1
|
Wang Y, Williams-Carrier R, Meeley R, Fox T, Chamusco K, Nashed M, Hannah LC, Gabay-Laughnan S, Barkan A, Chase C. Mutations in nuclear genes encoding mitochondrial ribosome proteins restore pollen fertility in S male-sterile maize. G3 (BETHESDA, MD.) 2024; 14:jkae201. [PMID: 39163571 DOI: 10.1093/g3journal/jkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The interaction of plant mitochondrial and nuclear genetic systems is exemplified by mitochondria-encoded cytoplasmic male sterility (CMS) under the control of nuclear restorer-of-fertility genes. The S type of CMS in maize is characterized by a pollen collapse phenotype and a unique paradigm for fertility restoration in which numerous nuclear restorer-of-fertility lethal mutations rescue pollen function but condition homozygous-lethal seed phenotypes. Two nonallelic restorer mutations recovered from Mutator transposon-active lines were investigated to determine the mechanisms of pollen fertility restoration and seed lethality. Mu Illumina sequencing of transposon-flanking regions identified insertion alleles of nuclear genes encoding mitochondrial ribosomal proteins RPL6 and RPL14 as candidate restorer-of-fertility lethal mutations. Both candidates were associated with lowered abundance of mitochondria-encoded proteins in developing maize pollen, and the rpl14 mutant candidate was confirmed by independent insertion alleles. While the restored pollen functioned despite reduced accumulation of mitochondrial respiratory proteins, normal-cytoplasm plants heterozygous for the mutant alleles showed a significant pollen transmission bias in favor of the nonmutant Rpl6 and Rpl14 alleles. CMS-S fertility restoration affords a unique forward genetic approach to investigate the mitochondrial requirements for, and contributions to, pollen and seed development.
Collapse
Affiliation(s)
- Yan Wang
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Robert Meeley
- Corteva AgriScience (retired), Johnston, IA 50131, USA
| | - Timothy Fox
- Corteva AgriScience (retired), Johnston, IA 50131, USA
| | - Karen Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Mina Nashed
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Christine Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Lorenzo CD, Blasco-Escámez D, Beauchet A, Wytynck P, Sanches M, Garcia Del Campo JR, Inzé D, Nelissen H. Maize mutant screens: from classical methods to new CRISPR-based approaches. THE NEW PHYTOLOGIST 2024; 244:384-393. [PMID: 39212458 DOI: 10.1111/nph.20084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mutations play a pivotal role in shaping the trajectory and outcomes of a species evolution and domestication. Maize (Zea mays) has been a major staple crop and model for genetic research for more than 100 yr. With the arrival of site-directed mutagenesis and genome editing (GE) driven by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), maize mutational research is once again in the spotlight. If we combine the powerful physiological and genetic characteristics of maize with the already available and ever increasing toolbox of CRISPR-Cas, prospects for its future trait engineering are very promising. This review aimed to give an overview of the progression and learnings of maize screening studies analyzing forward genetics, natural variation and reverse genetics to focus on recent GE approaches. We will highlight how each strategy and resource has contributed to our understanding of maize natural and induced trait variability and how this information could be used to design the next generation of mutational screenings.
