1
|
Vaisar T, Babenko I, Horvath KV, Niisuke K, Asztalos BF. Relationships between HDL subpopulation proteome and HDL function in overweight/obese people with and without coronary heart disease. Atherosclerosis 2024; 397:118565. [PMID: 39260003 DOI: 10.1016/j.atherosclerosis.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD). METHODS We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects. We measured the relative molar concentration of HDL-associated proteins by liquid chromatography tandem mass spectrometry (LC-MS/MS) and assessed particle functionality. RESULTS We quantified 110 proteins associated with the 5 APOA1-containing HDL subpopulations. The relative molar concentration of these proteins spanned five orders of magnitude. Only 10 proteins were present in >1% while 73 were present in <0.1% concentration. Only 6 of the 10 most abundant proteins were apolipoproteins. Interestingly, the largest (α-1) and the smallest (preβ-1) HDL particles contained the most diverse proteomes. The protein composition of each HDL subpopulation was altered in CHD cases as compared to controls with the most prominent differences in preβ-1 and α-1 particles. APOA2 concentration was positively correlated with preβ-1 particle functionality (ABCA1-CEC/mg APOA1 in preβ-1) (R2 = 0.42, p = 0.005), while APOE concentration was inversely correlated with large-HDL particle functionality (SRBI-CEC/mg APOA1 in α-1+α-2) (R2 = 0.18, p = 0.01). CONCLUSIONS The protein composition of the different HDL subpopulations was altered differentially in CHD patients. The functionality of the small and large HDL particles correlated with the protein content of APOA2 and APOE, respectively. Our data indicate that distinct particle subspecies and specific particle associated proteins provide new information about the role of HDL in CHD.
Collapse
Affiliation(s)
- Tomas Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Ilona Babenko
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katalin V Horvath
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Katrin Niisuke
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Bela F Asztalos
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
3
|
Mueller PA, Bergstrom P, Rosario S, Heard M, Pamir N. Fish Oil Supplementation Modifies the Proteome, Lipidome, and Function of High-Density Lipoprotein: Findings from a Trial in Young Healthy Adults. J Nutr 2024; 154:1130-1140. [PMID: 38237669 PMCID: PMC11007744 DOI: 10.1016/j.tjnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Fish oil with the ω-3 fatty acids EPA and DHA is an FDA-approved treatment of patients with severe hypertriglyceridemia. Furthermore, EPA is an FDA-approved treatment of patients with high risk of cardiovascular disease (CVD); however, the cardioprotective mechanisms are unclear. OBJECTIVES We aimed to determine if fish oil supplementation is cardioprotective due to beneficial modifications in HDL particles. METHODS Seven fish oil naïve subjects without a history of CVD were recruited to take a regimen of fish oil (1125 mg EPA and 875 mg DHA daily) for 30 d, followed by a 30-d washout period wherein no fish oil supplements were taken. HDL isolated from fasting whole blood at each time point via 2-step ultracentrifugation (ucHDL) was assessed for proteome, lipidome, cholesterol efflux capacity (CEC), and anti-inflammatory capacity. RESULTS Following fish oil supplementation, the HDL-associated proteins immunoglobulin heavy constant γ1, immunoglobulin heavy constant α1, apolipoprotein D, and phospholipid transfer protein decreased compared to baseline (P < 0.05). The HDL-associated phospholipid families sphingomyelins, phosphatidylcholines, and phosphatidylserines increased after fish oil supplementation relative to baseline (P < 0.05). Compared to baseline, fish oil supplementation increased serum HDL's CEC (P = 0.002). Fish oil-induced changes (Post compared with Baseline) in serum HDL's CEC positively correlated with plasma EPA levels (R2 = 0.7256; P = 0.015). Similarly, fish oil-induced changes in ucHDL's CEC positively correlated with ucHDL's ability to reduce interleukin 10 (R2 = 0.7353; P = 0.014) and interleukin 6 mRNA expression (R2 = 0.6322; P =0.033) in a human macrophage cell line. CONCLUSIONS Overall, fish oil supplementation improved HDL's sterol efflux capacity through comprehensive modifications to its proteome and lipidome.
Collapse
Affiliation(s)
- Paul A Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Paige Bergstrom
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sara Rosario
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Melissa Heard
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Capisizu AS, Stanciu SM, Cuzino D. A Pilot Study on the Association between Cardiovascular Risk Factors and Coronary Artery Calcification in a Group of Patients Investigated via Cardiac Computed Tomography in a European Country with High Cardiovascular Risk. Biomedicines 2023; 11:2926. [PMID: 38001927 PMCID: PMC10669034 DOI: 10.3390/biomedicines11112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Cardiovascular disease is the leading cause of mortality worldwide; the prevention and early detection of coronary artery disease are of critical importance; and the coronary artery calcium score is a powerful method in the assessment of coronary artery disease. Among European countries, Romania ranks as a country with a very high risk of cardiovascular diseases, but the data are limited in regard to the prevalence of the calcium score. (2) Methods: A retrospective study was conducted to establish the coronary calcium score in a group of patients investigated via cardiac CT and to determine the correlation with the presence of cardiovascular risk factors. (3) Results: According to the Agatston calcium score, 50% of the patients had a positive calcium score. High calcium scores above 400 UA were present in 12.6% of patients. Regarding the association between the presence of cardiovascular risk factors and the levels of coronary artery calcification, a mild level of calcification was associated with age over 50 years (X2 = 3.88, p = 0.04, OR = 3.25; 95% CI 0.94-11.14); a moderate level of calcification with the age of patients over 50 years (X2 = 6.54, p = 0.01, OR = 5.58; 95% CI 1.29-24.16), dyslipidemia (X2 = 7.28, p = 0.007, OR = 3.37; 95% CI 1.34-8.51), and arterial hypertension (X2 = 5.37, p = 0.02, OR = 2.88; 95% CI 1.14-7.27); a severe level of calcification with hypertension (X2 = 4.61, p = 0.03, OR = 7.03; 95% CI 0.90-54.81); and a very severe level of calcification with hypertension (X2 = 4.61, p = 0.03, OR = 7.03; 95% CI 0.90-54.81), smoking (X2 = 8.07, p = 0.004, OR = 4.44; 95% CI 1.47-13.44), and diabetes (X2 = 13.65, p = 0.001, OR = 6.59; 95% CI 2.5-20.18). (4) Conclusion: Half of the patients investigated by using cardiac CT had a calcium score of zero. Predictors for coronary calcium scores in relation to risk factors varied. For the very severe coronary calcification level, the strongest predictor was the presence of smoking and diabetes, which increased the odds for very severe calcification by 13.46 times. Patients who had multiple cardiovascular risk factors, hypertension, diabetes, and smoking were 9.18 times more likely to have very severe calcification.
