1
|
Mueller BR, Mehta M, Campbell M, Neupane N, Cedillo G, Lee G, Coyle K, Qi J, Chen Z, George MC, Robinson-Papp J. The Autonomic Nervous System (ANS)-Immune Network in People Living With HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618447. [PMID: 39464041 PMCID: PMC11507734 DOI: 10.1101/2024.10.15.618447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background and Objectives Pre-clinical studies have demonstrated direct influences of the sympathetic and vagal/parasympathetic branches of the autonomic nervous system (ANS) on the immune system. The relevance of these pathways to the development of inflammatory disorders in humans remains unknown. We hypothesized that a comprehensive examination of the ANS-immune network in patients with HIV, would reveal that the type and severity of autonomic neuropathy (AN) would predict immune phenotypes with distinct clinical and demographic characteristics. Methods This is a cross-sectional study of 79 adult people with a history of well-controlled HIV on stable combination antiretroviral treatment (CART) recruited from a primary care clinic network within the Mount Sinai Health System in New York City. All participants underwent a standardized battery of autonomic function tests summarized as the Composite Autonomic Severity Score (CASS) and vagal and adrenergic baroreflex sensitivity (BRS-V and BRS-A). Immune profiling included: 1) measurement of interleukin-6 (IL-6) as part of the Olink assay Target 96 Inflammation Panel, 2) non-negative matrix factorization (NMF) clustering analyses on Olink immune biomarkers, and 3) mass cytometry (CyTOF) on a subset of participants with and without autonomic neuropathy (N = 10). Results Reduced activity of caudal vagal circuitry involved in the cholinergic anti-inflammatory pathway (CAP) predicted higher levels of IL-6 (Spearman's rho = -0.352, p=0.002). The comprehensive assessment of the ANS-immune network showed four immunotypes defined by NMF analyses. A pro-inflammatory immunotype defined by elevations in type 1 cytokines (IL-6, IL-17) and increased numbers of CD8+ T-cells was associated with autonomic neuropathy (AN). This association was driven by deficits in the cardiovascular sympathetic nervous system and remained strongly significant after controlling for the older age and greater burden of co-morbid illness among participants with this immunotype (aOR=4.7, p=0.017). Discussion Our results provide novel support for the clinical relevance of the CAP in patients with chronic inflammatory AN. These data also provide insight regarding the role of the sympathetic nervous system and aging in the progression and development of co-morbidities in patients with chronic HIV and support future research aimed at developing therapies focused on modulation of the sympathetic and parasympathetic/vagal nervous system.
Collapse
Affiliation(s)
- Bridget R Mueller
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Mitali Mehta
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Maya Campbell
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Niyati Neupane
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Gabriela Cedillo
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Kaitlyn Coyle
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Jinging Qi
- Icahn School of Medicine at Mount Sinai, Human Immune Monitoring Center (HIMC); New York City, NY, USA
| | - Zhihong Chen
- Icahn School of Medicine at Mount Sinai, Human Immune Monitoring Center (HIMC); New York City, NY, USA
| | - Mary Catherine George
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| |
Collapse
|
2
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
3
|
Mao G, Tang J, Xu M, Okeke ES, Dong F, Chen Y, Gao J, Feng W, Zhao T, Wu X, Yang L. Role of autonomic nervous system in BDE-209 maternal exposure induced immunotoxicity in female offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:4397-4416. [PMID: 38808594 DOI: 10.1002/tox.24353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Decabrominated diphenyl ether (BDE-209) is a typical persistent organic pollutant that can cross the placental barrier, increasing the exposure risk for offspring. Norepinephrine (NE) from nerve terminals and acetylcholine (Ach) can bind to specific receptors on immune cells, inhibit the immune function of the body then cause immunotoxicity. However, whether maternal exposure to BDE-209 could lead to immunotoxicity in the offspring by acting on the sympathetic and parasympathetic nervous systems remains unclear. In view of this, the pregnancy and lactation rat BDE-209 exposure model was established and the results demonstrated that pregnancy and lactation BDE-209 exposure could induce immunotoxicity to female offspring via affecting immunopathology (hematological and biochemical parameters, organ indices, and spleen histopathological), decreasing humoral immunity (serum hemolysin, immunoglobulins, and cytokine productions), damaging cellular immunity (splenic lymphocytes and spleen cytokine productions), and restraining nonspecific immunity. Moreover, a dramatically significant correlation was observed between spleen nerve indices and immunity indices. Additionally, the mechanism revealed that maternal BDE-209 exposure caused offspring immunotoxicity through (1) activating MHC/PKCθ/NF-κB pathway; (2) promoting sympathetic nervous pathway, by upregulating the expression of β2AR protein, which in turn elevating cAMP, following activate PKA and phosphorylate CREB, ultimately leading to immunotoxicity;(3) activating parasympathetic nerve pathway by reducing the binding with Ach and α7nAchR, upregulating the expression of JAK2 and phosphorylating STAT3, induced immunotoxicity of female offspring.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Junjie Tang
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muge Xu
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Enugu, Nigeria
| | - Fangyuan Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jinlin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weiwei Feng
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangyang Wu
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Straub RH, Cutolo M. A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases. Neuroimmunomodulation 2024; 31:183-210. [PMID: 39168106 DOI: 10.1159/000540959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND All active scientists stand on the shoulders of giants and many other more anonymous scientists, and this is not different in our field of psycho-neuro-endocrine immunology in rheumatic diseases. Too often, the modern world of publishing forgets about the collective enterprise of scientists. Some journals advise the authors to present only literature from the last decade, and it has become a natural attitude of many scientists to present only the latest publications. In order to work against this general unempirical behavior, neuroimmunomodulation devotes the 30th anniversary issue to the history of medical science in psycho-neuro-endocrine immunology. SUMMARY Keywords were derived from the psycho-neuro-endocrine immunology research field very well known to the authors (R.H.S. has collected a list of keywords since 1994). We screened PubMed, the Cochran Library of Medicine, Embase, Scopus database, and the ORCID database to find relevant historical literature. The Snowballing procedure helped find related work. According to the historical appearance of discoveries in the field, the order of presentation follows the subsequent scheme: (1) the sensory nervous system, (2) the sympathetic nervous system, (3) the vagus nerve, (4) steroid hormones (glucocorticoids, androgens, progesterone, estrogens, and the vitamin D hormone), (5) afferent pathways involved in fatigue, anxiety, insomnia, and depression (includes pathophysiology), and (6) evolutionary medicine and energy regulation - an umbrella theory. KEY MESSAGES A brief history on psycho-neuro-endocrine immunology cannot address all relevant aspects of the field. The authors are aware of this shortcoming. The reader must see this review as a viewpoint through the biased eyes of the authors. Nevertheless, the text gives an overview of the history in psycho-neuro-endocrine immunology of rheumatic diseases.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Department of Internal Medicine DIMI, Postgraduate School of Rheumatology, University of Genova, Genoa, Italy
| |
Collapse
|
5
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Mlakić M, Talić S, Odak I, Barić D, Šagud I, Škorić I. Cholinesterase Inhibition and Antioxidative Capacity of New Heteroaromatic Resveratrol Analogs: Synthesis and Physico-Chemical Properties. Int J Mol Sci 2024; 25:7401. [PMID: 39000508 PMCID: PMC11242640 DOI: 10.3390/ijms25137401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The targeted compounds in this research, resveratrol analogs 1-14, were synthesized as mixtures of isomers by the Wittig reaction using heterocyclic triphenylphosphonium salts and various benzaldehydes. The planned compounds were those possessing the trans-configuration as the biologically active trans-resveratrol. The pure isomers were obtained by repeated column chromatography in various isolated yields depending on the heteroaromatic ring. It was found that butyrylcholinesterase (BChE) was more sensitive to the heteroaromatic resveratrol analogs than acetylcholinesterase (AChE), except for 6, the methylated thiophene derivative with chlorine, which showed equal inhibition toward both enzymes. Compounds 5 and 8 achieved the highest BChE inhibition with IC50 values of 22.9 and 24.8 μM, respectively. The same as with AChE and BChE, methylated thiophene subunits of resveratrol analogs showed better enzyme inhibition than unmethylated ones. Two antioxidant spectrophotometric methods, DPPH and CUPRAC, were applied to determine the antioxidant potential of new heteroaromatic resveratrol analogs. The molecular docking of these compounds was conducted to visualize the ligand-active site complexes' structure and identify the non-covalent interactions responsible for the complex's stability, which influence the inhibitory potential. As ADME properties are crucial in developing drug product formulations, they have also been addressed in this work. The potential genotoxicity is evaluated by in silico studies for all compounds synthesized.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Stanislava Talić
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Ivana Šagud
- Croatian Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, HR-10000 Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
7
|
Bøtker HE, Seefeldt JM. Expanding the horizons of cardioprotection: unveiling a role of nonneuronal cholinergic signaling in hypoxic preconditioning. Am J Physiol Heart Circ Physiol 2024; 327:H67-H69. [PMID: 38787387 DOI: 10.1152/ajpheart.00310.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Mlakić M, Čadež T, Šinko G, Škorić I, Kovarik Z. New Heterostilbene and Triazole Oximes as Potential CNS-Active and Cholinesterase-Targeted Therapeutics. Biomolecules 2024; 14:679. [PMID: 38927082 PMCID: PMC11201660 DOI: 10.3390/biom14060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain-blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents-sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Tena Čadež
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Li WW, Shi XY, Wei T, Guo TZ, Kingery WS, Clark JD. Alpha-7 Nicotinic Acetylcholine Receptor Activation Inhibits Trauma Induced Pronociceptive Autoimmune Responses. THE JOURNAL OF PAIN 2024; 25:104422. [PMID: 37951284 PMCID: PMC11058031 DOI: 10.1016/j.jpain.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Both autonomic nervous system dysfunction and immune system activation are characteristic of chronic pain after limb injuries. Cholinergic agonists reduce immune system activation in many settings. We hypothesized, therefore, that alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist administration would reduce nociceptive and immune changes after tibia fracture and cast immobilization in mice. Fracture mice were treated with either vehicle, a low (.2 mg/kg) dose, or a high (1 mg/kg) dose of the selective α7nAChR agonist PNU-282987 for 4 weeks. We assessed hindpaw allodynia and weight bearing as behavioral outcomes. The assessment of adaptive immune responses included regional lymph node hypertrophy, germinal center formation, α7nAChR expression, and IgM deposition. Assessment of innate immune system activation focused on IL-1β and IL-6 generation in fractured hindlimb skin. We observed that mechanical allodynia and unweighting were alleviated by PNU-282987 treatment. Drug treatment also reduced popliteal lymph node hypertrophy and germinal center formation. Immunohistochemical studies localized α7nAChR to germinal center B lymphocytes, and this expression increased after fracture. Analysis of fracture limb hindpaw skin demonstrated increased inflammatory mediator (IL-1β and IL-6) levels and IgM deposition, which were abrogated by PNU-282987. Serum analyses demonstrated fracture-induced IgM reactivity against keratin 16, histone 3.2, GFAP, and NMDAR-2B. Administration of PNU-282987 reduced the enhancement of IgM reactivity. Collectively, these data suggest that the α7nAChR is involved in regulating posttraumatic innate and adaptive immune responses and the associated nociceptive sensitization. PERSPECTIVE: These studies evaluate the effects of a selective α7nAChR agonist in a tibial fracture/cast immobilization model of limb pain. Administration of the drug reduced nociceptive and functional changes 4 weeks after injury. These novel findings suggest that well-tolerated α7nAChR agonists may be viable analgesics for chronic pain after limb injuries.
