Dijon, France.
| |
Collapse
|
24
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
25
|
Averill M, Rubinow KB, Cain K, Wimberger J, Babenko I, Becker JO, Foster-Schubert KE, Cummings DE, Hoofnagle AN, Vaisar T. Postprandial remodeling of high-density lipoprotein following high saturated fat and high carbohydrate meals. J Clin Lipidol 2020; 14:66-76.e11. [PMID: 31859127 PMCID: PMC7085425 DOI: 10.1016/j.jacl.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Humans spend most of the time in the postprandial state, yet most knowledge about high-density lipoproteins (HDL) derives from the fasted state. HDL protein and lipid cargo mediate HDL's antiatherogenic effects, but whether these HDL constituents change in the postprandial state and are affected by dietary macronutrients remains unknown. OBJECTIVES This study aimed to assess changes in HDL protein and lipid composition after the consumption of a high-carbohydrate or high saturated fat (HSF) meal. METHODS We isolated HDL from plasma collected during a randomized, cross-over study of metabolically healthy subjects. Subjects consumed isocaloric meals consisting predominantly of either carbohydrate or fat. At baseline and at 3 and 6 hours postprandial, we quantified HDL protein and lipid composition by liquid chromatography-mass spectrometry. RESULTS A total of 15 subjects were included (60% female, aged 34 ± 15 years, body mass index: 24.1 ± 2.7 kg/m2). Consumption of the HSF meal led to HDL enrichment in total lipid (P = .006), triglyceride (P = .02), and phospholipid (P = .008) content and a corresponding depletion in protein content. After the HSF meal, 16 of the 25 measured phosphatidylcholine species significantly increased in abundance (P values range from .027 to <.001), along with several sphingolipids including ceramides (P < .004), lactosylceramide (P = .023), and sphingomyelin-14 (P = .013). Enrichment in apolipoprotein A-I (P = .001) was the only significant change in HDL protein composition after the HSF meal. The high-carbohydrate meal conferred only minimal changes in HDL composition. CONCLUSION Meal macronutrient content acutely affects HDL composition in the postprandial state, with the HSF meal resulting in enrichment of HDL phospholipid content with possible consequences for HDL function.
Collapse
Affiliation(s)
- Michelle Averill
- Nutritional Sciences Department, University of Washington, Seattle, WA, USA
| | - Katya B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Kevin Cain
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jake Wimberger
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Ilona Babenko
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jessica O Becker
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - David E Cummings
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
27
|
Sposito AC, de Lima-Junior JC, Moura FA, Barreto J, Bonilha I, Santana M, Virginio VW, Sun L, Carvalho LSF, Soares AA, Nadruz W, Feinstein SB, Nofer JR, Zanotti I, Kontush A, Remaley AT. Reciprocal Multifaceted Interaction Between HDL (High-Density Lipoprotein) and Myocardial Infarction. Arterioscler Thromb Vasc Biol 2019; 39:1550-1564. [DOI: 10.1161/atvbaha.119.312880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite decades of therapeutic advances, myocardial infarction remains a leading cause of death worldwide. Recent studies have identified HDLs (high-density lipoproteins) as a potential candidate for mitigating coronary ischemia/reperfusion injury via a broad spectrum of signaling pathways. HDL ligands, such as S1P (sphingosine-1-phosphate), Apo (apolipoprotein) A-I, clusterin, and miRNA, may influence the opening of the mitochondrial channel, insulin sensitivity, and production of vascular autacoids, such as NO, prostacyclin, and endothelin-1. In parallel, antioxidant activity and sequestration of oxidized molecules provided by HDL can attenuate the oxidative stress that triggers ischemia/reperfusion. Nevertheless, during myocardial infarction, oxidation and the capture of oxidized and proinflammatory molecules generate large phenotypic and functional changes in HDL, potentially limiting its beneficial properties. In this review, new findings from cellular and animal models, as well as from clinical studies, will be discussed to describe the cardioprotective benefits of HDL on myocardial infarction. Furthermore, mechanisms by which HDL modulates cardiac function and potential strategies to mitigate postmyocardial infarction risk damage by HDL will be detailed throughout the review.