Collapse
Affiliation(s)
- Adriana Sorina Capisizu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bvd., 050474 Bucharest, Romania
| | - Silviu Marcel Stanciu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bvd., 050474 Bucharest, Romania
- Center for Cardiovascular Diseases, Laboratory of Noninvasive Cardiovascular Functional Explorations, Central Military Emergency University Hospital “Dr. Carol Davila”, 134 Calea Plevnei Str., 010825 Bucharest, Romania
| | - Dragos Cuzino
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bvd., 050474 Bucharest, Romania
- Clinical Radiology-Medical Imaging Center, Central Military Emergency University Hospital “Dr. Carol Davila”, 134 Calea Plevnei Str., 010825 Bucharest, Romania
| |
Collapse
|
5
|
Gangwar A, Deodhar SS, Saldanha S, Melander O, Abbasi F, Pearce RW, Collier TS, McPhaul MJ, Furtado JD, Sacks FM, Merrill NJ, McDermott JE, Melchior JT, Rohatgi A. Proteomic Determinants of Variation in Cholesterol Efflux: Observations from the Dallas Heart Study. Int J Mol Sci 2023; 24:15526. [PMID: 37958510 PMCID: PMC10648649 DOI: 10.3390/ijms242115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and -0.21 respectively) and low (r = -0.46, -0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = -0.11 to -0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.
Collapse
Affiliation(s)
- Anamika Gangwar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Sneha S. Deodhar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Suzanne Saldanha
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 221 00 Malmö, Sweden;
| | - Fahim Abbasi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Ryan W. Pearce
- Quest Diagnostics Cardiometabolic Center of Excellence, Cleveland HeartLab, Cleveland, OH 44103, USA; (R.W.P.); (T.S.C.)
| | - Timothy S. Collier
- Quest Diagnostics Cardiometabolic Center of Excellence, Cleveland HeartLab, Cleveland, OH 44103, USA; (R.W.P.); (T.S.C.)
| | - Michael J. McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, USA;
| | - Jeremy D. Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.D.F.); (F.M.S.)
- Biogen Inc., Cambridge, MA 02115, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.D.F.); (F.M.S.)
| | - Nathaniel J. Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| |
Collapse
|
6
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
7
|
Truong CD, Ton TT. The relation between coronary artery disease and newly diagnosed dysglycemia. Perfusion 2023; 38:1428-1435. [PMID: 35817752 DOI: 10.1177/02676591221113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is a known association between hyperglycemia and the presence of coronary syndrome. The purpose of this work is to study risk factors and clinical manifestations of hyperglycemia in patients diagnosed with coronary artery disease. METHODS The study was conducted in 2018-2020 among 505 patients in Ho Chi Minh city, Vietnam. Based on the results of the glucose test at 0 and 120 min, the patients were divided into the groups: with normal glucose metabolism (control, 204), patients with impaired fasting glucose levels (175 patients, group 2), and patients with impaired glucose tolerance, including diabetes mellitus (126, group 3). Anthropometric measurements were performed, and the levels of hemoglobin HbA, glucose, lipids were measured. RESULTS In the group of patients with fasting hyperinsulinemia, all variables (body weight, body mass index, waist circumference, LAP, creatinine clearance) differed considerably as compared to the control group (p ≤ 0.0001). Decrease in tissue sensitivity to insulin is already present at normal levels of glucose metabolism. CONCLUSIONS The study found that diabetes mellitus and prediabetes are more typical for patients with metabolic syndrome and acute coronary syndrome. The results obtained will allow predicting the risk of developing coronary syndrome depending on the presence of diabetes mellitus or prediabetes.
Collapse
Affiliation(s)
- Cam Dinh Truong
- Cardiovascular Department, Military Hospital 175, Ho Chi Minh, Vietnam
| | - Tung Thanh Ton
- Emergency Department, Military Hospital 175, Ho Chi Minh, Vietnam
| |
Collapse
|
8
|
Huang C, Zhang J, Huang J, Li H, Wen K, Bao J, Wu X, Sun R, Abudukeremu A, Wang Y, He Z, Chen Q, Huang X, Wang H, Zhang Y. Proteomic and functional analysis of HDL subclasses in humans and rats: a proof-of-concept study. Lipids Health Dis 2023; 22:86. [PMID: 37386457 DOI: 10.1186/s12944-023-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/07/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The previous study investigated whether the functions of small, medium, and large high density lipoprotein (S/M/L-HDL) are correlated with protein changes in mice. Herein, the proteomic and functional analyses of high density lipoprotein (HDL) subclasses were performed in humans and rats. METHODS After purifying S/M/L-HDL subclasses from healthy humans (n = 6) and rats (n = 3) using fast protein liquid chromatography (FPLC) with calcium silica hydrate (CSH) resin, the proteomic analysis by mass spectrometry was conducted, as well as the capacities of cholesterol efflux and antioxidation was measured. RESULTS Of the 120 and 106 HDL proteins identified, 85 and 68 proteins were significantly changed in concentration among the S/M/L-HDL subclasses in humans and rats, respectively. Interestingly, it was found that the relatively abundant proteins in the small HDL (S-HDL) and large HDL (L-HDL) subclasses did not overlap, both in humans and in rats. Next, by searching for the biological functions of the relatively abundant proteins in the HDL subclasses via Gene Ontology, it was displayed that the relatively abundant proteins involved in lipid metabolism and antioxidation were enriched more in the medium HDL (M-HDL) subclass than in the S/L-HDL subclasses in humans, whereas in rats, the relatively abundant proteins associated with lipid metabolism and anti-oxidation were enriched in M/L-HDL and S/M-HDL, respectively. Finally, it was confirmed that M-HDL and L-HDL had the highest cholesterol efflux capacity among the three HDL subclasses in humans and rats, respectively; moreover, M-HDL exhibited higher antioxidative capacity than S-HDL in both humans and rats. CONCLUSIONS The S-HDL and L-HDL subclasses are likely to have different proteomic components during HDL maturation, and results from the proteomics-based comparison of the HDL subclasses may explain the associated differences in function.
Collapse
Affiliation(s)
- Canxia Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingjing Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongwei Li
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kexin Wen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinlan Bao
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Comprehensive Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoying Wu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Runlu Sun
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ayiguli Abudukeremu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Wang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhijian He
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiaofei Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyi Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong Wang
- Centers for Metabolic & Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Yuling Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China.
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Ahmed N, Kassis A, Malone J, Yang J, Zamzami E, Lin AH, Gordon SM, Gong M, Bardo M, Dalmasso C, Loria AS. Prenatal Morphine Exposure Increases Cardiovascular Disease Risk and Programs Neurogenic Hypertension in the Adult Offspring. Hypertension 2023; 80:1283-1296. [PMID: 37042247 PMCID: PMC10274123 DOI: 10.1161/hypertensionaha.122.20262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND The opioid overdose and opioid use disorder epidemics are concomitant with increased metabolic and CVD risk. Although opioid use disorder causes adverse pregnancy outcomes, the offspring's cardiovascular health is understudied. We hypothesized that offspring exposed to in utero morphine exposure (IUME) would show increased CVD risk factors and endogenous opioid system dysregulation. METHODS Sprague Dawley dams were treated with saline (vehicle, n=10) or escalating doses of morphine (5-20 mg/kg per day, SC, n=10) during gestation. Cardiovascular and metabolic parameters were assessed in adult offspring. RESULTS Litter size and pups' birth weight were not different in response to IUME. Female and male IUME offspring showed reduced body length at birth (P<0.05) and body weight from weeks 1 to 3 of life (P<0.05), followed by a catch-up growth effect. By week 16, female and male IUME rats showed reduced tibia length (P<0.05) and fat mass. IUME increases the mean arterial pressure and the depressor response to mecamylamine (5 mg/kg per day, IP) induced by IUME were abolished by a chronic treatment with an alpha-adrenergic receptor blocker (prazosin; 1 mg/kg per day, IP). Although circulating levels of angiotensin peptides were similar between groups, IUME exacerbated maximal ex vivo Ang (angiotensin) II-induced vasoconstriction (P<0.05) and induced endothelial dysfunction in a sex-specific manner (P<0.05). Proenkephalin, an endogenous opioid peptide that lowers blood pressure and sympathetic-mediated vasoconstriction, showed reduced mRNA expression in the heart, aorta, and kidneys from morphine versus vehicle group (P<0.05). CONCLUSIONS Among the effects of IUME, neurogenic hypertension, vascular dysfunction, and metabolic dysfunction could be associated with the dysregulation of the endogenous opioid system.
