1
|
Lounici A, Iacob A, Hongler K, Mölling MA, Drechsler M, Hersberger L, Sethi S, Lang UE, Liwinski T. Ketogenic Diet as a Nutritional Metabolic Intervention for Obsessive-Compulsive Disorder: A Narrative Review. Nutrients 2024; 17:31. [PMID: 39796465 PMCID: PMC11723184 DOI: 10.3390/nu17010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The substantial evidence supporting the ketogenic diet (KD) in epilepsy management has spurred research into its effects on other neurological and psychiatric conditions. Despite differences in characteristics, symptoms, and underlying mechanisms, these conditions share common pathways that the KD may influence. The KD reverses metabolic dysfunction. Moreover, it has been shown to support neuroprotection through mechanisms such as neuronal energy support, inflammation reduction, amelioration of oxidative stress, and reversing mitochondrial dysfunction. The adequate intake of dietary nutrients is essential for maintaining normal brain functions, and strong evidence supports the role of nutrition in the treatment and prevention of many psychiatric and neurological disorders. Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition marked by persistent, distressing thoughts or impulses (obsessions) and repetitive behaviors performed in response to these obsessions (compulsions). Recent studies have increasingly examined the role of nutrition and metabolic disorders in OCD. This narrative review examines current evidence on the potential role of the KD in the treatment of OCD. We explore research on the KD's effects on psychiatric disorders to assess its potential relevance for OCD treatment. Additionally, we identify key gaps in the preclinical and clinical research that warrant further study in applying the KD as a metabolic therapy for OCD.
Collapse
Affiliation(s)
- Astrid Lounici
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Ana Iacob
- Pôle de Psychiatrie et Psychothérapie (PPP), Unité de Psychiatrie de Liaison, Hôpital du Valais, 1950 Sion, Switzerland;
| | - Katarzyna Hongler
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | | | - Maria Drechsler
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Luca Hersberger
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Undine E. Lang
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Timur Liwinski
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| |
Collapse
|
2
|
Bayrak H, Sezer A, Kılıç M. RMND1 Mutation Case Report and Literature Review. Mol Syndromol 2024; 15:487-494. [PMID: 39634248 PMCID: PMC11614435 DOI: 10.1159/000538930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Mutations in the RMND1 gene that cause defects in the mitochondrial respiratory chain result in a highly variable phenotypic presentation. The protein required for meiotic nuclear division 1 homolog (RMND1) is localized to the inner mitochondrial membrane and is encoded by the nuclear genome. Case Presentation We report a new patient from a consanguineous family who was severely affected by a previously described combined oxidative phosphorylation deficiency 11 and was treated rapidly due to early diagnosis. Methods We also included patients with RMND1 mutation in the literature. We analyzed the epidemiological, clinical, laboratory, and genetic data of a total of 49 patients (98 alleles) in the literature, including our patient. We summarized all previously published patients and focused on the importance of early diagnosis. Results The most common variant in patients with RMND1 mutation was c.713A>G (p.Asn238Ser). Mortality was significantly lower in patients with homozygous and compound heterozygous c.713A>G (p.Asn238Ser) mutations (p < 0.001). The second most common mutation was c1349G>C (p.*450Serext*31), which was reported in 11 patients (22.4%). Cardiac involvement and mortality were more common in patients with homozygous c.1349G>C (p.*450Serext*32) mutation (p = 0.008 and 0.008, respectively). Conclusion In this study, the effect of cardiac involvement on mortality in RMND1 mutation was shown for the first time. We reported that mortality was lower in the c.713A>G (p.Asn238Ser) mutation. Furthermore, mortality was more common in the c.1349G>C (p.*450Serext*32) mutation. These findings have not been previously reported in the literature. They are reported for the first time in this study.
Collapse
Affiliation(s)
- Harun Bayrak
- Division of Pediatric Metabolism, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Abdullah Sezer
- Department of Medical Genetics, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mustafa Kılıç
- Division of Pediatric Metabolism, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
3
|
Li BG, Wu WJ, Wang LH, Wang X, Liu C, Du YK, Li BC, Hu JT, Sun SZ. Identification of a novel pathogenic gene, NDUFA3, in Leigh Syndrome through whole exome sequencing. Neurogenetics 2024; 26:13. [PMID: 39661167 PMCID: PMC11634931 DOI: 10.1007/s10048-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Leigh syndrome is a common mitochondrial disorder caused by gene mutations in the nucleus and mitochondria. When building mitochondrial complex I, the main subunit ND1 combines with the Q module to form a 273 kDa complex, which then adds Ndufa3, Ndufa8, and Ndufa13 to create an intermediate product of about 283 kDa called Q/Pp-a. Although Ndufa8 and Ndufa13 have been linked to mitochondrial diseases, the role of Ndufa3 in disease development is still not fully understood. METHODS A family suspected of having Leigh syndrome was examined. Subjects (two brothers and a sister) underwent brain imaging, and their clinical symptoms were evaluated. Also, whole exome sequencing and minigene testing were performed by examining peripheral blood samples (2 ml) collected from the proband, his parents, and brothers. RESULTS Three affected children showed early-onset symptoms, including abnormalities in muscle tone and delayed motor and language development. Symptoms were relatively mild. The second child of the second pregnancy experienced worsened muscle tone abnormalities after injury, slow wound healing, and sustained increased muscle tone up to a year after wound closure. His brain scans revealed lesions in the basal ganglia and brainstem, consistent with Leigh syndrome diagnosis. Genetic analysis identified compound heterozygous mutations in the Ndufa3 gene in all affected family members. CONCLUSION This is the first report of a family affected by Leigh syndrome associated with mutations in the Ndufa3 gene. Our analyses of clinical symptoms, radiological scans, and genetic investigations broaden our understanding of Ndufa3 gene mutations and their role in the development of Leigh syndrome.
Collapse
Affiliation(s)
- Bao-Guang Li
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, China
| | - Wen-Juan Wu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, China
| | - Li-Hui Wang
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Xin Wang
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Chong Liu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Ya-Kun Du
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Bao-Chi Li
- Department of Respiratory, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Jin-Tong Hu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Su-Zhen Sun
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China.
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
4
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
5
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Gupta N, Aggarwal B, Mishra A, Chowdhury MR, Gulati S, Kumar A, Kabra M. Clinico-Radiological and Genotypic Spectrum of Nuclear Mitochondriopathies. Indian J Pediatr 2024:10.1007/s12098-024-05266-z. [PMID: 39382773 DOI: 10.1007/s12098-024-05266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Mitochondrial disorders are a diverse group of diseases caused by mutations in genes encoded by either nuclear or mitochondrial DNA. In a group of patients with nuclear mitochondriopathies, the authors analysed the clinico-radiological and genotypic spectrum. The study included 25 patients with a genetic diagnosis of nuclear mitochondrial cytopathy who were seen over a 5 y period. There were 25 patients in the study cohort (Mean age of presentation- 14 mo). Biallelic mutations involving nuclear mitochondrial genes were identified in all 25 of them. In 13 and 9 patients, respectively, respiratory chain defects (complex I and complex IV) and mitochondrial DNA depletion syndromes were identified. Twelve novel variants were identified. Interestingly, NDUFV1 with a south Indian founder variant c.1156 C > T (p.Arg386Cys) was the commonest variant. Accurate phenotyping combined with next generation sequencing aids in the precise diagnosis of mitochondrial nuclear gene defects and provides the opportunity for appropriate counseling.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bhawana Aggarwal
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Anushree Mishra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita Roy Chowdhury
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Division of Pediatric Neurology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Atin Kumar
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Manickam A, Fathima K, Bagri VA, Ganesh Prabu AVP, R VP. Balancing Anesthesia in a Child With Mitochondrial Disease: A Case Report. Cureus 2024; 16:e70756. [PMID: 39493163 PMCID: PMC11531197 DOI: 10.7759/cureus.70756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Anesthetic management of patients with mitochondrial disease requires an in-depth knowledge and understanding of its pathophysiology to ensure the safe conduct of anesthesia. Our case report illustrates the importance of careful anesthetic planning and execution for a four-year-old undergoing full mouth rehabilitation. It is essential to avoid factors that increase metabolic stress, such as prolonged fasting, hypoglycemia, postoperative nausea, hypothermia, acidosis, hypovolemia, and ischemic or hypoxic events. Balanced general anesthesia was achieved by using incremental doses of anesthetics, narcotics, and muscle relaxants, all selected to minimize any potential impact on mitochondrial function. The perioperative period was uneventful.
