1
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
2
|
Frye RE, McCarty PJ, Werner BA, Rose S, Scheck AC. Bioenergetic signatures of neurodevelopmental regression. Front Physiol 2024; 15:1306038. [PMID: 38449786 PMCID: PMC10916717 DOI: 10.3389/fphys.2024.1306038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Studies have linked autism spectrum disorder (ASD) to physiological abnormalities including mitochondrial dysfunction. Mitochondrial dysfunction may be linked to a subset of children with ASD who have neurodevelopmental regression (NDR). We have developed a cell model of ASD which demonstrates a unique mitochondrial profile with mitochondrial respiration higher than normal and sensitive to physiological stress. We have previously shown similar mitochondrial profiles in individuals with ASD and NDR. Methods: Twenty-six ASD individuals without a history of NDR (ASD-NoNDR) and 15 ASD individuals with a history of NDR (ASD-NDR) were recruited from 34 families. From these families, 30 mothers, 17 fathers and 5 typically developing (TD) siblings participated. Mitochondrial respiration was measured in peripheral blood mononuclear cells (PBMCs) with the Seahorse 96 XF Analyzer. PBMCs were exposed to various levels of physiological stress for 1 h prior to the assay using 2,3-dimethoxy-1,4-napthoquinone. Results: ASD-NDR children were found to have higher respiratory rates with mitochondria that were more sensitive to physiological stress as compared to ASD-NoNDR children, similar to our cellular model of NDR. Differences in mitochondrial respiration between ASD-NDR and TD siblings were similar to the differences between ASD-NDR and ASD-NoNDR children. Interesting, parents of children with ASD and NDR demonstrated patterns of mitochondrial respiration similar to their children such that parents of children with ASD and NDR demonstrated elevated respiratory rates with mitochondria that were more sensitive to physiological stress. In addition, sex differences were seen in ASD children and parents. Age effects in parents suggested that mitochondria of older parents were more sensitive to physiological stress. Conclusion: This study provides further evidence that children with ASD and NDR may have a unique type of mitochondrial physiology that may make them susceptible to physiological stressors. Identifying these children early in life before NDR occurs and providing treatment to protect mitochondrial physiology may protect children from experiencing NDR. The fact that parents also demonstrate mitochondrial respiration patterns similar to their children implies that this unique change in mitochondrial physiology may be a heritable factor (genetic or epigenetic), a result of shared environment, or both.
Collapse
Affiliation(s)
- Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States
| | | | - Brianna A. Werner
- Creighton University School of Medicine Phoenix Regional Campus, Phoenix, AZ, United States
| | - Shannon Rose
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Adrienne C. Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
3
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Benzoni P, Da Dalt L, Elia N, Popolizio V, Cospito A, Giannetti F, Dell’Era P, Olesen MS, Bucchi A, Baruscotti M, Norata GD, Barbuti A. PITX2 gain-of-function mutation associated with atrial fibrillation alters mitochondrial activity in human iPSC atrial-like cardiomyocytes. Front Physiol 2023; 14:1250951. [PMID: 38028792 PMCID: PMC10679737 DOI: 10.3389/fphys.2023.1250951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; however, the underlying causes of AF initiation are still poorly understood, particularly because currently available models do not allow in distinguishing the initial causes from maladaptive remodeling that induces and perpetuates AF. Lately, the genetic background has been proven to be important in the AF onset. iPSC-derived cardiomyocytes, being patient- and mutation-specific, may help solve this diatribe by showing the initial cell-autonomous changes underlying the development of the disease. Transcription factor paired-like homeodomain 2 (PITX2) has been identified as a key regulator of atrial development/differentiation, and the PITX2 genomic locus has the highest association with paroxysmal AF. PITX2 influences mitochondrial activity, and alterations in either its expression or function have been widely associated with AF. In this work, we investigate the activity of mitochondria in iPSC-derived atrial cardiomyocytes (aCMs) obtained from a young patient (24 years old) with paroxysmal AF, carrying a gain-of-function mutation in PITX2 (rs138163892) and from its isogenic control (CTRL) in which the heterozygous point mutation has been reverted to WT. PITX2 aCMs show a higher mitochondrial content, increased mitochondrial activity, and superoxide production under basal conditions when compared to CTRL aCMs. However, increasing mitochondrial workload by FCCP or β-adrenergic stimulation allows us to unmask mitochondrial defects in PITX2 aCMs, which are incapable of responding efficiently to the higher energy demand, determining ATP deficiency.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Noemi Elia
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Cell Factory, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vera Popolizio
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Cospito
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Milano, Italy
| | - Patrizia Dell’Era
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Morten S. Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Department of Cardiology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Brister D, Rose S, Delhey L, Tippett M, Jin Y, Gu H, Frye RE. Metabolomic Signatures of Autism Spectrum Disorder. J Pers Med 2022; 12:1727. [PMID: 36294866 PMCID: PMC9604590 DOI: 10.3390/jpm12101727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is associated with many variations in metabolism, but the ex-act correlates of these metabolic disturbances with behavior and development and their links to other core metabolic disruptions are understudied. In this study, large-scale targeted LC-MS/MS metabolomic analysis was conducted on fasting morning plasma samples from 57 children with ASD (29 with neurodevelopmental regression, NDR) and 37 healthy controls of similar age and gender. Linear model determined the metabolic signatures of ASD with and without NDR, measures of behavior and neurodevelopment, as well as markers of oxidative stress, inflammation, redox, methylation, and mitochondrial metabolism. MetaboAnalyst ver 5.0 (the Wishart Research Group at the University of Alberta, Edmonton, Canada) identified the pathways associated with altered metabolic signatures. Differences in histidine and glutathione metabolism as well as aromatic amino acid (AAA) biosynthesis differentiated ASD from controls. NDR was associated with disruption in nicotinamide and energy metabolism. Sleep and neurodevelopment were associated with energy metabolism while neurodevelopment was also associated with purine metabolism and aminoacyl-tRNA biosynthesis. While behavior was as-sociated with some of the same pathways as neurodevelopment, it was also associated with alternations in neurotransmitter metabolism. Alterations in methylation was associated with aminoacyl-tRNA biosynthesis and branched chain amino acid (BCAA) and nicotinamide metabolism. Alterations in glutathione metabolism was associated with changes in glycine, serine and threonine, BCAA and AAA metabolism. Markers of oxidative stress and inflammation were as-sociated with energy metabolism and aminoacyl-tRNA biosynthesis. Alterations in mitochondrial metabolism was associated with alterations in energy metabolism and L-glutamine. Using behavioral and biochemical markers, this study finds convergent disturbances in specific metabolic pathways with ASD, particularly changes in energy, nicotinamide, neurotransmitters, and BCAA, as well as aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Danielle Brister
- College of Liberal Arts and Sciences, School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shannon Rose
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Leanna Delhey
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Marie Tippett
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|
6
|
Kumar RA, Thome T, Sharaf OM, Ryan TE, Arnaoutakis GJ, Jeng EI, Ferreira LF. Reversible Thiol Oxidation Increases Mitochondrial Electron Transport Complex Enzyme Activity but Not Respiration in Cardiomyocytes from Patients with End-Stage Heart Failure. Cells 2022; 11:cells11152292. [PMID: 35892589 PMCID: PMC9330889 DOI: 10.3390/cells11152292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiomyocyte dysfunction in patients with end-stage heart failure with reduced ejection fraction (HFrEF) stems from mitochondrial dysfunction, which contributes to an energetic crisis. Mitochondrial dysfunction reportedly relates to increased markers of oxidative stress, but the impact of reversible thiol oxidation on myocardial mitochondrial function in patients with HFrEF has not been investigated. In the present study, we assessed mitochondrial function in ventricular biopsies from patients with end-stage HFrEF in the presence and absence of the thiol-reducing agent dithiothreitol (DTT). Isolated mitochondria exposed to DTT had increased enzyme activity of complexes I (p = 0.009) and III (p = 0.018) of the electron transport system, while complexes II (p = 0.630) and IV (p = 0.926) showed no changes. However, increased enzyme activity did not carry over to measurements of mitochondrial respiration in permeabilized bundles. Oxidative phosphorylation conductance (p = 0.439), maximal respiration (p = 0.312), and ADP sensitivity (p = 0.514) were unchanged by 5 mM DTT treatment. These results indicate that mitochondrial function can be modulated through reversible thiol oxidation, but other components of mitochondrial energy transfer are rate limiting in end-stage HFrEF. Optimal therapies to normalize cardiac mitochondrial respiration in patients with end-stage HFrEF may benefit from interventions to reverse thiol oxidation, which limits complex I and III activities.