Collapse
Affiliation(s)
- Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Alana Kassis
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Jena Malone
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Jodie Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Esraa Zamzami
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - An-Hsuan Lin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Scott M. Gordon
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Ming Gong
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Michael Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
10
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
11
|
Huang W, Wang L, Wan X. Monocyte to high density lipoprotein ratio in patients with acute kidney injury after cardiac surgery. Perfusion 2023; 38:172-177. [PMID: 34524052 DOI: 10.1177/02676591211041945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The Monocyte to high density lipoprotein ratio (MHR) has been postulated as a novel parameter associated with adverse renal and cardiovascular outcomes. In this study we investigated the association of MHR with cardiac surgery-associated acute kidney injury (CSA-AKI). METHODS In this retrospective study, we analyzed the data pertaining to 1505 patients undergoing cardiopulmonary bypass (CPB) surgery. The CSA-AKI, which was defined using Kidney Disease Improving Global Outcomes criteria. Concurrently, a retrospective scan of patient files was conducted and information relevant to nephropathy such as the level of their serum creatinine (SCr), Blood urea nitrogen (BUN), uric acid (UA), serum cystatin C (Cys-C), total cholesterol (TC), triglycerides (TG), glucose and MHR, ejection fraction, CPB duration time, and other indicators. RESULTS About 1505 patients were studied of whom 195 developed AKI. MHR was significantly higher in the AKI patients (p = 0.001). In multivariate logistic regression analysis, MHR, UA, Cys-C, age, glucose, and history of chronic kidney disease or hypertension were independently correlated with CSA-AKI. CONCLUSIONS As a laboratory index, the elevated MHR is convenient, independent, and a useful predictor for CSA-AKI.
Collapse
Affiliation(s)
- Wenjuan Huang
- Division of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Lei Wang
- Division of Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xin Wan
- Division of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
12
|
Magnoni M, Andreini D, Pirillo A, Uboldi P, Latini R, Catapano AL, Maggioni AP, Norata GD. Predictive value of HDL function in patients with coronary artery disease: relationship with coronary plaque characteristics and clinical events. Ann Med 2022; 54:1036-1046. [PMID: 35438019 PMCID: PMC9090377 DOI: 10.1080/07853890.2022.2063374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND HDL is endowed with several metabolic, vascular, and immunoinflammatory protective functions. Among them, a key property is to promote reverse cholesterol transport from cells back to the liver. The aim of this study was to estimate the association of scavenger receptor class B type I (SR-BI)- and ATP binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux (the two major routes for cholesterol efflux to HDL) with the presence, extent, and severity of coronary artery disease (CAD), vascular wall remodelling processes, coronary plaque characteristics, and the incidence of myocardial infarction in the different subgroups of patients from the CAPIRE study. METHODS Patients (n = 525) from the CAPIRE study were divided into two groups: low-risk factors (RF), with 0-1 RF (n = 263), and multiple-RF, with ≥2 RFs; within each group, subjects were classified as no-CAD or CAD based on the segment involvement score (SIS) evaluated by coronary computed tomography angiography (SIS = 0 and SIS > 5, respectively). SR-BI- and ABCA1-mediated cholesterol efflux were measured using the plasma of all patients. RESULTS SR-BI-mediated cholesterol efflux was significantly reduced in patients with CAD in both the low-RF and multiple-RF groups, whereas ABCA1-mediated cholesterol efflux was similar among all groups. In CAD patients, multivariable analysis showed that SR-BI-mediated cholesterol efflux <25th percentile predicted cardiovascular outcome (odds ratio 4.1; 95% CI: 1.3-13.7; p = .019), whereas ABCA-1-mediated cholesterol efflux and HDL-C levels significantly did not. Despite this finding, reduced SR-BI-mediated cholesterol efflux was not associated with changes in high-risk plaque features or changes in the prevalence of elevated total, non-calcified, and low-attenuation plaque volume. CONCLUSION SR-BI-mediated cholesterol efflux capacity is lower in patients with diffuse coronary atherosclerosis. In addition, a lower SR-BI-mediated cholesterol efflux capacity is associated with the worst clinical outcomes in patients with CAD, independently of atherosclerotic plaque features. Key MessagesIncreased cholesterol efflux capacity, an estimate of HDL function, is associated with a reduced CVD risk, regardless of HDL-C levels.HDL-C levels are significantly lower in patients with CAD.Lower SR-BI-mediated cholesterol efflux capacity is observed in patients with diffuse coronary atherosclerosis and is associated with the worst clinical outcomes in patients with CAD, independently of atherosclerotic plaque features.
Collapse
Affiliation(s)
| | - Daniele Andreini
- IRCCS, Centro Cardiologico Monzino, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Angela Pirillo
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Balsamo, Italy.,IRCSS Multimedica, Milan, Italy
| | - Patrizia Uboldi
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alberico L Catapano
- IRCSS Multimedica, Milan, Italy.,Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Aldo P Maggioni
- Heart Care Foundation ANMCO Research Center, Florence, Italy
| | - Giuseppe D Norata
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Balsamo, Italy.,Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
13
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
14
|
Wang M, Cui B, Gong M, Liu Q, Zhuo X, Lv J, Yang L, Liu X, Wang Z, Dai L. Arctium lappa leaves based on network pharmacology and experimental validation attenuate atherosclerosis by targeting the AMPK-mediated PPARG/LXRα pathway. Biomed Pharmacother 2022; 153:113503. [DOI: 10.1016/j.biopha.2022.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/27/2022] Open
|
15
|
Muralidharan J, Papandreou C, Soria-Florido MT, Sala-Vila A, Blanchart G, Estruch R, Martínez-González MA, Corella D, Ros E, Ruiz-Canela M, Fito M, Salas-Salvadó J, Bulló M. Cross-Sectional Associations between HDL Structure or Function, Cell Membrane Fatty Acid Composition, and Inflammation in Elderly Adults. J Nutr 2022; 152:789-795. [PMID: 34637509 DOI: 10.1093/jn/nxab362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cell membrane fatty acid composition has been related to inflammation and cardiovascular disease (CVD) risk. Dysregulation of HDL function is also considered a CVD risk factor. OBJECTIVES We aimed to investigate whether the content of cell membrane fatty acids and HDL functionality are linked to each other as well as to inflammation. METHODS This cross-sectional analysis involved 259 participants (mean age: 67.9 y) with overweight/obesity (mean BMI: 29.5 kg/m2) from a coronary artery disease case-control study nested within the PREDIMED (PREvención con DIeta MEDiterránea) trial for which HDL functional parameters [apoA-I, apoA-IV, and apoC-III; cholesterol efflux capacity (CEC); HDL oxidative inflammatory index (HOII); sphingosine-1-phosphate (S1P); serum amyloid A (SAA); and complement-3 (C3) protein] were quantified. We also assessed 22 fatty acids in blood cell membranes using GC and inflammatory markers (IFN-γ and IL-1b, IL-6, IL-8, and IL-10) in serum. Associations of HDL-related variables with cell membrane fatty acids and with inflammatory markers were assessed using multivariable linear regression analyses with elastic net penalty. RESULTS ApoA-I, apoC-III, CEC, HOII, S1P, and SAA, but not apoA-IV and C3 protein, were associated with membrane fatty acids. S1P and SAA were directly associated with IL-6, whereas apoA-I and C3 protein showed inverse associations with IL-6. Specific fatty acids including myristic acid (14:0) and long-chain n-6 fatty acids being negatively and positively associated with IL-8, respectively, were also found to be positively associated with SAA. CONCLUSIONS This study suggests interrelations between indicators of inflammation and both blood cell membrane fatty acid composition and HDL structure/functional parameters in a Mediterranean population at high CVD risk.This trial was registered at www.isrctn.com as ISRCTN35739639.
