1
|
Kecorius S, Sues S, Madueño L, Wiedensohler A, Winkler U, Held A, Lüchtrath S, Beddows DC, Harrison RM, Lovric M, Soppa V, Hoffmann B, Wiese-Posselt M, Kerschbaumer A, Cyrys J. Aerosol particle number concentration, ultrafine particle number fraction, and new particle formation measurements near the international airports in Berlin, Germany - First results from the BEAR study. ENVIRONMENT INTERNATIONAL 2024; 193:109086. [PMID: 39447469 DOI: 10.1016/j.envint.2024.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Studies revealed airports as a prominent source of ultrafine particles (UFP), which can disperse downwind to residential areas, raising health concerns. To expand our understanding of how air traffic-related emissions influence total particle number concentration (PNC) in the airport's surrounding areas, we conduct long-term assessment of airborne particulate exposure before and after relocation of air traffic from "Otto Lilienthal" Airport (TXL) to Berlin Brandenburg Airport "Willy Brandt" (BER) in Berlin, Germany. Here, we provide insights into the spatial-temporal variability of PNC measured in 16 schools recruited for Berlin-Brandenburg Air Study (BEAR). The results show that the average PNC in Berlin was 7900 ± 7000 cm-3, consistent with other European cities. The highest median PNC was recorded in spring (6700 cm-3) and the lowest in winter (5100 cm-3). PNC showed a bi-modal increase during morning and evening hours at most measurement sites due to road-traffic emissions. A comparison between measurements at the schools and fixed monitoring sites revealed good agreement at distances up to 5 km. A noticeable decline in this agreement occurred as the distance between measurement sites increased. After TXL was closed, PNC in surrounding areas decreased by 30 %. The opposite trend was not seen after BER was re-opened after the COVID-lock-down, as the air traffic has not reached the full capacity yet. The analysis of particle number size distribution data showed that UFP number fraction exhibit seasonal variations, with higher values in spring and autumn. This can be explained by nucleation events, which notably affected PNC. The presented findings will play a pivotal role in forthcoming source attribution and epidemiological investigations, offering a holistic understanding of airports' impact on airborne pollutant levels and their health implications. The study calls for further investigations of air-traffic-related physical-chemical pollutant properties in areas found further away (> 10 km) from airports.
Collapse
Affiliation(s)
- Simonas Kecorius
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Environmental Science Center, University of Augsburg, Augsburg, Germany.
| | - Susanne Sues
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Environmental Science Center, University of Augsburg, Augsburg, Germany
| | - Leizel Madueño
- Atmospheric Mircophysics, Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Alfred Wiedensohler
- Atmospheric Mircophysics, Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Ulf Winkler
- Atmospheric Mircophysics, Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Andreas Held
- Environmental Chemistry and Air Research, Institute of Environmental Science and Technology, Technische Universität Berlin, Berlin, Germany
| | - Sabine Lüchtrath
- Environmental Chemistry and Air Research, Institute of Environmental Science and Technology, Technische Universität Berlin, Berlin, Germany
| | - David C Beddows
- National Centre for Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Roy M Harrison
- National Centre for Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario Lovric
- Institute for Anthropological Research, Zagreb, Croatia; The Lisbon Council, Brussels, Belgium
| | - Vanessa Soppa
- Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital, Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital, Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Miriam Wiese-Posselt
- Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Kerschbaumer
- Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt Referat Immissionsschutz, Berlin, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
2
|
Ridolfo S, Querol X, Karanasiou A, Rodríguez-Luque A, Pérez N, Alastuey A, Jaén C, van Drooge BL, Pandolfi M, Pedrero M, Amato F. Size distribution, sources and chemistry of ultrafine particles at Barcelona-El Prat Airport, Spain. ENVIRONMENT INTERNATIONAL 2024; 193:109057. [PMID: 39423580 DOI: 10.1016/j.envint.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
The rapid expansion of the aviation sector raises concerns about air quality impacts within and around airports. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential adverse health effects. In this study, particle number concentrations (PNC), particle number size distribution (PNSD), and other ancillary pollutants such as particulate matter (PM), nitrogen oxides (NOX), black carbon (BC), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO) and benzene, as well as organic markers and trace elements (in quasi-UFP) were measured at Barcelona-El Prat Airport (80 m and 250 m from the main taxiway and runway). Comparisons were made with an urban background (UB) location, and source apportionment of PNSD was performed using Positive Matrix Factorization (PMF). PNC inside the airport was nine-fold higher than the UB, and fifteen-fold higher when considering only nucleation mode particles (< 25 nm). Six sources contributing to PNC were identified inside the airport: Taxiing (48.7 %; mode diameter = 17 nm), Industrial/Shipping (7.4 %; mode diameter = 35 nm), Diesel (3.9 %; mode diameter = 64 nm), Regional recirculation (1.1 %; mode diameter = 100 nm), Photonucleation (16.6 %; mode diameter = 13 nm) and Takeoff (18.5 %; mode diameter = 23 nm). Due to the measurement location and prevailing wind patterns, no significant contributions from landings were detected. Chemical analysis of quasi-UFP collected on Electrical Low-Pressure Impactor (ELPI + ) filters (stages 2 to 6: 17-165 nm) revealed higher concentrations (> 2-fold) of Fe, Al, Cr, Cu, Mo, Mn, Pb, Ti, and Sb at the airport compared to the UB, with Al exhibiting the most pronounced disparity. Generally, PAH levels were low at both sites, although concentrations were higher at the airport relative to the UB. Overall, this study provides a comprehensive understanding of UFP within a major European airport, identifying the different sources contributing to PNC and PNSD.