Collapse
Affiliation(s)
- Christian Damian Lorenzo
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - David Blasco-Escámez
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Arthur Beauchet
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Pieter Wytynck
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Matilde Sanches
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Jose Rodrigo Garcia Del Campo
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| |
Collapse
|
4
|
Xie J, Fei X, Yan Q, Jiang T, Li Z, Chen H, Wang B, Chao Q, He Y, Fan Z, Wang L, Wang M, Shi L, Zhou T. The C4 photosynthesis bifunctional enzymes, PDRPs, of maize are co-opted to cytoplasmic viral replication complexes to promote infection of a prevalent potyvirus sugarcane mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1812-1832. [PMID: 38339894 PMCID: PMC11182595 DOI: 10.1111/pbi.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
In maize, two pyruvate orthophosphate dikinase (PPDK) regulatory proteins, ZmPDRP1 and ZmPDRP2, are respectively specific to the chloroplast of mesophyll cells (MCs) and bundle sheath cells (BSCs). Functionally, ZmPDRP1/2 catalyse both phosphorylation/inactivation and dephosphorylation/activation of ZmPPDK, which is implicated as a major rate-limiting enzyme in C4 photosynthesis of maize. Our study here showed that maize plants lacking ZmPDRP1 or silencing of ZmPDRP1/2 confer resistance to a prevalent potyvirus sugarcane mosaic virus (SCMV). We verified that the C-terminal domain (CTD) of ZmPDRP1 plays a key role in promoting viral infection while independent of enzyme activity. Intriguingly, ZmPDRP1 and ZmPDRP2 re-localize to cytoplasmic viral replication complexes (VRCs) following SCMV infection. We identified that SCMV-encoded cytoplasmic inclusions protein CI targets directly ZmPDRP1 or ZmPDRP2 or their CTDs, leading to their re-localization to cytoplasmic VRCs. Moreover, we found that CI could be degraded by the 26S proteasome system, while ZmPDRP1 and ZmPDRP2 could up-regulate the accumulation level of CI through their CTDs by a yet unknown mechanism. Most importantly, with genetic, cell biological and biochemical approaches, we provide evidence that BSCs-specific ZmPDRP2 could accumulate in MCs of Zmpdrp1 knockout (KO) lines, revealing a unique regulatory mechanism crossing different cell types to maintain balanced ZmPPDK phosphorylation, thereby to keep maize normal growth. Together, our findings uncover the genetic link of the two cell-specific maize PDRPs, both of which are co-opted to VRCs to promote viral protein accumulation for robust virus infection.
Collapse
Affiliation(s)
- Jipeng Xie
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaohong Fei
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Qin Yan
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Tong Jiang
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Zhifang Li
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Hui Chen
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Baichen Wang
- Key Laboratory of PhotobiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Qing Chao
- Key Laboratory of PhotobiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Yueqiu He
- College of AgronomyYunnan Agricultural UniversityKunmingChina
| | - Zaifeng Fan
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Lijin Wang
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Meng Wang
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Liang Shi
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Tao Zhou
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
6
|
Han X, Zhang Y, Lou Z, Li J, Wang Z, Gao C, Liu Y, Ren Z, Liu W, Li B, Pan W, Zhang H, Sang Q, Wan M, He H, Deng XW. Time series single-cell transcriptional atlases reveal cell fate differentiation driven by light in Arabidopsis seedlings. NATURE PLANTS 2023; 9:2095-2109. [PMID: 37903986 PMCID: PMC10724060 DOI: 10.1038/s41477-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/19/2023] [Indexed: 11/01/2023]
Abstract
Light serves as the energy source for plants as well as a signal for growth and development during their whole life cycle. Seedling de-etiolation is the most dramatic manifestation of light-regulated plant development processes, as massive reprogramming of the plant transcriptome occurs at this time. Although several studies have reported about organ-specific development and expression induced by light, a systematic analysis of cell-type-specific differentiation and the associated transcriptional regulation is still lacking. Here we obtained single-cell transcriptional atlases for etiolated, de-etiolating and light-grown Arabidopsis thaliana seedlings. Informative cells from shoot and root tissues were grouped into 48 different cell clusters and finely annotated using multiple markers. With the determination of comprehensive developmental trajectories, we demonstrate light modulation of cell fate determination during guard cell specialization and vasculature development. Comparison of expression atlases between wild type and the pifq mutant indicates that phytochrome-interacting factors (PIFs) are involved in distinct developmental processes in endodermal and stomatal lineage cells via controlling cell-type-specific expression of target genes. These results provide information concerning the light signalling networks at the cell-type resolution, improving our understanding of how light regulates plant development at the cell-type and genome-wide levels. The obtained information could serve as a valuable resource for comprehensively investigating the molecular mechanism of cell development and differentiation in response to light.