Collapse
Affiliation(s)
- Ravi A. Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
| | - Omar M. Sharaf
- College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
| | - George J. Arnaoutakis
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Florida, Gainesville, FL 32611, USA; (G.J.A.); (E.I.J.)
| | - Eric I. Jeng
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Florida, Gainesville, FL 32611, USA; (G.J.A.); (E.I.J.)
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
- Department of Physiology, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +1-352-294-1724
| |
Collapse
|
7
|
Werner BA, McCarty PJ, Lane AL, Singh I, Karim MA, Rose S, Frye RE. Time dependent changes in the bioenergetics of peripheral blood mononuclear cells: processing time, collection tubes and cryopreservation effects. Am J Transl Res 2022; 14:1628-1639. [PMID: 35422946 PMCID: PMC8991115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Bioenergetic measurements in peripheral blood mononuclear cells (PBMCs) using high-throughput respirometry is a promising minimally invasive approach to studying mitochondrial function in humans. However, optimal methods for collecting PBMCs are not well studied. METHODS Bioenergetics and viability were measured across processing delays, tube type and cryopreservation. RESULTS Storage of collection tubes on dry ice resulted in unrecoverable samples and using the Cell Preparation Tube (CPTTM) significantly reduced viability. Thus, storage in Sodium Citrate (NaC) and ethylenediaminetetraacetic acid (EDTA) tubes were studied in detail. Cell viability decreased by 0.5% for each hour the samples remained on wet ice prior to processing while cryopreservation decreased viability by 9.6% with viability remaining stable for about one month in liquid nitrogen. Adenosine triphosphate linked respiration (ALR) and proton-leak respiration (PLR) changed minimally while maximal respiratory capacity (MRC) and reserve capacity (RC) decreased markedly with collection tubes stored on wet ice over 24 hrs. Changes in respiratory parameters were more modest over the first 8 hours. Manipulations to replace media did not attenuate changes in respiratory parameters. Cryopreservation decreased ALR, MRC and RC by 17.20, 95.30 and 54.92 pmol/min, respectively and increased PLR by 2.65 pmol/min. PLR, MRC and RC changed moderately during the first month in liquid nitrogen for freshly frozen PBMCs. CONCLUSIONS Our results suggest that bioenergetics in PBMCs vary based on the processing time from specimen collection and preservation method. Changes in bioenergetics can be minimized by processing samples with a minimal time delay. Changes in viability are minimal and may not correspond to changes in bioenergetics.
Collapse
Affiliation(s)
- Brianna A Werner
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Patrick J McCarty
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Indrapal Singh
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Mohammad A Karim
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Shannon Rose
- Arkansas Children’s Research InstituteLittle Rock, AR 72202, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| |
Collapse
|
8
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Melnyk S, James SJ, Palmer RF, Austin C, Curtin P, Arora M. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol Psychiatry 2021; 26:1561-1577. [PMID: 32963337 PMCID: PMC8159748 DOI: 10.1038/s41380-020-00885-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
We investigate the role of the mitochondrion, an organelle highly sensitive to environmental agents, in the influence of prenatal air pollution exposure on neurodevelopment and behavior in 96 children with autism spectrum disorder (ASD) [45 with neurodevelopmental regression (NDR); 76% Male; mean (SD) age 10 y 9 m (3 y 9 m)]. Mitochondrial function was assessed using the Seahorse XFe96 in fresh peripheral blood mononuclear cells. Second and third trimester average and maximal daily exposure to fine air particulate matter of diameter ≤2.5 µm (PM2.5) was obtained from the Environmental Protection Agency's Air Quality System. Neurodevelopment was measured using the Vineland Adaptive Behavior Scale 2nd edition and behavior was assessed using the Aberrant Behavior Checklist and Social Responsiveness Scale. Prenatal PM2.5 exposure influenced mitochondrial respiration during childhood, but this relationship was different for those with (r = 0.25-0.40) and without (r = -0.07 to -0.19) NDR. Mediation analysis found that mitochondrial respiration linked to energy production accounted for 25% (SD = 2%) and 10% (SD = 2%) of the effect of average prenatal PM2.5 exposure on neurodevelopment and behavioral symptoms, respectively. Structural equation models estimated that PM2.5 and mitochondrial respiration accounted for 34% (SD = 4%) and 36% (SD = 3%) of the effect on neurodevelopment, respectively, and that behavior was indirectly influenced by mitochondrial respiration through neurodevelopment but directly influenced by prenatal PM2.5. Our results suggest that prenatal exposure to PM2.5 disrupts neurodevelopment and behavior through complex mechanisms, including long-term changes in mitochondrial respiration and that patterns of early development need to be considered when studying the influence of environmental agents on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Janet Cakir
- North Carolina State University, Raleigh, NC, USA
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Leanna Delhey
- Arkansas Children's Research Institute, Little Rock, AR, USA
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sirish C Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marie Tippett
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stepan Melnyk
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - S Jill James
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Irokawa H, Numasaki S, Kato S, Iwai K, Inose-Maruyama A, Ohdate T, Hwang GW, Toyama T, Watanabe T, Kuge S. Comprehensive analyses of the cysteine thiol oxidation of PKM2 reveal the effects of multiple oxidation on cellular oxidative stress response. Biochem J 2021; 478:1453-1470. [PMID: 33749780 DOI: 10.1042/bcj20200897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulfide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (-Sn-, n ≧ 3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared with cells expressing wild-type PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.
Collapse
Affiliation(s)
- Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Satoshi Numasaki
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shin Kato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kenta Iwai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Atsushi Inose-Maruyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Takumi Ohdate
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Toshihiko Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| |
Collapse
|
11
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
12
|
Perks KL, Ferreira N, Ermer JA, Rudler DL, Richman TR, Rossetti G, Matthews VB, Ward NC, Rackham O, Filipovska A. Reduced mitochondrial translation prevents diet-induced metabolic dysfunction but not inflammation. Aging (Albany NY) 2020; 12:19677-19700. [PMID: 33024056 PMCID: PMC7732297 DOI: 10.18632/aging.104010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
Abstract
The contribution of dysregulated mitochondrial gene expression and consequent imbalance in biogenesis is not well understood in metabolic disorders such as insulin resistance and obesity. The ribosomal RNA maturation protein PTCD1 is essential for mitochondrial protein synthesis and its reduction causes adult-onset obesity and liver steatosis. We used haploinsufficient Ptcd1 mice fed normal or high fat diets to understand how changes in mitochondrial biogenesis can lead to metabolic dysfunction. We show that Akt-stimulated reduction in lipid content and upregulation of mitochondrial biogenesis effectively protected mice with reduced mitochondrial protein synthesis from excessive weight gain on a high fat diet, resulting in improved glucose and insulin tolerance and reduced lipid accumulation in the liver. However, inflammation of the white adipose tissue and early signs of fibrosis in skeletal muscle, as a consequence of reduced protein synthesis, were exacerbated with the high fat diet. We identify that reduced mitochondrial protein synthesis and OXPHOS biogenesis can be recovered in a tissue-specific manner via Akt-mediated increase in insulin sensitivity and transcriptional activation of the mitochondrial stress response.