Collapse
Affiliation(s)
- Akilandeswari Manickam
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Kadhij Fathima
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Vatsala A Bagri
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | - Vishnu Priya R
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
8
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Rouzier C, Pion E, Chaussenot A, Bris C, Ait‐El‐Mkadem Saadi S, Desquiret‐Dumas V, Gueguen N, Fragaki K, Amati‐Bonneau P, Barcia G, Gaignard P, Steffann J, Pennisi A, Bonnefont J, Lebigot E, Bannwarth S, Francou B, Rucheton B, Sternberg D, Martin‐Negrier M, Trimouille A, Hardy G, Allouche S, Acquaviva‐Bourdain C, Pagan C, Lebre A, Reynier P, Cossee M, Attarian S, Paquis‐Flucklinger V, Procaccio V. Primary mitochondrial disorders and mimics: Insights from a large French cohort. Ann Clin Transl Neurol 2024; 11:1478-1491. [PMID: 38703036 PMCID: PMC11187946 DOI: 10.1002/acn3.52062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.
Collapse
Affiliation(s)
- Cécile Rouzier
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Emmanuelle Pion
- Filnemus, laboratoire de génétique moléculaire, CHUMontpellierFrance
| | - Annabelle Chaussenot
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Céline Bris
- Service de génétique, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Samira Ait‐El‐Mkadem Saadi
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Valérie Desquiret‐Dumas
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Naïg Gueguen
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Konstantina Fragaki
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Patrizia Amati‐Bonneau
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Giulia Barcia
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Pauline Gaignard
- Service de Biochimie, GHU APHP Paris SaclayHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Julie Steffann
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Alessandra Pennisi
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Jean‐Paul Bonnefont
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Elise Lebigot
- Service de Biochimie, GHU APHP Paris SaclayHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Sylvie Bannwarth
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Bruno Francou
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | | | - Damien Sternberg
- Unité Fonctionnelle de cardiogénétique et myogénétique moléculaire et cellulaire, Centre de génétique moléculaire et chromosomiqueAP‐HP Sorbonne Université, Hopital de la Pitié‐SalpêtrièreParisFrance
| | - Marie‐Laure Martin‐Negrier
- Unité fonctionnelle d'histologie moléculaire, Service de pathologieCHU Bordeaux‐GU PellegrinBordeauxFrance
| | - Aurélien Trimouille
- Unité fonctionnelle d'histologie moléculaire, Service de pathologieCHU Bordeaux‐GU PellegrinBordeauxFrance
| | - Gaëlle Hardy
- Laboratoire de Génétique Moléculaire: Maladies Héréditaires et OncologieInstitut de Biologie et de Pathologie, CHU Grenoble AlpesGrenobleFrance
| | - Stéphane Allouche
- Service de biochimieInstitut Territorial de Biologie en Santé, CHU Caen, Hôpital de la Côte de NacreCaenFrance
| | - Cécile Acquaviva‐Bourdain
- Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie EstCHU Lyon HCL, GH EstLyonFrance
| | - Cécile Pagan
- Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie EstCHU Lyon HCL, GH EstLyonFrance
| | - Anne‐Sophie Lebre
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266 [Krebs team]Université de Reims Champagne‐Ardenne (UFR médicale) ‐ CHU de Reims‐Université Paris CitéParisFrance
| | - Pascal Reynier
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Mireille Cossee
- Laboratoire de Génétique Moléculaire, CHU Montpellier, PhyMedExpUniversité de Montpellier, INSERM, CNRSMontpellierFrance
| | - Shahram Attarian
- Service des Maladies Neuromusculaires et la SLA, FILNEMUS, Euro‐NMDAIX‐CHU La TimoneMarseille UniversitéMarseilleFrance
| | - Véronique Paquis‐Flucklinger
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | | | - Vincent Procaccio
- Service de génétique, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| |
Collapse
|
10
|
Tripathi U, Rosh I, Ben Ezer R, Nayak R, Hussein Y, Choudhary A, Djamus J, Manole A, Houlden H, Gage FH, Stern S. Upregulated ECM genes and increased synaptic activity in Parkinson's human DA neurons with PINK1/ PRKN mutations. NPJ Parkinsons Dis 2024; 10:103. [PMID: 38762512 PMCID: PMC11102563 DOI: 10.1038/s41531-024-00715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta, but PD also affects the hippocampus and cortex, usually in its later stage. Approximately 15% of PD cases are familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PRKN. In vitro studies of these genetic mutations are needed to understand the neurophysiological changes in patients' neurons that may contribute to neurodegeneration. In this work, we generated and differentiated DA and hippocampal neurons from human induced pluripotent stem cells (hiPSCs) derived from two patients with a double mutation in their PINK1 and PRKN (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PRKN mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition, DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top two upregulated pathways in the mutant PD neurons. Our findings reveal that the phenotypes linked to PINK1 and PRKN mutations differ from those from other PD mutations, suggesting a unique interplay between these two mutations that drives different PD mechanisms.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ran Ben Ezer
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Andreea Manole
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry Houlden
- UCL queen square institute of neurology, University College London, London, England
| | - Fred H Gage
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
| |
Collapse
|
11
|
Ibrahim AH, Rahman NNA, Saifuddeen SM. Mitochondrial Replacement Therapy: An Islamic Perspective. JOURNAL OF BIOETHICAL INQUIRY 2023; 20:485-495. [PMID: 37440155 DOI: 10.1007/s11673-023-10279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2023] [Indexed: 07/14/2023]
Abstract
Mitochondrial replacement technology (MRT) is an emerging and complex bioethical issue. This treatment aims to eliminate maternal inherited mitochondrial DNA (mtDNA) disorders. For Muslims, its introduction affects every aspect of human life, especially the five essential interests of human beings-namely, religion, life, lineage, intellect, and property. Thus, this technology must be assessed using a comprehensive and holistic approach addressing these human essential interests. Consequently, this article analyses and assesses tri-parent baby technology from the perspective of Maqasidic bioethics-that is, Islamic bioethics based on the framework of Maqasid al-Shariah. Using this analysis, this article suggests that tri-parent baby technology should not be permitted for Muslims due to the existence of third-party cell gametes which lead to lineage mixing and due to the uncertain safety of the therapy itself and because the major aim of the technology is to fulfil the affected couples interest to conceive their own genetically healthy child, not to treat and cure mtDNA disorders sufferers.