Collapse
Affiliation(s)
- Xue Han
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Yilin Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Zhiying Lou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Jian Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Zheng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Chunlei Gao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yi Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Zizheng Ren
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Weimin Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Bosheng Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Qing Sang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
7
|
Sierra J, Escobar-Tovar L, Leon P. Plastids: diving into their diversity, their functions, and their role in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2508-2526. [PMID: 36738278 DOI: 10.1093/jxb/erad044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
8
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
9
|
Wang Y, Yu J, Chen YK, Wang ZC. Complete Chloroplast Genome Sequence of the Endemic and Endangered Plant Dendropanax oligodontus: Genome Structure, Comparative and Phylogenetic Analysis. Genes (Basel) 2022; 13:2028. [PMID: 36360265 PMCID: PMC9690231 DOI: 10.3390/genes13112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2023] Open
Abstract
Dendropanax oligodontus, which belongs to the family Araliaceae, is an endemic and endangered species of Hainan Island, China. It has potential economic and medicinal value owing to the presence of phenylpropanoids, flavonoids, triterpenoids, etc. The analysis of the structure and characteristics of the D. oligodontus chloroplast genome (cpDNA) is crucial for understanding the genetic and phylogenetic evolution of this species. In this study, the cpDNA of D. oligodontus was sequenced for the first time using next-generation sequencing methods, assembled, and annotated. We observed a circular quadripartite structure comprising a large single-copy region (86,440 bp), a small single-copy region (18,075 bp), and a pair of inverted repeat regions (25,944 bp). The total length of the cpDNA was 156,403 bp, and the GC% was 37.99%. We found that the D. oligodontus chloroplast genome comprised 131 genes, with 86 protein-coding genes, 8 rRNA genes, and 37 tRNAs. Furthermore, we identified 26,514 codons, 13 repetitive sequences, and 43 simple sequence repeat sites in the D. oligodontus cpDNA. The most common amino acid encoded was leucine, with a strong A/T preference at the third position of the codon. The prediction of RNA editing sites in the protein-coding genes indicated that RNA editing was observed in 19 genes with a total of 54 editing sites, all of which involved C-to-T transitions. Finally, the cpDNA of 11 species of the family Araliaceae were selected for comparative analysis. The sequences of the untranslated regions and coding regions among 11 species were highly conserved, and minor differences were observed in the length of the inverted repeat regions; therefore, the cpDNAs were relatively stable and consistent among these 11 species. The variable hotspots in the genome included clpP, ycf1, rnK-rps16, rps16-trnQ, atpH-atpI, trnE-trnT, psbM-trnD, ycf3-trnS, and rpl32-trnL, providing valuable molecular markers for species authentication and regions for inferring phylogenetic relationships among them, as well as for evolutionary studies. Evolutionary selection pressure analysis indicated that the atpF gene was strongly subjected to positive environmental selection. Phylogenetic analysis indicated that D. oligodontus and Dendropanax dentiger were the most closely related species within the genus, and D. oligodontus was closely related to the genera Kalopanax and Metapanax in the Araliaceae family. Overall, the cp genomes reported in this study will provide resources for studying the genetic diversity and conservation of the endangered plant D. oligodontus, as well as resolving phylogenetic relationships within the family.
Collapse
Affiliation(s)
- Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jing Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Yu-Kai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhu-Cheng Wang
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China
| |
Collapse
|
10
|
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3122-3137. [PMID: 35235648 PMCID: PMC9126732 DOI: 10.1093/jxb/erac076] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/02/2023]
Abstract
Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.