Collapse
Affiliation(s)
- Kara L. Perks
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Nicola Ferreira
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia
| | - Danielle L. Rudler
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia
| | - Vance B. Matthews
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C. Ward
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia,School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia, Australia,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Loescher CM, Breitkreuz M, Li Y, Nickel A, Unger A, Dietl A, Schmidt A, Mohamed BA, Kötter S, Schmitt JP, Krüger M, Krüger M, Toischer K, Maack C, Leichert LI, Hamdani N, Linke WA. Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proc Natl Acad Sci U S A 2020; 117:24545-24556. [PMID: 32929035 PMCID: PMC7533878 DOI: 10.1073/pnas.2004900117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.
Collapse
Affiliation(s)
| | - Martin Breitkreuz
- Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, 48149 Munster, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Munster, 48149 Munster, Germany
| | - Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Schmidt
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Joachim P Schmitt
- Department of Pharmacology and Clinical Pharmacology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, 48149 Munster, Germany;
| |
Collapse
|
14
|
Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 2020; 34:13106-13124. [PMID: 32808332 DOI: 10.1096/fj.202000767r] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.
Collapse
Affiliation(s)
- Philippe Marchetti
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Quentin Fovez
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Nicolas Germain
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Raeeka Khamari
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Jérôme Kluza
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| |
Collapse
|
15
|
Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Palmer RF, Austin C, Curtin P, Arora M. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl Psychiatry 2020; 10:223. [PMID: 32636364 PMCID: PMC7341836 DOI: 10.1038/s41398-020-00905-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodevelopmental regression (NDR) is a subtype of autism spectrum disorder (ASD) that manifests as loss of previously acquired developmental milestones. Early life dysregulation of nutritional metals and/or exposure to toxic metals have been associated with ASD, but the underlying biological mechanisms by which metals influence neurodevelopment remain unclear. We hypothesize that metals influences neurodevelopment through dysregulation of bioenergetics. Prenatal and early postnatal metal exposures were measured using validated tooth-matrix biomarkers in 27 ASD cases (13 with NDR) and 7 typically-developing (TD) controls. Mitochondrial respiration and glycolysis were measured in peripheral blood mononuclear cells using the Seahorse XF96. Children with ASD demonstrated lower prenatal and postnatal Copper (Cu) and prenatal Nickel concentrations and Copper-to-Zinc (Cu/Zn) ratio as compared with TD children. Children with ASD and NDR showed greater metal-related disruption of cellular bioenergetics than children with ASD without NDR. For children with ASD and NDR mitochondrial respiration decreased as prenatal Manganese concentration increased and increased as prenatal Zinc concentration increased; glycolysis decreased with increased exposure to prenatal Manganese and Lead and postnatal Manganese. For children with ASD without a history of NDR, glycolysis increased with increased postnatal exposure to Tin. Language and communication scores in children with ASD were positively related to prenatal Cu exposure and Cu/Zn ratio. This study suggests that prenatal nutritional metals may be important for neurodevelopment in children with ASD, and that exposure to toxic metals and differences in nutritional metal exposures is associated with dysregulation of cellular bioenergetics, particularly in the NDR subtype of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ USA ,grid.134563.60000 0001 2168 186XUniversity of Arizona College of Medicine – Phoenix, Phoenix, AZ USA
| | - Janet Cakir
- grid.40803.3f0000 0001 2173 6074North Carolina State University, Raleigh, NC USA
| | - Shannon Rose
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Leanna Delhey
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Sirish C. Bennuri
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Marie Tippett
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Raymond F. Palmer
- grid.267309.90000 0001 0629 5880Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX USA
| | - Christine Austin
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paul Curtin
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Manish Arora
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
16
|
Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4430-4453. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. METHODS Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. RESULTS Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. CONCLUSION The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
Collapse
Affiliation(s)
- Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
17
|
Love DT, Guo C, Nikelshparg EI, Brazhe NA, Sosnovtseva O, Hawkins CL. The role of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) in the induction of mitochondrial dysfunction in macrophages. Redox Biol 2020; 36:101602. [PMID: 32570189 PMCID: PMC7315103 DOI: 10.1016/j.redox.2020.101602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN-), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN- therapeutically in different disease settings. Unlike HOCl, HOSCN can be detoxified by thioredoxin reductase, and reacts selectively with thiols to result in reversible modifications, which could potentially reduce the extent of MPO-induced damage during chronic inflammation. In this study, we show that exposure of macrophages, a key inflammatory cell type, to HOSCN results in the reversible modification of multiple mitochondrial proteins, leading to increased mitochondrial membrane permeability, decreased oxidative phosphorylation and reduced formation of ATP. The increased permeability and reduction in ATP could be reversed by pre-treatment of the macrophages with cyclosporine A, implicating a role for the mitochondrial permeability transition pore. HOSCN also drives cells to utilise fatty acids as an energetic substrate after the inhibition of oxidative phosphorylation. Raman imaging studies highlighted the ability of HOSCN to perturb the electron transport chain of mitochondria and redistribute these organelles within the cell. Taken together, these data provide new insight into the pathways by which HOSCN can induce cytotoxicity and cellular damage, which may have relevance for the development of inflammatory disease, and therapeutic strategies to reduce HOCl-induced damage by supplementation with SCN-. HOSCN induces the oxidation of mitochondrial thiol proteins and cytochromes. HOSCN alters mitochondrial permeability and ATP production via MPTP formation. HOSCN increases the capacity of cells to use fatty acids as an energetic substrate. Raman imaging shows redistribution of mitochondria after cell exposure to HOSCN.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, NSW, 2006, Australia
| | - Chaorui Guo
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Evelina I Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Nadezda A Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
18
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Hussein KH, Park KM, Yu L, Song SH, Woo HM, Kwak HH. Vascular reconstruction: A major challenge in developing a functional whole solid organ graft from decellularized organs. Acta Biomater 2020; 103:68-80. [PMID: 31887454 DOI: 10.1016/j.actbio.2019.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Bioengineering a functional organ holds great potential to overcome the current gap between the organ need and shortage of available organs. Whole organ decellularization allows the removal of cells from large-scale organs, leaving behind extracellular matrices containing different growth factors, structural proteins, and a vascular network with a bare surface. Successful application of decellularized tissues as transplantable organs is hampered by the inability to completely reline the vasculature by endothelial cells (ECs), leading to blood coagulation, loss of vascular patency, and subsequent death of reseeded cells. Therefore, an intact, continuous layer of endothelium is essential to maintain proper functioning of the vascular system, which includes the transfer of nutrients to surrounding tissues and protecting other types of cells from shear stress. Here, we aimed to summarize the available cell sources that can be used for reendothelialization in addition to different trials performed by researchers to reconstruct vascularization of decellularized solid organs. Additionally, different techniques for enhancing reendothelialization and the methods used for evaluating reendothelialization efficiency along with the future prospective applications of this field are discussed. STATEMENT OF SIGNIFICANCE: Despite the great progress in whole organ decellularization, reconstruction of vasculature within the engineered constructs is still a major roadblock. Reconstructed endothelium acts as a multifunctional barrier of vessels, which can reduce thrombosis and help delivering of oxygen and nutrients throughout the whole organ. Successful reendothelialization can be achieved through reseeding of appropriate cell types on the naked vasculature with or without modification of its surface. Here, we present the current research milestones that so far established to reconstruct the vascular network in addition to the methods used for evaluating the efficiency of reendotheilization. Thus, this review is quite significant and will aid the researchers to know where we stand toward biofabricating a transplantable organ from decellularizd extracellular matrix.