Collapse
Affiliation(s)
- Wen-wu Li
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Xiao-you Shi
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - J. David Clark
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
- Anesthesiology Service Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| |
Collapse
|
10
|
Ihnatovych I, Saddler RA, Sule N, Szigeti K. Translational implications of CHRFAM7A, an elusive human-restricted fusion gene. Mol Psychiatry 2024; 29:1020-1032. [PMID: 38200291 PMCID: PMC11176066 DOI: 10.1038/s41380-023-02389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Genes restricted to humans may contribute to human-specific traits and provide a different context for diseases. CHRFAM7A is a uniquely human fusion gene and a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR). The α7 nAChR has been a promising target for diseases affecting cognition and higher cortical functions, however, the treatment effect observed in animal models failed to translate into human clinical trials. As CHRFAM7A was not accounted for in preclinical drug screens it may have contributed to the translational gap. Understanding the complex genetic architecture of the locus, deciphering the functional impact of CHRFAM7A on α7 nAChR neurobiology and utilizing human-relevant models may offer novel approaches to explore α7 nAChR as a drug target.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ruth-Ann Saddler
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Kinga Szigeti
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
11
|
Azam MA, Weinrib AZ, Slepian PM, Rosenbloom BN, Waisman A, Clarke H, Katz J. Effects of perioperative clinical hypnosis on heart rate variability in patients undergoing oncologic surgery: secondary outcomes of a randomized controlled trial. FRONTIERS IN PAIN RESEARCH 2024; 5:1354015. [PMID: 38524266 PMCID: PMC10957530 DOI: 10.3389/fpain.2024.1354015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Clinical hypnosis has been proposed for post-surgical pain management for its potential vagal-mediated anti-inflammatory properties. Evidence is needed to understand its effectiveness for post-surgical recovery. Iin this secondary outcome study, it was hypothesized that surgical oncology patients randomized to receive perioperative clinical hypnosis (CH) would demonstrate greater heart-rate variability (HRV) during rest and relaxation at a 1-month post-surgery assessment compared to a treatment-as-usual group (TAU). Methods After REB approval, trial registration and informed consent, 92 participants were randomized to receive CH (n = 45) or TAU (n = 47). CH participants received a CH session before surgery and during post-surgical in-hospital stay HRV was assessed during rest (5 min) and relaxation (10 min) before and 1-month after surgery. Pain intensity was obtained using a 0-10 numeric rating scale pre and post 1-week and 1-month post surgery. Results One month after surgery, HRV was significantly higher in CH group (n = 29) during rest and relaxation (both p < 0.05, d = 0.73) than TAU group (n = 28). By contrast, rest and relaxation HRV decreased from pre- to 1-month post-surgery for the TAU (both p < 0.001, d > 0.48) but not the CH group. Pain intensity increased from pre-surgery to 1-week post-surgery (p < 0.001, d = 0.50), and decreased from 1-week to 1-month post-surgery (p = 0.005, d = 0.21) for all participants. Discussion The results suggest that hypnosis prevents the deleterious effects of surgery on HRV by preserving pre-operative vagal activity. These findings underscore the potential of clinical hypnosis in mitigating the adverse effects of surgery on autonomic function and may have significant implications for enhancing post-surgical recovery and pain management strategies. Clinical Trial Registration ClinicalTrials.gov, identifier (NCT03730350).
Collapse
Affiliation(s)
- Muhammad Abid Azam
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
| | - Aliza Z. Weinrib
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
| | - P. Maxwell Slepian
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto ON, Canada
| | | | - Anna Waisman
- Department of Psychology, York University, Toronto, ON, Canada
| | - Hance Clarke
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto ON, Canada
| | - Joel Katz
- Department of Psychology, York University, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto ON, Canada
| |
Collapse
|
12
|
Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis 2024; 30:482-495. [PMID: 37738641 DOI: 10.1093/ibd/izad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing condition with no known etiology and is characterized by disrupted gut homeostasis, chronic inflammation, and ulcerative lesions. Although current treatments can reduce disease activity, IBD frequently recurs once treatments are discontinued, indicating that treatments are ineffective in providing long-term remission. The lack of responsiveness and reluctance of some affected persons to take medications because of potential adverse effects has enhanced the need for novel therapeutic approaches. The vagus nerve (VN) is likely important in the pathogenesis of IBD, considering the decreased activity of the parasympathetic nervous system, especially the VN, and the impaired interaction between the enteric nervous system and central nervous system in patients with IBD. Vagus nerve stimulation (VNS) has demonstrated anti-inflammatory effects in various inflammatory disorders, including IBD, by inhibiting the production of inflammatory cytokines by immune cells. It has been suggested that stimulating the vagus nerve to induce its anti-inflammatory effects may be a potential therapeutic approach for IBD. Noninvasive techniques for VNS have been developed. Considering the importance of VN function in the brain-gut axis, VNS is a promising treatment option for IBD. This review discusses the potential therapeutic advantages and drawbacks of VNS, particularly the use of noninvasive transcutaneous auricular vagus nerve stimulation.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| |
Collapse
|
13
|
Li XY, Liu JQ, Wang Y, Chen Y, Hu WH, Lv YX, Wu Y, Lv J, Tang JM, Kong D. VNS improves VSMC metabolism and arteriogenesis in infarcted hearts through m/n-AChR-Akt-SDF-1α in adult male rats. J Mol Histol 2024; 55:51-67. [PMID: 38165566 PMCID: PMC10830782 DOI: 10.1007/s10735-023-10171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Vagal nerve stimulation (VNS) provides a novel therapeutic strategy for injured hearts by activating cholinergic anti-inflammatory pathways. However, little information is available on the metabolic pattern and arteriogenesis of VSMCs after MI. VNS has been shown to stimulate the expression of CPT1α, CPT1β, Glut1, Glut4 and SDF-1α in coronary VSMCs, decreasing the number of CD68-positive macrophages while increasing CD206-positive macrophages in the infarcted hearts, leading to a decrease in TNF-α and IL-1β accompanied by a reduced ratio of CD68- and CD206-positive cells, which were dramatically abolished by atropine and mecamylamine in vivo. Knockdown of SDF-1α substantially abrogated the effect of VNS on macrophagecell alteration and inflammatory factors in infarcted hearts. Mechanistically, ACh induced SDF-1α expression in VSMCs in a dose-dependent manner. Conversely, atropine, mecamylamine, and a PI3K/Akt inhibitor completely eliminated the effect of ACh on SDF-1α expression. Functionally, VNS promoted arteriogenesis and improved left ventricular performance, which could be abolished by Ad-shSDF-1α. Thus, VNS altered the VSMC metabolism pattern and arteriogenesis to repair the infarcted heart by inducing SDF-1α expression, which was associated with the m/nAChR-Akt signaling pathway.