Collapse
Affiliation(s)
- Andrei C. Sposito
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - José Carlos de Lima-Junior
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Filipe A. Moura
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
- Department of Medicine, Weill-Cornell Medical College, New York, NY (F.A.M.)
| | - Joaquim Barreto
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Isabella Bonilha
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Michele Santana
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Vitor W. Virginio
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Lufan Sun
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China (L.S.)
| | - Luiz Sergio F. Carvalho
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Alexandre A.S. Soares
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Wilson Nadruz
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Steve B. Feinstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL (S.B.F.)
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Ilaria Zanotti
- Department of Food and Drugs, University of Parma, Italy (I.Z.)
| | - Anatol Kontush
- UMR-ICAN 1166, National Institute for Health and Medical Research (INSERM), Sorbonne University, Paris, France (A.K.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
| |
Collapse
|
28
|
Jakob P, Lüscher TF. Dysfunctional HDL and inflammation: a noxious liaison in adolescents with type 1 diabetes. Eur Heart J 2019; 40:3567-3570. [DOI: 10.1093/eurheartj/ehz502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Philipp Jakob
- Department of Cardiology, University Heart Center, Zürich, Switzerland
- Charité Universitätsmedizin Berlin, Berlin Institute of Health (BIH), Berlin and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| |
Collapse
|
29
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
30
|
Abstract
High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK.
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
31
|
Ceramide Metabolism Balance, a Multifaceted Factor in Critical Steps of Breast Cancer Development. Int J Mol Sci 2018; 19:ijms19092527. [PMID: 30149660 PMCID: PMC6163247 DOI: 10.3390/ijms19092527] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/12/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Ceramides are key lipids in energetic-metabolic pathways and signaling cascades, modulating critical physiological functions in cells. While synthesis of ceramides is performed in endoplasmic reticulum (ER), which is altered under overnutrition conditions, proteins associated with ceramide metabolism are located on membrane arrangement of mitochondria and ER (MAMs). However, ceramide accumulation in meta-inflammation, condition that associates obesity with a chronic low-grade inflammatory state, favors the deregulation of pathways such as insulin signaling, and induces structural rearrangements on mitochondrial membrane, modifying its permeability and altering the flux of ions and other molecules. Considering the wide biological processes in which sphingolipids are implicated, they have been associated with diseases that present abnormalities in their energetic metabolism, such as breast cancer. In this sense, sphingolipids could modulate various cell features, such as growth, proliferation, survival, senescence, and apoptosis in cancer progression; moreover, ceramide metabolism is associated to chemotherapy resistance, and regulation of metastasis. Cell–cell communication mediated by exosomes and lipoproteins has become relevant in the transport of several sphingolipids. Therefore, in this work we performed a comprehensive analysis of the state of the art about the multifaceted roles of ceramides, specifically the deregulation of ceramide metabolism pathways, being a key factor that could modulate neoplastic processes development. Under specific conditions, sphingolipids perform important functions in several cellular processes, and depending on the preponderant species and cellular and/or tissue status can inhibit or promote the development of metabolic and potentially breast cancer disease.
Collapse
|
32
|
Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications. Int J Mol Sci 2018; 19:E1680. [PMID: 29874886 PMCID: PMC6032203 DOI: 10.3390/ijms19061680] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Almost 600 million people are predicted to have diabetes mellitus (DM) by 2035. Diabetic patients suffer from increased rates of microvascular and macrovascular complications, associated with dyslipidaemia, impaired angiogenic responses to ischaemia, accelerated atherosclerosis, and inflammation. Despite recent treatment advances, many diabetic patients remain refractory to current approaches, highlighting the need for alternative agents. There is emerging evidence that high-density lipoproteins (HDL) are able to rescue diabetes-related vascular complications through diverse mechanisms. Such protective functions of HDL, however, can be rendered dysfunctional within the pathological milieu of DM, triggering the development of vascular complications. HDL-modifying therapies remain controversial as many have had limited benefits on cardiovascular risk, although more recent trials are showing promise. This review will discuss the latest data from epidemiological, clinical, and pre-clinical studies demonstrating various roles for HDL in diabetes and its vascular complications that have the potential to facilitate its successful translation.