Collapse
Affiliation(s)
- Abdul Halim Ibrahim
- Programme of Applied Science with Islamic Studies, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Noor Naemah Abdul Rahman
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shaikh Mohd Saifuddeen
- Centre for Science and Environment Studies, Institute of Islamic Understanding Malaysia, 2 Langgak Tunku Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Ibayashi K, Fujino Y, Mimaki M, Fujimoto K, Matsuda S, Goto YI. Estimation of the Number of Patients With Mitochondrial Diseases: A Descriptive Study Using a Nationwide Database in Japan. J Epidemiol 2023; 33:68-75. [PMID: 33907064 PMCID: PMC9794447 DOI: 10.2188/jea.je20200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To provide a better healthcare system for patients with mitochondrial diseases, it is important to understand the basic epidemiology of these conditions, including the number of patients affected. However, little information about them has appeared in Japan to date. METHODS To gather data of patients with mitochondrial diseases, we estimated the number of patients with mitochondrial diseases from April 2018 through March 2019 using a national Japanese health care claims database, the National Database (NDB). Further, we calculated the prevalence of patients, and sex ratio, age class, and geographical distribution. RESULTS From April 2018 through March 2019, the number of patients with mitochondrial diseases was 3,629, and the prevalence was 2.9 (95% confidence interval [CI], 2.8-3.0) per 100,000 general population. The ratio of females and males was 53 to 47, and the most frequent age class was 40-49 years old. Tokyo had the greatest number of patients with mitochondrial diseases, at 477, whereas Yamanashi had the fewest, at 13. Kagoshima had the highest prevalence of patients with mitochondrial diseases, 8.4 (95% CI, 7.1-10.0) per 100,000 population, whereas Yamanashi had the lowest, 1.6 (95% CI, 0.8-2.7). CONCLUSION The number of patients with mitochondrial diseases estimated by this study, 3,269, was more than double that indicated by the Japanese government. This result may imply that about half of all patients are overlooked for reasons such as low severity of illness, suggesting that the Japanese healthcare system needs to provide additional support for these patients.
Collapse
Affiliation(s)
- Koki Ibayashi
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenji Fujimoto
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Shinya Matsuda
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
13
|
Corsello A, Scatigno L, Govoni A, Zuccotti G, Gottrand F, Romano C, Verduci E. Gut dysmotility in children with neurological impairment: the nutritional management. Front Neurol 2023; 14:1200101. [PMID: 37213895 PMCID: PMC10196023 DOI: 10.3389/fneur.2023.1200101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Intestinal motility disorders represent a frequent problem in children with neurological impairment. These conditions are characterized by abnormal movements of the gut, which can result in symptoms such as constipation, diarrhea, reflux, and vomiting. The underlying mechanisms leading to dysmotility are various, and the clinical manifestations are often nonspecific. Nutritional management is an important aspect of care for children with gut dysmotility, as it can help to improve their quality of life. Oral feeding, when safe and in the absence of risk of ingestion or severe dysphagia, should always be encouraged. When oral nutrition is insufficient or potentially harmful, it is necessary to switch to an enteral by tube or parenteral nutrition before the onset of malnutrition. In most cases, children with severe gut dysmotility may require feeding via a permanent gastrostomy tube to ensure adequate nutrition and hydration. Drugs may be necessary to help manage gut dysmotility, such as laxatives, anticholinergics and prokinetic agents. Nutritional management of patients with neurological impairment often requires an individualized care plan to optimize growth and nutrition and to improve overall health outcomes. This review tries to sum up most significant neurogenetic and neurometabolic disorders associated with gut dysmotility that may require a specific multidisciplinary care, identifying a proposal of nutritional and medical management.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Lorenzo Scatigno
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Annalisa Govoni
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Frédéric Gottrand
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, CHU Lille, University of Lille, Lille, France
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Health Science, University of Milan, Milan, Italy
- *Correspondence: Elvira Verduci,
| |
Collapse
|
14
|
Bharathidasan K, Evans A, Fernandez FMAO, Motes AT, Nugent K. Mitochondrial Myopathy in a 21-Year-Old Man Presenting With Bilateral Lower Extremity Weakness and Swelling. J Prim Care Community Health 2023; 14:21501319231172697. [PMID: 37162197 PMCID: PMC10184240 DOI: 10.1177/21501319231172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.
Collapse
Affiliation(s)
| | - Abbie Evans
- Texas Tech University Health Science Center, Lubbock, TX, USA
| | | | | | - Kenneth Nugent
- Texas Tech University Health Science Center, Lubbock, TX, USA
| |
Collapse
|
15
|
Mensah EA, Sarfo B, Yawson AE, Arthur J, Ocloo A. Knowledge and awareness of mitochondrial diseases among physicians in the tertiary hospitals in Ghana. PLoS One 2022; 17:e0276549. [PMID: 36264964 PMCID: PMC9584519 DOI: 10.1371/journal.pone.0276549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mitochondrial diseases/disorders (MDs), for decades, have been identified as a key underlying condition for many chronic diseases globally. However, data on the knowledge and prevalence of MDs in many countries in sub-Saharan Africa are lacking. This study assessed the knowledge, and awareness, of MDs among senior medical doctors in the five tertiary hospitals in Ghana. METHOD Data were collected from one hundred and twenty-eight (128) medical doctors in the five Tertiary Hospitals in Ghana using both closed and open-ended questionnaires and analysed using descriptive statistics. RESULTS Of the 128 respondents, 70.32% were senior medical officers and above, 87% of them indicated that they were aware of MDs and over 90% said physicians do not often diagnose MDs in Ghana. About 81% indicated that MDs are associated with chronic illnesses whilst 72% said the disease is diagnosed in both males and females. About 45% of the respondents alluded to the fact that MDs are difficult to diagnose, are associated with mutations in both the mitochondrial and the nuclear DNA, and are non-infectious diseases. Approximately 85% said nervous system dysfunction and muscle weakness are some of the symptoms associated with MDs whilst 77% said fatigue is also one of the symptoms. About 38% of the respondents specified that they encounter myopathies. A majority (70%) did not know about the availability of any consensus or standard diagnostic procedure and/or drugs for MDs. CONCLUSION There is a high level of knowledge and awareness of MDs among the respondents. However, there is a low disease encounter, which could be due to a lack of diagnostic protocols or a low disease prevalence. It is, therefore recommend that a patient perspective study, which looks at clinical records and laboratory data be conducted to fully ascertain the prevalence of MDs in Ghana and that appropriate educational strategies and interventions aimed at improving the diagnosis of mitochondrial diseases in Ghana be put in place.
Collapse
Affiliation(s)
- Eric A. Mensah
- Department of Biochemistry, Cell & Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- West African Centre for the Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Bismark Sarfo
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred E. Yawson
- Department of Community Health, University of Ghana Medical School, College of Health Sciences, University of Ghana Korle Bu, Accra, Ghana
| | - Joshua Arthur
- Public Health Unit, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell & Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| |
Collapse
|
16
|
Zhang TG, Miao CY. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm Sin B 2022; 13:1028-1035. [PMID: 36970208 PMCID: PMC10031255 DOI: 10.1016/j.apsb.2022.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.
Collapse
Affiliation(s)
| | - Chao-yu Miao
- Corresponding author. Tel: +86 21 81871271; fax: +86 21 65493951.