Collapse
Affiliation(s)
- Xing-Yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jia-Qi Liu
- Nursing College, Hubei Province Chinese Medicine Hospital, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Wen-Hui Hu
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan-Xia Lv
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing Lv
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Deying Kong
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China.
| |
Collapse
|
14
|
Mlakić M, Odak I, Barić D, Talić S, Šagud I, Štefanić Z, Molčanov K, Lasić Z, Kovačević B, Škorić I. New resveratrol analogs as improved biologically active structures: Design, synthesis and computational modeling. Bioorg Chem 2024; 143:106965. [PMID: 38064804 DOI: 10.1016/j.bioorg.2023.106965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
New analogs of the well-known bioactive trihydroxy-stilbene resveratrol were synthesized to investigate their potential biological activity. The focus was on assessing their ability to inhibit cholinesterase enzymes (ChEs) and their antioxidative properties, which were thoroughly examined. New resveratrol analogs were synthesized through Wittig or McMurry reaction in moderate-to-good yields. In all synthetic pathways, mixtures of cis- and trans-isomers were obtained, then separated by chromatography, and trans-isomers were isolated as targeted structures. The stilbene derivatives underwent evaluation for antioxidant activity (AOA) using DPPH and CUPRAC assay, and their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was also measured. The biological tests have shown that the same compounds exhibited significant antioxidative and butyrylcholinesterase inhibitory potential, as evidenced by lower IC50 values compared to the established standards, trans-resveratrol, and galantamine, respectively. Additionally, molecular docking of the selected synthesized potential inhibitors to the enzyme's active site was performed, followed by assessing the complex stability using molecular dynamics simulation lasting 100 ns. Lastly, the new compounds underwent examination to determine their potential mutagenicity.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000 Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88 000 Mostar, Bosnia and Herzegovina.
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia
| | - Stanislava Talić
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88 000 Mostar, Bosnia and Herzegovina
| | - Ivana Šagud
- Croatian Agency for Medicinal Products and Medical Devices, Ksaverska Cesta 4, HR-10 000 Zagreb, Croatia
| | - Zoran Štefanić
- Division of Physical Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia
| | - Krešimir Molčanov
- Division of Physical Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia
| | - Zlata Lasić
- Teva api Analytical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10 000 Zagreb, Croatia
| | - Borislav Kovačević
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000 Zagreb, Croatia
| |
Collapse
|
15
|
Yang J, Chen X, Wang W, Su Y, Liu K, Abudusalamu A, Li D, He Y, Wang P, Xiong X, Feng J. Role of cholinergic innervation in biliary remnants of patients with biliary atresia. Front Pediatr 2024; 11:1278978. [PMID: 38259596 PMCID: PMC10800818 DOI: 10.3389/fped.2023.1278978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Objective Biliary innervation is considered important in regulating the function of bile ducts, whereas the role of innervation in the hepatobiliary system of patients with biliary atresia (BA) remains unknown. This current study aims to investigate the role of innervation in biliary remnants and analyze the relationship between the innervation and prognosis of BA after surgery. Methods Eighty-seven patients with type III BA who underwent the Kasai procedure were consecutively enrolled from January 2017 to September 2020. Innervation and ductules in remnants were examined by pathologists. Liver function, onset of cholangitis, jaundice clearance, and survival with the native liver were recorded. Patients were followed up for 24 months. The relationship between innervation and prognosis was analyzed. Results In total, 67 patients had bile drainage postoperatively, and 21 biliary remnants contained neuronal plexuses where there was no neuron but nerve fiber bundles. Acetylcholinesterase staining was positive in all plexuses. In patients with bile drainage, those with plexuses had improved postoperative liver function, significantly better jaundice clearance 3 or 6 months postoperatively (50.0% vs. 19.1%, or 90.0% vs. 63.8%, respectively), fewer episodes of early cholangitis (10.0% vs. 34.0%), and better survival (80.0% vs. 61.7%) compared to those without. In addition, a larger area of plexuses was associated with a larger area of ductules (R2 = 0.786, p = 0.000), less frequent (p = 0.000) and later cholangitis onset (p = 0.012), and better jaundice clearance (p = 0.063). Conclusions Increased cholinergic innervation in biliary remnants may help reduce the onset of cholangitis and lead to better and earlier jaundice clearance. Thus, it improves the postoperative prognosis of patients with BA.
Collapse
Affiliation(s)
- Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqing Chen
- Department of Pediatric Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanwei Su
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Keqin Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Adila Abudusalamu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dandan Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ying He
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Pusu Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaofeng Xiong
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Soares JÍ, da Silva TM, Castania JA, Reis UÁ, Roque LFM, Ribeiro AB, Salgado HC, Ribeiro AB. Electrical carotid sinus nerve stimulation attenuates experimental colitis induced by acetic acid in rats. Life Sci 2023; 335:122281. [PMID: 37984513 DOI: 10.1016/j.lfs.2023.122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
AIMS The carotid bodies are sensors that detect physiological signals and convey them to the central nervous system, where the stimuli are processed inducing reflexes through efferent pathways. Recent studies have demonstrated that electrical stimulation of the carotid sinus nerve (CSN) triggers the anti-inflammatory reflex under different conditions. However, whether this electrical stimulation attenuates colitis was never examined. This study aimed to evaluate if the electrical CSN stimulation attenuates the experimental colitis induced by intrarectal administration of acetic acid in rats. METHODS Electrodes were implanted around the CSN to stimulate the CSN, and a catheter was inserted into the left femoral artery to record the arterial pressure. The observation of hypotensive responses confirmed the effectiveness of the electrical CNS stimulation. This maneuver was followed by a 4 % acetic acid or saline administered intrarectally. After 24 h, colons were segmented into distal and proximal parts for macroscopy, histological and biochemical assessment. KEY FINDINGS As expected, the electrical CSN stimulation was effective in decreasing arterial pressure in saline and colitis rats. Moreover, electrical CSN stimulation effectively reduced colonic tissue lesions, colitis scores, and histopathologic parameters associated with colitis. In addition, the CSN stimulation also reduced the colonic mucosa pro-inflammatory cytokine interleukin-1 beta, and increased the anti-inflammatory interleukin-10, in rats submitted to colitis. SIGNIFICANCE These findings indicated that electrical CSN stimulation breaks the vicious cycle of local colon inflammation in colitis, which might contribute to its better outcome.
Collapse
Affiliation(s)
- Jefferson Ícaro Soares
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thaís Marques da Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Barão de Mauá University Center, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
18
|
Lawrence S, Mueller BR, Benn EKT, Kim-Schulze S, Kwon P, Robinson-Papp J. Autonomic Neuropathy is Associated with More Densely Interconnected Cytokine Networks in People with HIV. J Neuroimmune Pharmacol 2023; 18:563-572. [PMID: 37923971 PMCID: PMC10997189 DOI: 10.1007/s11481-023-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
The autonomic nervous system (ANS) plays a complex role in the regulation of the immune system, with generally inhibitory effects via activation of β-adrenergic receptors on immune cells. We hypothesized that HIV-associated autonomic neuropathy (HIV-AN) would result in immune hyperresponsiveness which could be depicted using network analyses. Forty-two adults with well-controlled HIV underwent autonomic testing to yield the Composite Autonomic Severity Score (CASS). The observed range of CASS was 2-5, consistent with normal to moderate HIV-AN. To construct the networks, participants were divided into 4 groups based on the CASS (i.e., 2, 3, 4 or 5). Forty-four blood-based immune markers were included as nodes in all networks and the connections (i.e., edges) between pairs of nodes were determined by their bivariate Spearman's Rank Correlation Coefficient. Four centrality measures (strength, closeness, betweenness and expected influence) were calculated for each node in each network. The median value of each centrality measure across all nodes in each network was calculated as a quantitative representation of network complexity. Graphical representation of the four networks revealed greater complexity with increasing HIV-AN severity. This was confirmed by significant differences in the median value of all four centrality measures across the networks (p ≤ 0.025 for each). Among people with HIV, HIV-AN is associated with stronger and more numerous positive correlations between blood-based immune markers. Findings from this secondary analysis can be used to generate hypotheses for future studies investigating HIV-AN as a mechanism contributing to the chronic immune activation observed in HIV.
