1
|
Kudaravalli R, Kathios N, Loui P, Davidow JY. Revisiting the musical reminiscence bump: insights from neurocognitive and social brain development in adolescence. Front Psychol 2024; 15:1472767. [PMID: 39411555 PMCID: PMC11473360 DOI: 10.3389/fpsyg.2024.1472767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Music listening is enjoyed across the lifespan and around the world. This has spurred many theories on the evolutionary purpose of music. The Music for Social Bonding hypothesis posits that the human capacity to make music evolved for the purpose of creating and preserving relationships between one another. Considering different time periods of music use across the lifespan, adolescence is especially a period of social reorientation away from family towards peers, characterized by new social bonds and increased prosocial behavior. This shift is accompanied by notable structural and functional changes in brain networks supporting reward processing and prosocial behavior. Reviewing the extant literature on developmental cognitive neuroscience and adolescent music use, we propose that neurocognitive changes in the reward system make adolescence an ideal developmental time window for investigating interactions between prosocial behavior and reward processing, as adolescence constitutes a time of relative increase in music reward valuation. Testing this hypothesis may clarify our understanding of developmental trajectories in music reward valuation, and offer insights into why music from adults' adolescence holds a great deal of personal significance.
Collapse
Affiliation(s)
| | - Nicholas Kathios
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, United States
| | - Juliet Y. Davidow
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
2
|
Morgunova A, Teixeira M, Flores C. Perspective on adolescent psychiatric illness and emerging role of microRNAs as biomarkers of risk. J Psychiatry Neurosci 2024; 49:E282-E288. [PMID: 39209460 PMCID: PMC11374446 DOI: 10.1503/jpn.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Alice Morgunova
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Maxime Teixeira
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Cecilia Flores
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| |
Collapse
|
3
|
Iacino MC, Stowe TA, Pitts EG, Sexton LL, Macauley SL, Ferris MJ. A unique multi-synaptic mechanism involving acetylcholine and GABA regulates dopamine release in the nucleus accumbens through early adolescence in male rats. eLife 2024; 13:e62999. [PMID: 38860652 PMCID: PMC11281780 DOI: 10.7554/elife.62999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.
Collapse
Affiliation(s)
- Melody C Iacino
- Department of Translational Neuroscience, Wake Forest University School of MedicineWinston-SalemUnited States
| | - Taylor A Stowe
- Department of Translational Neuroscience, Wake Forest University School of MedicineWinston-SalemUnited States
| | - Elizabeth G Pitts
- Department of Translational Neuroscience, Wake Forest University School of MedicineWinston-SalemUnited States
| | - Lacey L Sexton
- Department of Translational Neuroscience, Wake Forest University School of MedicineWinston-SalemUnited States
| | - Shannon L Macauley
- Department of Translational Neuroscience, Wake Forest University School of MedicineWinston-SalemUnited States
- Department of Physiology, University of Kentucky College of MedicineLexingtonUnited States
| | - Mark J Ferris
- Department of Translational Neuroscience, Wake Forest University School of MedicineWinston-SalemUnited States
| |
Collapse
|
4
|
Homberg JR, Brivio P, Greven CU, Calabrese F. Individuals being high in their sensitivity to the environment: Are sensitive period changes in play? Neurosci Biobehav Rev 2024; 159:105605. [PMID: 38417743 DOI: 10.1016/j.neubiorev.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
All individuals on planet earth are sensitive to the environment, but some more than others. These individual differences in sensitivity to environments are seen across many animal species including humans, and can influence personalities as well as vulnerability and resilience to mental disorders. Yet, little is known about the underlying brain mechanisms. Key genes that contribute to individual differences in environmental sensitivity are the serotonin transporter, dopamine D4 receptor and brain-derived neurotrophic factor genes. By synthesizing neurodevelopmental findings of these genetic factors, and discussing them through the lens of mechanisms related to sensitive periods, which are phases of heightened neuronal plasticity during which a certain network is being finetuned by experiences, we propose that these genetic factors delay but extend postnatal sensitive periods. This may explain why sensitive individuals show behavioral features that are characteristic of a young brain state at the level of sensory information processing, such as reduced filtering or blockade of irrelevant information, resulting in a sensory processing system that 'keeps all options open'.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Corina U Greven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Center, London, United Kingdom
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Moraes MA, Árabe LB, Resende BL, Codo BC, Reis ALDAL, Souza BR. Effects of L-Dopa, SKF-38393, and quinpirole on exploratory, anxiety- and depressive-like behaviors in pubertal female and male mice. Behav Brain Res 2024; 459:114805. [PMID: 38096922 DOI: 10.1016/j.bbr.2023.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Adolescence is a phase of substantial changes in the brain, characterized by maturational remodeling of many systems. This remodeling allows functional plasticity to adapt to a changing environment. The dopaminergic system is under morphological and physiological changes during this phase. In the present study, we investigated if changes in the dopaminergic tone alter mice behavior in a receptor and sex-specific manner, specifically at the beginning of the puberty period. We administered L-Dopa, SKF-38393 (D1 dopamine receptor agonist), and Quinpirole (D2 dopamine receptor agonist) and tested male and female mice's motor, anxiety- and depressive-like behavior. While females displayed an impaired exploratory drive, males presented an intense depressive-like response. Our results provide insights into the function of dopaminergic development in adolescent behavior and highlight the importance of studies in this time window with male and female subjects.
Collapse
Affiliation(s)
- Muiara Aparecida Moraes
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Laila Blanc Árabe
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Bruna Lopes Resende
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Beatriz Campos Codo
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana Luiza de Araújo Lima Reis
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Bruno Rezende Souza
- Laboratório de Neurodesenvolvimento e Evolução - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
6
|
Getachew B, Hauser SR, Bennani S, El Kouhen N, Sari Y, Tizabi Y. Adolescent alcohol drinking interaction with the gut microbiome: implications for adult alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:11881. [PMID: 38322648 PMCID: PMC10846679 DOI: 10.3389/adar.2024.11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Reciprocal communication between the gut microbiota and the brain, commonly referred to as the "gut-brain-axis" is crucial in maintaining overall physiological homeostasis. Gut microbiota development and brain maturation (neuronal connectivity and plasticity) appear to be synchronized and to follow the same timeline during childhood (immature), adolescence (expansion) and adulthood (completion). It is important to note that the mesolimbic reward circuitry develops early on, whereas the maturation of the inhibitory frontal cortical neurons is delayed. This imbalance can lead to increased acquirement of reward-seeking and risk-taking behaviors during adolescence, and consequently eventuate in heightened risk for substance abuse. Thus, there is high initiation of alcohol drinking in early adolescence that significantly increases the risk of alcohol use disorder (AUD) in adulthood. The underlying causes for heightened AUD risk are not well understood. It is suggested that alcohol-associated gut microbiota impairment during adolescence plays a key role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced dysregulation of microglia, either directly or indirectly through interaction with gut microbiota, may be a critical neuroinflammatory pathway leading to neurodevelopmental impairments and AUD. In this review article, we highlight the influence of adolescent alcohol drinking on gut microbiota, gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore, novel therapeutic interventions via gut microbiota manipulations are discussed briefly.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
7
|
Cascone AD, Calabro F, Foran W, Larsen B, Nugiel T, Parr AC, Tervo-Clemmens B, Luna B, Cohen JR. Brain tissue iron neurophysiology and its relationship with the cognitive effects of dopaminergic modulation in children with and without ADHD. Dev Cogn Neurosci 2023; 63:101274. [PMID: 37453207 PMCID: PMC10372187 DOI: 10.1016/j.dcn.2023.101274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) exhibit impairments in response inhibition. These impairments are ameliorated by modulating dopamine (DA) via the administration of rewards or stimulant medication like methylphenidate (MPH). It is currently unclear whether intrinsic DA availability impacts these effects of dopaminergic modulation on response inhibition. Thus, we estimated intrinsic DA availability using magnetic resonance-based assessments of basal ganglia and thalamic tissue iron in 36 medication-naïve children with ADHD and 29 typically developing (TD) children (8-12 y) who underwent fMRI scans and completed standard and rewarded go/no-go tasks. Children with ADHD additionally participated in a double-blind, randomized, placebo-controlled, crossover MPH challenge. Using linear regressions covarying for age and sex, we determined there were no group differences in brain tissue iron. We additionally found that higher putamen tissue iron was associated with worse response inhibition performance in all participants. Crucially, we observed that higher putamen and caudate tissue iron was associated with greater responsivity to MPH, as measured by improved task performance, in participants with ADHD. These results begin to clarify the role of subcortical brain tissue iron, a measure associated with intrinsic DA availability, in the cognitive effects of reward- and MPH-related dopaminergic modulation in children with ADHD and TD children.