Collapse
Affiliation(s)
- Nathan K P Wong
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Joanne T M Tan
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
33
|
Khan AA, Mundra PA, Straznicky NE, Nestel PJ, Wong G, Tan R, Huynh K, Ng TW, Mellett NA, Weir JM, Barlow CK, Alshehry ZH, Lambert GW, Kingwell BA, Meikle PJ. Weight Loss and Exercise Alter the High-Density Lipoprotein Lipidome and Improve High-Density Lipoprotein Functionality in Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2018; 38:438-447. [DOI: 10.1161/atvbaha.117.310212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Anmar A. Khan
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Piyushkumar A. Mundra
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Nora E. Straznicky
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Paul J. Nestel
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Gerard Wong
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Ricardo Tan
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Kevin Huynh
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Theodore W. Ng
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Natalie A. Mellett
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Jacquelyn M. Weir
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Christopher K. Barlow
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Zahir H. Alshehry
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Gavin W. Lambert
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Bronwyn A. Kingwell
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| | - Peter J. Meikle
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.A.K., P.A.M., N.E.S., P.J.N., G.W., R.T., K.H., T.W.N., N.A.M., J.M.W., C.K.B., Z.H.A., G.W.L., B.A.K., P.J.M.); Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia (A.A.K., B.A.K., P.J.M.); Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (A.A.K.); King Fahad Medical City, Riyadh, Saudi Arabia (Z.H.A.); and School of Biomedical Sciences,
| |
Collapse
|
34
|
Ganjali S, Dallinga-Thie GM, Simental-Mendía LE, Banach M, Pirro M, Sahebkar A. HDL functionality in type 1 diabetes. Atherosclerosis 2017; 267:99-109. [PMID: 29102899 DOI: 10.1016/j.atherosclerosis.2017.10.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/08/2017] [Accepted: 10/18/2017] [Indexed: 11/15/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by absence of insulin secretion due to destruction of the pancreatic beta-cells. Patients with T1D exhibit an increased risk for cardiovascular disease (CVD) compared with non-diabetic subjects. It has been established that low concentration of high-density lipoprotein cholesterol (HDL-C), an independent risk marker of CVD, coincides with a reduced protective capacity against oxidative stress. However, conflicting results have been reported on the prevalence of low HDL-C levels in T1D. Interestingly, changes in composition and function of HDL particles (abnormal ratio of cholesteryl ester-to-triglyceride, reduction in the phospholipid content, reduced capacity to promote cholesterol efflux from macrophages, impaired anti-inflammatory and anti-oxidant activities) have been described in patients with T1D. Hence, exploring HDL function, even in the presence of normal HDL-C levels, might provide additional insight into the underlying pathophysiology associated with increased CV risk in T1D. In the current review, we will provide a detailed overview of the current evidence for a role of HDL function as independent risk factor for the development of CVD in T1D.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
35
|
Hancock-Cerutti W, Lhomme M, Dauteuille C, Lecocq S, Chapman MJ, Rader DJ, Kontush A, Cuchel M. Paradoxical coronary artery disease in humans with hyperalphalipoproteinemia is associated with distinct differences in the high-density lipoprotein phosphosphingolipidome. J Clin Lipidol 2017; 11:1192-1200.e3. [PMID: 28826666 PMCID: PMC10455038 DOI: 10.1016/j.jacl.2017.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/16/2017] [Accepted: 06/25/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Plasma high-density lipoprotein cholesterol (HDL-C) levels are inversely associated with risk of coronary artery disease (CAD) in epidemiologic studies. Despite this, the directionality of this relationship and the underlying biology behind it remain to be firmly established, especially at the extremes of HDL-C levels. OBJECTIVE We investigated differences in the HDL phosphosphingolipidome in a rare population of subjects with premature CAD despite high HDL-C levels to gain insight into the association between the HDL lipidome and CAD disease status in this unusual phenotype. We sought to assess differences in HDL composition that are associated with CAD in subjects with HDL-C >90th percentile. We predicted that quantitative lipidomic analysis of HDL particles would reveal novel differences between CAD patients and healthy subjects with matched HDL-C levels. METHODS We collected plasma samples from 25 subjects with HDL-C >90th percentile and clinically manifest CAD and healthy controls with HDL-C >90th percentile and without self-reported CAD. More than 140 individual HDL phospholipid and sphingolipid species were analyzed by LC/MS/MS. RESULTS Significant reductions in HDL phosphatidylcholine (-2.41%, Q value = 0.025) and phosphatidylinositol (-10.7%, Q value = 0.047) content, as well as elevated sphingomyelin (+10.0%, Q value = 0.025) content, and sphingomyelin/phosphatidylcholine ratio (+12.8%, P value = .005) were associated with CAD status in subjects with high HDL-C. CONCLUSIONS These differences may lay the groundwork for further analysis of the relationship between the HDL lipidome and disease states, as well as for the development of biomarkers of CAD status and HDL function.