Collapse
Affiliation(s)
- Steven Lawrence
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Bridget R Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emma K T Benn
- Center for Scientific Diversity, Center for Biostatistics, and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick Kwon
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jessica Robinson-Papp
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
19
|
Fuse N, Hashiba H, Ishibashi K, Suzuki T, Nguyen QD, Fujii K, Ikeda-Ohtsubo W, Kitazawa H, Tanimoto H, Kurata S. Neural control of redox response and microbiota-triggered inflammation in Drosophila gut. Front Immunol 2023; 14:1268611. [PMID: 37965334 PMCID: PMC10642236 DOI: 10.3389/fimmu.2023.1268611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Background The neural system plays a critical role in controlling gut immunity, and the gut microbiota contributes to this process. However, the roles and mechanisms of gut-brain-microbiota interactions remain unclear. To address this issue, we employed Drosophila as a model organism. We have previously shown that NP3253 neurons, which are connected to the brain and gut, are essential for resistance to oral bacterial infections. Here, we aimed to investigate the role of NP3253 neurons in the regulation of gut immunity. Methods We performed RNA-seq analysis of the adult Drosophila gut after genetically inactivating the NP3253 neurons. Flies were reared under oral bacterial infection and normal feeding conditions. In addition, we prepared samples under germ-free conditions to evaluate the role of the microbiota in gut gene expression. We knocked down the genes regulated by NP3253 neurons and examined their susceptibility to oral bacterial infections. Results We found that immune-related gene expression was upregulated in NP3253 neuron-inactivated flies compared to the control. However, this upregulation was abolished in axenic flies, suggesting that the immune response was abnormally activated by the microbiota in NP3253 neuron-inactivated flies. In addition, redox-related gene expression was downregulated in NP3253 neuron-inactivated flies, and this downregulation was also observed in axenic flies. Certain redox-related genes were required for resistance to oral bacterial infections, suggesting that NP3253 neurons regulate the redox responses for gut immunity in a microbiota-independent manner. Conclusion These results show that NP3253 neurons regulate the appropriate gene expression patterns in the gut and contribute to maintain homeostasis during oral infections.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haruka Hashiba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ishibashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuro Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Quang-Dat Nguyen
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kiho Fujii
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Mlakić M, Faraho I, Odak I, Kovačević B, Raspudić A, Šagud I, Bosnar M, Škorić I, Barić D. Cholinesterase Inhibitory and Anti-Inflammatory Activity of the Naphtho- and Thienobenzo-Triazole Photoproducts: Experimental and Computational Study. Int J Mol Sci 2023; 24:14676. [PMID: 37834138 PMCID: PMC10572743 DOI: 10.3390/ijms241914676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
New 1,2,3-triazolo(thieno)stilbenes were synthesized as mixtures of isomers and efficiently photochemically transformed to their corresponding substituted thienobenzo/naphtho-triazoles in high isolated yields. The resulting photoproducts were studied as acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors without or with interconnected inhibition potential of TNF-α cytokine production. The most promising anti-inflammatory activity was shown again by naphtho-triazoles, with a derivative featuring 4-pentenyl substituents exhibiting notable potential as a cholinesterase inhibitor. To identify interactions between ligands and the active site of cholinesterases, molecular docking was performed for the best potential inhibitors. Additionally, molecular dynamics simulations were employed to assess and validate the stability and flexibility of the protein-ligand complexes generated through docking.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia; (M.M.); (I.Š.)
| | - Ivan Faraho
- Pharmacology in vitro, Selvita Ltd., Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia;
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina; (I.O.); (A.R.)
| | - Borislav Kovačević
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
| | - Anamarija Raspudić
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina; (I.O.); (A.R.)
| | - Ivana Šagud
- Croatian Agency for Medicinal Products and Medical Devices, Ksaverska Cesta 4, HR-10000 Zagreb, Croatia;
| | - Martina Bosnar
- Pharmacology in vitro, Selvita Ltd., Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia;
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia; (M.M.); (I.Š.)
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
21
|
Rigo S, Urechie V, Diedrich A, Okamoto LE, Biaggioni I, Shibao CA. Impaired parasympathetic function in long-COVID postural orthostatic tachycardia syndrome - a case-control study. Bioelectron Med 2023; 9:19. [PMID: 37670400 PMCID: PMC10481607 DOI: 10.1186/s42234-023-00121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
PURPOSE Eighty percent of patients infected by SARS-CoV-2 report persistence of one symptom beyond the 4-week convalescent period. Those with orthostatic tachycardia and orthostatic symptoms mimicking postural tachycardia syndrome, they are defined as Long-COVID POTS [LCP]. This case-control study investigated potential differences in autonomic cardiovascular regulation between LCP patients and healthy controls. METHODS Thirteen LCP and 16 healthy controls, all female subjects, were studied without medications. Continuous blood pressure and ECG were recorded during orthostatic stress test, respiratory sinus arrhythmia, and Valsalva maneuver. Time domain and power spectral analysis of heart rate [HR] and systolic blood pressure [SBP] variability were computed characterizing cardiac autonomic control and sympathetic peripheral vasoconstriction. RESULTS LCP had higher deltaHR (+ 40 ± 6 vs. + 21 ± 3 bpm, p = 0.004) and deltaSBP (+ 8 ± 4 vs. -1 ± 2 mmHg, p = 0.04) upon standing; 47% had impaired Valsalva maneuver ratio compared with 6.2% in controls (p = 0.01). Spectral analysis revealed that LCP had lower RMSSD (32.1 ± 4.6 vs. 48.9 ± 6.8 ms, p = 0.04) and HFRRI, both in absolute (349 ± 105 vs. 851 ± 253ms2, p = 0.03) and normalized units (32 ± 4 vs. 46 ± 4 n.u., p = 0.02). LFSBP was similar between groups. CONCLUSIONS LCP have reduced cardiovagal modulation, but normal sympathetic cardiac and vasoconstrictive functions. Impaired parasympathetic function may contribute to the pathogenesis of Long-COVID POTS syndrome.
Collapse
Affiliation(s)
- Stefano Rigo
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, 20090, Italy.
| | - Vasile Urechie
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrè Diedrich
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Luis E Okamoto
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Italo Biaggioni
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cyndya A Shibao
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Pongratz G, Straub RH. [Role of the sympathetic nervous system in chronic inflammation]. Z Rheumatol 2023:10.1007/s00393-023-01387-6. [PMID: 37488245 DOI: 10.1007/s00393-023-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/26/2023]
Abstract
In this review article the current model of the interaction between the sympathetic nervous system (SNS) and the immune system in the context of chronic inflammation is presented. Mechanisms in the interaction between the SNS and the immune system are shown, which are similar for all disease entities: 1) the biphasic effect of the sympathetic system on the inflammatory response with a proinflammatory, stimulating effect before and during the activation of the immune system (early) and a more inhibitory effect in late phases of immune activation (chronic). 2) The interruption of communication between immune cells and the brain by withdrawal of sympathetic nerve fibers from areas of inflammation, such as the spleen, lymph nodes or peripheral foci of inflammation. 3) The local replacement of catecholamines by neurotransmitter-producing cells to fine-tune the local immune response independently of the brain. 4) Increased activity of the SNS due to an imbalance of the autonomic nervous system at the systemic level, which provides an explanation for known disease sequelae and comorbidities due to the long duration of chronic inflammatory reactions, such as increased cardiovascular risk with hypertension, diabetes mellitus and catabolic metabolism. The understanding of neuroimmune interactions can lead to new therapeutic approaches, e.g., a stimulation of beta-adrenergic and even more an inhibition of alpha-adrenergic receptors or a restoration of the autonomic balance in the context of arthritis ) can make an anti-inflammatory contribution (more influence of the vagus nerve); however, in order to translate the theoretical findings into clinical action that is beneficial for the patient, controlled interventional studies are required.
Collapse
Affiliation(s)
- Georg Pongratz
- Abteilung für Rheumatologie und klinische Immunologie der Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder Regensburg, Prüfeninger Str. 86, 93049, Regensburg, Deutschland.
- Medizinische Fakultät, der Universität Regensburg, Regensburg, Deutschland.