Collapse
Affiliation(s)
- Arianna D Cascone
- Neuroscience Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica R Cohen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Gao Y, Xiong Y, Liu X, Liu J, Li J, Wang H. Examining how and why polygenic dopamine composite levels moderate adolescents' vulnerability to peer victimization. Child Adolesc Psychiatry Ment Health 2022; 16:84. [PMID: 36397091 PMCID: PMC9670640 DOI: 10.1186/s13034-022-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022] Open
Abstract
Extensive literature documents that dopaminergic genes play an important role in the link between adverse environments and adolescents' problem behavior. However, little is known about the potential mechanism underlying adolescents' vulnerability to peer victimization. The current study examined the effect of the interplay between a polygenic dopamine composite (i.e., COMT Val158Met and DRD2-141C Ins/Del polymorphisms) and peer victimization on adolescents' externalizing problems as well as the mediating role of emotion dysregulation in the interactive effects in a sample of 393 Chinese adolescents (Mean age = 14.71 years; 50.1% girls). A significant moderation of dopaminergic genetic composite was observed in girls but not in boys. In addition, emotion dysregulation partially explained the moderating effect of dopaminergic genes. Specifically, girls with genic composite indexing low dopamine activity reported a higher level of emotion dysregulation when faced with more peer victimization. More difficulties with emotion regulation, in turn, predicted more pronounced externalizing problems in girls. This study underscores polygenic underpinnings of adolescent vulnerability to negative peer experiences and suggests the importance of considering sex differences when investigating genic influence on the relationship between adverse environments and externalizing problems.
Collapse
Affiliation(s)
- Yemiao Gao
- grid.20513.350000 0004 1789 9964Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, China
| | - Yuke Xiong
- grid.20513.350000 0004 1789 9964Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing, China
| | - Xia Liu
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, China.
| | - Jinmeng Liu
- grid.20513.350000 0004 1789 9964Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, China
| | - Jinwen Li
- grid.20513.350000 0004 1789 9964Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, China
| | - Hui Wang
- grid.20513.350000 0004 1789 9964Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, China
| |
Collapse
|
9
|
Sabatier T, Kousignian I, Gomajee R, Barry K, Melchior M, Mary-Krause M. Association between Sleep Disturbances During Childhood and Smoking Trajectories During Adulthood: The Longitudinal TEMPO Cohort Study. Behav Sleep Med 2022:1-14. [PMID: 36308769 DOI: 10.1080/15402002.2022.2137511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study examined the longitudinal association between child sleep disturbances from ages 3 to 16 and smoking in adulthood among subjects from a French cohort study. METHODS Data from 2,134 subjects who participated in the French TEMPO cohort from 1991 to 2018 were used. Sleep disturbances observed from ages 3 to 16 years defined our exposure. Tobacco consumption trajectories constitute our outcomes and were ascertained by using Group-Based Trajectory Modeling, a semiparametric probabilistic method that hypothesizes the existence of distinct developmental trajectories over time within one population. The impact of SDs in childhood on adulthood's Tobacco consumption were studied using multinomial logistic regression. RESULTS Sleep disturbances at 16 years or under were observed in 26.5% of participants. Five smoking trajectories were defined: "non-smokers", "decrease in consumption at age 20 years", "low-level tobacco use", "smoking followed by cessation at age 30 years" and "high-level tobacco use". No statistically significant association between sleep disturbances and smoking trajectories was found. Compared with nonsmokers, adjusted odds-ratios and 95% Confidence Intervals for each trajectory were respectively: 0.81 [0.52-1.26], 1.28 [0.74-2.22], 1.37 [0.88-2.15] and 1.01 [0.60-1.69]. CONCLUSION These results suggest that smoking in adulthood may not be related to sleep disturbances in childhood.
Collapse
Affiliation(s)
- Thibaut Sabatier
- INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, Paris, France
| | - Isabelle Kousignian
- Unité de Recherche « Biostatistique, Traitement et Modélisation des données biologiques » BioSTM - UR 7537, Université Paris Cité, Paris, France
| | - Ramchandar Gomajee
- INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, Paris, France
| | - Katharine Barry
- INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, Paris, France
| | - Maria Melchior
- INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, Paris, France
| | - Murielle Mary-Krause
- INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Parr AC, Calabro F, Tervo-Clemmens B, Larsen B, Foran W, Luna B. Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Dev Cogn Neurosci 2022; 54:101100. [PMID: 35344773 PMCID: PMC8961188 DOI: 10.1016/j.dcn.2022.101100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be less reliable in adolescence, however, in the presence of rewards, adolescents' performance often improves to adult levels. Dopamine is known to play a role in signaling rewards and supporting cognition, but its role in the enhancing effects of reward on adolescent cognition and inhibitory control remains unknown. Here, we assessed the contribution of basal ganglia dopamine-related neurophysiology using longitudinal MR-based assessments of tissue iron in rewarded inhibitory control, using an antisaccade task. In line with prior work, we show that neutral performance improves with age, and incentives enhance performance in adolescents to that of adults. We find that basal ganglia tissue iron is associated with individual differences in the magnitude of this reward boost, which is strongest in those with high levels of tissue iron, predominantly in adolescence. Our results provide novel evidence that basal ganglia neurophysiology supports developmental effects of rewards on cognition, which can inform neurodevelopmental models of the role of dopamine in reward processing during adolescence.
Collapse
Affiliation(s)
- Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | | | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| |
Collapse
|
11
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
13
|
Blum K, Bowirrat A, Gondre Lewis MC, Simpatico TA, Ceccanti M, Steinberg B, Modestino EJ, Thanos PK, Baron D, McLaughlin T, Brewer R, Badgaiyan RD, Ponce JV, Lott L, Gold MS. Exploration of Epigenetic State Hyperdopaminergia (Surfeit) and Genetic Trait Hypodopaminergia (Deficit) During Adolescent Brain Development. ACTA ACUST UNITED AC 2021; 10. [PMID: 34707969 DOI: 10.2174/2211556010666210215155509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The risk for all addictive drug and non-drug behaviors, especially, in the unmyelinated Prefrontal Cortex (PFC) of adolescents, is important and complex. Many animal and human studies show the epigenetic impact on the developing brain in adolescents, compared to adults. Some reveal an underlying hyperdopaminergia that seems to set our youth up for risky behaviors by inducing high quanta pre-synaptic dopamine release at reward site neurons. In addition, altered reward gene expression in adolescents caused epigenetically by social defeat, like bullying, can continue into adulthood. In contrast, there is also evidence that epigenetic events can elicit adolescent hypodopaminergia. This complexity suggests that neuroscience cannot make a definitive claim that all adolescents carry a hyperdopaminergia trait. Objective The primary issue involves the question of whether there exists a mixed hypo or hyper-dopaminergia in this population. Method Genetic Addiction Risk Score (GARS®) testing was carried out of 24 Caucasians of ages 12-19, derived from families with RDS. Results We have found that adolescents from this cohort, derived from RDS parents, displayed a high risk for any addictive behavior (a hypodopaminergia), especially, drug-seeking (95%) and alcohol-seeking (64%). Conclusion The adolescents in our study, although more work is required, show a hypodopaminergic trait, derived from a family with Reward Deficiency Syndrome (RDS). Certainly, in future studies, we will analyze GARS in non-RDS Caucasians between the ages of 12-19. The suggestion is first to identify risk alleles with the GARS test and, then, use well-researched precision, pro-dopamine neutraceutical regulation. This "two-hit" approach might prevent tragic fatalities among adolescents, in the face of the American opioid/psychostimulant epidemic.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA.,Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH., USA.,Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA., USA.,Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India
| | - Abdalla Bowirrat
- Department of Neuroscience, Interdisciplinary Center (IDC) Herzliya, Israel
| | - Marjorie C Gondre Lewis
- Departments of Anatomy & Psychiatry & Behavioural Sciences, Howard University School of Medicine, Washington, DC,USA
| | - Thomas A Simpatico
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA., USA
| | - Mauro Ceccanti
- Department of Translational and Precision Medicine, Sapienza University, Rome - Italy
| | | | | | - Panayotis K Thanos
- Behavior Neuropharmacology and Neuroimaging Lab, Department of Psychology, University of Buffalo Institute of Addiction Research, NY, USA
| | - David Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA
| | | | - Raymond Brewer
- Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY and Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Jessica Valdez Ponce
- Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX
| | - Lisa Lott
- Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| |
Collapse
|
14
|