Collapse
Affiliation(s)
- Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
- Correspondence:
| | - Louise L Logie
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
12
|
Single-Cell Transcriptome and Network Analyses Unveil Key Transcription Factors Regulating Mesophyll Cell Development in Maize. Genes (Basel) 2022; 13:genes13020374. [PMID: 35205426 PMCID: PMC8872562 DOI: 10.3390/genes13020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Maize mesophyll (M) cells play important roles in various biological processes such as photosynthesis II and secondary metabolism. Functional differentiation occurs during M-cell development, but the underlying mechanisms for regulating M-cell development are largely unknown. Results: We conducted single-cell RNA sequencing (scRNA-seq) to profile transcripts in maize leaves. We then identified coregulated modules by analyzing the resulting pseudo-time-series data through gene regulatory network analyses. WRKY, ERF, NAC, MYB and Heat stress transcription factor (HSF) families were highly expressed in the early stage, whereas CONSTANS (CO)-like (COL) and ERF families were highly expressed in the late stage of M-cell development. Construction of regulatory networks revealed that these transcript factor (TF) families, especially HSF and COL, were the major players in the early and later stages of M-cell development, respectively. Integration of scRNA expression matrix with TF ChIP-seq and Hi-C further revealed regulatory interactions between these TFs and their targets. HSF1 and COL8 were primarily expressed in the leaf bases and tips, respectively, and their targets were validated with protoplast-based ChIP-qPCR, with the binding sites of HSF1 being experimentally confirmed. Conclusions: Our study provides evidence that several TF families, with the involvement of epigenetic regulation, play vital roles in the regulation of M-cell development in maize.
Collapse
|
13
|
Genome-Wide Analysis of the ATP-Binding Cassette (ABC) Transporter Family in Zea mays L. and Its Response to Heavy Metal Stresses. Int J Mol Sci 2022; 23:ijms23042109. [PMID: 35216220 PMCID: PMC8879807 DOI: 10.3390/ijms23042109] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter family is one of the largest eukaryotic protein families. Its members play roles in numerous metabolic processes in plants by releasing energy for substrate transport across membranes through hydrolysis of ATP. Maize belongs to the monocotyledonous plant family, Gramineae, and is one of the most important food crops in the world. We constructed a phylogenetic tree with individual ABC genes from maize, rice, sorghum, Arabidopsis, and poplar. This revealed eight families, each containing ABC genes from both monocotyledonous and dicotyledonous plants, indicating that the amplification events of ABC gene families predate the divergence of plant monocotyledons. To further understand the functions of ABC genes in maize growth and development, we analyzed the expression patterns of maize ABC family genes in eight tissues and organs based on the transcriptome database on the Genevestigator website. We identified 133 ABC genes expressed in most of the eight tissues and organs examined, especially during root and leaf development. Furthermore, transcriptome analysis of ZmABC genes showed that exposure to metallic lead induced differential expression of many maize ABC genes, mainly including ZmABC 012, 013, 015, 031, 040, 043, 065, 078, 080, 085, 088, 102, 107, 111, 130 and 131 genes, etc. These results indicated that ZmABC genes play an important role in the response to heavy metal stress. The comprehensive analysis of this study provides a foundation for further studies into the roles of ABC genes in maize.
Collapse
|
14
|
Luo X, Zhang M, Xu P, Liu G, Wei S. The Intron Retention Variant CsClpP3m Is Involved in Leaf Chlorosis in Some Tea Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 12:804428. [PMID: 35154195 PMCID: PMC8831552 DOI: 10.3389/fpls.2021.804428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Tea products made from chlorotic or albino leaves are very popular for their unique flavor. Probing into the molecular mechanisms underlying the chlorotic leaf phenotype is required to better understand the formation of these tea cultivars and aid in future practical breeding. In this study, transcriptional alterations of multiple subunit genes of the caseinolytic protease complex (Clp) in the chlorotic tea cultivar 'Yu-Jin-Xiang' (YJX) were found. Cultivar YJX possessed the intron retention variant of ClpP3, named as CsClpP3m, in addition to the non-mutated ClpP3. The mutated variant results in a truncated protein containing only 166 amino acid residues and lacks the catalytic triad S182-H206-D255. Quantitative analysis of two CsClpP3 variants in different leaves with varying degrees of chlorosis in YJX and analyses of different chlorotic tea cultivars revealed that the transcript ratios of CsClpP3m over CsClpP3 were negatively correlated with leaf chlorophyll contents. The chlorotic young leaf phenotype was also generated in the transgenic tobacco by suppressing ClpP3 using the RNAi method; complementation with non-mutated CsClpP3 rescued the wild-type phenotype, whereas CsClpP3m failed to complement. Taken together, CsClpP3m is involved in leaf chlorosis in YJX and some other tea cultivars in a dose-dependent manner, likely resulting from the failure of Clp complex assembly due to the truncated sequence of CsClpP3m. Our data shed light on the mechanisms controlling leaf chlorosis in tea plants.