| | - Rainer H Straub
- Labor für Experimentelle Rheumatologie und Neuroendokrino-Immunologie, Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum, Regensburg, Deutschland
| |
Collapse
|
24
|
Fang YT, Lin YT, Tseng WL, Tseng P, Hua GL, Chao YJ, Wu YJ. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci 2023; 15:1173987. [PMID: 37484689 PMCID: PMC10358778 DOI: 10.3389/fnagi.2023.1173987] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a technology that provides electrical stimulation to the cervical vagus nerve and can be applied in the treatment of a wide variety of neuropsychiatric and systemic diseases. VNS exerts its effect by stimulating vagal afferent and efferent fibers, which project upward to the brainstem nuclei and the relayed circuits and downward to the internal organs to influence the autonomic, neuroendocrine, and neuroimmunology systems. The neuroimmunomodulation effect of VNS is mediated through the cholinergic anti-inflammatory pathway that regulates immune cells and decreases pro-inflammatory cytokines. Traditional and non-invasive VNS have Food and Drug Administration (FDA)-approved indications for patients with drug-refractory epilepsy, treatment-refractory major depressive disorders, and headaches. The number of clinical trials and translational studies that explore the therapeutic potentials and mechanisms of VNS is increasing. In this review, we first introduced the anatomical and physiological bases of the vagus nerve and the immunomodulating functions of VNS. We covered studies that investigated the mechanisms of VNS and its therapeutic implications for a spectrum of brain disorders and systemic diseases in the context of neuroimmunomodulation.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ye-Ting Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Lung Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Philip Tseng
- Cross College Elite Program, National Cheng Kung University, Tainan, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Gia-Linh Hua
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Xie Y, Tao S, Pan B, Yang W, Shao W, Fang X, Han D, Li J, Zhang Y, Chen R, Li W, Xu Y, Kan H. Cholinergic anti-inflammatory pathway mediates diesel exhaust PM 2.5-induced pulmonary and systemic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131951. [PMID: 37392642 DOI: 10.1016/j.jhazmat.2023.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Previous research has indicated that the cholinergic anti-inflammatory pathway (CAP) can regulate the duration and intensity of inflammatory responses. A wide range of research has demonstrated that PM2.5 exposure may induce various negative health effects via pulmonary and systemic inflammations. To study the potential role of the CAP in mediating PM2.5-induced effects, mice were treated with vagus nerve electrical stimulation (VNS) to activate the CAP before diesel exhaust PM2.5 (DEP) instillation. Analysis of pulmonary and systemic inflammations in mice demonstrated that VNS significantly reduced the inflammatory responses triggered by DEP. Meanwhile, inhibition of the CAP by vagotomy aggravated DEP-induced pulmonary inflammation. The flow cytometry results showed that DEP influenced the CAP by altering the Th cell balance and macrophage polarization in spleen, and in vitro cell co-culture experiments indicated that this DEP-induced change on macrophage polarization may act via the splenic CD4+ T cells. To further confirm the effect of alpha7 nicotinic acetylcholine receptor (α7nAChR) in this pathway, mice were then treated with α7nAChR inhibitor (α-BGT) or agonist (PNU282987). Our results demonstrated that specific activation of α7nAChR with PNU282987 effectively alleviated DEP-induced pulmonary inflammation, while specific inhibition of α7nAChR with α-BGT exacerbated the inflammatory markers. The present study suggests that PM2.5 have an impact on the CAP, and CAP may play a critical function in mediating PM2.5 exposure-induced inflammatory response. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yuanting Xie
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shimin Tao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Ivanov IA, Siniavin AE, Palikov VA, Senko DA, Shelukhina IV, Epifanova LA, Ojomoko LO, Belukhina SY, Prokopev NA, Landau MA, Palikova YA, Kazakov VA, Borozdina NA, Bervinova AV, Dyachenko IA, Kasheverov IE, Tsetlin VI, Kudryavtsev DS. Analogs of 6-Bromohypaphorine with Increased Agonist Potency for α7 Nicotinic Receptor as Anti-Inflammatory Analgesic Agents. Mar Drugs 2023; 21:368. [PMID: 37367693 DOI: 10.3390/md21060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Hypaphorines, tryptophan derivatives, have anti-inflammatory activity, but their mechanism of action was largely unknown. Marine alkaloid L-6-bromohypaphorine with EC50 of 80 μM acts as an agonist of α7 nicotinic acetylcholine receptor (nAChR) involved in anti-inflammatory regulation. We designed the 6-substituted hypaphorine analogs with increased potency using virtual screening of their binding to the α7 nAChR molecular model. Fourteen designed analogs were synthesized and tested in vitro by calcium fluorescence assay on the α7 nAChR expressed in neuro 2a cells, methoxy ester of D-6-iodohypaphorine (6ID) showing the highest potency (EC50 610 nM), being almost inactive toward α9α10 nAChR. The macrophages cytometry revealed an anti-inflammatory activity, decreasing the expression of TLR4 and increasing CD86, similarly to the action of PNU282987, a selective α7 nAChR agonist. 6ID administration in doses 0.1 and 0.5 mg/kg decreased carrageenan-induced allodynia and hyperalgesia in rodents, in accord with its anti-inflammatory action. Methoxy ester of D-6-nitrohypaphorine demonstrated anti-oedemic and analgesic effects in arthritis rat model at i.p. doses 0.05-0.26 mg/kg. Tested compounds showed excellent tolerability with no acute in vivo toxicity in dosages up to 100 mg/kg i.p. Thus, combining molecular modelling and natural product-inspired drug design improved the desired activity of the chosen nAChR ligand.
Collapse
Affiliation(s)
- Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrei E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Victor A Palikov
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Dmitry A Senko
- Center Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Lyubov A Epifanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Lucy O Ojomoko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Svetlana Y Belukhina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Nikita A Prokopev
- Department of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mariia A Landau
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yulia A Palikova
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vitaly A Kazakov
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia A Borozdina
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Arina V Bervinova
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Igor A Dyachenko
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
27
|
McGovern J, Leadbitter S, Miller G, Hounat A, Kamande I, Dolan RD, Horgan PG, Chang DK, Jamieson NB, McMillan DC. The relationship between heart rate variability and TNM stage, co-morbidity, systemic inflammation and survival in patients with primary operable colorectal cancer. Sci Rep 2023; 13:8157. [PMID: 37208421 PMCID: PMC10198985 DOI: 10.1038/s41598-023-35396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/17/2023] [Indexed: 05/21/2023] Open
Abstract
High vagal nerve activity, reliability measured by HRV, is considered protective in cancer, reducing oxidative stress, inflammation and opposing sympathetic nerve activity. The present monocentric study examines the relationship between HRV, TNM stage, co-morbidity, systemic inflammation and survival in patients who underwent potentially curative resections for colorectal cancer (CRC). Time-domain HRV measures, Standard Deviation of NN-intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD), were examined as categorical (median) and continuous variables. Systemic inflammation was determined using systemic inflammatory grade (SIG) and co-morbidity using ASA. The primary end point was overall survival (OS) and was analysed using Cox regression. There were 439 patients included in the study and the median follow-up was 78 months. Forty-nine percent (n = 217) and 48% (n = 213) of patients were categorised as having low SDNN (< 24 ms) and RMSSD (< 29.8 ms), respectively. On univariate analysis, SDNN was not significantly associated with TNM stage (p = 0.830), ASA (p = 0.598) or SIG (p = 0.898). RMSSD was not significantly associated with TNM stage (p = 0.267), ASA (p = 0.294) or SIG (p = 0.951). Neither SDNN or RMSSD, categorical or continuous, were significantly associated with OS. In conclusion, neither SDNN or RMSSD were associated with TNM stage, ASA, SIG or survival in patients undergoing potentially curative surgery for CRC.
Collapse
Affiliation(s)
- Josh McGovern
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK.
| | - Stephen Leadbitter
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Gillian Miller
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Adam Hounat
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Irvine Kamande
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Ross D Dolan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - David K Chang
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Nigel B Jamieson
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Level 2, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
| |
Collapse
|
28
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Salgado HC, Brognara F, Ribeiro AB, Lataro RM, Castania JA, Ulloa L, Kanashiro A. Autonomic Regulation of Inflammation in Conscious Animals. Neuroimmunomodulation 2023; 30:102-112. [PMID: 37232031 DOI: 10.1159/000530908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.
Collapse
Affiliation(s)
- Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fernanda Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Renata Maria Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexandre Kanashiro
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin Medical Sciences Center, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Aguado L, Joya A, Garbizu M, Plaza-García S, Iglesias L, Hernández MI, Ardaya M, Mocha N, Gómez-Vallejo V, Cossio U, Higuchi M, Rodríguez-Antigüedad A, Freijo MM, Domercq M, Matute C, Ramos-Cabrer P, Llop J, Martín A. Therapeutic effect of α7 nicotinic receptor activation after ischemic stroke in rats. J Cereb Blood Flow Metab 2023:271678X231161207. [PMID: 36916034 PMCID: PMC10369150 DOI: 10.1177/0271678x231161207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Nicotinic acetylcholine α7 receptors (α7 nAChRs) have a well-known modulator effect in neuroinflammation. Yet, the therapeutical effect of α7 nAChRs activation after stroke has been scarcely evaluated to date. The role of α7 nAChRs activation with PHA 568487 on inflammation after brain ischemia was assessed with positron emission tomography (PET) using [18F]DPA-714 and [18F]BR-351 radiotracers after transient middle cerebral artery occlusion (MCAO) in rats. The assessment of brain oedema, blood brain barrier (BBB) disruption and neurofunctional progression after treatment was evaluated with T2 weighted and dynamic contrast-enhanced magnetic resonance imaging (T2 W and DCE-MRI) and neurological evaluation. The activation of α7 nAChRs resulted in a decrease of ischemic lesion, midline displacement and cell neurodegeneration from days 3 to 7 after ischemia. Besides, the treatment with PHA 568487 improved the neurofunctional outcome. Treated ischemic rats showed a significant [18F]DPA-714-PET uptake reduction at day 7 together with a decrease of activated microglia/infiltrated macrophages. Likewise, the activation of α7 receptors displayed an increase of [18F]BR-351-PET signal in ischemic cortical regions, which resulted from the overactivation of MMP-2. Finally, the treatment with PHA 568487 showed a protective effect on BBB disruption and blood brain vessel integrity after cerebral ischemia.