Giacolini T, Conversi D, Alcaro A. The Brain Emotional Systems in Addictions: From Attachment to Dominance/Submission Systems. Front Hum Neurosci 2021; 14:609467. [PMID: 33519403 PMCID: PMC7843379 DOI: 10.3389/fnhum.2020.609467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Human development has become particularly complex during the evolution. In this complexity, adolescence is an extremely important developmental stage. Adolescence is characterized by biological and social changes that create the prerequisites to psychopathological problems, including both substance and non-substance addictive behaviors. Central to the dynamics of the biological changes during adolescence are the synergy between sexual and neurophysiological development, which activates the motivational/emotional systems of Dominance/Submission. The latter are characterized by the interaction between the sexual hormones, the dopaminergic system and the stress axis (HPA). The maturation of these motivational/emotional systems requires the integration with the phylogenetically more recent Attachment/CARE Systems, which primarily have governed the subject's relationships until puberty. The integration of these systems is particularly complex in the human species, due to the evolution of the process of competition related to sexual selection: from a simple fight between two individuals (of the same genus and species) to a struggle for the acquisition of a position in rank and the competition between groups. The latter is an important evolutionary acquisition and believed to be the variable that has most contributed to enhancing the capacity for cooperation in the human species. The interaction between competition and cooperation, and between competition and attachment, characterizes the entire human relational and emotional structure and the unending work of integration to which the BrainMind is involved. The beginning of the integration of the aforementioned motivational/emotional systems is currently identified in the prepubertal period, during the juvenile stage, with the development of the Adrenarche-the so-called Adrenal Puberty. This latter stage is characterized by a low rate of release of androgens, the hormones released by the adrenal cortex, which activate the same behaviors as those observed in the PLAY system. The Adrenarche and the PLAY system are biological and functional prerequisites of adolescence, a period devoted to learning the difficult task of integrating the phylogenetically ancient Dominance/Submission Systems with the newer Attachment/CARE Systems. These systems accompany very different adaptive goals which can easily give rise to mutual conflict and can in turn make the balance of the BrainMind precarious and vulnerable to mental suffering.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Sleep Disorders across the Lifespan: A Different Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239025. [PMID: 33287386 PMCID: PMC7730641 DOI: 10.3390/ijerph17239025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
Sleep constitutes a fundamental human behavior that results from the reorganization of brain functions [...].
Collapse
|
16
|
Rodriguez-Thompson AM, Meyer KM, Davidow JY, Van Dijk KRA, Santillana RM, Snyder J, Vidal Bustamante CM, Hollinshead MO, Rosen BR, Somerville LH, Sheridan MA. Examining cognitive control and reward interactions in adolescent externalizing symptoms. Dev Cogn Neurosci 2020; 45:100813. [PMID: 33040971 PMCID: PMC7387777 DOI: 10.1016/j.dcn.2020.100813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023] Open
Abstract
During adolescence, rapid development and reorganization of the dopaminergic system supports increasingly sophisticated reward learning and the ability to exert behavioral control. Disruptions in the ability to exert control over previously rewarded behavior may underlie some forms of adolescent psychopathology. Specifically, symptoms of externalizing psychopathology may be associated with difficulties in flexibly adapting behavior in the context of reward. However, the direct interaction of cognitive control and reward learning in adolescent psychopathology symptoms has not yet been investigated. The present study used a Research Domain Criteria framework to investigate whether behavioral and neuronal indices of inhibition to previously rewarded stimuli underlie individual differences in externalizing symptoms in N = 61 typically developing adolescents. Using a task that integrates the Monetary Incentive Delay and Go-No-Go paradigms, we observed a positive association between externalizing symptoms and activation of the left middle frontal gyrus during response inhibition to cues with a history of reward. These associations were robust to controls for internalizing symptoms and neural recruitment during inhibition of cues with no reward history. Our findings suggest that inhibitory control over stimuli with a history of reward may be a useful marker for future inquiry into the development of externalizing psychopathology in adolescence.
Collapse
Affiliation(s)
- Anaïs M Rodriguez-Thompson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Kristin M Meyer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juliet Y Davidow
- Psychology Department and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Koene R A Van Dijk
- Psychology Department and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | | | - Jenna Snyder
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Marisa O Hollinshead
- Psychology Department and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Leah H Somerville
- Psychology Department and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Telzer EH, Jorgensen NA, Prinstein MJ, Lindquist KA. Neurobiological Sensitivity to Social Rewards and Punishments Moderates Link Between Peer Norms and Adolescent Risk Taking. Child Dev 2020; 92:731-745. [PMID: 33030267 DOI: 10.1111/cdev.13466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although peer influence is a strong predictor of adolescents' risk-taking behaviors, not all adolescents are susceptible to their peer group. One hundred and thirty-six adolescents (Mage = 12.79 years) completed an fMRI scan, measures of perceived peer group norms, and engagement in risky behavior. Ventral striatum (VS) sensitivity when anticipating social rewards and avoiding social punishments significantly moderated the association between perceived peer norms and adolescents' own risk behaviors. Perceptions of more deviant peer norms were associated with increased risky behavior, but only for adolescents with high VS sensitivity; adolescents with low VS sensitivity were resilient to deviant peer norms, showing low risk taking regardless of peer context. Findings provide a novel contribution to the study of peer influence susceptibility.
Collapse
|
18
|
Ramphal B, Whalen DJ, Kenley JK, Yu Q, Smyser CD, Rogers CE, Sylvester CM. Brain connectivity and socioeconomic status at birth and externalizing symptoms at age 2 years. Dev Cogn Neurosci 2020; 45:100811. [PMID: 32823180 PMCID: PMC7451824 DOI: 10.1016/j.dcn.2020.100811] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Low childhood socioeconomic status (SES) predisposes individuals to altered trajectories of brain development and increased rates of mental illness. Brain connectivity at birth is associated with psychiatric outcomes. We sought to investigate whether SES at birth is associated with neonatal brain connectivity and if these differences account for socioeconomic disparities in infant symptoms at age 2 years that are predictive of psychopathology. Resting state functional MRI was performed on 75 full-term and 37 term-equivalent preterm newborns (n = 112). SES was characterized by insurance type, the Area Deprivation Index, and a composite score. Seed-based voxelwise linear regression related SES to whole-brain functional connectivity of five brain regions representing functional networks implicated in psychiatric illnesses and affected by socioeconomic disadvantage: striatum, medial prefrontal cortex (mPFC), ventrolateral prefrontal cortex (vlPFC), and dorsal anterior cingulate cortex. Lower SES was associated with differences in striatum and vlPFC connectivity. Striatum connectivity with frontopolar and medial PFC mediated the relationship between SES and behavioral inhibition at age 2 measured by the Infant-Toddler Social Emotional Assessment (n = 46). Striatum-frontopolar connectivity mediated the relationship between SES and externalizing symptoms. These results, convergent across three SES metrics, suggest that neurodevelopmental trajectories linking SES and mental illness may begin as early as birth.
Collapse
Affiliation(s)
- Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, NY, United States.
| | - Diana J Whalen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeanette K Kenley
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiongru Yu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher D Smyser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Comparing dopamine release, uptake, and D2 autoreceptor function across the ventromedial to dorsolateral striatum in adolescent and adult male and female rats. Neuropharmacology 2020; 175:108163. [PMID: 32479812 DOI: 10.1016/j.neuropharm.2020.108163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/03/2023]
Abstract
Adolescence is characterized by changes in behavior, such as increases in sensation seeking and risk taking, and increased vulnerability to developing a range of psychiatric disorders, including substance abuse disorders (SUD) and mood disorders. The mesolimbic dopamine system plays an essential role in mediating these behaviors and disorders. Therefore, it is imperative to understand how the dopamine system and its regulation are changing during this period of development. Here, we used ex vivo fast scan cyclic voltammetry to compare stimulated dopamine release and its local circuitry regulation between early adolescent and adult male and female Sprague-Dawley rats. We found that, compared to adults, adolescent males have decreased stimulated dopamine release in the NAc core, while adolescent females have increased dopamine release in the NAc shell, NAc core, and DMS. We also found sex- and region-specific differences in other dopamine dynamics, including maximal dopamine uptake (Vmax), release across a range of stimulation frequencies, and autoreceptor regulation of dopamine release. Better understanding how the dopamine system develops during adolescence will be imperative for understanding what mediates adolescent vulnerability to developing psychiatric disorders and how disruptions during this period of reorganization could alter behaviors and vulnerability into adulthood.