| |
Collapse
|
17
|
Gao L, Cao M, Du GH, Qin XM. Huangqin Decoction Exerts Beneficial Effects on Rotenone-Induced Rat Model of Parkinson's Disease by Improving Mitochondrial Dysfunction and Alleviating Metabolic Abnormality of Mitochondria. Front Aging Neurosci 2022; 14:911924. [PMID: 35912075 PMCID: PMC9334858 DOI: 10.3389/fnagi.2022.911924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the pathogenesis of PD is closely related to mitochondrial dysfunction. Previous studies have indicated that traditional Chinese medicine composition of Huangqin Decoction (HQD), including Scutellariae Radix, licorice, and Paeoniae Radix Alba, has therapeutic effects on PD, but whether HQD has a therapeutic effect on PD has not been reported. In this study, the protective effects of HQD on rotenone-induced PD rats were evaluated by behavioral assays (open field, rotating rod, suspension, gait, inclined plate, and grid) and immunohistochemistry. The mechanisms of HQD on attenuation of mitochondrial dysfunction were detected by biochemical assays and mitochondrial metabolomics. The results showed that HQD (20 g/kg) can protect rats with PD by improving motor coordination and muscle strength, increasing the number of tyrosine hydroxylase (TH)-positive neurons in rats with PD. Besides, HQD can improve mitochondrial dysfunction by increasing the content of adenosine triphosphate (ATP) and mitochondrial complex I. Mitochondrial metabolomics analysis revealed that the ketone body of acetoacetic acid (AcAc) in the rotenone group was significantly higher than that of the control group. Ketone bodies have been known to be used as an alternative energy source to provide energy to the brain when glucose was deficient. Further studies demonstrated that HQD could increase the expression of glucose transporter GLUT1, the content of tricarboxylic acid cycle rate-limiting enzyme citrate synthase (CS), and the level of hexokinase (HK) in rats with PD but could decrease the content of ketone bodies [AcAc and β-hydroxybutyric acid (β-HB)] and the expression of their transporters (MCT1). Our study revealed that the decrease of glucose metabolism in the rotenone group was parallel to the increase of substitute substrates (ketone bodies) and related transporters, and HQD could improve PD symptoms by activating the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- *Correspondence: Li Gao
| | - Min Cao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-hua Du
- Peking Union Medical College, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- Xue-mei Qin
| |
Collapse
|
18
|
Borror MB, Girotti M, Kar A, Cain MK, Gao X, MacKay VL, Herron B, Bhaskaran S, Becerra S, Novy N, Ventura N, Johnson TE, Kennedy BK, Rea SL. Inhibition of ATR Reverses a Mitochondrial Respiratory Insufficiency. Cells 2022; 11:1731. [PMID: 35681427 PMCID: PMC9179431 DOI: 10.3390/cells11111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases that affect the mitochondrial electron transport chain (ETC) often manifest as threshold effect disorders, meaning patients only become symptomatic once a certain level of ETC dysfunction is reached. Cells can invoke mechanisms to circumvent reaching their critical ETC threshold, but it is an ongoing challenge to identify such processes. In the nematode Caenorhabditis elegans, severe reduction of mitochondrial ETC activity shortens life, but mild reduction actually extends it, providing an opportunity to identify threshold circumvention mechanisms. Here, we show that removal of ATL-1, but not ATM-1, worm orthologs of ATR and ATM, respectively, key nuclear DNA damage checkpoint proteins in human cells, unexpectedly lessens the severity of ETC dysfunction. Multiple genetic and biochemical tests show no evidence for increased mutation or DNA breakage in animals exposed to ETC disruption. Reduced ETC function instead alters nucleotide ratios within both the ribo- and deoxyribo-nucleotide pools, and causes stalling of RNA polymerase, which is also known to activate ATR. Unexpectedly, atl-1 mutants confronted with mitochondrial ETC disruption maintain normal levels of oxygen consumption, and have an increased abundance of translating ribosomes. This suggests checkpoint signaling by ATL-1 normally dampens cytoplasmic translation. Taken together, our data suggest a model whereby ETC insufficiency in C. elegans results in nucleotide imbalances leading to the stalling of RNA polymerase, activation of ATL-1, dampening of global translation, and magnification of ETC dysfunction. The loss of ATL-1 effectively reverses the severity of ETC disruption so that animals become phenotypically closer to wild type.
Collapse
Affiliation(s)
- Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Milena Girotti
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Adwitiya Kar
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Meghan K. Cain
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiaoli Gao
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (V.L.M.); (B.K.K.)
| | - Brent Herron
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (B.H.); (T.E.J.)
| | - Shylesh Bhaskaran
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sandra Becerra
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan Novy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Natascia Ventura
- IUF—Leibniz Research Institute for Environmental Medicine, 103045 Düsseldorf, Germany;
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 103045 Düsseldorf, Germany
| | - Thomas E. Johnson
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (B.H.); (T.E.J.)
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (V.L.M.); (B.K.K.)
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117542, Singapore
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
19
|
De Luca V, Leo M, Cretella E, Montanari A, Saliola M, Ciaffi G, Vecchione A, Stoppacciaro A, Filetici P. Role of yUbp8 in Mitochondria and Hypoxia Entangles the Finding of Human Ortholog Usp22 in the Glioblastoma Pseudo-Palisade Microlayer. Cells 2022; 11:cells11101682. [PMID: 35626719 PMCID: PMC9140154 DOI: 10.3390/cells11101682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
KAT Gcn5 and DUB Ubp8 are required for respiration and mitochondria functions in budding yeast, and in this study we show that loss of respiratory activity is acquired over time. Interestingly, we show that absence of Ubp8 allows cells to grow in hypoxic conditions with altered mitophagy. Comparatively, the aggressive glioblastoma (GBM) multiforme tumor shows survival mechanisms able to overcome hypoxia in the brain. Starting from yeast and our findings on the role of Ubp8 in hypoxia, we extended our analysis to the human ortholog and signature cancer gene Usp22 in glioblastoma tumor specimens. Here we demonstrate that Usp22 is localized and overexpressed in the pseudo-palisade tissue around the necrotic area of the tumor. In addition, Usp22 colocalizes with the mitophagy marker Parkin, indicating a link with mitochondria function in GBM. Collectively, this evidence suggests that altered expression of Usp22 might provide a way for tumor cells to survive in hypoxic conditions, allowing the escape of cells from the necrotic area toward vascularized tissues. Collectively, our experimental data suggest a model for a possible mechanism of uncontrolled proliferation and invasion in glioblastoma.
Collapse
Affiliation(s)
- Veronica De Luca
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Manuela Leo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Elisabetta Cretella
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Arianna Montanari
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Michele Saliola
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Gabriele Ciaffi
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology—CNR, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| |
Collapse
|
20
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Perez R, Sánchez-Alcázar JA. UPR mt activation improves pathological alterations in cellular models of mitochondrial diseases. Orphanet J Rare Dis 2022; 17:204. [PMID: 35581596 PMCID: PMC9115953 DOI: 10.1186/s13023-022-02331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mitochondrial diseases represent one of the most common groups of genetic diseases. With a prevalence greater than 1 in 5000 adults, such diseases still lack effective treatment. Current therapies are purely palliative and, in most cases, insufficient. Novel approaches to compensate and, if possible, revert mitochondrial dysfunction must be developed. Results In this study, we tackled the issue using as a model fibroblasts from a patient bearing a mutation in the GFM1 gene, which is involved in mitochondrial protein synthesis. Mutant GFM1 fibroblasts could not survive in galactose restrictive medium for more than 3 days, making them the perfect screening platform to test several compounds. Tetracycline enabled mutant GFM1 fibroblasts survival under nutritional stress. Here we demonstrate that tetracycline upregulates the mitochondrial Unfolded Protein Response (UPRmt), a compensatory pathway regulating mitochondrial proteostasis. We additionally report that activation of UPRmt improves mutant GFM1 cellular bioenergetics and partially restores mitochondrial protein expression. Conclusions Overall, we provide compelling evidence to propose the activation of intrinsic cellular compensatory mechanisms as promising therapeutic strategy for mitochondrial diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02331-8.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Carmen J Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Rocío Piñero-Perez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Seville, Spain.
| |
Collapse
|
21
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
22
|
Osychenko AA, Zalessky AD, Tochilo UA, Martirosyan DY, Silaeva YY, Nadtochenko VA. Femtosecond laser oocyte enucleation as a low-invasive and effective method of recipient cytoplast preparation. BIOMEDICAL OPTICS EXPRESS 2022; 13:1447-1456. [PMID: 35414969 PMCID: PMC8973162 DOI: 10.1364/boe.449523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Recipient cytoplast preparation, commonly performed by DNA aspiration with a needle, inevitably leads to the loss of reprogramming factors. As an alternative to the traditional enucleation technique, femtosecond laser enucleation can eliminate DNA effectively without loss of reprogramming factors and without oocyte puncturing. In this work we have performed oocyte enucleation by destructing the metaphase plate using a 795 nm femtosecond laser. The disability of the enucleated oocytes to develop after the parthenogenetic activation, as well as the lack of DNA staining luminescence, strongly confirms the efficiency of the femtosecond laser enucleation. The parthenogenetic development of oocytes after the cytoplasm treatment suggests a low-invasive effect of the laser enucleation technique.