Collapse
Affiliation(s)
- S Ridolfo
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain.
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - A Rodríguez-Luque
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - N Pérez
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - A Alastuey
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - C Jaén
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - B L van Drooge
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - M Pandolfi
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| | - M Pedrero
- AENA SME, S.A. - Josep Tarradellas Barcelona-El Prat Airport, 08820, El Prat de Llobregat, Barcelona, Spain
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26 08034, Barcelona, Spain
| |
Collapse
|
3
|
Ridolfo S, Amato F, Querol X. Particle number size distributions and concentrations in transportation environments: a review. ENVIRONMENT INTERNATIONAL 2024; 187:108696. [PMID: 38678934 DOI: 10.1016/j.envint.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Ambient air ultrafine particles (UFP, particles with a diameter <100 nm) have gained significant attention in World Health Organization (WHO) air quality guidelines and European legislation. This review explores UFP concentrations and particle number size distributions (PNC-PNSD) in various transportation hotspots, including road traffic, airports, harbors, trains, and urban commuting modes (walking, cycling, bus, tram, and subway). The results highlight the lack of information on personal exposure at harbors and railway stations, inside airplanes and trains, and during various other commuting modes. The different lower particle size limits of the reviewed measurements complicate direct comparisons between them. Emphasizing the use of instruments with detection limits ≤10 nm, this review underscores the necessity of following standardized UFP measurement protocols. Road traffic sites are shown to exhibit the highest PNC within cities, with PNC and PNSD in commuting modes driven by the proximity to road traffic and weather conditions. In closed environments, such as cars, buses, and trams, increased external air infiltration for ventilation correlates with elevated PNC and a shift in PNSD toward smaller diameters. Airports exhibit particularly elevated PNCs near runways, raising potential concerns about occupational exposure. Recommendations from this study include maintaining a substantial distance between road traffic and other commuting modes, integrating air filtration into ventilation systems, implementing low-emission zones, and advocating for a general reduction in road traffic to minimize daily UFP exposure. Our findings provide important insights for policy assessments and underscore the need for additional research to address current knowledge gaps.
Collapse
Affiliation(s)
- S Ridolfo
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Kalkavouras P, Grivas G, Stavroulas I, Petrinoli K, Bougiatioti A, Liakakou E, Gerasopoulos E, Mihalopoulos N. Source apportionment of fine and ultrafine particle number concentrations in a major city of the Eastern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170042. [PMID: 38232850 DOI: 10.1016/j.scitotenv.2024.170042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Ultrafine particles (UFP) are recognized as an emerging pollutant able to induce serious health effects. However, quantitative information regarding the contributions of UFP sources is generally limited. This study evaluates statistical (k-means clustering) and receptor models (Positive Matrix Factorization - PMF) using particle number size distributions (PNSD), along with chemical speciation data, measured at an urban background supersite in Athens, Greece, aiming to characterize their sources. PNSD measurements (10-487 nm) were performed during three distinct periods (warm, cold, and lockdown cold). Traffic and residential biomass burning (BB) produced high UFP number concentrations (NUFP) in the cold period (+107 % compared to summer), while the lockdown restrictions reduced NUFP (-42 %). The five groups produced by cluster analysis that were common among periods were linked to high- and low-traffic, new particle formation (NPF), urban background and regional aerosols. PMF source apportionment identified 5 and 6 factors during warm and cold periods, respectively, indicating that traffic particles dominated NUFP (64-78 % in all periods), while accumulation-mode particles and volume concentrations were controlled by processed aerosol, and especially in the cold periods by BB emissions. A nucleation factor linked to NPF contributed 7-11 % to NUFP. Comparing the two cold periods (business-as-usual, lockdown), important lockdown reductions (-46 %) were seen for fresh traffic contributions to total number concentration (Ntotal). The impact of the source attributed to NPF also eroded (-41 % for Ntotal). Due to the large reduction (-47 % for Ntotal) observed also for the BB source during the lockdown (reduced wood usage due to a milder winter), the relative contributions of all sources did not change considerably (fractional reductions <7 % for Ntotal). The quantitative results, bolstered by source apportionment combining PNSD and online chemical composition measurements, indicate the potential to constrain UFP levels by regulating traffic and residential emissions, with a large upside for population exposure control.