Collapse
|
20
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
21
|
Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders. Neurobiol Dis 2019; 131:104322. [DOI: 10.1016/j.nbd.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
|
22
|
Van Heel M, Bijttebier P, Claes S, Colpin H, Goossens L, Hankin B, Van Den Noortgate W, Verschueren K, Young J, Van Leeuwen K. Parenting, Effortful Control, and Adolescents' Externalizing Problem Behavior: Moderation by Dopaminergic Genes. J Youth Adolesc 2019; 49:252-266. [PMID: 31650442 DOI: 10.1007/s10964-019-01149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Research shows that genetics and effortful control play an important role in the link between parenting and problem behavior. However, little is known about how these factors act simultaneously. This article used a moderated mediation model to examine whether effortful control mediated the link between parenting and externalizing problem behavior, and whether dopaminergic genes (i.e., polygenic index score including DAT1, DRD2, DRD4, COMT) moderated this link. Two three-wave studies were conducted on community samples (adolescents: Study 1: N = 457; Mage = 15.74; Study 2: N = 221; Mage = 12.84). There was no mediation by effortful control, but a moderation by dopaminergic reactivity was observed. Despite inconsistent evidence, this article indicates that the development of externalizing problem behavior is subject to genetic characteristics and parenting.
Collapse
Affiliation(s)
| | | | | | | | | | - B Hankin
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | | | - J Young
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
23
|
Oishi K, Chotiyanonta J, Wu D, Miller MI, Mori S, Oishi K. Developmental trajectories of the human embryologic brain regions. Neurosci Lett 2019; 708:134342. [PMID: 31228595 DOI: 10.1016/j.neulet.2019.134342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
Vertebrate brains commonly consist of five basic embryologic anatomical regions: telencephalon; diencephalon; mesencephalon; metencephalon; and myelencephalon. The proportions of these regions vary widely across species and developmental stages. Investigation of their growth trajectories, therefore, has the potential to provide an understanding of the substrates of inter-species variation in neuroanatomy and function. To investigate the volumetric growth trajectories, structural magnetic resonance imaging (MRI) scans obtained from 618 healthy children (334 boys, 284 girls; ages 3-17 years old) were parcellated into five regions for the volume quantification. The sex- and region-specific growth trajectories were identified, and the most active growth was seen in the mesencephalon for both boys and girls. Whether similar regional growth patterns are seen in other species, or whether such patterns are related to evolution, are important questions that must be elucidated in the future.
Collapse
Affiliation(s)
- Kumiko Oishi
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Susumu Mori
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kenichi Oishi
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | |
Collapse
|
24
|
Dumontheil I, Kilford EJ, Blakemore SJ. Development of dopaminergic genetic associations with visuospatial, verbal and social working memory. Dev Sci 2019; 23:e12889. [PMID: 31336006 PMCID: PMC7064996 DOI: 10.1111/desc.12889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023]
Abstract
Dopamine transmission in the prefrontal cortex (PFC) supports working memory (WM), the temporary holding, processing and manipulation of information in one's mind. The gene coding the catechol-O-methyltransferase (COMT) enzyme, which degrades dopamine, in particular in the PFC, has a common single nucleotide polymorphism leading to two versions of the COMT enzyme which vary in their enzymatic activity. The methionine (Met) allele has been associated with higher WM performance and lower activation of the PFC in executive function tasks than the valine (Val) allele. In a previous study, COMT genotype was associated with performance on verbal and visuospatial WM tasks in adults, as well as with performance on a novel social WM paradigm that requires participants to maintain and manipulate information about the traits of their friends or family over a delay. Here, data collected in children and adolescents (N = 202) were compared to data from the adult sample (N = 131) to investigate possible age differences in genetic associations. Our results replicate and extend previous work showing that the pattern of superior WM performance observed in Met/Met adults emerges during development. These findings are consistent with a decrease in prefrontal dopamine levels during adolescence. Developmentally moderated genetic effects were observed for both visuospatial and social WM, even when controlling for non-social WM performance, suggesting that the maintenance and manipulation of social information may also recruit the dopamine neurotransmitter system. These findings show that development should be considered when trying to understand the impact of genetic polymorphisms on cognitive function.
Collapse
Affiliation(s)
- Iroise Dumontheil
- Department of Psychological Sciences, Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Emma J Kilford
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | |
Collapse
|
25
|
Development of Human Emotion Circuits Investigated Using a Big-Data Analytic Approach: Stability, Reliability, and Robustness. J Neurosci 2019; 39:7155-7172. [PMID: 31332001 DOI: 10.1523/jneurosci.0220-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/21/2022] Open
Abstract
Emotion perception is fundamental to affective and cognitive development and is thought to involve distributed brain circuits. Efforts to chart neurodevelopmental changes in emotion have been severely hampered by narrowly focused approaches centered on activation of individual brain regions and small sample sizes. Here we investigate the maturation of human functional brain circuits associated with identification of fearful, angry, sad, happy, and neutral faces using a large sample of 759 children, adolescents, and adults (ages 8-23; female/male = 419/340). Network analysis of emotion-related brain circuits revealed three functional modules, encompassing lateral frontoparietal, medial prefrontal-posterior cingulate, and subcortical-posterior insular cortices, with hubs in medial prefrontal, but not posterior cingulate, cortex. This overall network architecture was stable by age 8, and it anchored maturation of circuits important for salience detection and cognitive control, as well as dissociable circuit patterns across distinct emotion categories. Our findings point to similarities and differences in functional circuits associated with identification of fearful, angry, sad, happy, and neutral faces, and reveal aspects of brain circuit organization underlying emotion perception that are stable over development as well as features that change with age. Reliability analyses demonstrated the robustness of our findings and highlighted the importance of large samples for probing functional brain circuit development. Our study emphasizes a need to focus beyond amygdala circuits and provides a robust neurodevelopmental template for investigating emotion perception and identification in psychopathology.SIGNIFICANCE STATEMENT Emotion perception is fundamental to cognitive and affective development. However, efforts to chart neurodevelopmental changes in emotion perception have been hampered by narrowly focused approaches centered on the amygdala and prefrontal cortex and small sample sizes. Using a large sample of 759 children, adolescents, and adults and a multipronged analytical strategy, we investigated the development of brain network organization underlying identification and categorization of fearful, happy, angry, sad, and neutral facial expressions. Results revealed a developmentally stable modular architecture that anchored robust age-related and emotion category-related changes in brain connectivity across multiple brain systems that extend far beyond amygdala circuits and provide a new template for investigation of emotion processing in the developing brain.
Collapse
|
26
|
Pitzer M. The development of monoaminergic neurotransmitter systems in childhood and adolescence. Int J Dev Neurosci 2019; 74:49-55. [PMID: 30738086 DOI: 10.1016/j.ijdevneu.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/18/2018] [Accepted: 02/05/2019] [Indexed: 10/27/2022] Open
Abstract
Brain maturation extends throughout adolescence well into early adulthood. Knowledge on developmental changes is crucial for age-appropriate pharmacotherapy. This article reviews data on maturational processes with a focus on the noradrenergic, dopaminergic, and serotonergic neurotransmitter systems.The literature was searched with a focus on studies in humans. However, since data in humans are limited animal studies were also included. All reviewed neurotransmitter systems show age-related development processes that differentiate child and adolescent brain function from those of adult brains. Unfortunately, the state of knowledge surrounding development-related changes remains sufficiently sparse, There is a high need for more studies on pediatric psychopharmacology and its biological underpinnings. Safety and efficacy of psychopharmacological medicines cannot be readily extrapolated from adults.