Collapse
Affiliation(s)
- Jananee Muralidharan
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain.,Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Christopher Papandreou
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain.,Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Maria T Soria-Florido
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Gemma Blanchart
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Ramon Estruch
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Department of Internal Medicine, Hospital Clinic, IDIBAPS August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Miguel A Martínez-González
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Emilio Ros
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Miguel Ruiz-Canela
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Montse Fito
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Salas-Salvadó
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain.,Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Mònica Bulló
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain.,Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
16
|
Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159072. [PMID: 34800735 PMCID: PMC8715479 DOI: 10.1016/j.bbalip.2021.159072] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW High density lipoproteins (HDL) are a heterogeneous family of particles that contain distinct complements of proteins that define their function. Thus, it is important to accurately and sensitively identify proteins associated with HDL. Here we highlight the HDL Proteome Watch Database which tracks proteomics studies from different laboratories across the world. RECENT FINDINGS In 45 published reports, almost 1000 individual proteins have been detected in preparations of HDL. Of these, 251 have been identified in at least three different laboratories. The known functions of these consensus HDL proteins go well beyond traditionally recognized roles in lipid transport with many proteins pointing to HDL functions in innate immunity, inflammation, cell adhesion, hemostasis and protease regulation, and even vitamin and metal binding. SUMMARY The HDL proteome derived across multiple studies using various methodologies provides confidence in protein identifications that can offer interesting new insights into HDL function. We also point out significant issues that will require additional study going forward.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, United States of America.
| | - Amy S Shah
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Hannah Sexmith
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
17
|
Thakkar H, Vincent V, Roy A, Gautam AK, Kutum R, Ramakrishnan L, Singh S, Singh A. Determinants of high-density lipoprotein (HDL) functions beyond proteome in Asian Indians: exploring the fatty acid profile of HDL phospholipids. Mol Cell Biochem 2021; 477:559-570. [PMID: 34843015 DOI: 10.1007/s11010-021-04304-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023]
Abstract
Impaired high-density lipoprotein (HDL) functions are associated with development of coronary artery disease. In this study, we explored the quantitative differences in HDL (i.e. HDL proteome and fatty acid profile of HDL phospholipids) underlying the functional deficits associated with acute coronary syndrome (ACS). The relationship between HDL function and composition was assessed in 65 consecutive ACS patients and 40 healthy controls. Cholesterol efflux capacity (CEC) of HDL and lecithin cholesterol acyl transferase (LCAT) activity were significantly lower in patients with ACS compared to controls. In HDL proteome analysis, HDL isolated from ACS individuals was enriched in apolipoprotein C2 (inhibitor of LCAT), apolipoprotein C4 and serum amyloid A proteins and was deficient in apolipoprotein A-I and A-II. The fatty acid profile of HDL phospholipids analyzed using gas chromatography showed significantly lower percentages of stearic acid (17.4 ± 2.4 vs 15.8 ± 2.8, p = 0.004) and omega-3 fatty acids [eicosapentaenoic acid (1.0 (0.6-1.4) vs 0.7 (0.4-1.0), p = 0.009) and docosahexaenoic acid (1.5 ± 0.7 vs 1.3 ± 0.5, p = 0.03)] in ACS patients compared to controls. Lower percentages of these fatty acids in HDL were associated with higher odds of developing ACS. Our results suggest that distinct phospholipid fatty acid profiles found in HDL from ACS patients could be one of the contributing factors to the deranged HDL functions in these patients apart from the protein content and the inflammatory conditions.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rintu Kutum
- Informatics and Big Data Unit, Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Singh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
18
|
Goetze S, Frey K, Rohrer L, Radosavljevic S, Krützfeldt J, Landmesser U, Bueter M, Pedrioli PGA, von Eckardstein A, Wollscheid B. Reproducible Determination of High-Density Lipoprotein Proteotypes. J Proteome Res 2021; 20:4974-4984. [PMID: 34677978 DOI: 10.1021/acs.jproteome.1c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-density lipoprotein (HDL) is a heterogeneous mixture of blood-circulating multimolecular particles containing many different proteins, lipids, and RNAs. Recent advancements in mass spectrometry-based proteotype analysis show promise for the analysis of proteoforms across large patient cohorts. In order to create the required spectral libraries enabling these data-independent acquisition (DIA) strategies, HDL was isolated from the plasma of more than 300 patients with a multiplicity of physiological HDL states. HDL proteome spectral libraries consisting of 296 protein groups and more than 786 peptidoforms were established, and the performance of the DIA strategy was benchmarked for the detection of HDL proteotype differences between healthy individuals and a cohort of patients suffering from diabetes mellitus type 2 and/or coronary heart disease. Bioinformatic interrogation of the data using the generated spectral libraries showed that the DIA approach enabled robust HDL proteotype determination. HDL peptidoform analysis enabled by using spectral libraries allowed for the identification of post-translational modifications, such as in APOA1, which could affect HDL functionality. From a technical point of view, data analysis further shows that protein and peptide quantities are currently more discriminative between different HDL proteotypes than peptidoforms without further enrichment. Together, DIA-based HDL proteotyping enables the robust digitization of HDL proteotypes as a basis for the analysis of larger clinical cohorts.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Kathrin Frey
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland
| | - Silvija Radosavljevic
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich 8091, Switzerland
| | - Ulf Landmesser
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin 12203, Germany
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich 8091, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | | | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
19
|
Banfi C, Baetta R, Barbieri SS, Brioschi M, Guarino A, Ghilardi S, Sandrini L, Eligini S, Polvani G, Bergman O, Eriksson P, Tremoli E. Prenylcysteine oxidase 1, an emerging player in atherosclerosis. Commun Biol 2021; 4:1109. [PMID: 34548610 PMCID: PMC8455616 DOI: 10.1038/s42003-021-02630-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The research into the pathophysiology of atherosclerosis has considerably increased our understanding of the disease complexity, but still many questions remain unanswered, both mechanistically and pharmacologically. Here, we provided evidence that the pro-oxidant enzyme Prenylcysteine Oxidase 1 (PCYOX1), in the human atherosclerotic lesions, is both synthesized locally and transported within the subintimal space by proatherogenic lipoproteins accumulating in the arterial wall during atherogenesis. Further, Pcyox1 deficiency in Apoe-/- mice retards atheroprogression, is associated with decreased features of lesion vulnerability and lower levels of lipid peroxidation, reduces plasma lipid levels and inflammation. PCYOX1 silencing in vitro affects the cellular proteome by influencing multiple functions related to inflammation, oxidative stress, and platelet adhesion. Collectively, these findings identify the pro-oxidant enzyme PCYOX1 as an emerging player in atherogenesis and, therefore, understanding the biology and mechanisms of all functions of this unique enzyme is likely to provide additional therapeutic opportunities in addressing atherosclerosis.