Collapse
Affiliation(s)
- Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece.
| | - Iasonas Stavroulas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Kalliopi Petrinoli
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Eleni Liakakou
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Evangelos Gerasopoulos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece.
| |
Collapse
|
5
|
Chen TL, Lai CH, Chen YC, Ho YH, Chen AY, Hsiao TC. Source-oriented risk and lung-deposited surface area (LDSA) of ultrafine particles in a Southeast Asia urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161733. [PMID: 36682561 DOI: 10.1016/j.scitotenv.2023.161733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Submicron and ultrafine particle (UFP) exposure may be epidemiologically and toxicologically linked to pulmonary, neurodegenerative, and cardiovascular diseases. This study explores UFP and fine particle sources using a positive matrix factorization (PMF) model based on PM2.5 chemical compositions and particle number size distributions (PNSDs). The particle chemical composition and size distribution contributions are simultaneously identified to evaluate lung deposition and excess cancer risks. High correlations between the PNSD and chemical composition apportionment results were observed. Fresh and aged traffic particles dominated the number concentrations, while heterogeneous, photochemical reactions and/or regional transport may have resulted in secondary aerosol formation. Fresh and aged road traffic particle sources mostly contributed to the lung deposition dosage in the pulmonary region (~53 %), followed by the tracheobronchial (~30.4 %) and head regions (~16.6 %). However, lung-deposited surface area (LDSA) concentrations were dominated by aged road traffic (~39.2 %) and secondary aerosol (~33.2 %) sources. The excess cancer risks caused by Cr6+, Ni, and As were also mainly contributed to by aged road traffic (~31.7 %) and secondary aerosols (~67 %). The source apportionments based on the physical and chemical properties of aerosol particles are complementary, offering a health impact benchmark of UFPs in a Southeast Asia urban city.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Chen-Hao Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsuan Ho
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Young LH, Hsu CS, Hsiao TC, Lin NH, Tsay SC, Lin TH, Lin WY, Jung CR. Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159070. [PMID: 36179847 DOI: 10.1016/j.scitotenv.2022.159070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
This study applied positive matrix factorization (PMF) to identify the sources of size-resolved submicrometer (10-1000 nm) particles and quantify their contributions to impaired visibility based on the particle number size distributions (PNSDs), aerosol light extinction (bp), air pollutants (PM10, PM2.5, SO2, O3, and NO), and meteorological parameters (temperature, relative humidity, wind speed, wind direction, and ultraviolet index) measured hourly over an urban basin in central Taiwan between 2017 and 2021. The transport of source-specific PNSDs was evaluated with wind and back trajectory analyses. The PMF revealed six sources to the total particle number (TPN), surface (TPS), volume (TPV), and bp. Factor 1 (F1), the key contributor to TPN (35.0 %), represented nucleation (<25 nm) particles associated with fresh traffic emission and secondary new particle formation, which were transported from the west-southwest by stronger winds (>2.2 m s-1). F2 represented the large Aitken (50-100 nm) particles transported regionally via northerly winds, whereas F3 represented large accumulation (300-1000 nm) particles, which showed elevated concentrations under stagnant conditions (<1.1 m s-1). F4 represented small Aitken (25-50 nm) particles arising from the growth and transport of the nucleation particles (F1) via west-southwesterly winds. F5 represented large Aitken particles originating from combustion-related SO2 sources and carried by west-northwesterly winds. F6 represented small accumulation (100-300 nm) particles emitted both by local sources and by the remote SO2 sources found for F5. Overall, large accumulation particles (F3) played the greatest role in determining the TPV (66.4 %) and TPS (34.8 %), and their contribution to bp increased markedly from 17.3 % to 40.7 % as visibility decreased, indicating that TPV and TPS are better metrics than TPN for estimating bp. Furthermore, slow-moving air masses-and therefore stagnant conditions-facilitate the build-up of accumulation mode particles (F3 + F6), resulting in the poorest visibility.
Collapse
Affiliation(s)
- Li-Hao Young
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan.
| | - Chih-Sheng Hsu
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, 300, Zhongda Rd., Zhongli Dist., Taoyuan 320317, Taiwan
| | - Si-Chee Tsay
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Tang-Huang Lin
- Center for Space and Remote Sensing Research, National Central University, 300, Zhongda Rd., Zhongli Dist., Taoyuan 320317, Taiwan
| | - Wen-Yinn Lin
- Institute of Environmental Engineering and Management, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106344, Taiwan
| | - Chau-Ren Jung
- Department of Public Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| |
Collapse
|
7
|
Rangel-Alvarado R, Pal D, Ariya P. PM 2.5 decadal data in cold vs. mild climate airports: COVID-19 era and a call for sustainable air quality policy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58133-58148. [PMID: 35364791 PMCID: PMC8975444 DOI: 10.1007/s11356-022-19708-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/10/2022] [Indexed: 05/21/2023]
Abstract
Airports are identified hotspots for air pollution, notably for fine particles (PM2.5) that are pivotal in aerosol-cloud interaction processes of climate change and human health. We herein studied the field observation and statistical analysis of 10-year data of PM2.5 and selected emitted co-pollutants (CO, NOx, and O3), in the vicinity of three major Canadian airports, with moderate to cold climates. The decadal data analysis indicated that in colder climate airports, pollutants like PM2.5 and CO accumulate disproportionally to their emissions in fall and winter, in comparison to airports in milder climates. Decadal daily averages and standard errors of PM2.5 concentrations were as follows: Vancouver, 5.31 ± 0.017; Toronto, 6.71 ± 0.199; and Montreal, 7.52 ± 0.023 μg/m3. The smallest and the coldest airport with the least flights/passengers had the highest PM2.5 concentration. QQQ-ICP-MS/MS and HR-S/TEM analysis of aerosols near Montreal Airport indicated a wide range of emerging contaminants (Cd, Mo, Co, As, Ni, Cr, and Pb) ranging from 0.90 to 622 μg/L, which were also observed in the atmosphere. During the lockdown, a pronounced decrease in the concentrations of PM2.5 and submicron particles, including nanoparticles, in residential areas close to airports was observed, conforming with the recommended workplace health thresholds (~ 2 × 104 cm-3), while before the lockdown, condensable particles were up to ~ 1 × 105 cm-3. Targeted reduction of PM2.5 emission is recommended for cold climate regions.