Collapse
Affiliation(s)
- Martina Pitzer
- Department of Child and Adolescent Psychiatry, Vitos Klinik Rheinhöhe, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany.
| |
Collapse
|
27
|
Abstract
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Collapse
Affiliation(s)
- Ryan W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Colleen A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
29
|
Age-Related Trajectories of Functional Coupling between the VTA and Nucleus Accumbens Depend on Motivational State. J Neurosci 2018; 38:7420-7427. [PMID: 30030394 DOI: 10.1523/jneurosci.3508-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
Over-engagement of the mesolimbic dopamine system is thought to enhance motivation in adolescents. Whereas human neuroimaging has characterized event-evoked responses of the mesolimbic system in adolescents, research has yet to characterize state-dependent engagement (i.e., seconds to minutes) of this system in goal-relevant contexts. In the current longitudinal study, we characterized age-related changes in state-dependent coupling in male and female human participants ranging in age from adolescence to adulthood. Analyses focused on two key regions of the mesolimbic dopamine system, the ventral tegmental area (VTA) and nucleus accumbens (NAcc). Although there were no differences in VTA-NAcc functional coupling in a resting-state context, VTA-NAcc functional coupling was enhanced in preadolescence/early adolescence and decreased into adulthood in a motivational context, in which individuals had to translate goal-relevant cues into instrumental actions. Furthermore, we found that task-related activation in orbitofrontal cortex, middle temporal gyrus, and visual association cortex partially mediated age-related changes in state-dependent VTA-NAcc functional coupling. These results extend prior models of neurodevelopment by showing a relationship between cortical event-evoked activation and state-dependent increases in subcortical engagement of mesolimbic systems.SIGNIFICANCE STATEMENT Adolescence is characterized by increased motivated behavior, which is thought to result from an over-engagement of mesolimbic dopamine systems. Rodent models show increases in state-dependent engagement of mesolimbic systems in adolescence. However, human neuroimaging research has mainly focused on event-evoked responses (i.e., reward cues). We show that in motivational contexts, there is increased state-dependent coupling across mesolimbic systems in preadolescence/early adolescence that decreases into adulthood and is further predicted by event-evoked cortical responses. Critically, these developmental trajectories were specific to motivationally relevant contexts and were not apparent during resting state. These findings extend emerging models of human development and suggest that state-dependent increases in dopamine signaling may underlie heightened motivation.
Collapse
|
30
|
Logan RW, Hasler BP, Forbes EE, Franzen PL, Torregrossa MM, Huang YH, Buysse DJ, Clark DB, McClung CA. Impact of Sleep and Circadian Rhythms on Addiction Vulnerability in Adolescents. Biol Psychiatry 2018; 83:987-996. [PMID: 29373120 PMCID: PMC5972052 DOI: 10.1016/j.biopsych.2017.11.035] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
Sleep homeostasis and circadian function are important maintaining factors for optimal health and well-being. Conversely, sleep and circadian disruptions are implicated in a variety of adverse health outcomes, including substance use disorders. These risks are particularly salient during adolescence. Adolescents require 8 to 10 hours of sleep per night, although few consistently achieve these durations. A mismatch between developmental changes and social/environmental demands contributes to inadequate sleep. Homeostatic sleep drive takes longer to build, circadian rhythms naturally become delayed, and sensitivity to the phase-shifting effects of light increases, all of which lead to an evening preference (i.e., chronotype) during adolescence. In addition, school start times are often earlier in adolescence and the use of electronic devices at night increases, leading to disrupted sleep and circadian misalignment (i.e., social jet lag). Social factors (e.g., peer influence) and school demands further impact sleep and circadian rhythms. To cope with sleepiness, many teens regularly consume highly caffeinated energy drinks and other stimulants, creating further disruptions in sleep. Chronic sleep loss and circadian misalignment enhance developmental tendencies toward increased reward sensitivity and impulsivity, increasing the likelihood of engaging in risky behaviors and exacerbating the vulnerability to substance use and substance use disorders. We review the neurobiology of brain reward systems and the impact of sleep and circadian rhythms changes on addiction vulnerability in adolescence and suggest areas that warrant additional research.
Collapse
Affiliation(s)
- Ryan W Logan
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; The Jackson Laboratory, Bar Harbor, Maine
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary M Torregrossa
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yanhua H Huang
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; The Jackson Laboratory, Bar Harbor, Maine.
| |
Collapse
|
31
|
Cignetti F, Fontan A, Menant J, Nazarian B, Anton JL, Vaugoyeau M, Assaiante C. Protracted Development of the Proprioceptive Brain Network During and Beyond Adolescence. Cereb Cortex 2018; 27:1285-1296. [PMID: 26733535 DOI: 10.1093/cercor/bhv323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proprioceptive processing is important for appropriate motor control, providing error-feedback and internal representation of movement for adjusting the motor command. Although proprioceptive functioning improves during childhood and adolescence, we still have few clues about how the proprioceptive brain network develops. Here, we investigated developmental changes in the functional organization of this network in early adolescents (n = 18, 12 ± 1 years), late adolescents (n = 18, 15 ± 1), and young adults (n = 18, 32 ± 4), by examining task-evoked univariate activity and patterns of functional connectivity (FC) associated with seeds placed in cortical (supramarginal gyrus) and subcortical (dorsal rostral putamen) regions. We found that although the network is already well established in early adolescence both in terms of topology and functioning principles (e.g., long-distance communication and economy in wiring cost), it is still undergoing refinement during adolescence, including a shift from diffuse to focal FC and a decreased FC strength. This developmental effect was particularly pronounced for fronto-striatal connections. Furthermore, changes in FC features continued beyond adolescence, although to a much lower extent. Altogether, these findings point to a protracted developmental time course for the proprioceptive network, which breaks with the relatively early functional maturation often associated with sensorimotor networks.
Collapse
Affiliation(s)
| | | | - Jasmine Menant
- Neuroscience Research Australia and University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Nazarian
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | - Jean-Luc Anton
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | | | | |
Collapse
|
32
|
Making Dopamine Connections in Adolescence. Trends Neurosci 2017; 40:709-719. [PMID: 29032842 DOI: 10.1016/j.tins.2017.09.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
A dramatic maturational process ongoing in adolescence is prefrontal cortex development, including its dopamine innervation. Dopamine axons grow from the striatum to the prefrontal cortex, the only known case of long-distance axon growth during adolescence. This is coordinated by the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer), which in turn controls the intrinsic development of the prefrontal cortex itself. Stimulant drugs in adolescence alter DCC in dopamine neurons and, in turn prefrontal cortex maturation, impacting cognitive abilities. Variations in DCC expression are linked to psychiatric conditions of prefrontal cortex dysfunction, and microRNA regulation of DCC may be key to determining adolescent vulnerability or resilience. Since early interventions are proving to effectively ameliorate disease outcome, the Netrin-1 system is a promising therapeutic target.
Collapse
|
33
|
Davidow JY, Foerde K, Galván A, Shohamy D. An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence. Neuron 2017; 92:93-99. [PMID: 27710793 DOI: 10.1016/j.neuron.2016.08.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/10/2016] [Accepted: 08/10/2016] [Indexed: 01/25/2023]
Abstract
Adolescents are notorious for engaging in reward-seeking behaviors, a tendency attributed to heightened activity in the brain's reward systems during adolescence. It has been suggested that reward sensitivity in adolescence might be adaptive, but evidence of an adaptive role has been scarce. Using a probabilistic reinforcement learning task combined with reinforcement learning models and fMRI, we found that adolescents showed better reinforcement learning and a stronger link between reinforcement learning and episodic memory for rewarding outcomes. This behavioral benefit was related to heightened prediction error-related BOLD activity in the hippocampus and to stronger functional connectivity between the hippocampus and the striatum at the time of reinforcement. These findings reveal an important role for the hippocampus in reinforcement learning in adolescence and suggest that reward sensitivity in adolescence is related to adaptive differences in how adolescents learn from experience.