Collapse
Affiliation(s)
- C. Banfi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - R. Baetta
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. S. Barbieri
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - M. Brioschi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - A. Guarino
- grid.418230.c0000 0004 1760 1750Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. Ghilardi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - L. Sandrini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. Eligini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - G. Polvani
- grid.418230.c0000 0004 1760 1750Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, Milano, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milano, Italy ,grid.418230.c0000 0004 1760 1750Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - O. Bergman
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - P. Eriksson
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - E. Tremoli
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| |
Collapse
|
20
|
Cheng ZB, Huang L, Xiao X, Sun JX, Zou ZK, Jiang JF, Lu C, Zhang HY, Zhang C. Irisin in atherosclerosis. Clin Chim Acta 2021; 522:158-166. [PMID: 34425103 DOI: 10.1016/j.cca.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Irisin, a novel exercise-induced myokine, has been shown to play important roles in increasing white adipose tissue browning, regulating energy metabolism and improving insulin resistance. Growing evidence suggests a direct role for irisin in preventing atherosclerosis (AS) by inhibiting oxidative stress, improving dyslipidemia, facilitating anti-inflammation, reducing cellular damage and recovering endothelial function. In addition, some studies have noted that serum irisin levels play an essential role in cardiovascular diseases (CVDs) risk prediction, highlighting that irisin has the potential to be a useful predictive marker and therapeutic target of AS, especially in monitoring therapeutic efficacy. This review summarizes the understanding of irisin-mediated regulation in essential biological pathways and functions in atherosclerosis and prompts further exploitation of the biological properties of irisin in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jia-Xiang Sun
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zi-Kai Zou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jie-Feng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Lu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hai-Ya Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
21
|
Tracz J, Luczak M. Applying Proteomics and Integrative "Omics" Strategies to Decipher the Chronic Kidney Disease-Related Atherosclerosis. Int J Mol Sci 2021; 22:7492. [PMID: 34299112 PMCID: PMC8305100 DOI: 10.3390/ijms22147492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of atherosclerosis and premature mortality, mainly due to cardiovascular events. However, well-known risk factors, which promote "classical" atherosclerosis are alone insufficient to explain the high prevalence of atherosclerosis-related to CKD (CKD-A). The complexity of the molecular mechanisms underlying the acceleration of CKD-A is still to be defied. To obtain a holistic picture of these changes, comprehensive proteomic approaches have been developed including global protein profiling followed by functional bioinformatics analyses of dysregulated pathways. Furthermore, proteomics surveys in combination with other "omics" techniques, i.e., transcriptomics and metabolomics as well as physiological assays provide a solid ground for interpretation of observed phenomena in the context of disease pathology. This review discusses the comprehensive application of various "omics" approaches, with emphasis on proteomics, to tackle the molecular mechanisms underlying CKD-A progression. We summarize here the recent findings derived from global proteomic approaches and underline the potential of utilizing integrative systems biology, to gain a deeper insight into the pathogenesis of CKD-A and other disorders.
Collapse
Affiliation(s)
| | - Magdalena Luczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
22
|
Gourgari E, Nadeau KJ, Pyle L, Playford MP, Ma J, Mehta NN, Remaley AT, Gordon SM. Effect of metformin on the high-density lipoprotein proteome in youth with type 1 diabetes. ENDOCRINOLOGY DIABETES & METABOLISM 2021; 4:e00261. [PMID: 34277985 PMCID: PMC8279605 DOI: 10.1002/edm2.261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Background Youth with type 1 diabetes (T1D) have normal or elevated High‐Density Lipoprotein Cholesterol (HDL‐C), however, the function of HDL, partly mediated by the HDL proteome, may be impaired. Metformin can be used as an adjunct therapy in youth with T1D, but its effects on the HDL proteome are unknown. Objective To determine the effect of metformin on the HDL proteome. Subjects Youth (12–20 years old) with T1D who had a BMI > 90th percentile, HbA1c > 8.0% and Tanner stage 5. Methods Double‐blinded, placebo‐controlled randomized sub‐study. We examined the effects of metformin (n = 25) or placebo (n = 10) after 6 months on HDL proteome. Changes in HDL proteins were measured by data‐independent acquisition (DIA) mass spectrometry and compared between treatment groups. As a secondary outcome, associations between proteins of interest and the most studied function of HDL, the cholesterol efflux capacity (CEC), was examined. Results The relative abundance of 84 HDL‐associated proteins were measured. Two proteins were significantly affected by metformin treatment, peptidoglycan recognition protein 2 (PGRP2; +23.4%, p = .0058) and alpha‐2‐macroglobulin (A2MG; +29.8%, p = .049). Metformin did not significantly affect CEC. Changes in affected HDL proteins did not correlate with CEC. Conclusions Despite having little effect on HDL‐C, metformin increased PGRP2 and A2MG protein on HDL in youth with T1D, but had no significant effect on CEC. Further studies are needed to understand the impact of PGRP2 and A2MG on other HDL functions.