Collapse
Affiliation(s)
- Laura Aguado
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Leyre Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain
| | | | - María Ardaya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Naroa Mocha
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | | | - Unai Cossio
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Mari Mar Freijo
- Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain.,Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
31
|
Carmon H, Haley EC, Parikh V, Tronson NC, Sarter M. Neuro-Immune Modulation of Cholinergic Signaling in an Addiction Vulnerability Trait. eNeuro 2023; 10:ENEURO.0023-23.2023. [PMID: 36810148 PMCID: PMC9997697 DOI: 10.1523/eneuro.0023-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Sign-tracking (ST) describes the propensity to approach and contact a Pavlovian reward cue. By contrast, goal-trackers (GTs) respond to such a cue by retrieving the reward. These behaviors index the presence of opponent cognitive-motivational traits, with STs exhibiting attentional control deficits, behavior dominated by incentive motivational processes, and vulnerability for addictive drug taking. Attentional control deficits in STs were previously attributed to attenuated cholinergic signaling, resulting from deficient translocation of intracellular choline transporters (CHTs) into synaptosomal plasma membrane. Here, we investigated a posttranslational modification of CHTs, poly-ubiquitination, and tested the hypothesis that elevated cytokine signaling in STs contributes to CHT modification. We demonstrated that intracellular CHTs, but not plasma membrane CHTs, are highly ubiquitinated in male and female sign-tracking rats when compared with GTs. Moreover, levels of cytokines measured in cortex and striatum, but not spleen, were higher in STs than in GTs. Activation of the innate immune system by systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) elevated ubiquitinated CHT levels in cortex and striatum of GTs only, suggesting ceiling effects in STs. In spleen, LPS increased levels of most cytokines in both phenotypes. In cortex, LPS particularly robustly increased levels of the chemokines CCL2 and CXCL10. Phenotype-specific increases were restricted to GTs, again suggesting ceiling effects in STs. These results indicate that interactions between elevated brain immune modulator signaling and CHT regulation are essential components of the neuronal underpinnings of the addiction vulnerability trait indexed by sign-tracking.
Collapse
Affiliation(s)
- Hanna Carmon
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Evan C Haley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Cao Y, Liu T, Zhou X, Fu W, Li J, Yang J. 3D anatomy of autonomic innervations in immune organs of a non-human primate and the human. FUNDAMENTAL RESEARCH 2023; 3:249-256. [PMID: 38932917 PMCID: PMC11197775 DOI: 10.1016/j.fmre.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Direct neural inputs to immune organs have been observed for decades, with their functions in neuroimmune regulation being increasingly appreciated. However, the current knowledge of such neural structures, particularly those in primate immune organs, remains incomplete. In this study, we comprehensively assessed the 3D anatomy of autonomic (i.e., sympathetic and parasympathetic) innervations in the immune organs of the rhesus macaque monkey and the human for the first time. Aided with the advanced technique of whole-tissue immunolabeling and lightsheet fluorescence imaging, we revealed the densely organized sympathetic architecture in the parenchyma of the adult monkey and human spleens. On the other hand, only sparse, if any, sympathetic inputs were observed inside the lymph nodes, Peyer's patches, or thymus. In contrast, there were minimal parasympathetic innervations in the parenchyma of these examined immune organs. Together, this work has documented the unique patterns of autonomic innervations in different immune organs of a non-human primate and the human, serving as an essential reference for future research on neuroimmune regulation in the field.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tingting Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jiali Li
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, Guangdong 518055, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
33
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
34
|
Effects of Different Exercise Types on Chrna7 and Chrfam7a Expression in Healthy Normal Weight and Overweight Type 2 Diabetic Adults. Biomedicines 2023; 11:biomedicines11020565. [PMID: 36831101 PMCID: PMC9953734 DOI: 10.3390/biomedicines11020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose: Considering that the CHRNA7 and CHRFAM7A genes can be modulated by acute or chronic inflammation, and exercise modulates inflammatory responses, the question that arises is whether physical exercise could exert any effect on the expression of these genes. Thus, the aim of this work is to identify the effects of different types of exercises on the expression of the CHRNA7, CHRFAM7A and tumor necrosis factor-α (TNF-α) in leukocytes of healthy normal weight (HNW), and overweight with type 2 diabetes (OT2D) individuals. Methods: 15 OT2D and 13 HNW participants (men and women, from 40 to 60 years old) performed in a randomized crossover design three exercise sessions: aerobic exercise (AE), resistance exercise (RE) and combined exercise (CE). Blood samples were collected at rest and post-60-min of the exercise sessions. The leukocytes were the analysis of the CHRNA7, CHRFAM7A and (TNF-α) gene expression. Results: At baseline, OT2D had higher CHRFAM7A and TNF-α expression compared to HNW. No statistical differences were observed between groups for CHRNA7; however, the HNW group presented almost twice as many subjects with the expression of this gene (24% vs. 49%). Post exercise, the CHRFAM7A increased in AE, RE and CE for HNW, and in AE and CE for OT2D. There was no significant difference for TNF-α and CHRNA7 expression between any type of exercise and group. Conclusions: Our study shows that OT2D individuals presented higher baseline expression of TNF-α and CHRFAM7A, besides evidence of decreased CHRNA7A expression in leukocytes when compared with HNW. On the other hand, acutely physical exercise induces increased CHRFAM7A expression, especially when the aerobic component is present.
Collapse
|
35
|
Low-level tragus stimulation improves autoantibody-induced hyperadrenergic postural tachycardia syndrome in rabbits. Heart Rhythm O2 2023; 4:127-133. [PMID: 36873318 PMCID: PMC9975011 DOI: 10.1016/j.hroo.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have demonstrated that antiadrenergic autoantibodies are involved in the pathophysiology of postural orthostatic tachycardia syndrome (POTS). Objective The purpose of this study was to test the hypothesis that transcutaneous low-level tragus stimulation (LLTS) ameliorates autoantibody-induced autonomic dysfunction and inflammation in a rabbit model of autoimmune POTS. Methods Six New Zealand white rabbits were co-immunized with peptides from the α1-adrenergic and β1-adrenergic receptors to produce sympathomimetic antibodies. The tilt test was performed on conscious rabbits before immunization, 6 weeks after immunization, and 10 weeks after immunization with 4-week daily LLTS treatment. Each rabbit served as its own control. Results An enhanced postural heart rate increase in the absence of significant change in blood pressure was observed in immunized rabbits, confirming our previous report. Power spectral analysis of heart rate variability during the tilt test showed a predominance of sympathetic over parasympathetic activity in immunized rabbits as reflected by markedly increased low-frequency power, decreased high-frequency power, and increased low-to-high-frequency ratio. Serum inflammatory cytokines were also significantly increased in immunized rabbits. LLTS suppressed the postural tachycardia, improved the sympathovagal balance with increased acetylcholine secretion, and attenuated the inflammatory cytokine expression. Antibody production and activity were confirmed with in vitro assays, and no antibody suppression by LLTS was found in this short-term study. Conclusion LLTS improves cardiac autonomic imbalance and inflammation in a rabbit model of autoantibody-induced hyperadrenergic POTS, suggesting that LLTS may be used as a novel neuromodulation therapy for POTS.
Collapse
|
36
|
A role of gut-microbiota-brain axis via subdiaphragmatic vagus nerve in depression-like phenotypes in Chrna7 knock-out mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110652. [PMID: 36191806 DOI: 10.1016/j.pnpbp.2022.110652] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) is known to regulate the cholinergic ascending anti-inflammatory pathway. We previously reported that Chrna7 knock-out (KO) mice show depression-like behaviors through abnormal composition of gut microbiota and systemic inflammation. Given the role of subdiaphragmatic vagus nerve in gut-microbiota-brain axis, we investigated whether subdiaphragmatic vagotomy (SDV) could affect depression-like behaviors, abnormal composition of gut microbiota, and microbes-derived metabolites in Chrna7 KO mice. SDV blocked depression-like behaviors and reduced expression of synaptic proteins in the medial prefrontal cortex (mPFC) of Chrna7 KO mice. LEfSe (linear discriminant analysis effect size) analysis revealed that the species Lactobacillus sp. BL302, the species Lactobacillus hominis, and the species Lactobacillus reuteri, were identified as potential microbial markers in the KO + SDV group. There were several genus and species altered among the three groups [wild-type (WT) + sham group, KO + sham group, KO + SDV group]. Furthermore, there were several plasma metabolites altered among the three groups. Moreover, there were correlations between relative abundance of several microbiome and behavioral data (or synaptic proteins). Network analysis showed correlations between relative abundance of several microbiome and plasma metabolites (or behavioral data). These data suggest that Chrna7 KO mice produce depression-like behaviors and reduced expression of synaptic proteins in the mPFC through gut-microbiota-brain axis via subdiaphragmatic vagus nerve.