Collapse
Affiliation(s)
- Alina A. Osychenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - Alexandr D. Zalessky
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - Uliana A. Tochilo
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - David Yu. Martirosyan
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - Yulia Yu. Silaeva
- Institute of Gene Biology Russian Academy of Sciences. 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences. 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| |
Collapse
|
23
|
Son JS, Seo GH, Kim YM, Kim GH, Jin HK, Bae JS, Im HJ, Yoo HW, Lee BH. Clinical and genetic features of four patients with Pearson syndrome: An observational study. Medicine (Baltimore) 2022; 101:e28793. [PMID: 35119049 PMCID: PMC8812667 DOI: 10.1097/md.0000000000028793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
Pearson syndrome (PS) is a multisystem mitochondrial cytopathy arising from deletions in mitochondrial DNA. Pearson syndrome is a sporadic disease that affects the hematopoietic system, pancreas, eyes, liver, and heart and the prognosis is poor. Causes of morbidity include metabolic crisis, bone marrow dysfunction, sepsis, and liver failure in early infancy or childhood. Early diagnosis may minimize complications, but suspicion of the disease is difficult and only mitochondrial DNA gene testing can identify mutations. There is no specific treatment for PS, which remains supportive care according to symptoms; however, hematopoietic stem cell transplantation may be considered in cases of bone marrow failure.We herein describe the clinical and genetic characteristics of four patients with PS. One patient presented with hypoglycemia, two developed pancytopenia, and the final patient had hypoglycemia and acute hepatitis as the primary manifestation. All patients had lactic acidosis. Additionally, all patients showed a variety of clinical features including coagulation disorder, pancreatic, adrenal, and renal tubular insufficiencies. Two patients with pancytopenia died in their early childhood. Our experience expands the phenotypic spectrum associated with PS and its clinical understanding.
Collapse
Affiliation(s)
- Ji Soo Son
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Go Hun Seo
- Division of Medical Genetics, 3billion Inc., Seoul, South Korea
| | - Yoon-Myung Kim
- Department of Pediatrics, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae-sung Bae
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ho Joon Im
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine 2022; 76:103815. [PMID: 35085849 PMCID: PMC8790490 DOI: 10.1016/j.ebiom.2022.103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning. METHODS We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains. FINDINGS A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied. INTERPRETATION mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process. FUNDING Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Juan Tortajada
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Bengisu K Bulduk
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Department of Internal Medicine-Hospital Clínic of Barcelona (HCB); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain; Institute of Evolutionary Biology (IBE), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain.
| |
Collapse
|
25
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
26
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
27
|
ECMO for Metabolic Crisis in a Patient with Mitochondrial Disease. Case Rep Anesthesiol 2021; 2021:9914311. [PMID: 34760322 PMCID: PMC8575615 DOI: 10.1155/2021/9914311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Patients with mitochondrial disease exhibit disrupted pyruvate oxidation, resulting in intraoperative and perioperative physiologic derangements. Increased enzymatic conversion of pyruvate via lactate dehydrogenase during periods of fasting or stress can lead to metabolic decompensation, with rapid development of fatal lactic acidosis. We describe the intraoperative management and postoperative critical care of a patient with mitochondrial disease who presented for repair of esophageal perforation following repair of a paraesophageal hernia. His surgery was complicated by the development of metabolic crisis and severe lactic acidosis which became resistant to conventional therapy before ultimately resolving with the initiation of venoarterial extracorporeal membrane oxygenation (VA-ECMO).
Collapse
|
28
|
Bakare AB, Dean J, Chen Q, Thorat V, Huang Y, LaFramboise T, Lesnefsky EJ, Iyer S. Evaluating the Bioenergetics Health Index Ratio in Leigh Syndrome Fibroblasts to Understand Disease Severity. Int J Mol Sci 2021; 22:ijms221910344. [PMID: 34638685 PMCID: PMC8508996 DOI: 10.3390/ijms221910344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Several pediatric mitochondrial disorders, including Leigh syndrome (LS), impact mitochondrial (mt) genetics, development, and metabolism, leading to complex pathologies and energy failure. The extent to which pathogenic mtDNA variants regulate disease severity in LS is currently not well understood. To better understand this relationship, we computed a glycolytic bioenergetics health index (BHI) for measuring mitochondrial dysfunction in LS patient fibroblast cells harboring varying percentages of pathogenic mutant mtDNA (T8993G, T9185C) exhibiting deficiency in complex V or complex I (T10158C, T12706C). A high percentage (>90%) of pathogenic mtDNA in cells affecting complex V and a low percentage (<39%) of pathogenic mtDNA in cells affecting complex I was quantified. Levels of defective enzyme activities of the electron transport chain correlated with the percentage of pathogenic mtDNA. Subsequent bioenergetics assays showed cell lines relied on both OXPHOS and glycolysis for meeting energy requirements. Results suggest that whereas the precise mechanism of LS has not been elucidated, a multi-pronged approach taking into consideration the specific pathogenic mtDNA variant, glycolytic BHI, and the composite BHI (average ratio of oxphos to glycolysis) can aid in better understanding the factors influencing disease severity in LS.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph Dean
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA 23284, USA; (J.D.); (E.J.L.)
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (V.T.); (Y.H.); (T.L.)
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (V.T.); (Y.H.); (T.L.)
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (V.T.); (Y.H.); (T.L.)
| | - Edward J. Lesnefsky
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA 23284, USA; (J.D.); (E.J.L.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-3400
| |
Collapse
|
29
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Ouyang X, Zhang Y, Zhang L, Luo J, Zhang T, Hu H, Liu L, Zhong L, Zeng S, Xu P, Bai Z, Wong LJ, Wang J, Wang C, Wang B, Zhang VW. Clinical Utility of Rapid Exome Sequencing Combined With Mitochondrial DNA Sequencing in Critically Ill Pediatric Patients With Suspected Genetic Disorders. Front Genet 2021; 12:725259. [PMID: 34490048 PMCID: PMC8416976 DOI: 10.3389/fgene.2021.725259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023] Open
Abstract
Genetic disorders are a frequent cause of hospitalization, morbidity and mortality in pediatric patients, especially in the neonatal or pediatric intensive care unit (NICU/PICU). In recent years, rapid genome-wide sequencing (exome or whole genome sequencing) has been applied in the NICU/PICU. However, mtDNA sequencing is not routinely available in rapid genetic diagnosis programs, which may fail to diagnose mtDNA mutation-associated diseases. Herein, we explored the clinical utility of rapid exome sequencing combined with mtDNA sequencing in critically ill pediatric patients with suspected genetic disorders. Rapid clinical exome sequencing (CES) was performed as a first-tier test in 40 critically ill pediatric patients (aged from 6 days to 15 years) with suspected genetic conditions. Blood samples were also collected from the parents for trio analysis. Twenty-six patients presented with neuromuscular abnormalities or other systemic abnormalities, suggestive of suspected mitochondrial diseases or the necessity for a differential diagnosis of other diseases, underwent rapid mtDNA sequencing concurrently. A diagnosis was made in 18 patients (45.0%, 18/40); three cases with de novo autosomal dominant variants, ten cases with homozygous or compound heterozygous variants, three cases with hemizygous variants inherited from mother, three cases with heterozygous variants inherited from either parent, and one case with a mtDNA mutation. The 18 patients were diagnosed with metabolic (n = 7), immunodeficiency (n = 4), cardiovascular (n = 2), neuromuscular (n = 2) disorders, and others. Genetic testing reports were generated with a median time of 5 days (range, 3–9 days). Thirteen patients that were diagnosed had an available medical treatment and resulted in a positive outcome. We propose that rapid exome sequencing combined with mitochondrial DNA sequencing should be available to patients with suspected mitochondrial diseases or undefined clinical features necessary for making a differential diagnosis of other diseases.