Collapse
|
20
|
Dependence of the mitochondrial adaptive capacity of hepatocytes on the oxidative substrates availability. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Campbell MD, Duan J, Samuelson AT, Gaffrey MJ, Merrihew GE, Egertson JD, Wang L, Bammler TK, Moore RJ, White CC, Kavanagh TJ, Voss JG, Szeto HH, Rabinovitch PS, MacCoss MJ, Qian WJ, Marcinek DJ. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radic Biol Med 2019; 134:268-281. [PMID: 30597195 PMCID: PMC6588449 DOI: 10.1016/j.freeradbiomed.2018.12.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Sarcopenia and exercise intolerance are major contributors to reduced quality of life in the elderly for which there are few effective treatments. We tested whether enhancing mitochondrial function and reducing mitochondrial oxidant production with SS-31 (elamipretide) could restore redox balance and improve skeletal muscle function in aged mice. Young (5 mo) and aged (26 mo) female C57BL/6Nia mice were treated for 8-weeks with 3 mg/kg/day SS-31. Mitochondrial function was assessed in vivo using 31P and optical spectroscopy. SS-31 reversed age-related decline in maximum mitochondrial ATP production (ATPmax) and coupling of oxidative phosphorylation (P/O). Despite the increased in vivo mitochondrial capacity, mitochondrial protein expression was either unchanged or reduced in the treated aged mice and respiration in permeabilized gastrocnemius (GAS) fibers was not different between the aged and aged+SS-31 mice. Treatment with SS-31 also restored redox homeostasis in the aged skeletal muscle. The glutathione redox status was more reduced and thiol redox proteomics indicated a robust reversal of cysteine S-glutathionylation post-translational modifications across the skeletal muscle proteome. The gastrocnemius in the age+SS-31 mice was more fatigue resistant with significantly greater mass compared to aged controls. This contributed to a significant increase in treadmill endurance compared to both pretreatment and untreated control values. These results demonstrate that the shift of redox homeostasis due to mitochondrial oxidant production in aged muscle is a key factor in energetic defects and exercise intolerance. Treatment with SS-31 restores redox homeostasis, improves mitochondrial quality, and increases exercise tolerance without an increase in mitochondrial content. Since elamipretide is currently in clinical trials these results indicate it may have direct translational value for improving exercise tolerance and quality of life in the elderly.
Collapse
Affiliation(s)
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Jarrett D Egertson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Joachim G Voss
- School of Nursing, University of Washington, Seattle, WA, USA.
| | | | | | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Wei-Jun Qian
- School of Nursing, University of Washington, Seattle, WA, USA.
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Mitochondrial dynamics in exercise physiology. Pflugers Arch 2019; 472:137-153. [DOI: 10.1007/s00424-019-02258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
23
|
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther 2018; 22:571-593. [PMID: 30039193 PMCID: PMC6132446 DOI: 10.1007/s40291-018-0352-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environmental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systematically review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Dmitriy M Niyazov
- Section of Medical Genetics, Ochsner Health System, New Orleans, LA, USA
| | | | - Michael Goldenthal
- Department of Pediatrics, Neurology Section, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stephen G Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, USA.
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
24
|
Girard PM, Peynot N, Lelièvre JM. Differential correlations between changes to glutathione redox state, protein ubiquitination, and stress-inducible HSPA chaperone expression after different types of oxidative stress. Cell Stress Chaperones 2018; 23:985-1002. [PMID: 29754332 PMCID: PMC6111089 DOI: 10.1007/s12192-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H2O2), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H2O2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, Rue Georges Clémenceau, 91405, Orsay, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Redmann M, Benavides GA, Wani WY, Berryhill TF, Ouyang X, Johnson MS, Ravi S, Mitra K, Barnes S, Darley-Usmar VM, Zhang J. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol 2018; 17:59-69. [PMID: 29677567 PMCID: PMC6006680 DOI: 10.1016/j.redox.2018.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial quality is under surveillance by autophagy, the cell recycling process which degrades and removes damaged mitochondria. Inadequate autophagy results in deterioration in mitochondrial quality, bioenergetic dysfunction, and metabolic stress. Here we describe in an integrated work-flow to assess parameters of mitochondrial morphology, function, mtDNA and protein damage, metabolism and autophagy regulation to provide the framework for a practical assessment of mitochondrial quality. This protocol has been tested with cell cultures, is highly reproducible, and is adaptable to studies when cell numbers are limited, and thus will be of interest to researchers studying diverse physiological and pathological phenomena in which decreased mitochondrial quality is a contributory factor.
Collapse
Affiliation(s)
- Matthew Redmann
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gloria A Benavides
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Willayat Yousuf Wani
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Taylor F Berryhill
- Department of Pharmacology and Toxicology and Targeted Metabolomics & Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Michelle S Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Saranya Ravi
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology and Targeted Metabolomics & Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Victor M Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
26
|
Mejia EM, Zegallai H, Bouchard ED, Banerji V, Ravandi A, Hatch GM. Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts. J Biol Chem 2018; 293:7564-7577. [PMID: 29563154 DOI: 10.1074/jbc.ra117.001024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial polyglycerophospholipid cardiolipin (CL) is remodeled to obtain specific fatty acyl chains. This is predominantly accomplished by the transacylase enzyme tafazzin (TAZ). Barth syndrome (BTHS) patients with TAZ gene mutations exhibit impaired TAZ activity and loss in mitochondrial respiratory function. Previous studies identified monolysocardiolipin acyltransferase-1 (MLCL AT-1) as a mitochondrial enzyme capable of remodeling CL with fatty acid. In this study, we analyzed what relationship, if any, exists between TAZ and MLCL AT-1 with regard to CL remodeling and whether transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct improves mitochondrial respiratory function. In healthy lymphoblasts, reduction in TAZ expression through TAZ RNAi transfection resulted in a compensatory increase in MLCL AT-1 mRNA, protein, and enzyme activity, but CL mass was unaltered. In contrast, BTHS lymphoblasts exhibited decreased TAZ gene and protein expression but in addition decreased MLCL AT-1 expression and CL mass. Transfection of BTHS lymphoblasts with MLCL AT-1 expression construct increased CL, improved mitochondrial basal respiration and protein leak, and decreased the proportion of cells producing superoxide but did not restore CL molecular species composition to control levels. In addition, BTHS lymphoblasts exhibited higher rates of glycolysis compared with healthy controls to compensate for reduced mitochondrial respiratory function. Mitochondrial supercomplex assembly was significantly impaired in BTHS lymphoblasts, and transfection of BTHS lymphoblasts with MLCL AT-1 expression construct did not restore supercomplex assembly. The results suggest that expression of MLCL AT-1 depends on functional TAZ in healthy cells. In addition, transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct compensates, but not completely, for loss of mitochondrial respiratory function.