Collapse
Affiliation(s)
- Xueyin Luo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengxian Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Pei Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Guofeng Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK. Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009725. [PMID: 34492001 PMCID: PMC8448359 DOI: 10.1371/journal.pgen.1009725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/17/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
| | - Katharine Guan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Wendy Schackwitz
- Joint Genome Institute, Berkeley, California, United States of America
| | - Joshua Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Dhruv Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Robert M. Shih
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Rachel M. Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Mansi Chovatia
- Joint Genome Institute, Berkeley, California, United States of America
| | - Aditi Sharma
- Joint Genome Institute, Berkeley, California, United States of America
| | - Joel Martin
- Joint Genome Institute, Berkeley, California, United States of America
| | - Chia-Lin Wei
- Joint Genome Institute, Berkeley, California, United States of America
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
16
|
Li Q, Zhou S, Liu W, Zhai Z, Pan Y, Liu C, Chern M, Wang H, Huang M, Zhang Z, Tang J, Du H. A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3155-3167. [PMID: 33571996 DOI: 10.1093/jxb/erab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/07/2021] [Indexed: 05/16/2023]
Abstract
Chlorophylls function in photosynthesis, and are critical to plant developmental processes and responses to environmental stimuli. Chlorophyll b is synthesized from chlorophyll a by chlorophyll a oxygenase (CAO). Here, we characterize a yellow-green leaf (ygl) mutant and identify the causal gene which encodes a chlorophyll a oxygenase in maize (ZmCAO1). A 51 bp Popin transposon insertion in ZmCAO1 strongly disrupts its transcription. Low enzyme activity of ZmCAO1 leads to reduced concentrations of chlorophyll a and chlorophyll b, resulting in the yellow-green leaf phenotype of the ygl mutant. The net photosynthetic rate, stomatal conductance, and transpiration rate are decreased in the ygl mutant, while concentrations of δ-aminolevulinic acid (ALA), porphobilinogen (PBG) and protochlorophyllide (Pchlide) are increased. In addition, a ZmCAO1 mutation results in down-regulation of key photosynthetic genes, limits photosynthetic assimilation, and reduces plant height, ear size, kernel weight, and grain yield. Furthermore, the zmcao1 mutant shows enhanced reactive oxygen species production leading to sensitivity to waterlogging. These results demonstrate the pleiotropy of ZmCAO1 function in photosynthesis, grain yield, and waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Qin Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Shuangzhen Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Wenyu Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Zhensheng Zhai
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Yitian Pan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Changchang Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616,USA
| | - Hongwei Wang
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| | - Min Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070,P.R.China
| | - Jihua Tang
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046,P.R.China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| |
Collapse
|
17
|
Méteignier LV, Ghandour R, Zimmerman A, Kuhn L, Meurer J, Zoschke R, Hammani K. Arabidopsis mTERF9 protein promotes chloroplast ribosomal assembly and translation by establishing ribonucleoprotein interactions in vivo. Nucleic Acids Res 2021; 49:1114-1132. [PMID: 33398331 PMCID: PMC7826268 DOI: 10.1093/nar/gkaa1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial transcription termination factor proteins are nuclear-encoded nucleic acid binders defined by degenerate tandem helical-repeats of ∼30 amino acids. They are found in metazoans and plants where they localize in organelles. In higher plants, the mTERF family comprises ∼30 members and several of these have been linked to plant development and response to abiotic stress. However, knowledge of the molecular basis underlying these physiological effects is scarce. We show that the Arabidopsis mTERF9 protein promotes the accumulation of the 16S and 23S rRNAs in chloroplasts, and interacts predominantly with the 16S rRNA in vivo and in vitro. Furthermore, mTERF9 is found in large complexes containing ribosomes and polysomes in chloroplasts. The comprehensive analysis of mTERF9 in vivo protein interactome identified many subunits of the 70S ribosome whose assembly is compromised in the null mterf9 mutant, putative ribosome biogenesis factors and CPN60 chaperonins. Protein interaction assays in yeast revealed that mTERF9 directly interact with these proteins. Our data demonstrate that mTERF9 integrates protein-protein and protein-RNA interactions to promote chloroplast ribosomal assembly and translation. Besides extending our knowledge of mTERF functional repertoire in plants, these findings provide an important insight into the chloroplast ribosome biogenesis.