Collapse
Affiliation(s)
- William Hancock-Cerutti
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Carolane Dauteuille
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - Sora Lecocq
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - M John Chapman
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anatol Kontush
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France.
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Frej C, Mendez AJ, Ruiz M, Castillo M, Hughes TA, Dahlbäck B, Goldberg RB. A Shift in ApoM/S1P Between HDL-Particles in Women With Type 1 Diabetes Mellitus Is Associated With Impaired Anti-Inflammatory Effects of the ApoM/S1P Complex. Arterioscler Thromb Vasc Biol 2017; 37:1194-1205. [DOI: 10.1161/atvbaha.117.309275] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Abstract
Objective—
Type 1 diabetes mellitus (T1D) patients have an increased risk of cardiovascular disease despite high levels of high-density lipoproteins (HDL). Apolipoprotein M (apoM) and its ligand sphingosine 1-phospate (S1P) exert many of the anti-inflammatory effects of HDL. We investigated whether apoM and S1P are altered in T1D and whether apoM and S1P are important for HDL functionality in T1D.
Approach and Results—
ApoM and S1P were quantified in plasma from 42 healthy controls and 89 T1D patients. HDL was isolated from plasma and separated into dense, medium-dense, and light HDL by ultracentrifugation. Primary human aortic endothelial cells were challenged with tumor necrosis factor-α in the presence or absence of isolated HDL. Proinflammatory adhesion molecules E-selectin and vascular cellular adhesion molecule-1 were quantified by flow cytometry. Activation of the S1P
1
- receptor was evaluated by analyzing downstream signaling targets and receptor internalization. There were no differences in plasma levels of apoM and S1P between controls and T1D patients, but the apoM/S1P complexes were shifted from dense to light HDL particles in T1D. ApoM/S1P in light HDL particles from women were less efficient in inhibiting expression of vascular cellular adhesion molecule-1 than apoM/S1P in denser particles. The light HDL particles were unable to activate Akt, whereas all HDL subfractions were equally efficient in activating Erk and receptor internalization.
Conclusions—
ApoM/S1P in light HDL particles were inefficient in inhibiting tumor necrosis factor-α–induced vascular cellular adhesion molecule-1 expression in contrast to apoM/S1P in denser HDL particles. T1D patients have a higher proportion of light particles and hence more dysfunctional HDL, which could contribute to the increased cardiovascular disease risk associated with T1D.
Collapse
Affiliation(s)
- Cecilia Frej
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| | - Armando J. Mendez
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| | - Mario Ruiz
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| | - Melanie Castillo
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| | - Thomas A. Hughes
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| | - Björn Dahlbäck
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| | - Ronald B. Goldberg
- From the Division of Clinical Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden (C.F., M.R., B.D.); Health Science Center, Department of Medicine, University of Tennessee, Memphis (T.A.H.); and Division of Endocrinology, Metabolism and Diabetes and Diabetes Research Institute, University of Miami Miller School of Medicine, FL (A.J.M., M.C., R.B.G.)