Collapse
Affiliation(s)
- Xuejun Ouyang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Zhang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jixuan Luo
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Zhang
- Department of Gastroenterology, Shanghai Children's Hospital, Shanghai, China
| | - Hui Hu
- Department of Gastroenterology, Shanghai Children's Hospital, Shanghai, China
| | - Lin Liu
- Department of Vasculocardiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Lieqiang Zhong
- Department of Vasculocardiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shaoying Zeng
- Department of Vasculocardiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjiang Bai
- Department of Critical Care Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Lee-Jun Wong
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jing Wang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States.,AmCare Genomics Lab, Guangzhou, China
| | | | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Victor Wei Zhang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States.,AmCare Genomics Lab, Guangzhou, China
| |
Collapse
|
31
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
32
|
Mitochondria-Induced Immune Response as a Trigger for Neurodegeneration: A Pathogen from Within. Int J Mol Sci 2021; 22:ijms22168523. [PMID: 34445229 PMCID: PMC8395232 DOI: 10.3390/ijms22168523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023] Open
Abstract
Symbiosis between the mitochondrion and the ancestor of the eukaryotic cell allowed cellular complexity and supported life. Mitochondria have specialized in many key functions ensuring cell homeostasis and survival. Thus, proper communication between mitochondria and cell nucleus is paramount for cellular health. However, due to their archaebacterial origin, mitochondria possess a high immunogenic potential. Indeed, mitochondria have been identified as an intracellular source of molecules that can elicit cellular responses to pathogens. Compromised mitochondrial integrity leads to release of mitochondrial content into the cytosol, which triggers an unwanted cellular immune response. Mitochondrial nucleic acids (mtDNA and mtRNA) can interact with the same cytoplasmic sensors that are specialized in recognizing genetic material from pathogens. High-energy demanding cells, such as neurons, are highly affected by deficits in mitochondrial function. Notably, mitochondrial dysfunction, neurodegeneration, and chronic inflammation are concurrent events in many severe debilitating disorders. Interestingly in this context of pathology, increasing number of studies have detected immune-activating mtDNA and mtRNA that induce an aberrant production of pro-inflammatory cytokines and interferon effectors. Thus, this review provides new insights on mitochondria-driven inflammation as a potential therapeutic target for neurodegenerative and primary mitochondrial diseases.
Collapse
|
33
|
Trifunov S, Paredes-Fuentes AJ, Badosa C, Codina A, Montoya J, Ruiz-Pesini E, Jou C, Garrabou G, Grau-Junyent JM, Yubero D, Montero R, Muchart J, Ortigoza-Escobar JD, O'Callaghan MM, Nascimento A, Català A, Garcia-Cazorla À, Jimenez-Mallebrera C, Artuch R. Circulating Cell-Free Mitochondrial DNA in Cerebrospinal Fluid as a Biomarker for Mitochondrial Diseases. Clin Chem 2021; 67:1113-1121. [PMID: 34352085 DOI: 10.1093/clinchem/hvab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.
Collapse
Affiliation(s)
- Selena Trifunov
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Julio Montoya
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Cristina Jou
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Glòria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Josep M Grau-Junyent
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muchart
- Department of Radiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | - Andrés Nascimento
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Hematology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Ali Pour P, Hosseinian S, Kheradvar A. Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. Am J Physiol Cell Physiol 2021; 321:C489-C503. [PMID: 34191626 DOI: 10.1152/ajpcell.00152.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects, mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species. Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to their semiautonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. We outline the different mitochondrial isolation and transfer techniques. Finally, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia.
Collapse
Affiliation(s)
- Paria Ali Pour
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California
| | - Sina Hosseinian
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,School of Medicine, University of California, Irvine, California
| | - Arash Kheradvar
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,School of Medicine, University of California, Irvine, California
| |
Collapse
|
35
|
Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021; 22:ijms22126634. [PMID: 34205712 PMCID: PMC8235559 DOI: 10.3390/ijms22126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
36
|
Diagnosing newborns with suspected mitochondrial disorders: an economic evaluation comparing early exome sequencing to current typical care. Genet Med 2021; 23:1854-1863. [PMID: 34040192 DOI: 10.1038/s41436-021-01210-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/03/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the value of early exome sequencing (eES) relative to the current typical care (TC) in the diagnosis of newborns with suspected severe mitochondrial disorders (MitD). METHODS We used a decision tree-Markov hybrid to model neonatal intensive care unit (NICU)-related outcomes and costs, lifetime costs and quality-adjusted life-years among patients with MitD. Probabilities, costs, and utilities were populated using published literature, expert opinion, and the Pediatric Health Information System database. Incremental cost-effectiveness ratios (ICER) and net monetary benefits (NMB) were calculated from lifetime costs and quality-adjusted life-years for singleton and trio eES, and TC. Robustness was assessed using univariate and probabilistic sensitivity analyses (PSA). Scenario analyses were also conducted. RESULTS Findings indicate trio eES is a cost-minimizing and cost-effective alternative to current TC. Diagnostic probabilities and NICU length-of-stay were the most sensitive model parameters. Base case analysis demonstrates trio eES has the highest incremental NMB, and PSA demonstrates trio eES had the highest likelihood of being cost-effective at a willingness-to-pay (WTP) of $200,000 relative to TC, singleton eES, and no ES. CONCLUSION Trio and singleton eES are cost-effective and cost-minimizing alternatives to current TC in diagnosing newborns suspected of having a severe MitD.
Collapse
|
37
|
Abstract
Genetic diseases cause numerous complex and intractable pathologies. DNA sequences encoding each human's complexity and many disease risks are contained in the mitochondrial genome, nuclear genome, and microbial metagenome. Diagnosis of these diseases has unified around applications of next-generation DNA sequencing. However, translating specific genetic diagnoses into targeted genetic therapies remains a central goal. To date, genetic therapies have fallen into three broad categories: bulk replacement of affected genetic compartments with a new exogenous genome, nontargeted addition of exogenous genetic material to compensate for genetic errors, and most recently, direct correction of causative genetic alterations using gene editing. Generalized methods of diagnosis, therapy, and reagent delivery into each genetic compartment will accelerate the next generations of curative genetic therapies. We discuss the structure and variability of the mitochondrial, nuclear, and microbial metagenomic compartments, as well as the historical development and current practice of genetic diagnostics and gene therapies targeting each compartment.
Collapse
Affiliation(s)
- Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, California 94143, USA; .,Department of Microbiology and Immunology and Diabetes Center, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, California 94720, USA.,Gladstone Institutes, San Francisco, California 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology and Diabetes Center, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, California 94720, USA.,Gladstone Institutes, San Francisco, California 94158, USA.,Department of Medicine, University of California, San Francisco, California 94143, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, California 94129, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
38
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
39
|
Zia N, Nikookam Y, Muzaffar J, Kullar P, Monksfield P, Bance M. Cochlear Implantation Outcomes in Patients with Mitochondrial Hearing Loss: A Systematic Review and Narrative Synthesis. J Int Adv Otol 2021; 17:72-80. [PMID: 33605225 DOI: 10.5152/iao.2020.9226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study's aim was to establish outcomes following cochlear implantation (CI) in patients with mitochondrial disorders associated with deafness. Systematic review and narrative synthesis. Databases searched: Medline, EMBASE, Web of Science, COCHRANE, and ClinicalTrials.gov. No limits on language or year of publication. Review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Searches identified 437 abstracts and 37 full text articles, of which 11 studies met the inclusion criteria reporting outcomes in a total of 17 patients. All implants achieved good hearing outcomes, and follow-up ranged between 1 week and 12 months. The methodological quality of the included studies was sufficient, scoring grades 3 to 4 using the Oxford Centre for Evidence Based Medicine grading system. All studies were retrospective and consisted of case reviews and case reports. All cases of CI showed positive outcomes in speech perception and detection. There is some qualitative evidence to suggest improvement in quality of life and satisfaction postoperatively. There was very limited information available on secondary outcomes such as surgical complications, quality of life, and method of cochlear implant insertion. The small sample size of our patient cohort and quality of studies suggests a need for large-scale studies with more robust methodology to assess the effectiveness of CI. There is a need for studies that assess other factors to be considered when counseling patients about cochlear implants, such as adverse events, surgical complications, and long-term benefits.