Collapse
Affiliation(s)
- Louis-Valentin Méteignier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
18
|
The Arabidopsis NOT4A E3 ligase promotes PGR3 expression and regulates chloroplast translation. Nat Commun 2021; 12:251. [PMID: 33431870 PMCID: PMC7801604 DOI: 10.1038/s41467-020-20506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Chloroplast function requires the coordinated action of nuclear- and chloroplast-derived proteins, including several hundred nuclear-encoded pentatricopeptide repeat (PPR) proteins that regulate plastid mRNA metabolism. Despite their large number and importance, regulatory mechanisms controlling PPR expression are poorly understood. Here we show that the Arabidopsis NOT4A ubiquitin-ligase positively regulates the expression of PROTON GRADIENT REGULATION 3 (PGR3), a PPR protein required for translating several thylakoid-localised photosynthetic components and ribosome subunits within chloroplasts. Loss of NOT4A function leads to a strong depletion of cytochrome b6f and NAD(P)H dehydrogenase (NDH) complexes, as well as plastid 30 S ribosomes, which reduces mRNA translation and photosynthetic capacity, causing pale-yellow and slow-growth phenotypes. Quantitative transcriptome and proteome analysis of the not4a mutant reveal it lacks PGR3 expression, and that its molecular defects resemble those of a pgr3 mutant. Furthermore, we show that normal plastid function is restored to not4a through transgenic PGR3 expression. Our work identifies NOT4A as crucial for ensuring robust photosynthetic function during development and stress-response, through promoting PGR3 production and chloroplast translation.
Collapse
|
19
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC PLANT BIOLOGY 2021; 21:22. [PMID: 33413097 PMCID: PMC7792217 DOI: 10.1186/s12870-020-02755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.
Collapse
Affiliation(s)
- Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Beata Chmielewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Janusz Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Iwona Szarejko
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
20
|
Żur I, Gajecka M, Dubas E, Krzewska M, Szarejko I. Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts. Methods Mol Biol 2021; 2288:3-23. [PMID: 34270002 DOI: 10.1007/978-1-0716-1335-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
21
|
Feiz L, Strickler SR, van Eck J, Mao L, Movahed N, Taylor C, Gourabathini P, Fei Z, Stern DB. Setaria viridis chlorotic and seedling-lethal mutants define critical functions for chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:917-931. [PMID: 32812296 DOI: 10.1111/tpj.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Deep insights into chloroplast biogenesis have been obtained by mutant analysis; however, in C4 plants a relevant mutant collection has only been developed and exploited for maize. Here, we report the initial characterization of an ethyl methyl sulfonate-induced mutant population for the C4 model Setaria viridis. Approximately 1000 M2 families were screened for the segregation of pale-green seedlings in the M3 generation, and a subset of these was identified to be deficient in post-transcriptional steps of chloroplast gene expression. Causative mutations were identified for three lines using deep sequencing-based bulked segregant analysis, and in one case confirmed by transgenic complementation. Using chloroplast RNA-sequencing and other molecular assays, we describe phenotypes of mutants deficient in PSRP7, a plastid-specific ribosomal protein, OTP86, an RNA editing factor, and cpPNP, the chloroplast isozyme of polynucleotide phosphorylase. The psrp mutant is globally defective in chloroplast translation, and has varying deficiencies in the accumulation of chloroplast-encoded proteins. The otp86 mutant, like its Arabidopsis counterpart, is specifically defective in editing of the rps14 mRNA; however, the conditional pale-green mutant phenotype contrasts with the normal growth of the Arabidopsis mutant. The pnp mutant exhibited multiple defects in 3' end maturation as well as other qualitative changes in the chloroplast RNA population. Overall, our collection opens the door to global analysis of photosynthesis and early seedling development in an emerging C4 model.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | | | - Joyce van Eck