Collapse
Affiliation(s)
| | - Devendra Pal
- Department of Atmospheric & Oceanic Sciences, McGill University, Montréal, QC, H3A 2K6, Canada
| | - Parisa Ariya
- Department of Chemistry, McGill University, Montréal, QC, H3A 2K6, Canada.
- Department of Atmospheric & Oceanic Sciences, McGill University, Montréal, QC, H3A 2K6, Canada.
| |
Collapse
|
8
|
Shang D, Tang L, Fang X, Wang L, Yang S, Wu Z, Chen S, Li X, Zeng L, Guo S, Hu M. Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119072. [PMID: 35301034 DOI: 10.1016/j.envpol.2022.119072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Many studies revealed the rapid decline of atmospheric PM2.5 in Beijing due to the emission control measures. The variation of particle number concentration (PN) which has important influences on regional climate and human health, however, was rarely reported. This study measured the particle number size distributions (PNSD) in 3-700 nm in winter of Beijing during 2013-2019. It was found that PN decreased by 58% from 2013 to 2017, but increased by 29% from 2017 to 2019. By Positive matrix factorization (PMF) analysis, five source factors of PNSD were identified as Nucleation, Fresh traffic, Aged traffic + Diesel, Coal + biomass burning and Secondary. Overall, factors associated with primary emissions were found to decrease continuously. Coal + biomass burning dominated the reduction (65%) among the three primary sources during 2013-2017, which resulted from the great efforts on emission control of coal combustion and biomass burning. Fresh traffic and Aged traffic + Diesel decreased by 43% and 66%, respectively, from 2013 to 2019, as a result of the upgrade of the vehicle emission standards in Beijing-Tianjin-Hebei area. On the other hand, the contribution from Nucleation and Secondary decreased with the reduction of gaseous precursors in 2013-2017, but due to the increased intensity of new particle formation (NPF) and secondary oxidation, they increased by 56% and 70%, respectively, from 2017 to 2019, which led to the simultaneously increase of PN and particle volume concentration. This study indicated that NPF may play an important role in urban atmosphere under continuous air quality improvement.
Collapse
Affiliation(s)
- Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Lizi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xin Fang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Lifan Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Suding Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
9
|
Tremper AH, Jephcote C, Gulliver J, Hibbs L, Green DC, Font A, Priestman M, Hansell AL, Fuller GW. Sources of particle number concentration and noise near London Gatwick Airport. ENVIRONMENT INTERNATIONAL 2022; 161:107092. [PMID: 35074633 PMCID: PMC8885425 DOI: 10.1016/j.envint.2022.107092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 05/30/2023]
Abstract
There is increasing evidence of potential health impacts from both aircraft noise and aircraft-associated ultrafine particles (UFP). Measurements of noise and UFP are however scarce near airports and so their variability and relationship are not well understood. Particle number size distributions and noise levels were measured at two locations near Gatwick airport (UK) in 2018-19 with the aim to characterize particle number concentrations (PNC) and link PNC sources, especially UFP, with noise. Positive Matrix Factorization was used on particle number size distribution to identify these sources. Mean PNC (7500-12,000 p cm-3) were similar to those measured close to a highly trafficked road in central London. Peak PNC (94,000 p cm-3) were highest at the site closer to the runway. The airport source factor contributed 17% to the PNC at both sites and the concentrations were greatest when the respective sites were downwind of the runway. However, the main source of PNC was associated with traffic emissions. At both sites noise levels were above the recommendations by the WHO (World Health Organisation). Regression models of identified UFP sources and noise suggested that the largest source of noise (LAeq-1hr) above background was associated with sources of fresh traffic and urban UFP depending on the site. Noise and UFP correlations were moderate to low suggesting that UFP are unlikely to be an important confounder in epidemiological studies of aircraft noise and health. Correlations between UFP and noise were affected by meteorological factors, which need to be considered in studies of short-term associations between aircraft noise and health.