Collapse
Affiliation(s)
- Evgenia Gourgari
- Division of Pediatric Endocrinology Department of Pediatrics Georgetown University Washington DC USA
| | - Kristen J Nadeau
- Division of Pediatric Endocrinology Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Laura Pyle
- Division of Pediatric Endocrinology Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Biostatistics and Informatics Colorado School of Public Health Aurora CO USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases National Heart, Lung, and Blood Institute National Institutes of Health Bethesda MD USA
| | - Junfeng Ma
- Proteomics and Metabolomics Shared Resource Georgetown University Medical Center Washington DC USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases National Heart, Lung, and Blood Institute National Institutes of Health Bethesda MD USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section National Heart, Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center University of Kentucky Lexington KY USA.,Department of Physiology University of Kentucky Lexington KY USA
| |
Collapse
|
23
|
Seidl C, Flaten Z, Li D. Characterization of human plasma lipoproteins using anion exchange fast protein liquid chromatography and targeted mass spectrometry assay. Proteomics 2021; 21:e2000224. [PMID: 33471423 DOI: 10.1002/pmic.202000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
We described a targeted mass spectrometry assay based on selected reaction monitoring (SRM) for five apolipoproteins (apoA1, apoB, apoJ, apoD, and apoE) in plasma lipoproteins isolated by anion exchange fast protein liquid chromatography using only 100 μL of plasma. We performed analytical characterization of the SRM assay and evaluated reproducibility of the entire workflow. The limit of detections for apoA1, apoB, apoD, apoJ, and apoE were 0.6, 4.6, 0.8, 1.2, and 0.7 nM, respectively; the limit of quantifications was 8.3 nM for all peptides except apoD (4.2 nM). The SRM assay was linear from 0.4 to 1667 nM. The intra-day and inter-day and total repeatability (CV%) of the assay ranged from 2.2% to 21.7% for all five peptides. The intra-day and inter-day and total reproducibility of the entire workflow ranged from 12.2% to 43.9% for all five peptides in fractionated high-density lipoprotein, low-density lipoprotein, and IDL. In the future, we will apply this workflow to investigate the association of fractionated plasma lipoproteins with amyloid deposition and cognitive changes in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia Seidl
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary Flaten
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Danni Li
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Han P, Man J, Hao Y, Wu L, Wang J, Yang W, Wang F, Tian Y. Metabolomic analysis of plasma from normal-weight adults with hypo-HDL cholesterolemia by UPLC-QTOF MS. Biomed Chromatogr 2021; 35:e5073. [PMID: 33453122 DOI: 10.1002/bmc.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/09/2022]
Abstract
High-density lipoprotein cholesterol (HDL-C) is negatively correlated with atherosclerotic cardiovascular disease. The prevalence of hypo-HDL cholesterolemia is as high as 33.9%. The plasma metabolomic differences between hypo-HDL cholesterolemia populations and normal controls were investigated using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Participants with hypo-HDL cholesterolemia and normal controls were clearly discriminated from each other on the orthogonal partial least squares-discriminant analysis score plot and a total of 90 differential metabolites were identified, including down-regulated phosphatidylserine [18:0/20:3(8Z,11Z,14Z)], phosphatidylcholine [19:0/18:3(6Z,9Z,12Z)], phosphatidylserine, phosphatidylethanolamine [18:0/20:4(5Z,8Z,11Z,13E) (15Ke)], etc., and up-regulated triglyceride [15:0/18:1(9Z)/18:3(9Z,12Z,15Z)][iso6], 13-methyl-1-tritriacontene, tridodecylamine, etc. Most of the changed metabolites were lipids, notably, a significant part of which were odd chain fatty acid incorporated lipids. Carnitine shuttle was the most significant metabolic pathway, except for the disturbed glycerophospholipid metabolism, glycosphingolipid metabolism and sphingolipid metabolism in participants with hypo-HDL cholesterolemia. We identified the key metabolites and metabolic pathways that may be changed in hypo-HDL cholesterolemia participants, providing useful clues for studying the metabolic mechanisms and for early prevention of hypo-HDL cholesterolemia and dyslipidemia.
Collapse
Affiliation(s)
- Pei Han
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Hao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Longjie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fudi Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
An Increased Plasma Level of ApoCIII-Rich Electronegative High-Density Lipoprotein May Contribute to Cognitive Impairment in Alzheimer's Disease. Biomedicines 2020; 8:biomedicines8120542. [PMID: 33256187 PMCID: PMC7761422 DOI: 10.3390/biomedicines8120542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023] Open
Abstract
High-density lipoprotein (HDL) plays a vital role in lipid metabolism and anti-inflammatory activities; a dysfunctional HDL impairs cholesterol efflux pathways. To understand HDL's role in patients with Alzheimer's disease (AD), we analyzed the chemical properties and function. HDL from AD patients (AD-HDL) was separated into five subfractions, H1-H5, using fast-protein liquid chromatography equipped with an anion-exchange column. Subfraction H5, defined as the most electronegative HDL, was increased 5.5-fold in AD-HDL (23.48 ± 17.83%) in comparison with the control HDL (4.24 ± 3.22%). By liquid chromatography mass spectrometry (LC/MSE), AD-HDL showed that the level of apolipoprotein (apo)CIII was elevated but sphingosine-1-phosphate (S1P)-associated apoM and anti-oxidative paraoxonase 1 (PON1) were reduced. AD-HDL showed a lower cholesterol efflux capacity that was associated with the post-translational oxidation of apoAI. Exposure of murine macrophage cell line, RAW 264.7, to AD-HDL induced a vibrant expression of ganglioside GM1 in colocalization with apoCIII on lipid rafts alongside a concomitant increase of tumor necrosis factor-α (TNF-α) detectable in the cultured medium. In conclusion, AD-HDL had a higher proportion of H5, an apoCIII-rich electronegative HDL subfraction. The associated increase in pro-inflammatory (apoCIII, TNF-α) components might favor Amyloid β assembly and neural inflammation. A compromised cholesterol efflux capacity of AD-HDL may also contribute to cognitive impairment.
Collapse
|
26
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
27
|
Tsujita M, Vaisman B, Chengyu L, Vickers KC, Okuhira KI, Braesch-Andersen S, Remaley AT. Apolipoprotein A-I in mouse cerebrospinal fluid derives from the liver and intestine via plasma high-density lipoproteins assembled by ABCA1 and LCAT. FEBS Lett 2020; 595:773-788. [PMID: 33020907 DOI: 10.1002/1873-3468.13950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Apolipoprotein (apo) A-I, the major structural protein of high-density lipoprotein (HDL), is present in human and mouse cerebrospinal fluid (CSF) despite its lack of expression in brain cells. To identify the origin of apoA-I in CSF, we generated intestine-specific and liver-specific Apoa1 knockout mice (Apoa1ΔInt and Apoa1Δliv mice, respectively). Lipoprotein profiles of Apoa1ΔInt and Apoa1ΔLiv mice resembled those of control littermates, whereas knockout of Apoa1 in both intestine and liver (Apoa1ΔIntΔLiv ) resulted in a 60-percent decrease in HDL-cholesterol levels, thus strongly mimicking the Apoa1-/- mice. Immunoassays revealed that mouse apoA-I was not present in the CSF of the Apoa1ΔIntΔLiv mice. Furthermore, apoA-I levels in CSF were highly correlated with plasma spherical HDL levels, which were regulated by ABCA1 and LCAT. Collectively, these results suggest that apoA-I protein in CSF originates in liver and small intestine and is taken up from the plasma.