| |
Collapse
|
37
|
Frias MA, Thomas A, Brulhart-Meynet MC, Kövamees O, Pernow J, Eriksson M, Angelin B, James RW, Brinck JW. High-density lipoprotein-associated sphingosine-1-phosphate activity in heterozygous familial hypercholesterolaemia. Eur J Clin Invest 2017; 47:38-43. [PMID: 27861771 DOI: 10.1111/eci.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/06/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Patients with heterozygous familial hypercholesterolaemia (FH) suffer from high plasma cholesterol and an environment of increased oxidative stress. We examined its potential effects on high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) content (HDL-S1P) and HDL-mediated protection against oxidative stress, both with and without statin treatment. MATERIALS AND METHODS In a case-control study, HDL was isolated from 12 FH patients with and without statin treatment and from 12 healthy controls. The HDL-S1P content and the capacity of HDL to protect cardiomyocytes against oxidative stress in vitro were measured. RESULTS HDL-associated S1P was significantly correlated with cell protection, but not with HDL-cholesterol or apolipoprotein AI. The latter did not correlate with HDL-mediated cell protection. Neither the HDL-S1P content nor HDL protective capacity differed between nontreated FH patients and controls. The relative amounts of apolipoprotein AI and apolipoprotein M were similar between controls and FH patients. Statin treatment had no effect on any of these measures. CONCLUSIONS The FH environment is not detrimental to HDL-S1P content or HDL-S1P-mediated cell protection. Statin treatment does not modulate HDL function in this regard.
Collapse
Affiliation(s)
- Miguel A Frias
- Department of internal medicine specialities, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | | | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Mats Eriksson
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Richard W James
- Department of internal medicine specialities, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Jonas W Brinck
- Department of internal medicine specialities, Medical Faculty, Geneva University, Geneva, Switzerland.,Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Specific enrichment of 2-arachidonoyl-lysophosphatidylcholine in carotid atheroma plaque from type 2 diabetic patients. Atherosclerosis 2016; 251:339-347. [DOI: 10.1016/j.atherosclerosis.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
|
39
|
Tsuchida J, Nagahashi M, Nakajima M, Moro K, Tatsuda K, Ramanathan R, Takabe K, Wakai T. Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis. J Surg Res 2016; 205:85-94. [PMID: 27621003 DOI: 10.1016/j.jss.2016.06.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, has been implicated as a key regulatory molecule in cancer through its ability to promote cell proliferation, migration, angiogenesis, and lymphangiogenesis. Previous studies suggested that S1P produced by sphingosine kinase 1 (SphK1) in breast cancer plays important roles in progression of disease and metastasis. However, the associations between S1P and clinical parameters in human breast cancer have not been well investigated to date. MATERIALS AND METHODS We determined levels of S1P and other sphingolipids in breast cancer tissue by electrospray ionization-tandem mass spectrometry. Associations between S1P levels and clinicopathologic features of the tumors were analyzed. Expression of phospho-SphK1 (pSphK1) in breast cancer tissues was determined by immunohistochemical scoring. RESULTS Levels of S1P in breast cancer tissues were significantly higher in patients with high white blood cell count in the blood than those patients without. S1P levels were lower in patients with human epidermal growth factor receptor 2 overexpression and/or amplification than those patients without. Furthermore, cancer tissues with high pSphK1 expression showed significantly higher levels of S1P than cancer tissues without. Finally, patients with lymph node metastasis showed significantly higher levels of S1P in tumor tissues than the patients with negative nodes. CONCLUSIONS To our knowledge, this is the first study to demonstrate that high expression of pSphK1 is associated with higher levels of S1P, which in turn is associated with lymphatic metastasis in breast cancer.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kumiko Tatsuda
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia; Breast Surgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|
40
|
Awasthi D, Nagarkoti S, Kumar A, Dubey M, Singh AK, Pathak P, Chandra T, Barthwal MK, Dikshit M. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med 2016; 93:190-203. [PMID: 26774674 DOI: 10.1016/j.freeradbiomed.2016.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) formation was initially linked with host defence and extracellular killing of pathogens. However, recent studies have highlighted their inflammatory potential. Oxidized low density lipoprotein (oxLDL) has been implicated as an independent risk factor in various acute or chronic inflammatory diseases including systemic inflammatory response syndrome (SIRS). In the present study we investigated effect of oxLDL on NETs formation and elucidated the underlying signalling mechanism. Treatment of oxLDL to adhered PMNs led to a time and concentration dependent ROS generation and NETs formation. OxLDL induced free radical formation and NETs release were significantly prevented in presence of NADPH oxidase (NOX) inhibitors suggesting role of NOX activation in oxLDL induced NETs release. Blocking of both toll like receptor (TLR)-2 and 6 significantly reduced oxLDL induced NETs formation indicating requirement of both the receptors. We further identified Protein kinase C (PKC), Interleukin-1 receptor associated kinase (IRAKs), mitogen-activated protein kinase (MAPK) pathway as downstream intracellular signalling mediators involved in oxLDL induced NETs formation. OxLDL components such as oxidized phospholipids (lysophosphatidylcholine (LPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC)) were most potent NETs inducers and might be crucial for oxLDL mediating NETs release. Other components like, oxysterols, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were however less potent as compared to oxidized phospholipids. This study thus demonstrates for the first time that treatment of human PMNs with oxLDL or its various oxidized phopholipid component mediated NETs release, implying their role in the pathogenesis of inflammatory diseases such as SIRS.