Collapse
Affiliation(s)
- Nawal Zia
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Yasmin Nikookam
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK;Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Kullar
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
42
|
Antipova VN. A New Deletion of Mitochondrial DNA of a BALB/c Mouse. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Hsieh VC, Niezgoda J, Sedensky MM, Hoppel CL, Morgan PG. Anesthetic Hypersensitivity in a Case-Controlled Series of Patients With Mitochondrial Disease. Anesth Analg 2021; 133:924-932. [PMID: 33591116 DOI: 10.1213/ane.0000000000005430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Children with mitochondrial disease undergo anesthesia for a wide array of surgical procedures. However, multiple medications used for their perioperative care can affect mitochondrial function. Defects in function of the mitochondrial electron transport chain (ETC) can lead to a profound hypersensitivity to sevoflurane in children. We studied the sensitivities to sevoflurane, during mask induction and maintenance of general anesthesia, in children presenting for muscle biopsies for diagnosis of mitochondrial disease. METHODS In this multicenter study, 91 children, aged 6 months to 16 years, presented to the operating room for diagnostic muscle biopsy for presumptive mitochondrial disease. General anesthesia was induced by a slow increase of inhaled sevoflurane concentration. The primary end point, end-tidal (ET) sevoflurane necessary to achieve a bispectral index (BIS) of 60, was recorded. Secondary end points were maximal sevoflurane used to maintain a BIS between 40 and 60 during the case, and maximum and minimum heart rate and blood pressures. After induction, general anesthesia was maintained according to the preferences of the providers directing the cases. Primary data were analyzed comparing data from patients with complex I deficiencies to other groups using nonparametric statistics in SPSS v.27. RESULTS The median sevoflurane concentration to reach BIS of 60 during inductions (ET sevoflurane % [BIS = 60]) was significantly lower for patients with complex I defects (0.98%; 95% confidence interval [CI], 0.5-1.4) compared to complex II (1.95%; 95% CI, 1.2-2.7; P < .001), complex III (2.0%; 95% CI, 0.7-3.5; P < .001), complex IV (2.0%; 95% CI, 1.7-3.2; P < .001), and normal groups (2.2%; 95% CI, 1.8-3.0; P < .001). The sevoflurane sensitivities of complex I patients did not reach significance when compared to patients diagnosed with mitochondrial disease but without an identifiable ETC abnormality (P = .172). Correlation of complex I activity with ET sevoflurane % (BIS = 60) gave a Spearman's coefficient of 0.505 (P < .001). The differences in sensitivities between groups were less during the maintenance of the anesthetic than during induction. CONCLUSIONS The data indicate that patients with complex I dysfunction are hypersensitive to sevoflurane compared to normal patients. Hypersensitivity was less common in patients presenting with other mitochondrial defects or without a mitochondrial diagnosis.
Collapse
Affiliation(s)
- Vincent C Hsieh
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Julie Niezgoda
- Department of Pediatric Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | - Margaret M Sedensky
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Charles L Hoppel
- Department of Pharmacology and Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Philip G Morgan
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
44
|
Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, Cirillo A, Caiazza M, Fusco A, Esposito A, Fimiani F, Palmiero G, Pacileo G, Calabrò P, Russo MG, Limongelli G. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr 2021; 9:632293. [PMID: 33718303 PMCID: PMC7947260 DOI: 10.3389/fped.2021.632293] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease characterized by left ventricular hypertrophy not solely explained by abnormal loading conditions. Despite its rare prevalence in pediatric age, HCM carries a relevant risk of mortality and morbidity in both infants and children. Pediatric HCM is a large heterogeneous group of disorders. Other than mutations in sarcomeric genes, which represent the most important cause of HCM in adults, childhood HCM includes a high prevalence of non-sarcomeric causes, including inherited errors of metabolism (i.e., glycogen storage diseases, lysosomal storage diseases, and fatty acid oxidation disorders), malformation syndromes, neuromuscular diseases, and mitochondrial disease, which globally represent up to 35% of children with HCM. The age of presentation and the underlying etiology significantly impact the prognosis of children with HCM. Moreover, in recent years, different targeted approaches for non-sarcomeric etiologies of HCM have emerged. Therefore, the etiological diagnosis is a fundamental step in designing specific management and therapy in these subjects. The present review aims to provide an overview of the non-sarcomeric causes of HCM in children, focusing on the pathophysiology, clinical features, diagnosis, and treatment of these rare disorders.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberta Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Augusto Esposito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Palmiero
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
45
|
Patananan AN, Sercel AJ, Wu TH, Ahsan FM, Torres A, Kennedy SAL, Vandiver A, Collier AJ, Mehrabi A, Van Lew J, Zakin L, Rodriguez N, Sixto M, Tadros W, Lazar A, Sieling PA, Nguyen TL, Dawson ER, Braas D, Golovato J, Cisneros L, Vaske C, Plath K, Rabizadeh S, Niazi KR, Chiou PY, Teitell MA. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates. Cell Rep 2020; 33:108562. [PMID: 33378680 PMCID: PMC7927156 DOI: 10.1016/j.celrep.2020.108562] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023] Open
Abstract
Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch "pipeline" enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
Collapse
Affiliation(s)
- Alexander N Patananan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander J Sercel
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Fasih M Ahsan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Torres
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie A L Kennedy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Vandiver
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda J Collier
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Lise Zakin
- NantWorks, LLC, Culver City, CA 90232, USA
| | | | | | | | - Adam Lazar
- NantWorks, LLC, Culver City, CA 90232, USA
| | | | - Thang L Nguyen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma R Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Braas
- UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shahrooz Rabizadeh
- NanoCav LLC, Culver City, CA 90232, USA; NantWorks, LLC, Culver City, CA 90232, USA
| | - Kayvan R Niazi
- NanoCav LLC, Culver City, CA 90232, USA; NantWorks, LLC, Culver City, CA 90232, USA
| | - Pei-Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Li X, Peng B, Hou C, Li J, Zeng Y, Wu W, Liao Y, Tian Y, Chen WX. Novel compound heterozygous TARS2 variants in a Chinese family with mitochondrial encephalomyopathy: a case report. BMC MEDICAL GENETICS 2020; 21:217. [PMID: 33153448 PMCID: PMC7643390 DOI: 10.1186/s12881-020-01149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022]
Abstract
Background Mitochondrial encephalomyopathy caused by bi-allelic deleterious variants in TARS2 is rare. To date, only two pedigrees were reported in the literature and the connection between the gene and disease needs further study. Case presentation We report one infant who presented with limb hypertonia, epilepsy, developmental delay, and increased serum lactate from a non-consanguineous Chinese family. Whole-genome sequencing was performed to help to underlie the cause. We identified compound heterozygous variants c.470C > G, p.Thr157Arg and c.2143G > A, p.Glu715Lys in TARS2 and the variants were confirmed by Sanger sequencing. The patient was diagnosed with combined oxidative phosphorylation deficiency 21 according to the Online Mendelian Inheritance in Man (OMIM) database based on the clinical data and the deleterious effect of the two variants in TARS2 predicted by in silico tools. Conclusions We presented one case diagnosed with combined oxidative phosphorylation deficiency 21 based on clinical characteristics and genetic analysis. This is the first case in China and the fourth case in the world based on our document retrieval. This study facilitates the understanding of combined oxidative phosphorylation deficiency disease and demonstrates that the next-generation sequencing has a high potential to study inherited disease with high phenotypic heterogeneity and genetic heterogeneity including mitochondrial diseases such as combined oxidative phosphorylation deficiency.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Bingwei Peng
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Chi Hou
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Jinliang Li
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Yiru Zeng
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Wenxiao Wu
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Yinting Liao
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Yang Tian
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China
| | - Wen-Xiong Chen
- Department of Neurology, Guangdong Province, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou, People's Republic of China.
| |
Collapse
|
47
|
Lee WH, Bhute VJ, Higuchi H, Ikeda S, Palecek SP, Ikeda A. Metabolic alterations caused by the mutation and overexpression of the Tmem135 gene. Exp Biol Med (Maywood) 2020; 245:1571-1583. [PMID: 32515224 DOI: 10.1177/1535370220932856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
IMPACT STATEMENT Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells.