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Linyong Mao
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Department of Biochemistry and Molecular Biology, Howard University, Washington, DC, 20059, USA
| | - Navid Movahed
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Q² Solutions, Ithaca, New York, 14850, USA
| | - Caroline Taylor
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Lansing High School, Lansing, New York, 14882, USA
- Cornell University, Ithaca, New York, New York, 14850, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - David B Stern
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| |
Collapse
|
22
|
Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit. Proc Natl Acad Sci U S A 2020; 117:21775-21784. [PMID: 32817480 DOI: 10.1073/pnas.2007833117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The D1 reaction center protein of photosystem II (PSII) is subject to light-induced damage. Degradation of damaged D1 and its replacement by nascent D1 are at the heart of a PSII repair cycle, without which photosynthesis is inhibited. In mature plant chloroplasts, light stimulates the recruitment of ribosomes specifically to psbA mRNA to provide nascent D1 for PSII repair and also triggers a global increase in translation elongation rate. The light-induced signals that initiate these responses are unclear. We present action spectrum and genetic data indicating that the light-induced recruitment of ribosomes to psbA mRNA is triggered by D1 photodamage, whereas the global stimulation of translation elongation is triggered by photosynthetic electron transport. Furthermore, mutants lacking HCF136, which mediates an early step in D1 assembly, exhibit constitutively high psbA ribosome occupancy in the dark and differ in this way from mutants lacking PSII for other reasons. These results, together with the recent elucidation of a thylakoid membrane complex that functions in PSII assembly, PSII repair, and psbA translation, suggest an autoregulatory mechanism in which the light-induced degradation of D1 relieves repressive interactions between D1 and translational activators in the complex. We suggest that the presence of D1 in this complex coordinates D1 synthesis with the need for nascent D1 during both PSII biogenesis and PSII repair in plant chloroplasts.
Collapse
|
23
|
Functional Analysis of PSRP1, the Chloroplast Homolog of a Cyanobacterial Ribosome Hibernation Factor. PLANTS 2020; 9:plants9020209. [PMID: 32041317 PMCID: PMC7076655 DOI: 10.3390/plants9020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
Bacterial ribosome hibernation factors sequester ribosomes in an inactive state during the stationary phase and in response to stress. The cyanobacterial ribosome hibernation factor LrtA has been suggested to inactivate ribosomes in the dark and to be important for post-stress survival. In this study, we addressed the hypothesis that Plastid Specific Ribosomal Protein 1 (PSRP1), the chloroplast-localized LrtA homolog in plants, contributes to the global repression of chloroplast translation that occurs when plants are shifted from light to dark. We found that the abundance of PSRP1 and its association with ribosomes were similar in the light and the dark. Maize mutants lacking PSRP1 were phenotypically normal under standard laboratory growth conditions. Furthermore, the absence of PSRP1 did not alter the distribution of chloroplast ribosomes among monosomes and polysomes in the light or in the dark, and did not affect the light-regulated synthesis of the chloroplast psbA gene product. These results suggest that PSRP1 does not play a significant role in the regulation of chloroplast translation by light. As such, the physiological driving force for the retention of PSRP1 during chloroplast evolution remains unclear.