Collapse
Affiliation(s)
- Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK.
| | - Calvin Jephcote
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - John Gulliver
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Leon Hibbs
- Environmental Health, Reigate & Banstead Borough Council, Town Hall, Reigate, Surrey, UK
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
| | - Anna Font
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
| | - Max Priestman
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
| | - Anna L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Gary W Fuller
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
| |
Collapse
|
10
|
Liang CS, Yue D, Wu H, Shi JS, He KB. Source apportionment of atmospheric particle number concentrations with wide size range by nonnegative matrix factorization (NMF). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117846. [PMID: 34330013 DOI: 10.1016/j.envpol.2021.117846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Quantifying the sources of atmospheric particles is essential to air quality control but remains challenging, especially for the source apportionment of particles based on number concentration with wide size range. Here, particle number concentrations (PNC) with size range 19-20,000 nm involving four modes Nucleation, Aitken, Accumulation, and Coarse are used to do source apportionment of PNC at the Guangdong Atmospheric Supersite (Heshan) during July-October 2015 by nonnegative matrix factorization (NMF) with 6 factors. For July 2015, separated source apportionments for three different size ranges from collocated instruments nano scanning mobility particle sizer (NSMPS), SMPS, and aerodynamic particle sizer (APS) and for two different size ranges (below and above 100 nm) show similar quantitative source information with that for the one whole size range. The mean absolute difference of contribution percentages of total particle number concentrations (TPNC) based on 5 unique apportioned sources is 5.6 % (4.3-7.6 %) for the instrument segregated apportionment and 4.2 % (0-5.3 %) for the size range segregated apportionment respectively, relative to the one whole apportionment. Moreover, the contribution percentages of TPNC are close to the weighted sum of contribution percentages of all size bins, with a mean absolute difference of 1.1 % (0-3.4 %). In both these two aspects, the consistency among different technical paths proves the matrix factorization by NMF is practically desirable and the simplicity of reducing some steps or calculations saves time. Besides, dust can be identified with the wide size range including larger than 3000 nm. Six apportioned sources in the 4 months are Accumulation (32.4 %), Nucleation (20.0 %), Aitken (15.2 %), traffic (14.6 %), dust (10.6 %), and Coarse (7.1 %). Therefore, NMF would serve as a promising tool for PNC source apportionment with wide size range and conducting the apportionment with the whole size range in one matrix factorization procedure and using the single TPNC contribution percentage are feasible.
Collapse
Affiliation(s)
- Chun-Sheng Liang
- Collaborative Innovation Center for West Ecological Safety, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, 510308, China
| | - Hao Wu
- Key Laboratory of China Meteorological Administration Atmospheric Sounding, School of Electrical Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jin-Sen Shi
- Collaborative Innovation Center for West Ecological Safety, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| |
Collapse
|
11
|
Austin E, Xiang J, Gould TR, Shirai JH, Yun S, Yost MG, Larson TV, Seto E. Distinct Ultrafine Particle Profiles Associated with Aircraft and Roadway Traffic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2847-2858. [PMID: 33544581 PMCID: PMC7931448 DOI: 10.1021/acs.est.0c05933] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Mobile ObserVations of Ultrafine Particles study was a two-year project to analyze potential air quality impacts of ultrafine particles (UFPs) from aircraft traffic for communities near an international airport. The study assessed UFP concentrations within 10 miles of the airport in the directions of aircraft flight. Over the course of four seasons, this study conducted a mobile sampling scheme to collect time-resolved measures of UFP, CO2, and black carbon (BC) concentrations, as well as UFP size distributions. Primary findings were that UFPs were associated with both roadway traffic and aircraft sources, with the highest UFP counts found on the major roadway (I-5). Total concentrations of UFPs alone (10-1000 nm) did not distinguish roadway and aircraft features. However, key differences existed in the particle size distribution and the black carbon concentration for roadway and aircraft features. These differences can help distinguish between the spatial impact of roadway traffic and aircraft UFP emissions using a combination of mobile monitoring and standard statistical methods.
Collapse
Affiliation(s)
- Elena Austin
- Department
of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
- . Phone: 206-221-6301
| | - Jianbang Xiang
- Department
of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Timothy R. Gould
- Department
of Civil & Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jeffry H. Shirai
- Department
of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Sukyong Yun
- Department
of Civil & Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Michael G. Yost
- Department
of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Timothy V. Larson
- Department
of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Edmund Seto
- Department
of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Liang CS, Wu H, Li HY, Zhang Q, Li Z, He KB. Efficient data preprocessing, episode classification, and source apportionment of particle number concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140923. [PMID: 32755782 DOI: 10.1016/j.scitotenv.2020.140923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Number concentration is an important index to measure atmospheric particle pollution. However, tailored methods for data preprocessing and characteristic and source analyses of particle number concentrations (PNC) are rare and interpreting the data is time-consuming and inefficient. In this method-oriented study, we develop and investigate some techniques via flexible conditions, C++ optimized algorithms, and parallel computing in R (an open source software for statistics and graphics) to tackle these challenges. The data preprocessing methods include deletions of variables and observations, outlier removal, and interpolation for missing values (NA). They do better in cleaning data and keeping samples and generate no new outliers after interpolation, compared with previous methods. Besides, automatic division of PNC pollution events based on relative values suites PNC properties and highlights the pollution characteristics related to sources and mechanisms. Additionally, basic functions of k-means clustering, Principal Component Analysis (PCA), Factor Analysis (FA), Positive Matrix Factorization (PMF), and a newly-introduced model NMF (Non-negative Matrix Factorization) were tested and compared in analyzing PNC sources. Only PMF and NMF can identify coal heating and produce more explicable results, meanwhile NMF apportions more distinctly and runs 11-28 times faster than PMF. Traffic is interannually stable in non-heating periods and always dominant. Coal heating's contribution has decreased by 40%-86% in recent 5 heating periods, reflecting the effectiveness of coal burning control.