Collapse
Affiliation(s)
- Juliet Y Davidow
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA; Department of Psychology, Columbia University, New York, NY 10027, USA.
| | - Karin Foerde
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Adriana Galván
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
34
|
Mineo L, Sarraf Y, Ingram C, Hanauer S, Infortuna C, Chusid E, Coira D, Aguglia E, Battaglia F. Affective temperaments and stimulant medications misuse for neuroenhancement in graduate students. JOURNAL OF SUBSTANCE USE 2017. [DOI: 10.1080/14659891.2017.1364307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ludovico Mineo
- Department of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Yasmin Sarraf
- Department of Pre-clinical Sciences, NY College of Podiatric Medicine, New York, USA
| | - Cody Ingram
- Department of Pre-clinical Sciences, NY College of Podiatric Medicine, New York, USA
| | - Scott Hanauer
- Department of Pre-clinical Sciences, NY College of Podiatric Medicine, New York, USA
| | - Carmenrita Infortuna
- Department of Pre-clinical Sciences, NY College of Podiatric Medicine, New York, USA
| | - Eileen Chusid
- Department of Pre-clinical Sciences, NY College of Podiatric Medicine, New York, USA
| | - Diego Coira
- Department of Psychiatry and Behavioral Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Eugenio Aguglia
- Department of Clinical and Molecular Biomedicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Fortunato Battaglia
- Department of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
35
|
Janssens A, Van Den Noortgate W, Goossens L, Colpin H, Verschueren K, Claes S, Van Leeuwen K. Externalizing Problem Behavior in Adolescence: Parenting Interacting With DAT1 and DRD4 Genes. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2017; 27:278-297. [PMID: 28876518 DOI: 10.1111/jora.12271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study extends previous gene-by-environment (G × E) research through design and methodological advances and examines alternative hypotheses of diathesis stress, vantage sensitivity, and differential susceptibility. In a sample of 984 adolescents and their parents, we examined whether effects of parental support, proactive, punitive, harsh punitive, and psychological control on externalizing problem behavior are moderated by adolescents' genotype for the dopamine transporter (DAT1) or receptor D4 (DRD4) gene. Results provided evidence for main effects of parenting behavior and DRD4, and multiple interaction effects of which one survived Bonferroni correction. Adolescents carrying a long DRD4 variant were more susceptible to the effects of parental proactive control on aggression, for better and for worse. Critical considerations were made regarding the complexity of G × E research.
Collapse
|
36
|
Eckstein MK, Guerra-Carrillo B, Miller Singley AT, Bunge SA. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev Cogn Neurosci 2017; 25:69-91. [PMID: 27908561 PMCID: PMC6987826 DOI: 10.1016/j.dcn.2016.11.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023] Open
Abstract
This review provides an introduction to two eyetracking measures that can be used to study cognitive development and plasticity: pupil dilation and spontaneous blink rate. We begin by outlining the rich history of gaze analysis, which can reveal the current focus of attention as well as cognitive strategies. We then turn to the two lesser-utilized ocular measures. Pupil dilation is modulated by the brain's locus coeruleus-norepinephrine system, which controls physiological arousal and attention, and has been used as a measure of subjective task difficulty, mental effort, and neural gain. Spontaneous eyeblink rate correlates with levels of dopamine in the central nervous system, and can reveal processes underlying learning and goal-directed behavior. Taken together, gaze, pupil dilation, and blink rate are three non-invasive and complementary measures of cognition with high temporal resolution and well-understood neural foundations. Here we review the neural foundations of pupil dilation and blink rate, provide examples of their usage, describe analytic methods and methodological considerations, and discuss their potential for research on learning, cognitive development, and plasticity.
Collapse
Affiliation(s)
- Maria K Eckstein
- Department of Psychology, University of California at Berkeley, United States
| | | | | | - Silvia A Bunge
- Department of Psychology, University of California at Berkeley, United States; Helen Wills Neuroscience Institute, University of California at Berkeley, United States.
| |
Collapse
|
37
|
Agoglia AE, Holstein SE, Small AT, Spanos M, Burrus BM, Hodge CW. Comparison of the adolescent and adult mouse prefrontal cortex proteome. PLoS One 2017; 12:e0178391. [PMID: 28570644 PMCID: PMC5453624 DOI: 10.1371/journal.pone.0178391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/28/2022] Open
Abstract
Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity.
Collapse
Affiliation(s)
- Abigail E. Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah E. Holstein
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amanda T. Small
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marina Spanos
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brainard M. Burrus
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Adolescence is the starting point of sex-dichotomous COMT genetic effects. Transl Psychiatry 2017; 7:e1141. [PMID: 28556830 PMCID: PMC5584523 DOI: 10.1038/tp.2017.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023] Open
Abstract
The catechol-o-methyltransferase (COMT) genetic variations produce pleiotropic behavioral/neuroanatomical effects. Some of these effects may vary among sexes. However, the developmental trajectories of COMT-by-sex interactions are unclear. Here we found that extreme COMT reduction, in both humans (22q11.2 deletion syndrome COMT Met) and mice (COMT-/-), was associated to cortical thinning only after puberty and only in females. Molecular biomarkers, such as tyrosine hydroxylase, Akt and neuronal/cellular counting, confirmed that COMT-by-sex divergent effects started to appear at the cortical level during puberty. These biochemical differences were absent in infancy. Finally, developmental cognitive assessment in 22q11DS and COMT knockout mice established that COMT-by-sex-dichotomous effects in executive functions were already apparent in adolescence. These findings uncover that genetic variations severely reducing COMT result in detrimental cortical and cognitive development selectively in females after their sexual maturity. This highlights the importance of taking into account the combined effect of genetics, sex and developmental stage.
Collapse
|
39
|
Janssens A, Van Den Noortgate W, Goossens L, Verschueren K, Colpin H, Claes S, Van Heel M, Van Leeuwen K. Adolescent externalizing behaviour, psychological control, and peer rejection: Transactional links and dopaminergic moderation. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2017; 35:420-438. [PMID: 28338224 DOI: 10.1111/bjdp.12184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/14/2017] [Indexed: 02/02/2023]
Abstract
This study investigated (1) reciprocal links among parental psychological control, peer rejection, and adolescent externalizing (aggressive and rule-breaking behaviour), and (2) the moderating effect of an adolescent genetic factor (biologically informed polygenic score for dopamine signalling). Three-year longitudinal data from 1,116 adolescents (51% boys; M age = 13.79) and their parents included psychological measures (adolescent-reported psychological control, peer-reported rejection, and parent-reported aggressive and rule-breaking behaviour). Cross-lagged analyses showed bidirectional effects between psychological control and both aggressive and rule-breaking behaviour and a unidirectional effect of peer rejection on both forms of problem behaviour over time. Multigroup structural equation modelling revealed genetic moderation only for rule-breaking behaviour: for adolescents with intermediate levels of dopamine signalling significant environmental effects were present, whereas adolescent effects of rule-breaking behaviour on psychological control were significant for adolescents with both intermediate and high profiles and effects on peer rejection only for adolescents with high dopamine profiles. Statement of contribution What is already known on this subject? Parental psychological control is related to adolescent externalizing problems. Experiencing peer rejection reinforces aggressive and rule-breaking behaviour. Single-gene studies show that dopaminergic genes influence externalizing problems directly or in interaction with the environment. What does this study add? Parental psychological control and adolescent aggressive and rule-breaking behaviour exacerbate one another longitudinally. Longitudinal associations between peer rejection and both subtypes of externalizing behaviour are unidirectional. With a polygenic approach, dopaminergic moderation is present for rule-breaking behaviour only.