Collapse
Affiliation(s)
- Maki Tsujita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Boris Vaisman
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Liu Chengyu
- Transgenic Core facility, NHLBI, NIH, Bethesda, MD, USA
| | - Kasey C Vickers
- Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
28
|
Liu YZ, Xiao X, Hu CT, Dai Y, Qu SL, Huang L, Zhang C. SUMOylation in atherosclerosis. Clin Chim Acta 2020; 508:228-233. [DOI: 10.1016/j.cca.2020.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
|
29
|
Gordon SM, Amar MJ, Jeiran K, Stagliano M, Staller E, Playford MP, Mehta NN, Vaisar T, Remaley AT. Effect of niacin monotherapy on high density lipoprotein composition and function. Lipids Health Dis 2020; 19:190. [PMID: 32825822 PMCID: PMC7441610 DOI: 10.1186/s12944-020-01350-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/14/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Niacin has modest but overall favorable effects on plasma lipids by increasing high density lipoprotein cholesterol (HDL-C) and lowering triglycerides. Clinical trials, however, evaluating niacin therapy for prevention of cardiovascular outcomes have returned mixed results. Recent evidence suggests that the HDL proteome may be a better indicator of HDL's cardioprotective function than HDL-C. The objective of this study was to evaluate the effect of niacin monotherapy on HDL protein composition and function. METHODS A 20-week investigational study was performed with 11 participants receiving extended-release niacin (target dose = 2 g/day) for 16-weeks followed by a 4-week washout period. HDL was isolated from participants at weeks: 0, 16, and 20. The HDL proteome was analyzed at each time point by mass spectrometry and relative protein quantification was performed by label-free precursor ion intensity measurement. RESULTS In this cohort, niacin therapy had typical effects on routine clinical lipids (HDL-C + 16%, q < 0.01; LDL-C - 20%, q < 0.01; and triglyceride - 15%, q = 0.1). HDL proteomics revealed significant effects of niacin on 5 proteins: serum amyloid A (SAA), angiotensinogen (AGT), apolipoprotein A-II (APOA2), clusterin (CLUS), and apolipoprotein L1 (APOL1). SAA was the most prominently affected protein, increasing 3-fold in response to niacin (q = 0.008). Cholesterol efflux capacity was not significantly affected by niacin compared to baseline, however, stopping niacin resulted in a 9% increase in efflux (q < 0.05). Niacin did not impact HDL's ability to influence endothelial function. CONCLUSION Extended-release niacin therapy, in the absence of other lipid-modifying medications, can increase HDL-associated SAA, an acute phase protein associated with HDL dysfunction.
Collapse
Affiliation(s)
- Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, 741 South Limestone, BBSRB Room B259, Lexington, KY, 40536-0509, USA.
| | - Marcelo J Amar
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kianoush Jeiran
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Michael Stagliano
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Emma Staller
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alan T Remaley
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Rusanov VB, Pastushkova LK, Larina IM, Chernikova AG, Goncharova AG, Nosovsky AM, Kashirina DN, Brzhozovsky AG, Navasiolava N, Kononikhin AS, Kussmaul AR, Custaud MA, Nikolaev EN. The Effect of Five-Day Dry Immersion on the Nervous and Metabolic Mechanisms of the Circulatory System. Front Physiol 2020; 11:692. [PMID: 32754043 PMCID: PMC7366513 DOI: 10.3389/fphys.2020.00692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of the study was to investigate the regulatory and metabolic changes in the circulatory system when simulating microgravity conditions in a five-day dry immersion. These changes reflect the adaptation processes characteristic for the initial stages of a space flight or a short-duration space flight. Studies were conducted with 13 healthy male volunteers aged 21 to 29 years. The assessment of regulatory and metabolic processes in the circulatory system was based on the heart rate variability (HRV) and urine proteomic profile analysis. It was found that the restructuring of hemodynamics during 5 days hypogravity begins with the inclusion of the nervous circuit of regulation, and for manifestations at the body fluids protein composition level and activation of the metabolic regulation, these periods are apparently insufficient. Perhaps this is due to the fact that the metabolic regulation, being evolutionarily ancient and genetically determined, is more stable and requires more time for its pronounced activation when stimulated by extreme life conditions.
Collapse
Affiliation(s)
- Vasily B Rusanov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | - Irina M Larina
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna G Chernikova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna G Goncharova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Andrei M Nosovsky
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Daria N Kashirina
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander G Brzhozovsky
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | | | - Alexey S Kononikhin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna R Kussmaul
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
31
|
Zhao J, Mi X, Zhao L, Midgley AC, Tang H, Tian M, Yan H, Wang K, Wang R, Wan Y, Kong D, Mao H, Wang T. Validation of PM 2.5 model particle through physicochemical evaluation and atherosclerotic plaque formation in ApoE -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110308. [PMID: 32058168 DOI: 10.1016/j.ecoenv.2020.110308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
PM2.5 particles are regarded as prominent risk factors that contribute to the development of atherosclerosis. However, the composition of PM2.5 is rather complicated. This study aimed to provide a model particle that simulates the behavior of actual PM2.5, for subsequent use in exploring mechanisms and major complications arising from PM2.5. To establish model particles of PM2.5, a series of monodisperse SiO2 microspheres with different average grain diameters were mixed according to the size distribution of actual PM2.5. The organic carbon (OC) was removed from PM2.5 and coated onto the SiO2 model particle, to formulate simulant PM2.5. Results showed that the size distribution of the model particle was highly approximate to that of the PM2.5 core. The polycyclic aromatic hydrocarbon (PAHs) composition profile of the simulated PM2.5 were approximate to PM2.5, and loading efficiency was approximately 80%-120%. Furthermore, compared to the control, SiO2-only model particle had negligible cytotoxicity on cell viability and oxidative stress of HUVECs, and marginal effect on the lipid metabolism and atherosclerotic plaque formation in ApoE-/- mice. In contrast, simulated PM2.5 exhibited similar cytotoxic and detrimental effects on lipid metabolism and atherosclerotic plaque formation with actual PM2.5. Traffic-related PM2.5 had negative effects on endothelial function and led to the formation of atherosclerosis via oxidative stress. The simulated PM2.5 simulated the outcomes of actual PM2.5 exposure. Here, we show that SiO2 particle model cores coated with OC could significantly assist in the evaluation of the effects of specific organic compositions bound on PM2.5, specifically in the context of environmental health and safety.