Collapse
Affiliation(s)
- Wei-Hua Lee
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vijesh J Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
48
|
Johnson SC, Kayser EB, Bornstein R, Stokes J, Bitto A, Park KY, Pan A, Sun G, Raftery D, Kaeberlein M, Sedensky MM, Morgan PG. Regional metabolic signatures in the Ndufs4(KO) mouse brain implicate defective glutamate/α-ketoglutarate metabolism in mitochondrial disease. Mol Genet Metab 2020; 130:118-132. [PMID: 32331968 PMCID: PMC7272141 DOI: 10.1016/j.ymgme.2020.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
Leigh Syndrome (LS) is a mitochondrial disorder defined by progressive focal neurodegenerative lesions in specific regions of the brain. Defects in NDUFS4, a subunit of complex I of the mitochondrial electron transport chain, cause LS in humans; the Ndufs4 knockout mouse (Ndufs4(KO)) closely resembles the human disease. Here, we probed brain region-specific molecular signatures in pre-symptomatic Ndufs4(KO) to identify factors which underlie focal neurodegeneration. Metabolomics revealed that free amino acid concentrations are broadly different by region, and glucose metabolites are increased in a manner dependent on both region and genotype. We then tested the impact of the mTOR inhibitor rapamycin, which dramatically attenuates LS in Ndufs4(KO), on region specific metabolism. Our data revealed that loss of Ndufs4 drives pathogenic changes to CNS glutamine/glutamate/α-ketoglutarate metabolism which are rescued by mTOR inhibition Finally, restriction of the Ndufs4 deletion to pre-synaptic glutamatergic neurons recapitulated the whole-body knockout. Together, our findings are consistent with mTOR inhibition alleviating disease by increasing availability of α-ketoglutarate, which is both an efficient mitochondrial complex I substrate in Ndufs4(KO) and an important metabolite related to neurotransmitter metabolism in glutamatergic neurons.
Collapse
Affiliation(s)
- Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Rebecca Bornstein
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Julia Stokes
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA
| | - Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Kyung Yeon Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Grace Sun
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Department of Chemistry, University of Washington, Seattle, WA 98109, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
49
|
Tan J, Wagner M, Stenton SL, Strom TM, Wortmann SB, Prokisch H, Meitinger T, Oexle K, Klopstock T. Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases. EBioMedicine 2020; 54:102730. [PMID: 32305867 PMCID: PMC7163308 DOI: 10.1016/j.ebiom.2020.102730] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial disorders are a group of rare diseases, caused by nuclear or mitochondrial DNA mutations. Their marked clinical and genetic heterogeneity as well as referral and ascertainment biases render phenotype-based prevalence estimations difficult. Here we calculated the lifetime risk of all known autosomal recessive mitochondrial disorders on basis of genetic data. Methods We queried the publicly available Genome Aggregation Database (gnomAD) and our in-house exome database to assess the allele frequency of disease-causing variants in genes associated with autosomal recessive mitochondrial disorders. Based on this, we estimated the lifetime risk of 249 autosomal recessive mitochondrial disorders. Three of these disorders and phenylketonuria (PKU) served as a proof of concept since calculations could be aligned with known birth prevalence data from newborn screening reports. Findings The estimated lifetime risks are very close to newborn screening data (where available), supporting the validity of the approach. For example, calculated lifetime risk of PKU (16·0/100,000) correlates well with known birth prevalence data (18·7/100,000). The combined estimated lifetime risk of 249 investigated mitochondrial disorders is 31·8 (20·9–50·6)/100,000 in our in-house database, 48·4 (40·3–58·5)/100,000 in the European gnomAD dataset, and 31·1 (26·7–36·3)/100,000 in the global gnomAD dataset. The disorders with the highest lifetime risk (> 3 per 100,000) were, in all datasets, those caused by mutations in the SPG7, ACADM, POLG and SLC22A5 genes. Interpretation We provide a population-genetic estimation on the lifetime risk of an entire class of monogenic disorders. Our findings reveal the substantial cumulative prevalence of autosomal recessive mitochondrial disorders, far above previous estimates. These data will be very important for assigning diagnostic a priori probabilities, and for resource allocation in therapy development, public health management and biomedical research. Funding German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Jing Tan
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Sarah L Stenton
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Saskia B Wortmann
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatrics, University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Neurogenetic Systems Analysis Unit, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
50
|
van de Loo KFE, Custers JAE, Koene S, Klein IL, Janssen MCH, Smeitink JAM, Verhaak CM. Psychological functioning in children suspected for mitochondrial disease: the need for care. Orphanet J Rare Dis 2020; 15:76. [PMID: 32209104 PMCID: PMC7092429 DOI: 10.1186/s13023-020-1342-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 01/06/2023] Open
Abstract
Background Mitochondrial diseases (MD) are generally serious and progressive, inherited metabolic diseases. There is a high comorbidity of anxiety and depression and limitations in daily functioning. The complexity and duration of the diagnostic process and lack of knowledge about prognosis leads to uncertainty. In this study, we investigated the psychological well-being of children who are suspected for MD and their parents. Methods In total 122 children suspected for MD and their parents, received questionnaires as part of standard clinical investigation. Results Parent proxy report revealed a lower quality of life (QoL) compared to norms and even more physical problems compared to chronically ill patients. They also reported more behavioral problems in general and more internalizing problems compared to the norms. Most frequent reported somatic complaints were tiredness and pain. Parents did not report enhanced levels of stress regarding parenting and experienced sufficient social support. At the end of the diagnostic process, 5.7% of the children received the genetically confirmed diagnosis of MD, 26% showed non-conclusive abnormalities in the muscle biopsy, 54% did not receive any diagnosis, and the remaining received other diagnoses. Strikingly, children without a diagnosis showed equally QoL and behavioral problems as children with a diagnosis, and even more internalizing problems. Conclusions This study highlights the psychological concerns of children with a suspicion of MD. It is important to realize that as well as children with a confirmed diagnosis, children without a diagnosis are vulnerable since explanation for their complaints is still lacking.
Collapse
Affiliation(s)
- Kim F E van de Loo
- Radboud Institute for Health Sciences, Department of Medical Psychology, Radboud Center for Mitochondrial Medicine, Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands.
| | - José A E Custers
- Radboud Institute for Health Sciences, Department of Medical Psychology, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Koene
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Nijmegen, The Netherlands
| | - Inge-Lot Klein
- Radboud Institute for Health Sciences, Department of Medical Psychology, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirian C H Janssen
- Radboud Institute for Molecular Life Sciences, Department of Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christianne M Verhaak
- Radboud Institute for Health Sciences, Department of Medical Psychology, Radboud Center for Mitochondrial Medicine, Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| |
Collapse
|