Collapse
Affiliation(s)
- Chun-Sheng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Hao Wu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; China Global Atmosphere Watch Baseline Observatory (WMO/GAW Station), Xining 810001, China
| | - Hai-Yan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA.
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| |
Collapse
|
13
|
Pokorná P, Leoni C, Schwarz J, Ondráček J, Ondráčková L, Vodička P, Zíková N, Moravec P, Bendl J, Klán M, Hovorka J, Zhao Y, Cliff SS, Ždímal V, Hopke PK. Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38631-38643. [PMID: 32623683 DOI: 10.1007/s11356-020-09694-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM0.15-1.15 chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 μm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM0.15-1.15 sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM0.15-1.15. In Radvanice, local residential combustion and the metallurgical industry were the most important PM0.15-1.15 sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.
Collapse
Affiliation(s)
- Petra Pokorná
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic.
| | | | - Jaroslav Schwarz
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Jakub Ondráček
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Lucie Ondráčková
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Petr Vodička
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Naděžda Zíková
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Pavel Moravec
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Jan Bendl
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Miroslav Klán
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Jan Hovorka
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Yongjing Zhao
- Air Quality Research Center, University of California, Davis, One Shields Ave, Davis, CA, 95616-5270, USA
| | - Steven S Cliff
- Air Quality Research Center, University of California, Davis, One Shields Ave, Davis, CA, 95616-5270, USA
| | - Vladimír Ždímal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 1/135, 165 02, Prague 6, Czech Republic
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY, 14642-0708, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699-5708, USA
| |
Collapse
|
14
|
Pirhadi M, Mousavi A, Sowlat MH, Janssen NAH, Cassee FR, Sioutas C. Relative contributions of a major international airport activities and other urban sources to the particle number concentrations (PNCs) at a nearby monitoring site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114027. [PMID: 32014744 DOI: 10.1016/j.envpol.2020.114027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/25/2019] [Accepted: 01/19/2020] [Indexed: 05/20/2023]
Abstract
In this study, the positive matrix factorization (PMF) source apportionment model was employed to quantify the contributions of airport activities to particle number concentrations (PNCs) at Amsterdam Schiphol. Time-resolved particle number size distributions in parallel with the concentrations of auxiliary variables, including gaseous pollutants (NOx and CO), black carbon, PM2.5 mass, and number of arrivals/departures were measured for 32 sampling days over a 6-month period near Schiphol airport to be used in the model. PMF results revealed that airport activities, cumulatively, accounted for around 79.3% of PNCs and our model segregated them into three major groups: (i) aircraft departures, (ii) aircraft arrivals, and (iii) ground service equipment (GSE) (with some contributions of local road traffic, mostly from airport parking lots). Aircraft departures and aircraft arrivals showed mode diameters <20 nm and contributed, respectively, to 46.1% and 26.7% of PNCs. The factor GSE/local road traffic, with a mode diameter of around 60-80 nm, accounted for 6.5% of the PNCs. Road traffic related mainly to the surrounding freeways was characterized with a mode diameter of 30-40 nm; this factor contributed to 18.0% of PNCs although its absolute PNCs was comparable with that of areas heavily impacted by traffic emissions. Lastly, urban background with a mode diameter at 150-225 nm, had a minimal contribution (2.7%) to PNCs while dominating the particle volume/mass concentrations with a contribution of 58.2%. These findings illustrate the dominant role of the airport activities in ambient PNCs in the surrounding areas. More importantly, the quantification of the contributions of different airport activities to PNCs is a useful tool to better control and limit the increased PNCs near the airports that could adversely impact the health of the adjacent urban communities.
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, Netherlands
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Sun X, Wang H, Guo Z, Lu P, Song F, Liu L, Liu J, Rose NL, Wang F. Positive matrix factorization on source apportionment for typical pollutants in different environmental media: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:239-255. [PMID: 31916559 DOI: 10.1039/c9em00529c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bibliometric analysis of published papers with the key words "positive matrix factorization" and "source apportionment" in 'Web of Science', reveals that more than 1000 papers are associated with this research and that approximately 50% of these were produced in Asia. As a receptor-based model, positive matrix factorization (PMF) has been widely used for source apportionment of various environmental pollutants, such as persistent organic pollutants (POPs), heavy metals, volatile organic compounds (VOCs) as well as inorganic cations and anions in the last decade. In this review, based on the papers mainly from 2008 to 2018 that focused on source apportionment of pollutants in different environmental media, we provide a comparison and summary of the source categories of typical environmental pollutants, with a special focus on polycyclic aromatic hydrocarbons (PAHs), apportioned using PMF. Based on the statistical average, coal combustion and vehicular emission, are shown to be the two most common sources of PAHs, and contribute much more to emissions than other sources, such as biomass burning, biogenic sources and waste incineration. Heavy metals were mainly from agricultural activities, industrial and vehicular emissions and mining activities. Quantitative source apportionment on pollutants such as VOCs and particulate matter were also apportioned, showing a prominent contribution from fossil-fuel combustion. We conclude that, aside from natural sources, abatement strategies should be focused on changes in energy structure and industrial activities, especially in China. Source apportionment of typical POPs including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), halogenated flame retardants (HFRs) and perfluorinated compounds (PFCs) is less comprehensive and further study is required.