Collapse
Affiliation(s)
- Annelies Janssens
- Parenting and Special Education Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Wim Van Den Noortgate
- Methodology of Educational Sciences Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Luc Goossens
- School Psychology and Development in Context, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Karine Verschueren
- School Psychology and Development in Context, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Hilde Colpin
- School Psychology and Development in Context, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Stephan Claes
- Department of Neuroscience, GRASP-Research Group, KU Leuven, Belgium.,University Psychiatric Centre, KU Leuven, Belgium
| | - Martijn Van Heel
- Parenting and Special Education Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Karla Van Leeuwen
- Parenting and Special Education Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
40
|
Hypofrontality and Posterior Hyperactivity in Early Schizophrenia: Imaging and Behavior in a Preclinical Model. Biol Psychiatry 2017; 81:503-513. [PMID: 27450031 PMCID: PMC5130616 DOI: 10.1016/j.biopsych.2016.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Schizophrenia is a debilitating neuropsychiatric disorder typically diagnosed from late adolescence to adulthood. Subthreshold behavioral symptoms (e.g., cognitive deficits and substance abuse) often precede the clinical diagnosis of schizophrenia. However, these prodromal symptoms have not been consistently associated with structural and functional brain biomarkers, limiting the chance of early diagnosis of schizophrenia. METHODS Using an extensively multimodal range of magnetic resonance methods (for anatomy, metabolism, and function), we screened early biomarkers in a methylazoxymethanol acetate (MAM) rat model of schizophrenia and saline-treated control (SHAM) rats, in conjunction with immunohistochemistry, myelin staining, and a novel three-choice, reversal-learning task to identify early behavioral markers corresponding the subthreshold symptoms. RESULTS MAM (vs. SHAM) rats had lower/higher structural connectivity in anterior/posterior corpus callosum. The orbitofrontal cortex of MAM rats showed lower resting-state functional magnetic resonance imaging functional connectivity in conjunction with lower neuronal density, lower glucose oxidation, and attenuated neurotransmission (hypofrontality). In contrast, these measures were all higher in visual cortex of MAM rats (posterior hyperactivity), which might parallel perceptual problems in schizophrenia. In behavioral studies, MAM (vs. SHAM) rats displayed abnormal orbitofrontal cortex-mediated decision-making processes, resulting in a novel reward-sensitive hyperflexible phenotype, which might reflect vulnerability of prodromal patients to substance abuse. CONCLUSIONS We identified two novel biomarkers of early schizophrenia in a preclinical rat model: hypofrontality associated with the hyperflexible phenotype, and posterior hyperactivity. Because each of these magnetic resonance methods is clinically translatable, these markers could contribute to early diagnosis and the development of novel therapies of schizophrenia.
Collapse
|
41
|
Zhang T, Zhang Q, Wang C, Chen A. The developmental relationship between central dopaminergic level and response inhibition from late childhood to young adulthood. Int J Psychophysiol 2017; 116:53-59. [PMID: 28219681 DOI: 10.1016/j.ijpsycho.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) is known to modulate response inhibition (RI). In contrast to the abundant adult studies, only few developmental studies have focused on this topic. Moreover, the mechanism underlying the modulation of RI by the DA system from childhood to adulthood remains unclear. We aimed to assess whether the relationship between DA and RI during late childhood and young adulthood is similar. Accordingly, DA function was measured using the spontaneous eye blink rate (EBR), whereas RI ability was tested using the Go/Nogo task. Experiment 1 included 149 adults (age range, 18-25years) who completed the EBR test and the Go/Nogo task; the results showed that higher EBR was associated with lower commission error in the Nogo trials. Experiment 2 included 45 children (age range, 10-12years) and 37 adults (age range, 18-19years) who completed the EBR test and Go/Nogo tasks (similar to experiment 1); in both the child and adult groups, higher EBR was related to better RI ability. As EBR is closely related to central DA function, these findings suggest that DA plays a similar role in the processing of RI in late childhood and young adulthood.
Collapse
Affiliation(s)
- Ting Zhang
- School of Psychology, Southwest University, Chongqing, China.
| | - Qin Zhang
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, China
| | - Cuicui Wang
- State Key Lab of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Antao Chen
- School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
42
|
Hawes SW, Chahal R, Hallquist MN, Paulsen DJ, Geier CF, Luna B. Modulation of reward-related neural activation on sensation seeking across development. Neuroimage 2017; 147:763-771. [PMID: 27956207 PMCID: PMC5303670 DOI: 10.1016/j.neuroimage.2016.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Sensation seeking is a personality construct associated with an increased propensity for engaging in risk-taking. Associations with deleterious outcomes ranging from mental health impairments to increased mortality rates highlight important public health concerns related to this construct. Although some have suggested that increased neural responsivity to reward within the ventral striatum (e.g., nucleus accumbens) may drive sensation seeking behaviors, few studies have examined the neural mechanisms associated with stable individual differences in sensation seeking across development. To address this issue, the current study used functional magnetic resonance imaging to examine the association between neural responding to reward and stable patterns of sensation seeking across a three-year follow-up period among healthy adolescents and young adults (N = 139). Results indicated that during early adolescence (~ages 10-12), increased reactivity to reward within the nucleus accumbens (NAcc) was associated with lower levels of sensation seeking across a three-year follow-up. In middle adolescence (~ages 12-16), there was no evidence of a relationship between NAcc reactivity and sensation seeking. However, during the transition from late adolescence into adulthood (~ages 17-25), heightened reward-related reactivity in the NAcc was linked to increased sensation seeking. Findings suggest that the neural mechanisms underlying individual differences in trait-like levels of sensation seeking change from early to late adolescence.
Collapse
Affiliation(s)
- Samuel W Hawes
- Florida International University, Center for Children and Families, Department of Psychology, 11200 SW 8th Street, Miami, FL 33199, United States.
| | - Rajpreet Chahal
- University of California, Davis, Department of Psychology, 135 Young Hall, One Shields Avenue, Davis, CA 95616, United States
| | - Michael N Hallquist
- Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16801, United States
| | - David J Paulsen
- University of Pittsburgh, Department of Psychology, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Charles F Geier
- Pennsylvania State University, Department of Psychology, 140 Moore Building, University Park, PA 16801, United States
| | - Beatriz Luna
- University of Pittsburgh, Department of Psychology, 121 Meyran Avenue, Pittsburgh, PA 15213, United States; University of Pittsburgh, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| |
Collapse
|
43
|
Chiao JY. Cultural Neuroscience of the Developing Brain in Childhood. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2016. [DOI: 10.1002/9781119301981.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Schweren LJS, Hartman CA, Heslenfeld DJ, Groenman AP, Franke B, Oosterlaan J, Buitelaar JK, Hoekstra PJ. Age and DRD4 Genotype Moderate Associations Between Stimulant Treatment History and Cortex Structure in Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2016; 55:877-885.e3. [PMID: 27663943 DOI: 10.1016/j.jaac.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) has been associated with dopaminergic imbalance and subtle volume decreases in the brain. Stimulants acutely enhance dopaminergic neurotransmission. Long-term effects of prolonged manipulation of the dopaminergic system on brain structure remain poorly understood; they could be beneficial or unfavorable and could be moderated by common genetic variants and/or age. METHOD In a large observational ADHD cohort study (N = 316), the effects of cumulative stimulant treatment, genotype (for DAT1 haplotype and DRD4 variants), and treatment-by-genotype interactions on striatal, frontal, and hippocampal volumes and their interactions with age were evaluated. RESULTS No main effects of treatment were found. Associations between treatment and bilateral frontal and left hippocampal volume depended on DRD4 genotype and age. At a younger age and lower treatment levels, but not at a younger age and higher treatment levels, carriers of the DRD4 7R allele showed decreased frontal cortex volumes. At an older age, carriers and non-carriers showed smaller frontal volumes irrespective of treatment history. Left hippocampal volume was similar to that in controls at average treatment levels and increased with treatment only in carriers of the DRD4 risk allele and at a younger age. No interaction effects were found in the striatum. CONCLUSION Carriers of the DRD4 risk allele at a younger age might be sensitive to cortical remodeling after stimulant treatment. The cross-sectional nature of this study warrants cautious interpretation of age effects. The present findings, although of small effect size, might ultimately contribute to optimal care for individuals with ADHD.
Collapse
Affiliation(s)
- Lizanne J S Schweren
- University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Catharina A Hartman
- University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | | | - Jan K Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center
| | - Pieter J Hoekstra
- University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Murty VP, Calabro F, Luna B. The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 2016; 70:46-58. [PMID: 27477444 DOI: 10.1016/j.neubiorev.2016.07.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/14/2023]
Abstract
Adolescence marks a time of unique neurocognitive development, in which executive functions reach adult levels of maturation. While many core facets of executive function may reach maturation in childhood, these processes continue to be refined and stabilized during adolescence. We propose that this is mediated, in part, by interactions between the hippocampus and prefrontal cortex. Specifically, we propose that development of this circuit refines adolescents' ability to extract relevant information from prior experience to support task-relevant behavior. In support of this model, we review evidence for protracted structural and functional development both within and across the hippocampus and prefrontal cortex. We describe emerging research demonstrating the refinement of adolescents' ability to integrate prior experiences to support goal-oriented behavior, which parallel hippocampal-prefrontal integration. Finally, we speculate that the development of this circuit is mediated by increases in dopaminergic neuromodulation present in adolescence, which may underlie memory processing, plasticity, and circuit integration. This model provides a novel characterization of how memory and executive systems integrate throughout adolescence to support adaptive behavior.