Collapse
Affiliation(s)
- Jingbo Zhao
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xingyan Mi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lili Zhao
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, 300192, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haoyu Tang
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Mengya Tian
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rui Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yajuan Wan
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Hongjun Mao
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Ting Wang
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Zvintzou E, Xepapadaki E, Kalogeropoulou C, Filou S, Kypreos KE. Pleiotropic effects of apolipoprotein A-Ⅱ on high-density lipoprotein functionality, adipose tissue metabolic activity and plasma glucose homeostasis. J Biomed Res 2020; 0:1-13. [PMID: 31741463 DOI: 10.7555/jbr.33.20190048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein A-Ⅱ (APOA-Ⅱ) is the second most abundant apolipoprotein of high-density lipoprotein (HDL) synthesized mainly by the liver and to a much lesser extent by the intestine. Transgenic mice overexpressing human APOA-Ⅱ present abnormal lipoprotein composition and are prone to atherosclerosis, though in humans the role for APOA-Ⅱ in coronary heart disease remains controversial. Here, we investigated the effects of overexpressed APOA-Ⅱ on HDL structure and function, adipose tissue metabolic activity, glucose tolerance and insulin sensitivity. C57BL/6 mice were infected with an adenovirus expressing human APOA-Ⅱ or a control adenovirus AdGFP, and five days post-infection blood and tissue samples were isolated. APOA-Ⅱ expression resulted in distinct changes in HDL apoproteome that correlated with increased antioxidant and anti-inflammatory activities. No effects on cholesterol efflux from RAW 264.7 macrophages were observed. Molecular analyses in white adipose tissue (WAT) indicated a stimulation of oxidative phosphorylation coupled with respiration for ATP production in mice overexpressing APOA-Ⅱ. Finally, overexpressed APOA-Ⅱ improved glucose tolerance of mice but had no effect on the response to exogenously administered insulin. In summary, expression of APOA-Ⅱ in C57BL/6 mice results in pleiotropic effects with respect to HDL functionality, adipose tissue metabolism and glucose utilization, many of which are beneficial to health.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
33
|
Choi S, Park YE, Cheon EJ, Kim KY, Kim M, Ann SJ, Noh HM, Lee J, Lee CJ, Lee ST, Lee C, Lee JE, Lee SH. Novel Associations between Related Proteins and Cellular Effects of High-Density Lipoprotein. Korean Circ J 2019; 50:236-247. [PMID: 31845554 PMCID: PMC7043958 DOI: 10.4070/kcj.2019.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have examined the structure-function relationship of high-density lipoprotein (HDL). This study aimed to identify and rank HDL-associated proteins involved in several biological function of HDL. METHODS HDLs isolated from 48 participants were analyzed. Cholesterol efflux capacity, effect of HDL on nitric oxide production, and vascular cell adhesion molecule-1 expression were assessed. The relative abundance of identified proteins in the highest vs. lowest quartile was expressed using the normalized spectral abundance factor ratio. RESULTS After adjustment by multiple testing, six proteins, thyroxine-binding globulin, alpha-1B-glycoprotein, plasma serine protease inhibitor, vitronectin, angiotensinogen, and serum amyloid A-4, were more abundant (relative abundance ratio ≥2) in HDLs with the highest cholesterol efflux capacity. In contrast, three proteins, complement C4-A, alpha-2-macroglobulin, and immunoglobulin mu chain C region, were less abundant (relative abundance ratio <0.5). In terms of nitric oxide production and vascular cell adhesion molecule-1 expression, no proteins showed abundance ratios ≥2 or <0.5 after adjustment. Proteins correlated with the functional parameters of HDL belonged to diverse biological categories. CONCLUSIONS In summary, this study ranked proteins showing higher or lower abundance in HDLs with high functional capacities and newly identified multiple proteins linked to cholesterol efflux capacity.
Collapse
Affiliation(s)
- Seungbum Choi
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Jeong Cheon
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,Department of Chemistry, Sookmyung Women's University, Seoul, Korea.,Proteometech Inc., Seoul, Korea
| | - Miso Kim
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Ann
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Min Noh
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Joo Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.
| | - Sang Hak Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Slack MA, Gordon SM. Protease Activity in Vascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:e210-e218. [PMID: 31553665 PMCID: PMC6764587 DOI: 10.1161/atvbaha.119.312413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Megan A. Slack
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
35
|
Abstract
Introduction: High-density lipoprotein (HDL) particles are heterogeneous and their proteome is complex and distinct from HDL cholesterol. However, it is largely unknown whether HDL proteins are associated with cardiovascular protection. Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL proteins reported in 37 different studies was compiled and the effects of different isolation techniques on proteins attributed to HDL are discussed. Mass spectrometric techniques used for HDL analysis and the need for precise and robust methods for quantification of HDL proteins are discussed. Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using precise quantification methods. Key factors in HDL proteome quantification are the isolation methodology and the mass spectrometry technique employed. Isolation methodology affects what proteins are identified in HDL and the specificity of association with HDL particles needs to be addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies relied on this approach. Few recent studies used targeted tandem mass spectrometry to quantify HDL proteins, and it is imperative that future studies focus on the application of these precise techniques.
Collapse
Affiliation(s)
- Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The validity of HDL-cholesterol (HDL-C) elevation as a therapeutic target has been questioned, in comparison to enhancing HDL functionality. Cholesterol efflux capacity (CEC) is an in-vitro assay that measures the ability of an individual's HDL to promote cholesterol efflux from cholesterol donor cells such as macrophages. CEC of HDL is a predictor of cardiovascular risk independent of HDL-C levels. However, molecular determinants of CEC and the effects of diseases and therapeutic interventions on CEC have not been completely defined. RECENT FINDINGS We review here recent findings on elevated HDL-C and disease risk, as well as determinants of CEC, from genetics and proteomics to pathophysiology and therapeutic interventions that contribute to our understanding of CEC as a biomarker of HDL functionality. SUMMARY Elevated HDL-C levels are not always protective against cardiovascular disease and mortality. CEC is a heritable trait, and genetic polymorphisms in genes involved in HDL and triglycerides metabolism are associated with CEC. Multiple HDL proteins correlate positively with CEC levels and inversely with noncalcified plaque burden. Differences in CEC assays that make comparisons between studies difficult are also emphasized. CEC should be measured in clinical trials of lipid-modifying and anti-inflammatory therapies to determine whether increases are cardioprotective.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute, Atherosclerosis Research Group
| | - Jean-Claude Tardif
- Montreal Heart Institute, Atherosclerosis Research Group
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Gourgari E, Ma J, Playford MP, Mehta NN, Goldman R, Remaley AT, Gordon SM. Proteomic alterations of HDL in youth with type 1 diabetes and their associations with glycemic control: a case-control study. Cardiovasc Diabetol 2019; 18:43. [PMID: 30922315 PMCID: PMC6437869 DOI: 10.1186/s12933-019-0846-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Abstract
Background Patients with type 1 diabetes (T1DM) typically have normal or even elevated plasma high density lipoprotein (HDL) cholesterol concentrations; however, HDL protein composition can be altered without a change in cholesterol content. Alteration of the HDL proteome can result in dysfunctional HDL particles with reduced ability to protect against cardiovascular disease (CVD). The objective of this study was to compare the HDL proteomes of youth with T1DM and healthy controls (HC) and to evaluate the influence of glycemic control on HDL protein composition. Methods This was a cross-sectional case–control study. Blood samples were obtained from patients with T1DM and HC. HDL was isolated from plasma by size-exclusion chromatography and further purified using a lipid binding resin. The HDL proteome was analyzed by mass spectrometry using label-free SWATH peptide quantification. Results Samples from 26 patients with T1DM and 13 HC were analyzed and 78 HDL-bound proteins were measured. Youth with T1DM had significantly increased amounts of complement factor H related protein 2 (FHR2; adjusted P < 0.05), compared to HC. When patients were analyzed based on glucose control, several trends emerged. Some proteins were altered in T1DM and not influenced by glycemic control (e.g. FHR2) while others were partially or completely corrected with optimal glucose control (e.g. alpha-1-beta glycoprotein, A1BG). In a subgroup of poorly controlled T1DM patients, inter alpha trypsin inhibitor 4 (ITIH4) was dramatically elevated (P < 0.0001) and this was partially reversed in patients with optimal glucose control. Some proteins including complement component C3 (CO3) and albumin (ALB) were significantly different only in T1DM patients with optimal glucose control, suggesting a possible effect of exogenous insulin. Conclusions Youth with T1DM have proteomic alterations of their HDL compared to HC, despite similar concentration of HDL cholesterol. The influence of these compositional changes on HDL function are not yet known. Future efforts should focus on investigating the role of these HDL associated proteins in regard to HDL function and their role in CVD risk in patients with T1DM. Trial registration NCT02275091 Electronic supplementary material The online version of this article (10.1186/s12933-019-0846-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evgenia Gourgari
- Division of Pediatric Endocrinology, Department of Pediatrics, Georgetown University, Washington, DC, 20016, USA.
| | - Junfeng Ma
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|