Collapse
Affiliation(s)
- Xiang Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China and Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Haoqi Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China and Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China and Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
| | - Fuzhong Song
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
| | - Li Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
| | - Jiaxin Liu
- Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Neil L Rose
- Environmental Change Research Centre, University College London, Gower Street, London WC1E 6BT, UK
| | - Fengwen Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China and Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400030, China. and Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Gonet T, Maher BA. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9970-9991. [PMID: 31381310 DOI: 10.1021/acs.est.9b01505] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter poses a serious threat to human health. Exposure to nanosized (<0.1 μm), vehicle-derived particulates may be hazardous due to their bioreactivity, their ability to penetrate every organ, including the brain, and their abundance in the urban atmosphere. Fe-bearing nanoparticles (<0.1 μm) in urban environments may be especially important because of their pathogenicity and possible association with neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This review examines current knowledge regarding the sources of vehicle-derived Fe-bearing nanoparticles, their chemical and mineralogical compositions, grain size distribution and potential hazard to human health. We focus on data reported for the following sources of Fe-bearing nanoparticles: exhaust emissions (both diesel and gasoline), brake wear, tire and road surface wear, resuspension of roadside dust, underground, train and tram emissions, and aircraft and shipping emissions. We identify limitations and gaps in existing knowledge as well as future challenges and perspectives for studies of airborne Fe-bearing nanoparticles.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
17
|
Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul. ATMOSPHERE 2019. [DOI: 10.3390/atmos10080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper presents measurements and analyses of the concentrations of black carbon (BC), particle number concentration (PNC), and PM2.5 (≤2.5 μm) while commuting by ferries in Istanbul. In this context, exposures to the mentioned pollutants were estimated for car ferry, fast ferry, and at the piers, and for two travel routes, for a total of 89 trips. BC, PNC, and PM2.5 measurements were simultaneously performed in a ferry and at the piers, and the correlation between pollutant concentrations, meteorological parameters, and environmental factors were analyzed. The mean concentrations for all pollutants in car ferry were lower than the average concentrations in fast ferry. The concentration ratios of fast ferry to car ferry for BC, PNC, and PM2.5 were 6.4, 1.2, and 1.3, respectively. High variability in the concentrations was observed at the piers and in ferry during berthing. The highest mean concentrations (±standard deviation) of BC (14.3 ± 10.1 µg m−3) and PNC (42,005 ± 30,899 pt cm−3) were measured at Yalova pier. The highest mean concentration (±standard deviation) of PM2.5 (26.1 ± 11.5) was measured at Bostancı pier. It was observed that the main external sources of BC, PNC, and PM2.5 at the piers were road transport, residential heating, and shipping activity. There were no significant correlations between BC, PNC, and PM2.5 in fast ferry, while BC was positively correlated with PNC (r = 0.61, p < 0.01) and PM2.5 (r = 0.76, p < 0.01) in car ferry. At the piers, significant relations between pollutants and meteorological variables were observed. It was noticed that there was no significant difference between summer and winter in ferry and at the pier concentrations of BC, PNC, and PM2.5 except for Yenikapı pier and Bakırköy pier. The highest total exposure to PNC and PM2.5 was in car ferry mode, while the highest total exposure to BC was in fast ferry mode.
Collapse
|
18
|
Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, Sahani M, Wahab MIA, Yusup Y, Maulud KNA, Yusoff MF, Amin N, Akhtaruzzaman M, Kindzierski W, Kumar P. Airborne particles in the city center of Kuala Lumpur: Origin, potential driving factors, and deposition flux in human respiratory airways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1195-1206. [PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 05/28/2023]
Abstract
Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
Collapse
Affiliation(s)
- Md Firoz Khan
- Center for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Ahmad Hazuwan Hamid
- Center for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Md Aynul Bari
- School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada; Department of Environmental & Sustainable Engineering, College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Abdul Basit Ahmad Tajudin
- Environmental Health and Industrial Safety Program, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50586 Kuala Lumpur, Malaysia
| | - Mohd Talib Latif
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4300 Bangi, Selangor, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- Center for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4300 Bangi, Selangor, Malaysia
| | - Mazrura Sahani
- Environmental Health and Industrial Safety Program, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50586 Kuala Lumpur, Malaysia.