Collapse
Affiliation(s)
- Edgard M Mejia
- From the Department of Pharmacology and Therapeutics and.,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Hana Zegallai
- From the Department of Pharmacology and Therapeutics and
| | - Eric D Bouchard
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, Winnipeg, Manitoba R2H 2A6, Canada, and
| | - Grant M Hatch
- From the Department of Pharmacology and Therapeutics and .,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
27
|
Li ZY, Lin J, Sun F, Li H, Xia J, Li XN, Ge J, Zhang C, Li JL. Transport stress induces weight loss and heart injury in chicks: disruption of ionic homeostasis via modulating ion transporting ATPases. Oncotarget 2018; 8:24142-24153. [PMID: 28445983 PMCID: PMC5421834 DOI: 10.18632/oncotarget.15903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
Transportation is inevitable in the poultry industry, and it can induce stress to chicks in varying degrees, such as mild discomfort, sometimes even death. However, the research about the effects of transport stress on the weight loss and heart injury of chicks is lacking. To elucidate the underlying mechanism of transport stress-induced effects, chicks were transported for 2h, 4h and 8h. The creatinine kinase (CK) activities, the ionic contents, the ATPases activities and the transcription of the ATPase associated subunits in chick heart were detected. The results showed that transport stress increased the weight loss and the CK activity, disturbed the ionic (K+, Ca2+, Mg2+) homeostasis and inhibited the ATPase (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities, increased the ATP content and downregulated the gene expression levels of the ATPase associated subunits in heart. In conclusion, transport stress disturbed the ionic homeostasis via modulating ion transporting ATPases and the transcriptions of the associated subunits, and ultimately induced weight loss and heart injury in chicks.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Feng Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China.,Harbin Sport University, Harbin, P. R. China
| | - Jun Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China.,Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education Northeast Agricultural University, Harbin, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China.,Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education Northeast Agricultural University, Harbin, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China.,Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education Northeast Agricultural University, Harbin, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
28
|
Gill RM, O’Brien M, Young A, Gardiner D, Mailloux RJ. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake. PLoS One 2018; 13:e0192801. [PMID: 29444156 PMCID: PMC5812644 DOI: 10.1371/journal.pone.0192801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
Protein S-glutathionylation is a reversible redox modification that regulates mitochondrial metabolism and reactive oxygen species (ROS) production in liver and cardiac tissue. However, whether or not it controls ROS release from skeletal muscle mitochondria has not been explored. In the present study, we examined if chemically-induced protein S-glutathionylation could alter superoxide (O2●-)/hydrogen peroxide (H2O2) release from isolated muscle mitochondria. Disulfiram, a powerful chemical S-glutathionylation catalyst, was used to S-glutathionylate mitochondrial proteins and ascertain if it can alter ROS production. It was found that O2●-/H2O2 release rates from permeabilized muscle mitochondria decreased with increasing doses of disulfiram (100–500 μM). This effect was highest in mitochondria oxidizing succinate or palmitoyl-carnitine, where a ~80–90% decrease in the rate of ROS release was observed. Similar effects were detected in intact mitochondria respiring under state 4 conditions. Incubation of disulfiram-treated mitochondria with DTT (2 mM) restored ROS release confirming that these effects were associated with protein S-glutathionylation. Disulfiram treatment also inhibited phosphorylating and proton leak-dependent respiration. Radiolabelled substrate uptake experiments demonstrated that disulfiram inhibited pyruvate import but had no effect on carnitine uptake. Immunoblot analysis of complex I revealed that it contained several protein S-glutathionylation targets including NDUSF1, a subunit required for NADH oxidation. Taken together, these results demonstrate that O2●-/H2O2 release from muscle mitochondria can be altered by protein S-glutathionylation. We attribute these changes to the protein S-glutathionylation complex I and inhibition of mitochondrial pyruvate carrier.
Collapse
Affiliation(s)
- Robert M. Gill
- Memorial University of Newfoundland, Department of Biochemistry, St. John’s, Newfoundland, Canada
| | - Marisa O’Brien
- Memorial University of Newfoundland, Department of Biochemistry, St. John’s, Newfoundland, Canada
| | - Adrian Young
- Memorial University of Newfoundland, Department of Biochemistry, St. John’s, Newfoundland, Canada
| | - Danielle Gardiner
- Memorial University of Newfoundland, Department of Biochemistry, St. John’s, Newfoundland, Canada
| | - Ryan J. Mailloux
- Memorial University of Newfoundland, Department of Biochemistry, St. John’s, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
29
|
Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants (Basel) 2018; 7:antiox7010007. [PMID: 29316654 PMCID: PMC5789317 DOI: 10.3390/antiox7010007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/25/2022] Open
Abstract
Exercise is a robust stimulus for mitochondrial adaptations in skeletal muscle which consequently plays a central role in enhancing metabolic health. Despite this, the precise molecular events that underpin these beneficial effects remain elusive. In this review, we discuss molecular signals generated during exercise leading to altered mitochondrial morphology and dynamics. In particular, we focus on the interdependence between reactive oxygen species (ROS) and redox homeostasis, the sensing of cellular bioenergetic status via 5’ adenosine monophosphate (AMP)-activated protein kinase (AMPK), and the regulation of mitochondrial fission and fusion. Precisely how exercise regulates the network of these responses and their effects on mitochondrial dynamics is not fully understood at present. We highlight the limitations that exist with the techniques currently available, and discuss novel molecular tools to potentially advance the fields of redox biology and mitochondrial bioenergetics. Ultimately, a greater understanding of these processes may lead to novel mitochondria-targeted therapeutic strategies to augment or mimic exercise in order to attenuate or reverse pathophysiology.
Collapse
|
30
|
Tomas C, Brown A, Strassheim V, Elson J, Newton J, Manning P. Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS One 2017; 12:e0186802. [PMID: 29065167 PMCID: PMC5655451 DOI: 10.1371/journal.pone.0186802] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is a highly debilitating disease of unknown aetiology. Abnormalities in bioenergetic function have been cited as one possible cause for CFS. Preliminary studies were performed to investigate cellular bioenergetic abnormalities in CFS patients. A series of assays were conducted using peripheral blood mononuclear cells (PBMCs) from CFS patients and healthy controls. These experiments investigated cellular patterns in oxidative phosphorylation (OXPHOS) and glycolysis. Results showed consistently lower measures of OXPHOS parameters in PBMCs taken from CFS patients compared with healthy controls. Seven key parameters of OXPHOS were calculated: basal respiration, ATP production, proton leak, maximal respiration, reserve capacity, non-mitochondrial respiration, and coupling efficiency. While many of the parameters differed between the CFS and control cohorts, maximal respiration was determined to be the key parameter in mitochondrial function to differ between CFS and control PBMCs due to the consistency of its impairment in CFS patients found throughout the study (p≤0.003). The lower maximal respiration in CFS PBMCs suggests that when the cells experience physiological stress they are less able to elevate their respiration rate to compensate for the increase in stress and are unable to fulfil cellular energy demands. The metabolic differences discovered highlight the inability of CFS patient PBMCs to fulfil cellular energetic demands both under basal conditions and when mitochondria are stressed during periods of high metabolic demand.
Collapse
Affiliation(s)
- Cara Tomas
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Audrey Brown
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Strassheim
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joanna Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Julia Newton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Philip Manning
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Chang Y, Li Y, Ye N, Guo X, Li Z, Sun G, Sun Y. Atorvastatin protects the proliferative ability of human umbilical vein endothelial cells inhibited by angiotensin II by changing mitochondrial energy metabolism. Int J Mol Med 2017; 41:33-42. [PMID: 29115384 PMCID: PMC5746294 DOI: 10.3892/ijmm.2017.3200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/05/2017] [Indexed: 01/18/2023] Open
Abstract
This study aimed to explore whether angiotensin II (Ang II) inhibits the proliferation of human umbilical vein endothelial cells (HUVECs) by changing mitochondrial energy metabolism, and whether atorvastatin has a protective role via restoration of endothelial function. HUVECs were treated with 1 µM Ang II alone or with 10 µM atorvastatin for 24 h. Proliferation was detected by MTT assay, cell counting, 5-ethynyl-2′-deoxyuridine assay and real-time cell analyzer. Mitochondrial energy metabolism including oxygen consumption rate and extracellular acidification rate were measured using a Seahorse metabolic flux analyzer. Mitochondrial membrane potential was detected under fluorescence microscope following staining with tetramethylrhodamine. Respiratory chain complexes I–V were detected using western blotting. The current study showed that Ang II inhibits the proliferation of HUVECs. Results from the Seahorse metabolic flux analyzer indicated that Ang II decreased basal oxygen consumption, maximal respiration capacity, spare respiration capacity, adenosine triphosphate-linked respiration and non-mitochondrial respiration. By contrast, Ang II increased the proton leak. Additionally, Ang II increased glycolysis, glycolytic capacity and non-glycolytic acidification. Furthermore, these effects were all suppressed by atorvastatin. The results indicated that atorvastatin prevents cellular energy metabolism switching from oxidative phosphorylation to glycolysis induced by Ang II and protected the proliferative ability of HUVECs.