Collapse
Affiliation(s)
- Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
41
|
Brinck JW, Thomas A, Lauer E, Jornayvaz FR, Brulhart-Meynet MC, Prost JC, Pataky Z, Löfgren P, Hoffstedt J, Eriksson M, Pramfalk C, Morel S, Kwak BR, van Eck M, James RW, Frias MA. Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. Arterioscler Thromb Vasc Biol 2016; 36:817-24. [PMID: 26966278 DOI: 10.1161/atvbaha.115.307049] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. APPROACH AND RESULTS We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. CONCLUSIONS Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature.
Collapse
Affiliation(s)
- Jonas W Brinck
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.).
| | - Aurélien Thomas
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Estelle Lauer
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - François R Jornayvaz
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Marie-Claude Brulhart-Meynet
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Jean-Christophe Prost
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Zoltan Pataky
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Patrik Löfgren
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Johan Hoffstedt
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Mats Eriksson
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Camilla Pramfalk
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Sandrine Morel
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Brenda R Kwak
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Miranda van Eck
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Richard W James
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Miguel A Frias
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| |
Collapse
|
42
|
Papageorgiou N, Zacharia E, Androulakis E, Briasoulis A, Charakida M, Tousoulis D. HDL as a prognostic biomarker for coronary atherosclerosis: the role of inflammation. Expert Opin Ther Targets 2016; 20:907-21. [PMID: 26854521 DOI: 10.1517/14728222.2016.1152264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Emerging evidence suggests that the role of high density lipoprotein (HDL) in the atherosclerotic process is not as clear as previously thought, since atheroprotective HDL becomes atherogenic in states of increased inflammatory processes. AREAS COVERED In this review we aim to elucidate the role of HDL as a prognostic biomarker and we discuss therapeutic approaches that aim to increase HDL and their possible clinical benefit. EXPERT OPINION Given the structural variability and biological complexity of the HDL particle, its role in the atherosclerotic process is far from clear. According to current evidence, the atheroprotective role of HDL turns atherogenic in states of increased inflammatory processes, while even minor alterations in systemic inflammation are likely to hinder the endothelial protective effects of HDL. In accordance, significant data have revealed that HDL-related drugs may be effective in reducing cardiovascular mortality; however they are not as encouraging or unanimous as expected. Possible future goals could be to quantify either HDL subclasses or functions in an attempt to reach safer conclusions as to the prognostic importance of HDL in coronary atherosclerosis. Having achieved that, a more targeted therapy that would aim to raise either HDL functionality or to remodel HDL structure would be more easily designed.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- b 1st Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| | | | - Alexandros Briasoulis
- d Division of Cardiology , Wayne State University/Detroit Medical Center , Detroit , MI , USA
| | - Marietta Charakida
- e Vascular Physiology Unit, Institute of Cardiovascular Science , University College London , London , UK
| | - Dimitris Tousoulis
- b 1st Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| |
Collapse
|
43
|
Denimal D, Nguyen A, Pais de Barros JP, Bouillet B, Petit JM, Vergès B, Duvillard L. Major changes in the sphingophospholipidome of HDL in non-diabetic patients with metabolic syndrome. Atherosclerosis 2016; 246:106-14. [DOI: 10.1016/j.atherosclerosis.2015.12.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 01/07/2023]
|
44
|
Affiliation(s)
- Sabine Rütti
- Department of Physiology, Lausanne University, Lausanne, Switzerland
| | | |
Collapse
|