| | - Muhammad Ikram A Wahab
- Environmental Health and Industrial Safety Program, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50586 Kuala Lumpur, Malaysia
| | - Yusri Yusup
- Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Khairul Nizam Abdul Maulud
- Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Smart & Sustainable Township Research Centre, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohd Famey Yusoff
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4300 Bangi, Selangor, Malaysia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - Md Akhtaruzzaman
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Warren Kindzierski
- School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Prashant Kumar
- Global Center for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| |
Collapse
|
19
|
Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. ATMOSPHERE 2019. [DOI: 10.3390/atmos10010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The northeastern United States has experienced significant emissions reductions in the last two decades leading to a decrease in PM2.5, major gaseous pollutants (SO2, CO, NOx) and ultrafine particles (UFPs) concentrations. Emissions controls were implemented for coal-fired power plants, and new heavy-duty diesel trucks were equipped with particle traps and NOx control systems, and ultralow sulfur content is mandatory for both road and non-road diesel as well as residual oil for space heating. At the same time, economic changes also influenced the trends in air pollutants. Investigating the influence of these changes on ultrafine particle sources is fundamental to determine the success of the mitigation strategies and to plan future actions. Particle size distributions have been measured in Rochester, NY since January 2002. The particle sources were investigated with positive matrix factorization (PMF) of the size distributions (11–470 nm) and measured criteria pollutants during five periods (2002–2003, 2004–2007, 2008–2010, 2011–2013, and 2014–2016) and three seasons (winter, summer, and transition). Monthly, weekly, and hourly source contributions patterns were evaluated.
Collapse
|
20
|
Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. ENVIRONMENT INTERNATIONAL 2018; 118:48-59. [PMID: 29800768 PMCID: PMC6368339 DOI: 10.1016/j.envint.2018.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to ultrafine particles (UFP, particles with aerodynamic diameter < 100 nm) is associated with reduced lung function and airway inflammation in individuals with asthma. Recently, elevated UFP number concentrations (PN) from aircraft landing and takeoff activity were identified downwind of the Los Angeles International Airport (LAX) but little is known about the health impacts of airport-related UFP exposure. METHODS We conducted a randomized crossover study of 22 non-smoking adults with mild to moderate asthma in Nov-Dec 2014 and May-Jul 2015 to investigate short-term effects of exposure to LAX airport-related UFPs. Participants conducted scripted, mild walking activity on two occasions in public parks inside (exposure) and outside (control) of the high UFP zone. Spirometry, multiple flow exhaled nitric oxide, and circulating inflammatory cytokines were measured before and after exposure. Personal UFP PN and lung deposited surface area (LDSA) and stationary UFP PN, black carbon (BC), particle-bound PAHs (PB-PAH), ozone (O3), carbon dioxide (CO2) and particulate matter (PM2.5) mass were measured. Source apportionment analysis was conducted to distinguish aircraft from roadway traffic related UFP sources. Health models investigated within-subject changes in outcomes as a function of pollutants and source factors. RESULTS A high two-hour walking period average contrast of ~34,000 particles·cm-3 was achieved with mean (std) PN concentrations of 53,342 (25,529) and 19,557 (11,131) particles·cm-3 and mean (std) particle size of 28.7 (9.5) and 33.2 (11.5) at the exposure and control site, respectively. Principal components analysis differentiated airport UFPs (PN), roadway traffic (BC, PB-PAH), PM mass (PM2.5, PM10), and secondary photochemistry (O3) sources. A standard deviation increase in the 'Airport UFPs' factor was significantly associated with IL-6, a circulating marker of inflammation (single-pollutant model: 0.21, 95% CI = 0.08-0.34; multi-pollutant model: 0.18, 0.04-0.32). The 'Traffic' factor was significantly associated with lower Forced Expiratory Volume in 1 s (FEV1) (single-pollutant model: -1.52, -2.28 to -0.77) and elevated sTNFrII (single-pollutant model: 36.47; 6.03-66.91; multi-pollutant model: 64.38; 6.30-122.46). No consistent associations were observed with exhaled nitric oxide. CONCLUSIONS To our knowledge, our study is the first to demonstrate increased acute systemic inflammation following exposure to airport-related UFPs. Health effects associated with roadway traffic exposure were distinct. This study emphasizes the importance of multi-pollutant measurements and modeling techniques to disentangle sources of UFPs contributing to the complex urban air pollution mixture and to evaluate population health risks.
Collapse
Affiliation(s)
- Rima Habre
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hui Zhou
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temuulen Enebish
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott Fruin
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward Rappaport
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Leoni C, Pokorná P, Hovorka J, Masiol M, Topinka J, Zhao Y, Křůmal K, Cliff S, Mikuška P, Hopke PK. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:145-154. [PMID: 29175476 DOI: 10.1016/j.envpol.2017.10.097] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/07/2017] [Accepted: 10/25/2017] [Indexed: 05/07/2023]
Abstract
Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter <100 nm exhibit the highest deposition efficiency in human lungs. To permit apportionment of PM sources at the hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM1 were found to be associated with coal combustion factor.
Collapse
Affiliation(s)
- Cecilia Leoni
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.
| | - Petra Pokorná
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic; Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojová 2/135, 165 02 Prague 6, Czech Republic
| | - Jan Hovorka
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - Mauro Masiol
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699-5708, USA; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine CAS, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Yongjing Zhao
- Air Quality Research Center, University of California, Davis, CA 95616, USA
| | - Kamil Křůmal
- Institute of Analytical Chemistry CAS, Veveří 967/97, 602 00 Brno, Czech Republic
| | - Steven Cliff
- Air Quality Research Center, University of California, Davis, CA 95616, USA
| | - Pavel Mikuška
- Institute of Analytical Chemistry CAS, Veveří 967/97, 602 00 Brno, Czech Republic
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699-5708, USA; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|