Collapse
Affiliation(s)
- Ye Chang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Shanmugam G, Narasimhan M, Tamowski S, Darley-Usmar V, Rajasekaran NS. Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium. Redox Biol 2017; 12:937-945. [PMID: 28482326 PMCID: PMC5423345 DOI: 10.1016/j.redox.2017.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 02/01/2023] Open
Abstract
Redox homeostasis regulates key cellular signaling pathways in both physiology and pathology. The cell's antioxidant response provides a defense against oxidative stress and establishes a redox tone permissive for cell signaling. The molecular regulation of the well-known Keap1/Nrf2 system acts as sensor responding to changes in redox homeostasis and is poorly studied in the heart. Importantly, it is not yet known whether Nrf2 alone can serve as a master regulator of cellular redox homeostasis without compensation of the transcriptional regulation of antioxidant response element (ARE) genes through alternate mechanisms. Here, we addressed this question using cardiac-specific transgenic expression at two different levels of constitutively active nuclear erythroid related factor 2 (caNrf2) functioning independently of Keap1. The caNrf2 mice showed augmentation of glutathione (GSH), the key regulator of the cellular thiol redox state. The Trans-AM assay for Nrf2-binding to the antioxidant response element (ARE) showed a dose-dependent increase associated with upregulation of several major antioxidant genes and proteins. This was accompanied by a significant decrease in dihydroethidium staining and malondialdehyde (MDA) in the caNrf2-TG mice myocardium. Interestingly, caNrf2 gene-dosage dependent redox changes were noted resulting in generation of a multi-stage model of pro-reductive and reductive conditions in the myocardium of TG-low and TG-high mice, respectively. These data clearly show that Nrf2 levels alone are capable of serving as the master regulator of the ARE. These models provide an important platform to investigate the impact of the Nrf2 system independent of the need to regulate the activity of Keap1 and the consequent exposure to pro-oxidants or electrophiles, which have numerous off-target effects.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Susan Tamowski
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
33
|
O'Brien M, Chalker J, Slade L, Gardiner D, Mailloux RJ. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med 2017; 106:302-314. [PMID: 28242228 DOI: 10.1016/j.freeradbiomed.2017.02.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
Pyruvate dehydrogenase (Pdh) is a vital source of reactive oxygen species (ROS) in several different tissues. Pdh has also been suggested to serve as a mitochondrial redox sensor. Here, we report that O2•-/ H2O2 emission from pyruvate dehydrogenase (Pdh) is altered by S-glutathionylation. Glutathione disulfide (GSSG) amplified O2•-/ H2O2 production by purified Pdh during reverse electron transfer (RET) from NADH. Thiol oxidoreductase glutaredoxin-2 (Grx2) reversed these effects confirming that Pdh is a target for S-glutathionylation. S-glutathionylation had the opposite effect during forward electron transfer (FET) from pyruvate to NAD+ lowering O2•-/ H2O2 production. Immunoblotting for protein glutathione mixed disulfides (PSSG) following diamide treatment confirmed that purified Pdh can be S-glutathionylated. Similar observations were made with mouse liver mitochondria. S-glutathionylation catalysts diamide and disulfiram significantly reduced pyruvate or 2-oxoglutarate driven O2•-/ H2O2 production in liver mitochondria, results that were confirmed using various Pdh, 2-oxoglutarate dehydrogenase (Ogdh), and respiratory chain inhibitors. Immunoprecipitation of Pdh and Ogdh confirmed that either protein can be S-glutathionylated by diamide and disulfiram. Collectively, our results demonstrate that the S -glutathionylation of Pdh alters the amount of ROS formed by the enzyme complex. We also confirmed that Ogdh is controlled in a similar manner. Taken together, our results indicate that the redox sensing and ROS forming properties of Pdh and Ogdh are linked to S-glutathionylation.
Collapse
Affiliation(s)
- Marisa O'Brien
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3X9
| | - Julia Chalker
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3X9
| | - Liam Slade
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3X9
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3X9
| | - Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3X9.
| |
Collapse
|
34
|
Ireland KE, Maloyan A, Myatt L. Melatonin Improves Mitochondrial Respiration in Syncytiotrophoblasts From Placentas of Obese Women. Reprod Sci 2017; 25:120-130. [PMID: 28443479 DOI: 10.1177/1933719117704908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maternal obesity is associated with increased oxidative stress but decreased placental mitochondrial respiration and expression of mitochondrial electron transport chain (ETC) complexes I to V. Melatonin acts as an antioxidant and prevents oxidative stress-induced changes in cytotrophoblasts. Placentas were collected at term by cesarean delivery from obese (first trimester body mass index [BMI] ≥30, n = 10) or lean (BMI < 25, n = 6) women. Cytotrophoblasts were isolated and allowed to syncytialize for 72 hours with or without melatonin (0.1-100 µM) for the last 24 hours. Mitochondrial respiratory parameters were measured in a Seahorse XF24. Expression of ETC complexes I to V and antioxidant enzymes was measured by Western blot. Maternal clinical characteristics of patients were similar except for BMI. No significant improvement in mitochondrial respiration occurred with addition of melatonin to trophoblasts of lean women. However, in trophoblasts from obese women, melatonin (10 and 100 µmol/L) significantly increased maximal respiration ( P = .01 and P = .009, respectively) and spare capacity ( P = .02 and P = .003, respectively) compared to the untreated control. No differences were detected in the expression of ETC complexes and superoxide dismutase 1 or 2 in trophoblasts treated with melatonin. The expression of glutathione peroxidase, which was significantly greater in trophoblast of obese compared to lean women ( P < .05), was decreased back to the level seen in trophoblast of lean women with addition of melatonin ( P = .02). Improved spare respiratory capacity, the cellular reserve, could impart a protective effect to the placenta and fetus in an adverse intrauterine environment or in response to additional stressors.
Collapse
Affiliation(s)
- Kayla E Ireland
- 1 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alina Maloyan
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,3 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,4 Department of Obstetrics and Gynecology, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
35
|
Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines. Exp Cell Res 2017; 354:112-121. [PMID: 28342898 DOI: 10.1016/j.yexcr.2017.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32°C, 37°C and 42°C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32°C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37°C. Mitochondrial stress test for SW480 cells at 37°C vs 42°C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37°C vs 42°C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy.
Collapse
|
36
|
Burger BJ, Rose S, Bennuri SC, Gill PS, Tippett ML, Delhey L, Melnyk S, Frye RE. Autistic Siblings with Novel Mutations in Two Different Genes: Insight for Genetic Workups of Autistic Siblings and Connection to Mitochondrial Dysfunction. Front Pediatr 2017; 5:219. [PMID: 29075622 PMCID: PMC5643424 DOI: 10.3389/fped.2017.00219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is high, yet the etiology of this disorder is still uncertain. Advancements in genetic analysis have provided the ability to identify potential genetic changes that may contribute to ASD. Interestingly, several genetic syndromes have been linked to metabolic dysfunction, suggesting an avenue for treatment. In this case study, we report siblings with ASD who had similar initial phenotypic presentations. Whole exome sequencing (WES) revealed a novel c.795delT mutation in the WDR45 gene affecting the girl, which was consistent with her eventual progression to a Rett-like syndrome phenotype including seizures along with a stereotypical cyclic breathing pattern. Interestingly, WES identified that the brother harbored a novel heterozygous Y1546H variant in the DEP domain-containing protein 5 (DEPDC5) gene, consistent with his presentation. Both siblings underwent a metabolic workup that demonstrated different patterns of mitochondrial dysfunction. The girl demonstrated statistically significant elevations in mitochondrial activity of complex I + III in both muscle and fibroblasts and increased respiration in peripheral blood mononuclear cells (PBMCs) on Seahorse Extracellular Flux analysis. The boy demonstrates a statistically significant decrease in complex IV activity in buccal epithelium and decreased respiration in PBMCs. These cases highlight the differences in genetic abnormalities even in siblings with ASD phenotypes as well as highlights the individual role of novel mutations in the WDR45 and DEPDC5 genes. These cases demonstrate the importance of advanced genetic testing combined with metabolic evaluations in the workup of children with ASD.