Collapse
Affiliation(s)
- Vishnu P Murty
- Psychiatry Departments, University of Pittsburgh, United States.
| | | | - Beatriz Luna
- Psychiatry Departments, University of Pittsburgh, United States; Psychology Departments, University of Pittsburgh, United States
| |
Collapse
|
46
|
Schriber RA, Guyer AE. Adolescent neurobiological susceptibility to social context. Dev Cogn Neurosci 2016; 19:1-18. [PMID: 26773514 PMCID: PMC4912893 DOI: 10.1016/j.dcn.2015.12.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 11/18/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022] Open
Abstract
Adolescence has been characterized as a period of heightened sensitivity to social contexts. However, adolescents vary in how their social contexts affect them. According to neurobiological susceptibility models, endogenous, biological factors confer some individuals, relative to others, with greater susceptibility to environmental influences, whereby more susceptible individuals fare the best or worst of all individuals, depending on the environment encountered (e.g., high vs. low parental warmth). Until recently, research guided by these theoretical frameworks has not incorporated direct measures of brain structure or function to index this sensitivity. Drawing on prevailing models of adolescent neurodevelopment and a growing number of neuroimaging studies on the interrelations among social contexts, the brain, and developmental outcomes, we review research that supports the idea of adolescent neurobiological susceptibility to social context for understanding why and how adolescents differ in development and well-being. We propose that adolescent development is shaped by brain-based individual differences in sensitivity to social contexts - be they positive or negative - such as those created through relationships with parents/caregivers and peers. Ultimately, we recommend that future research measure brain function and structure to operationalize susceptibility factors that moderate the influence of social contexts on developmental outcomes.
Collapse
Affiliation(s)
- Roberta A Schriber
- Center for Mind and Brain, University of California, Davis, California, United States.
| | - Amanda E Guyer
- Center for Mind and Brain, University of California, Davis, California, United States; Department of Human Ecology, University of California, Davis, California, United States.
| |
Collapse
|
47
|
Victor EC, Hariri AR. A neuroscience perspective on sexual risk behavior in adolescence and emerging adulthood. Dev Psychopathol 2016; 28:471-87. [PMID: 26611719 PMCID: PMC4828296 DOI: 10.1017/s0954579415001042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Late adolescence and emerging adulthood (specifically ages 15-24) represent a period of heightened sexual risk taking resulting in the greatest annual rates of sexually transmitted infections and unplanned pregnancies in the US population. Ongoing efforts to prevent such negative consequences are likely to benefit from a deepening of our understanding of biological mechanisms through which sexual risk taking emerges and biases decision making during this critical window. Here we present a neuroscience framework from which a mechanistic examination of sexual risk taking can be advanced. Specifically, we adapt the neurodevelopmental triadic model, which outlines how motivated behavior is governed by three systems: approach, avoidance, and regulation, to sexual decision making and subsequent risk behavior. We further propose a testable hypothesis of the triadic model, wherein relatively decreased threat-related amygdala reactivity and increased reward-related ventral striatum reactivity leads to sexual risk taking, which is particularly exaggerated during adolescence and young adulthood when there is an overexpression of dopaminergic neurons coupled with immature top-down prefrontal cortex regulation. We conclude by discussing how future research based on our adapted triadic model can inform ongoing efforts to improve intervention and prevention efforts.
Collapse
|
48
|
De Laet S, Colpin H, Van Leeuwen K, Van den Noortgate W, Claes S, Janssens A, Goossens L, Verschueren K. Transactional Links Between Teacher-Student Relationships and Adolescent Rule-Breaking Behavior and Behavioral School Engagement: Moderating Role of a Dopaminergic Genetic Profile Score. J Youth Adolesc 2016; 45:1226-44. [PMID: 27013478 DOI: 10.1007/s10964-016-0466-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/10/2016] [Indexed: 12/14/2022]
Abstract
Throughout adolescence, there is an increase in rule-breaking behavior and a decrease in behavioral school engagement. The role of teacher-student relationship quality in the development of these adjustment problems remains understudied. This study examined how adolescent-reported teacher-student affiliation and dissatisfaction and parent-reported rule-breaking behavior and behavioral engagement impact one another throughout adolescence. In addition, we examined the moderating effect of genes by means of a Biologically Informed Multilocus genetic Profile Score (BIMPS), a composite score reflecting the cumulative effect of multiple dopaminergic genes, with a higher score indicating higher dopamine signaling in the adolescent brain. We used three-year longitudinal data from 1111 adolescents (51 % boys; M age = 13.79), and their parents. Cross-lagged analyses revealed a transactional process in which adolescents who display more rule-breaking behavior and less behavioral engagement experienced increased subsequent dissatisfaction with their teachers, which in turn further increased their adjustment problems. Also, adolescents with more adjustment problems experienced decreased subsequent affiliation with their teachers. The other way around, adolescents' behavioral engagement also benefitted from positive relationships with teachers. Multi-group analyses revealed genetic moderation for behavioral engagement, but not for rule-breaking. Specifically, adolescents who had a BIMPS score coding for moderate levels of dopamine signaling (instead of high or low signaling) were most affected in their behavioral engagement when they experienced dissatisfaction with their teachers. Our study findings may guide schools in implementing interventions to create a supportive class and school environment including positive, supportive teacher-student relationships and indicate that providing a such a supportive school environment is important for all adolescents.
Collapse
Affiliation(s)
- Steven De Laet
- Research Group for School Psychology and Child and Adolescent Development (SCAD), University of Leuven, Tiensestraat 102, box 3717, 3000, Louvain, Belgium.
| | - Hilde Colpin
- Research Group for School Psychology and Child and Adolescent Development (SCAD), University of Leuven, Tiensestraat 102, box 3717, 3000, Louvain, Belgium
| | - Karla Van Leeuwen
- Research Group for Parenting and Special Education, University of Leuven, Louvain, Belgium
| | - Wim Van den Noortgate
- Research Group for Parenting and Special Education, University of Leuven, Louvain, Belgium
| | - Stephan Claes
- Research Group for Psychiatry, Department of Neurosciences, University of Leuven, Louvain, Belgium
| | - Annelies Janssens
- Research Group for School Psychology and Child and Adolescent Development (SCAD), University of Leuven, Tiensestraat 102, box 3717, 3000, Louvain, Belgium
| | - Luc Goossens
- Research Group for School Psychology and Child and Adolescent Development (SCAD), University of Leuven, Tiensestraat 102, box 3717, 3000, Louvain, Belgium
| | - Karine Verschueren
- Research Group for School Psychology and Child and Adolescent Development (SCAD), University of Leuven, Tiensestraat 102, box 3717, 3000, Louvain, Belgium
| |
Collapse
|
49
|
Gu C, Li J, Zhu L, Lu Z, Huang H. Analysis of catechol-O-methyltransferase gene mutation and identification of new pathogenic gene for paroxysmal kinesigenic dyskinesia. Neurol Sci 2015; 37:377-83. [DOI: 10.1007/s10072-015-2432-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
|
50
|
Telzer EH. Dopaminergic reward sensitivity can promote adolescent health: A new perspective on the mechanism of ventral striatum activation. Dev Cogn Neurosci 2015; 17:57-67. [PMID: 26708774 PMCID: PMC4727991 DOI: 10.1016/j.dcn.2015.10.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/26/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
The prevailing view in the field of adolescent brain development is that heightened activity in the mesolimbic dopaminergic reward system serves as a liability, orienting adolescents toward risky behaviors, increasing their sensitivity to social evaluation and loss, and resulting in compromised well-being. Several findings inconsistent with this deficit view challenge the perspective that adolescent reward sensitivity largely serves as a liability and highlights the potential adaptive function that heightened striatal reactivity can serve. The goal of this review is to refine our understanding of dopaminergic reward sensitivity in adolescence. I review several studies showing that ventral striatum activation serves an adaptive function for adolescents’ health and well being relating to declines in both risk taking and depression and increases in cognitive persistence and achievement.
Collapse
Affiliation(s)
- Eva H Telzer
- Psychology Department, University of Illinois, Urbana Champaign, United States; Beckman Institute for Science and Technology, University of Illinois, Urbana Champaign, United States; Neuroscience Program, University of Illinois, Urbana Champaign, United States.
| |
Collapse
|