Collapse
|
37
|
Alvarez MR, Alarcon JM, Roman CA, Lazaro D, Bobrowski-Khoury N, Baena-Caldas GP, Esber GR. Can a basic solution activate the inflammatory reflex? A review of potential mechanisms, opportunities, and challenges. Pharmacol Res 2023; 187:106525. [PMID: 36441036 DOI: 10.1016/j.phrs.2022.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Christopher A Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Deana Lazaro
- Division of Rheumatology, Department of Internal Medicine, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
38
|
Simon T, Kirk J, Dolezalova N, Guyot M, Panzolini C, Bondue A, Lavergne J, Hugues S, Hypolite N, Saeb-Parsy K, Perkins J, Macia E, Sridhar A, Vervoordeldonk MJ, Glaichenhaus N, Donegá M, Blancou P. The cholinergic anti-inflammatory pathway inhibits inflammation without lymphocyte relay. Front Neurosci 2023; 17:1125492. [PMID: 37123375 PMCID: PMC10140439 DOI: 10.3389/fnins.2023.1125492] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
The magnitude of innate inflammatory immune responses is dependent on interactions between peripheral neural and immune cells. In particular, a cholinergic anti-inflammatory pathway (CAP) has been identified in the spleen whereby noradrenaline (NA) released by splenic nerves binds to ß2-adrenergic receptors (β2-AR) on CD4+ T cells which, in turn, release acetylcholine (ACh). The binding of ACh to α7 acetylcholine receptors (α7-AChR) expressed by splenic macrophages inhibits the production of inflammatory cytokines, including tumor necrosis factor (TNF). However, the role of ACh-secreting CD4+ T-cells in the CAP is still controversial and largely based on the absence of this anti-inflammatory pathway in mice lacking T-cells (nude, FoxN1-/-). Using four conscious, non-lymphopenic transgenic mouse models, we found that, rather than acting on CD4+ T-cells, NA released by splenic nerve terminals acts directly onto β2-AR on splenic myeloid cells to exert this anti-inflammatory effect. We also show that, while larger doses of LPS are needed to trigger CAP in nude mouse strain compared to other strains, TNF production can be inhibited in these animals lacking CD4+ T-cell by stimulating either the vagus or the splenic nerve. We demonstrate that CD4+ T-cells are dispensable for the CAP after antibody-mediated CD4+ T-cell depletion in wild type mice. Furthermore, we found that NA-mediated inhibition of in vitro LPS-induced TNF secretion by human or porcine splenocytes does not require α7-AChR signaling. Altogether our data demonstrate that activation of the CAP by stimulation of vagus or splenic nerves in mice is mainly mediated by direct binding of NA to β2-AR on splenic macrophages, and suggest that the same mechanism is at play in larger species.
Collapse
Affiliation(s)
- Thomas Simon
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Joseph Kirk
- The Royal Veterinary College, Hatfield, United Kingdom
| | - Nikola Dolezalova
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Mélanie Guyot
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | | | - Alexandre Bondue
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Julien Lavergne
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | | | - Nicolas Hypolite
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Justin Perkins
- Galvani Bioelectronics, Translational Sciences, Stevenage, United Kingdom
| | - Eric Macia
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Arun Sridhar
- Galvani Bioelectronics, Translational Sciences, Stevenage, United Kingdom
| | | | - Nicolas Glaichenhaus
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Matteo Donegá
- Galvani Bioelectronics, Translational Sciences, Stevenage, United Kingdom
| | - Philippe Blancou
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
- *Correspondence: Philippe Blancou,
| |
Collapse
|
39
|
Schiweck C, Aichholzer M, Reif A, Edwin Thanarajah S. Targeting IL-17A signaling in suicidality, promise or the long arm of coincidence? Evidence in psychiatric populations revisited. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Khalil Hajiasgharzadeh, Doustvandi MA, Khiabani NA, Mohammadi M, Dastmalchi N, Jafarlou M, Baradaran B. The Effects of siRNA-Mediated Gene Silencing of Alpha-7 Nicotinic Acetylcholine Receptors on Drug Resistance to Oxaliplatin in Colorectal Cancer Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022150109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
41
|
Pooladgar P, Sakhabakhsh M, Taghva A, Soleiman-Meigooni S. Donepezil Beyond Alzheimer's Disease? A Narrative Review of Therapeutic Potentials of Donepezil in Different Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e128408. [PMID: 36942075 PMCID: PMC10024338 DOI: 10.5812/ijpr-128408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Donepezil hydrochloride is an acetylcholine esterase inhibitor studied and approved to treat Alzheimer's disease (AD). However, this drug can have positive therapeutic potential in treating different conditions, including various neurodegenerative disorders such as other types of dementia, multiple sclerosis, Parkinson's disease, psychiatric and mood disorders, and even infectious diseases. Hence, this study reviewed the therapeutic potential of this drug in treating Alzheimer's and other diseases by reviewing the articles from databases including Web of Science, Scopus, PubMed, Cochrane, and Science Direct. It was shown that donepezil could affect the pathophysiology of these diseases via mechanisms such as increasing the concentration of acetylcholine, modulating local and systemic inflammatory processes, affecting acetylcholine receptors like nicotinic and muscarinic receptors, and activating various cellular signaling via receptors like sigma-1 receptors. Despite many therapeutic potentials, this drug has not yet been approved for treating non-Alzheimer's diseases, and more comprehensive studies are needed.
Collapse
Affiliation(s)
- Parham Pooladgar
- Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sakhabakhsh
- Head of Department of Neurology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Arsia Taghva
- Department of Psychiatry, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
42
|
Yue C, Zhang C, Ying C, Jiang H. Reduced serum cholinesterase is an independent risk factor for all-cause mortality in the pediatric intensive care unit. Front Nutr 2022; 9:809449. [PMID: 36505241 PMCID: PMC9730412 DOI: 10.3389/fnut.2022.809449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Our aim was to assess the relationship between serum cholinesterase levels at intensive care unit admission and all-cause mortality in the pediatric intensive care unit. Methods We used the pediatric intensive care unit database (a large pediatric intensive care database in China from 2010 to 2018) to conduct a retrospective analysis to evaluate the serum cholinesterase levels at intensive care unit admission of 11,751 critically ill children enrolled to the intensive care unit. We analyzed the association between serum cholinesterase and all-cause mortality. Adjusted smoothing spline plots, subgroup analysis and segmented multivariate logistic regression analysis were conducted to estimate the relative risk between proportional risk between serum cholinesterase and death. Results Of the 11,751 children, 703 (5.98%) died in hospital. After adjusting for confounders, there was a negative association between serum cholinesterase and the risk of death in pediatric intensive care unit. For every 1,000 U/L increase in serum cholinesterase, the risk of death was reduced by 16% (adjusted OR = 0.84, 95% CI: 0.79, 0.89). The results of sensitivity analysis showed that in different stratified analyses (age, intensive care unit category, albumin, alanine aminotransferase, creatinine, neutrophils), the effect of serum cholinesterase on all-cause mortality remained stable. Conclusion After adjusting for inflammation, nutrition, and liver function factors, cholinesterase reduction is still an independent risk factor for pediatric intensive care unit all-cause mortality.
Collapse
|
43
|
Payne SC, Romas E, Hyakumura T, Muntz F, Fallon JB. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats. Front Neurosci 2022; 16:1012133. [PMID: 36478876 PMCID: PMC9721112 DOI: 10.3389/fnins.2022.1012133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease. Despite therapeutic advances, a significant proportion of RA patients are resistant to pharmacological treatment. Stimulation of the cervical vagus nerve is a promising alternative bioelectric neuromodulation therapeutic approach. However, recent clinical trials show cervical vagus nerve stimulation (VNS) was not effective in a significant proportion of drug resistant RA patients. Here we aim to assess if abdominal vagus nerve stimulation reduces disease severity in a collagen-induced arthritis (CIA) rat model. The abdominal vagus nerve of female Dark Agouti rats was implanted and CIA induced using collagen type II injection. VNS (1.6 mA, 200 μs pulse width, 50 μs interphase gap, 27 Hz frequency) was applied to awake freely moving rats for 3 h/day (days 11-17). At 17 days following the collagen injection, unstimulated CIA rats (n = 8) had significantly worse disease activity index, tumor necrosis factor-alpha (TNF-α) and receptor activator of NFκB ligand (RANKL) levels, synovitis and cartilage damage than normal rats (n = 8, Kruskal-Wallis: P < 0.05). However, stimulated CIA rats (n = 5-6) had significantly decreased inflammatory scores and ankle swelling (Kruskal-Wallis: P < 0.05) compared to unstimulated CIA rats (n = 8). Levels of tumor necrosis factor-alpha (TNF-α) remained at undetectable levels in stimulated CIA rats while levels of receptor activator of NFκB ligand (RANKL) were significantly less in stimulated CIA rats compared to unstimulated CIA rats (P < 0.05). Histopathological score of inflammation and cartilage loss in stimulated CIA rats were no different from that of normal (P > 0.05). In conclusion, abdominal VNS alleviates CIA and could be a promising therapy for patients with RA.