Collapse
Affiliation(s)
- Barrett J Burger
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shannon Rose
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Marie L Tippett
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stepan Melnyk
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
37
|
Lee WH, Higuchi H, Ikeda S, Macke EL, Takimoto T, Pattnaik BR, Liu C, Chu LF, Siepka SM, Krentz KJ, Rubinstein CD, Kalejta RF, Thomson JA, Mullins RF, Takahashi JS, Pinto LH, Ikeda A. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. eLife 2016; 5:e19264. [PMID: 27863209 PMCID: PMC5117855 DOI: 10.7554/elife.19264] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022] Open
Abstract
While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases.
Collapse
Affiliation(s)
- Wei-Hua Lee
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, United States
| | - Erica L Macke
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
| | - Bikash R Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, United States
| | - Che Liu
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, United States
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, United States
| | - Sandra M Siepka
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Kathleen J Krentz
- Transgenic Mouse Facility, Biotechnology Center, University of Wisconsin-Madison, Madison, United States
| | - C Dustin Rubinstein
- Translational Genomics Facility, Biotechnology Center, University of Wisconsin-Madison, Madison, United States
| | - Robert F Kalejta
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, United States
| | | | - Robert F Mullins
- Department of Ophthalmology and Visual, University of Iowa, Iowa City, United States
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lawrence H Pinto
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
38
|
Aravamudan B, Thompson M, Sieck GC, Vassallo R, Pabelick CM, Prakash YS. Functional Effects of Cigarette Smoke-Induced Changes in Airway Smooth Muscle Mitochondrial Morphology. J Cell Physiol 2016; 232:1053-1068. [PMID: 27474898 DOI: 10.1002/jcp.25508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
Abstract
Long-term exposure to cigarette smoke (CS) triggers airway hyperreactivity and remodeling, effects that involve airway smooth muscle (ASM). We previously showed that CS destabilizes the networked morphology of mitochondria in human ASM by regulating the expression of mitochondrial fission and fusion proteins via multiple signaling mechanisms. Emerging data link regulation of mitochondrial morphology to cellular structure and function. We hypothesized that CS-induced changes in ASM mitochondrial morphology detrimentally affect mitochondrial function, leading to CS effects on contractility and remodeling. Here, ASM cells were exposed to 1% cigarette smoke extract (CSE) for 48 h to alter mitochondrial fission/fusion, or by inhibiting the fission protein Drp1 or the fusion protein Mfn2. Mitochondrial function was assessed via changes in bioenergetics or altered rates of proliferation and apoptosis. Our results indicate that both exposure to CS and inhibition of mitochondrial fission/fusion proteins affect mitochondrial function (i.e., energy metabolism, proliferation, and apoptosis) in ASM cells. In vivo, the airways in mice chronically exposed to CS are thickened and fibrotic, and the expression of proteins involved in mitochondrial function is dramatically altered in the ASM of these mice. We conclude that CS-induced changes in mitochondrial morphology (fission/fusion balance) correlate with mitochondrial function, and thus may control ASM proliferation, which plays a central role in airway health. J. Cell. Physiol. 232: 1053-1068, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Robert Vassallo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
39
|
Campbell MD, Marcinek DJ. Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:716-724. [PMID: 26708941 PMCID: PMC4788529 DOI: 10.1016/j.bbadis.2015.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
It is now clear that mitochondria are involved as either a cause or consequence of many chronic diseases. This central role of the mitochondria is due to their position in the cell as important integrators of cellular energetics and signaling. Mitochondrial function affects many aspects of the cellular environment such as redox homeostasis and calcium signaling, which then also exert control over mitochondrial function. This complex dynamic between mitochondrial function and the cellular environment highlights the value of examining mitochondria in vivo in the intact physiological environment. This review discusses NMR and optical approaches used to measure mitochondria ATP and oxygen fluxes that provide in vivo measures of mitochondrial capacity and quality in animal and human models. Combining these in vivo measurements with more traditional ex vivo analyses can lead to new insights into the importance of the cellular environment in controlling mitochondrial function under pathological conditions. Interpretation and underlying assumptions for each technique are discussed with the goal of providing an overview of some of the most common approaches used to measure in vivo mitochondrial function encountered in the literature.
Collapse
Affiliation(s)
- Matthew D Campbell
- University of Washington, Seattle, 850 Republican St., Brotman D142, Seattle, WA 98109, USA.
| | - David J Marcinek
- University of Washington, Seattle, 850 Republican St., Brotman D142, Seattle, WA 98109, USA.
| |
Collapse
|
40
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
41
|
Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- M Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - M De Mia
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S Morisse
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - N Di Giacinto
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - C H Marchand
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - A Maes
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - P Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
42
|
Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, Wu H. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol 2015; 8:98-109. [PMID: 26773873 PMCID: PMC4731949 DOI: 10.1016/j.redox.2015.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD). Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effects of RTA 408 on Nrf2 and its downstream target genes. Primary human RPE cells were pretreated with RTA 408 and then incubated in 200μM H2O2 for 6h. Cell viability was measured with the WST-8 assay. Apoptosis was quantitatively measured by annexin V/propidium iodide (PI) double staining and Hoechst 33342 fluorescent staining. Reduced (GSH) and oxidized glutathione (GSSG) were measured using colorimetric assays. Nrf2 activation and its downstream effects on phase II enzymes were examined by Western blot. Treatment of RPE cells with nanomolar ranges (10 and 100nM) of RTA 408 markedly attenuated H2O2-induced viability loss and apoptosis. RTA 408 pretreatment significantly protected cells from oxidative stress-induced GSH loss, GSSG formation and decreased ROS production. RTA 408 activated Nrf2 and increased the expression of its downstream genes, such as HO-1, NQO1, SOD2, catalase, Grx1, and Trx1. Consequently, the enzyme activities of NQO1, Grx1, and Trx1 were fully protected by RTA 408 pretreatment under oxidative stress. Moreover, knockdown of Nrf2 by siRNA significantly reduced the cytoprotective effects of RTA 408. In conclusion, our data suggest that RTA 408 protect primary human RPE cells from oxidative stress-induced damage by activating Nrf2 and its downstream genes.
Collapse
Affiliation(s)
- Xiaobin Liu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Keith Ward
- REATA Pharmaceuticals, Inc., Irving, TX, USA
| | - Christy Xavier
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jamieson Jann
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Cell Biology & Immunology, UNTHSC, Ft. Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Iok-Hou Pang
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
43
|
Kramer PA, Duan J, Qian WJ, Marcinek DJ. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function. Front Physiol 2015; 6:347. [PMID: 26635632 PMCID: PMC4658434 DOI: 10.3389/fphys.2015.00347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar, and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington Seattle, WA, USA
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington Seattle, WA, USA ; Department of Bioengineering, University of Washington Seattle, WA, USA
| |
Collapse
|
44
|
Lim TKY, Rone MB, Lee S, Antel JP, Zhang J. Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 2015; 11:58. [PMID: 26376783 PMCID: PMC4574230 DOI: 10.1186/s12990-015-0057-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/26/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is observed in various neuropathic pain phenotypes, such as chemotherapy induced neuropathy, diabetic neuropathy, HIV-associated neuropathy, and in Charcot-Marie-Tooth neuropathy. To investigate whether mitochondrial dysfunction is present in trauma-induced painful mononeuropathy, a time-course of mitochondrial function and bioenergetics was characterized in the mouse partial sciatic nerve ligation model. RESULTS Traumatic nerve injury induces increased metabolic indices of the nerve, resulting in increased oxygen consumption and increased glycolysis. Increased metabolic needs of the nerve are concomitant with bioenergetic and mitochondrial dysfunction. Mitochondrial dysfunction is characterized by reduced ATP synthase activity, reduced electron transport chain activity, and increased futile proton cycling. Bioenergetic dysfunction is characterized by reduced glycolytic reserve, reduced glycolytic capacity, and increased non-glycolytic acidification. CONCLUSION Traumatic peripheral nerve injury induces persistent mitochondrial and bioenergetic dysfunction which implies that pharmacological agents which seek to normalize mitochondrial and bioenergetic dysfunction could be expected to be beneficial for pain treatment. Increases in both glycolytic acidification and non-glycolytic acidification suggest that pH sensitive drugs which preferentially act on acidic tissue will have the ability to preferential act on injured nerves without affecting healthy tissues.