Collapse
Affiliation(s)
- Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Evange Romas
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Rheumatology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Fenella Muntz
- Experimental Sciences Medical Unit, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Piletz JE, Cooper J, Chidester K, Erson K, Melton S, Osemeka A, Patterson M, Strickland K, Wan JX, Williams K. Transepithelial Effect of Probiotics in a Novel Model of Gut Lumen to Nerve Signaling. Nutrients 2022; 14:nu14224856. [PMID: 36432542 PMCID: PMC9697698 DOI: 10.3390/nu14224856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the gut microbiome changes brain function, behavior, and psychiatric and neurological disorders. The Gut-Brain Axis (GBA) provides a neuronal pathway to explain this. But exactly how do commensal bacteria signal through the epithelial layer of the large intestine to activate GBA nerve afferents? An in vitro model is described. We differentiated two human cell lines: Caco2Bbe1 into mature epithelium on 0.4-micron filters and then SH-SY5Y into mature neurons in 24-well plates. These were co-cultured by placing the epithelium-laden filters 1 mm above the neurons. Twenty-four hours later they were tri-cultured by apical addition of 107Lactobacillus rhamnosus or Lactobacillus fermentum which settled on the epithelium. Alone, the Caco2bbe1 cells stimulated neurite outgrowth in underlying SH-SY5Y. Beyond this, the lactobacilli were well tolerated and stimulated further neurite outgrowth by 24 h post-treatment, though not passing through the filters. The results provide face validity for a first-of-kind model of transepithelial intestinal lumen-to nerve signaling. The model displays the tight junctional barrier characteristics found in the large intestine while at the same time translating stimulatory signals from the bacteria through epithelial cells to attracted neurons. The model is easy to set-up with components widely available.
Collapse
Affiliation(s)
- John E. Piletz
- Office of Global Education, Mississippi College, Clinton, MS 39058, USA
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
- Correspondence: ; Tel.: +1-(601)-925-7762 or +1-601-853-0966
| | - Jason Cooper
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Kevin Chidester
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Kyle Erson
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Sydney Melton
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Anthony Osemeka
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Megan Patterson
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | | | - Jing Xuan Wan
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Kaitlin Williams
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| |
Collapse
|
45
|
You Z, Liu B, Qi H. Neuronal regulation of B-cell immunity: Anticipatory immune posturing? Neuron 2022; 110:3582-3596. [PMID: 36327899 DOI: 10.1016/j.neuron.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The brain may sense, evaluate, modulate, and intervene in the operation of immune system, which would otherwise function autonomously in defense against pathogens. Antibody-mediated immunity is one arm of adaptive immunity that may achieve sterilizing protection against infection. Lymphoid organs are densely innervated. Immune cells supporting the antigen-specific antibody response express receptors for neurotransmitters and glucocorticoid hormones, and they are subjected to collective regulation by the neuroendocrine and the autonomic nervous system. Emerging evidence reveals a brain-spleen axis that regulates antigen-specific B cell responses and antibody-mediated immunity. In this article, we provide a synthesis of those studies as pertinent to neuronal regulation of B cell responses in secondary lymphoid organs. We propose the concept of defensive immune posturing as a brain-initiated top-down reaction in anticipation of potential tissue injury that requires immune protection.
Collapse
Affiliation(s)
- Zhiwei You
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
McKinley MJ, Martelli D, Trevizan-Baú P, McAllen RM. Divergent splanchnic sympathetic efferent nerve pathways regulate interleukin-10 and tumour necrosis factor-α responses to endotoxaemia. J Physiol 2022; 600:4521-4536. [PMID: 36056471 DOI: 10.1113/jp283217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 01/05/2023] Open
Abstract
The efferent branches of the splanchnic sympathetic nerves that enhance interleukin-10 (IL-10) and suppress tumour necrosis factor-α (TNF) levels in the reflex response to systemic immune challenge were investigated in anaesthetized, ventilated rats. Plasma levels of TNF and IL-10 were measured 90 min after intravenous lipopolysaccharide (LPS, 60 µg/kg). Splanchnic nerve section, ganglionic blockade with pentolinium tartrate or β2 adrenoreceptor antagonism with ICI 118551 all blocked IL-10 responses. Restoring plasma adrenaline after splanchnic denervation rescued IL-10 responses. TNF responses were disinhibited by splanchnic denervation or pentolinium treatment, but not by ICI 118551. Splanchnic nerve branches were cut individually or in combination in vagotomized rats, ruling out any vagal influence on results. Distal splanchnic denervation, sparing the adrenal nerves, disinhibited TNF but did not reduce IL-10 responses. Selective adrenal denervation depressed IL-10 but did not disinhibit TNF responses. Selective denervation of either spleen or liver did not affect IL-10 or TNF responses, but combined splenic and adrenal denervation did so. Finally, combined section of the cervical and lumbar sympathetic nerves did not affect cytokine responses to LPS. Together, these results show that the endogenous anti-inflammatory reflex is mediated by sympathetic efferent fibres that run in the splanchnic, but not other sympathetic nerves, nor the vagus. Within the splanchnic nerves, divergent pathways control these two cytokine responses: neurally driven adrenaline, acting via β2 adrenoreceptors, regulates IL-10, while TNF is restrained by sympathetic nerves to abdominal organs including the spleen, where non-β2 adrenoreceptor mechanisms are dominant. KEY POINTS: An endogenous neural reflex, mediated by the splanchnic, but not other sympathetic nerves, moderates the cytokine response to systemic inflammatory challenge. This reflex suppresses the pro-inflammatory cytokine tumour necrosis factor-α (TNF), while enhancing levels of the anti-inflammatory cytokine interleukin-10 (IL-10). The reflex enhancement of IL-10 depends on the splanchnic nerve supply to the adrenal gland and on β2 adrenoreceptors, consistent with mediation by circulating adrenaline. After splanchnic nerve section it can be rescued by restoring circulating adrenaline. The reflex suppression of TNF depends on splanchnic nerve branches that innervate abdominal tissues including, but not restricted to, spleen: it is not blocked by adrenal denervation or β2 adrenoreceptor antagonism. Distinct sympathetic efferent pathways are thus responsible for pro- and anti-inflammatory cytokine components of the reflex regulating inflammation.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia.,Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences, Physiology Division, University of Bologna, Bologna, Italy
| | - Pedro Trevizan-Baú
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Fornaro R, Actis GC, Caviglia GP, Pitoni D, Ribaldone DG. Inflammatory Bowel Disease: Role of Vagus Nerve Stimulation. J Clin Med 2022; 11:jcm11195690. [PMID: 36233558 PMCID: PMC9572047 DOI: 10.3390/jcm11195690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/19/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an accepted therapy for the treatment of refractory forms of epilepsy and depression. The brain–gut axis is increasingly being studied as a possible etiological factor of chronic inflammatory diseases, including inflammatory bowel diseases (IBD). A significant percentage of IBD patients lose response to treatments or experience side effects. In this perspective, VNS has shown the first efficacy data. The aim of this narrative review is to underline the biological plausibility of the use of VNS in patients affected by IBD, collect all clinical data in the literature, and hypothesize a target IBD population on which to focus the next clinical study.
Collapse
Affiliation(s)
- Riccardo Fornaro
- Department of Neurosurgery, University Hospital “Maggiore Della Carità”, 28100 Novara, Italy
| | | | - Gian Paolo Caviglia
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Torino, Italy
| | - Demis Pitoni
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Torino, Italy
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Torino, Italy
- Correspondence: ; Tel.: +39-011-6333710
| |
Collapse
|
48
|
Yasmin F, Sahito AM, Mir SL, Khatri G, Shaikh S, Gul A, Hassan SA, Koritala T, Surani S. Electrical neuromodulation therapy for inflammatory bowel disease. World J Gastrointest Pathophysiol 2022; 13:128-142. [PMID: 36187600 PMCID: PMC9516456 DOI: 10.4291/wjgp.v13.i5.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/19/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the gastrointestinal (GI) tract. It has financial and quality of life impact on patients. Although there has been a significant advancement in treatments, a considerable number of patients do not respond to it or have severe side effects. Therapeutic approaches such as electrical neuromodulation are being investigated to provide alternate options. Although bioelectric neuromodulation technology has evolved significantly in the last decade, sacral nerve stimulation (SNS) for fecal incontinence remains the only neuromodulation protocol commonly utilized use for GI disease. For IBD treatment, several electrical neuromodulation techniques have been studied, such as vagus NS, SNS, and tibial NS. Several animal and clinical experiments were conducted to study the effectiveness, with encouraging results. The precise underlying mechanisms of action for electrical neuromodulation are unclear, but this modality appears to be promising. Randomized control trials are required to investigate the efficacy of intrinsic processes. In this review, we will discuss the electrical modulation therapy for the IBD and the data pertaining to it.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Abdul Moiz Sahito
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Syeda Lamiya Mir
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Govinda Khatri
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Somina Shaikh
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ambresha Gul
- Department of Medicine, People’s University of Medical and Health Sciences, Nawabshah 67480, Pakistan
| | - Syed Adeel Hassan
- Department of Medicine, University of Louisville, Louiseville, KY 40292, United States
| | - Thoyaja Koritala
- Department of Medicine, Mayo Clinic, Rochester, NY 55902, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, College Station, TX 77843, United States
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55902, United States
| |
Collapse
|
49
|
Reardon C. Untangling webs of divergent neuroimmune circuits. J Physiol 2022; 600:4383-4384. [PMID: 36073291 DOI: 10.1113/jp283773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
50
|
Modrić M, Božičević M, Odak I, Talić S, Barić D, Mlakić M, Raspudić A, Škorić I. The structure–activity relationship and computational studies of 1,3-thiazole derivatives as cholinesterase inhibitors with anti-inflammatory activity. CR CHIM 2022. [DOI: 10.5802/crchim.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|