Collapse
Affiliation(s)
- Tony K Y Lim
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, 740 Docteur Penfield Ave, Suite 3200, Montreal, QC, H3A 0G1, Canada.
| | - Malena B Rone
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Seunghwan Lee
- Alan Edwards Centre for Research on Pain, McGill University, 740 Docteur Penfield Ave, Suite 3200, Montreal, QC, H3A 0G1, Canada. .,Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Jack P Antel
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Ji Zhang
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, 740 Docteur Penfield Ave, Suite 3200, Montreal, QC, H3A 0G1, Canada. .,Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
45
|
Lettieri Barbato D, Tatulli G, Maria Cannata S, Bernardini S, Aquilano K, Ciriolo MR. Glutathione Decrement Drives Thermogenic Program In Adipose Cells. Sci Rep 2015; 5:13091. [PMID: 26260892 PMCID: PMC4531326 DOI: 10.1038/srep13091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/17/2015] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue metabolically adapts to external stimuli. We demonstrate that the induction of the thermogenic program in white adipocytes, through cold exposure in mice or in vitro adrenergic stimulation, is accompanied by a decrease in the intracellular content of glutathione (GSH). Moreover, the treatment with a GSH depleting agent, buthionine sulfoximine (BSO), recapitulates the effect of cold exposure resulting in the induction of thermogenic program. In particular, BSO treatment leads to enhanced uncoupling respiration as demonstrated by increased expression of thermogenic genes (e.g. Ucp1, Ppargc1a), augmented oxygen consumption and decreased mitochondrial transmembrane potential. Buffering GSH decrement by pre-treatment with GSH ester prevents the up-regulation of typical markers of uncoupling respiration. We demonstrate that FoxO1 activation is responsible for the conversion of white adipocytes into a brown phenotype as the “browning” effects of BSO are completely abrogated in cells down-regulating FoxO1. In mice, the BSO-mediated up-regulation of uncoupling genes results in weight loss that is at least in part ascribed to adipose tissue mass reduction. The induction of thermogenic program has been largely proposed to counteract obesity-related diseases. Based on these findings, we propose GSH as a novel therapeutic target to increase energy expenditure in adipocytes.
Collapse
Affiliation(s)
- Daniele Lettieri Barbato
- Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giuseppe Tatulli
- Scientific Institute for Research Hospitalization and Health Care and Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Stefano Maria Cannata
- Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Katia Aquilano
- 1] Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy [2] Scientific Institute for Research Hospitalization and Health Care and Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Maria R Ciriolo
- 1] Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy [2] Scientific Institute for Research Hospitalization and Health Care and Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
46
|
Liu X, Han S, Yang Y, Kang J, Wu J. Glucose-induced glutathione reduction in mitochondria is involved in the first phase of pancreatic β-cell insulin secretion. Biochem Biophys Res Commun 2015; 464:730-6. [PMID: 26164230 DOI: 10.1016/j.bbrc.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
Abstract
Glucose can acutely reduce mitochondrial glutathione redox state in rat islets. However, whether glucose-stimulated mitochondrial glutathione redox state relates to glucose-stimulated insulin secretion (GSIS) remains unknown. We used genetically encoded redox-sensitive GFPs to target the mitochondria to monitor glutathione redox changes during GSIS in rat pancreatic β-cells. The results showed that mitochondrial glutathione was more reduced during GSIS, whereas inhibition of this glutathione reduction impaired insulin secretion. In isolated rat pancreatic islets glutathione reduction in mitochondria and the first phase of GSIS were concurrence at the early stage of glucose-stimulation. Our results suggest that the glucose-induced glutathione reduction in mitochondria is primarily required for the first phase of GSIS.
Collapse
Affiliation(s)
- Xiaojing Liu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Shuai Han
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ying Yang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
47
|
Zamora DA, Downs KP, Ullevig SL, Tavakoli S, Kim HS, Qiao M, Greaves DR, Asmis R. Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice. Atherosclerosis 2015; 241:69-78. [PMID: 25966442 PMCID: PMC4466159 DOI: 10.1016/j.atherosclerosis.2015.04.805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
Abstract
AIMS Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation. METHODS AND RESULTS We generated transgenic Grx2aMac(LDLR-/-) mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMac(LDLR-/-) mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMac(LDLR-/-) mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMac(LDLR-/-) mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMac(LDLR-/-) mice. CONCLUSION Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.
Collapse
Affiliation(s)
- D A Zamora
- Department of Biology, Trinity University, San Antonio, USA
| | - K P Downs
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA
| | - S L Ullevig
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, USA
| | - S Tavakoli
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - H S Kim
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA
| | - M Qiao
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA
| | - D R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - R Asmis
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
48
|
Truong J, Mailloux RJ, Chan HM. Impact of methylmercury exposure on mitochondrial energetics in AC16 and H9C2 cardiomyocytes. Toxicol In Vitro 2015; 29:953-61. [PMID: 25835517 DOI: 10.1016/j.tiv.2015.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
It has been reported that chronic low dose exposures of methylmercury (MeHg) is associated with cardiovascular diseases in many populations worldwide. The toxic mechanisms through which these adverse effects occur are currently unknown. The objective of this study was to determine the bioenergetic and cytotoxic effects of MeHg on AC16 and H9C2 cardiomyocyte cell lines. Both cell lines exhibit significantly decreased mitochondrial function, cell viability and increased reactive oxygen species (ROS) production. Decreases in maximal respiration and reserve capacity was observed in both cell lines at 1μM. Bioenergetic profile experiments were also performed in tandem with cells exposed to diamide or menadione, compounds which accumulate in mitochondria and disrupt oxidative phosphorylation. AC16 cells show MeHg dose dependant sensitivities with Stateapparent and ATP production values, but H9C2 cells do not show these trends. H9C2 cells may be more resistant to MeHg toxicity than AC16 cells as reflected in the increases of proton leak and Stateapparent. No changes in expression of respiratory complexes were observed. Results suggest that MeHg has the potential to induce cytotoxicity. Furthermore, MeHg may have differential effects on AC16 and H9C2 cells, derived from human and rat cardiac tissue respectively, suggesting that differences in MeHg toxicity may be species-dependent.
Collapse
Affiliation(s)
- Jocelyn Truong
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ryan J Mailloux
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
49
|
Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. MOLECULAR BIOSYSTEMS 2015; 11:678-97. [DOI: 10.1039/c4mb00571f] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review represents a novel look at the many sources, cysteine targets, and signaling processes of ROS in the mitochondria.
Collapse
Affiliation(s)
- D. W. Bak
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| | - E. Weerapana
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| |
Collapse
|
50
|
Lassiter K, Dridi S, Piekarski A, Greene E, Hargis B, Kong BW, Bottje W. Bioenergetics in chicken embryo fibroblast cells: Evidence of lower proton leak in spontaneously immortalized chicken embryo fibroblasts compared to young and senescent primary chicken embryo fibroblast cells. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:115-23. [DOI: 10.1016/j.cbpa.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
|