Collapse
|
24
|
Exploring the Link between Photosystem II Assembly and Translation of the Chloroplast psbA mRNA. PLANTS 2020; 9:plants9020152. [PMID: 31991763 PMCID: PMC7076361 DOI: 10.3390/plants9020152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Photosystem II (PSII) in chloroplasts and cyanobacteria contains approximately fifteen core proteins, which organize numerous pigments and prosthetic groups that mediate the light-driven water-splitting activity that drives oxygenic photosynthesis. The PSII reaction center protein D1 is subject to photodamage, whose repair requires degradation of damaged D1 and its replacement with nascent D1. Mechanisms that couple D1 synthesis with PSII assembly and repair are poorly understood. We address this question by using ribosome profiling to analyze the translation of chloroplast mRNAs in maize and Arabidopsis mutants with defects in PSII assembly. We found that OHP1, OHP2, and HCF244, which comprise a recently elucidated complex involved in PSII assembly and repair, are each required for the recruitment of ribosomes to psbA mRNA, which encodes D1. By contrast, HCF136, which acts upstream of the OHP1/OHP2/HCF244 complex during PSII assembly, does not have this effect. The fact that the OHP1/OHP2/HCF244 complex brings D1 into proximity with three proteins with dual roles in PSII assembly and psbA ribosome recruitment suggests that this complex is the hub of a translational autoregulatory mechanism that coordinates D1 synthesis with need for nascent D1 during PSII biogenesis and repair.
Collapse
|
25
|
Wang X, Zhao L, Man Y, Li X, Wang L, Xiao J. PDM4, a Pentatricopeptide Repeat Protein, Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1198. [PMID: 32849743 PMCID: PMC7432182 DOI: 10.3389/fpls.2020.01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Extensive studies have been carried out on chloroplast gene expression and chloroplast development; however, the regulatory mechanism is still largely unknown. Here, we characterized Pigment-Defective Mutant4 (PDM4), a P-type PPR protein localized in chloroplast. The pdm4 mutant showed seedling-lethal and albino phenotype under heterotrophic growth conditions. Transmission electron microscopic analysis revealed that thylakoid structure was totally disrupted in pdm4 mutant and eventually led to the breakdown of chloroplasts. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in pdm4 mutant. Besides, transcript profile analysis detected that, in pdm4 mutant, the expression of plastid-encoded RNA polymerase-dependent genes was markedly affected, and deviant chloroplast rRNA processing was also observed. In addition, we found that PDM4 functions in the splicing of group II introns and may also be involved in the assembly of the 50S ribosomal particle. Our results demonstrate that PDM4 plays an important role in chloroplast gene expression and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lirong Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
26
|
Daras G, Rigas S, Alatzas A, Samiotaki M, Chatzopoulos D, Tsitsekian D, Papadaki V, Templalexis D, Banilas G, Athanasiadou AM, Kostourou V, Panayotou G, Hatzopoulos P. LEFKOTHEA Regulates Nuclear and Chloroplast mRNA Splicing in Plants. Dev Cell 2019; 50:767-779.e7. [PMID: 31447263 DOI: 10.1016/j.devcel.2019.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/27/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Eukaryotic organisms accomplish the removal of introns to produce mature mRNAs through splicing. Nuclear and organelle splicing mechanisms are distinctively executed by spliceosome and group II intron complex, respectively. Here, we show that LEFKOTHEA, a nuclear encoded RNA-binding protein, participates in chloroplast group II intron and nuclear pre-mRNA splicing. Transiently optimized LEFKOTHEA nuclear activity is fundamental for plant growth, whereas the loss of function abruptly arrests embryogenesis. Nucleocytoplasmic partitioning and chloroplast allocation are efficiently balanced via functional motifs in LEFKOTHEA polypeptide. In the context of nuclear-chloroplast coevolution, our results provide a strong paradigm of the convergence of RNA maturation mechanisms in the nucleus and chloroplasts to coordinately regulate gene expression and effectively control plant growth.
Collapse
Affiliation(s)
- Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Anastasios Alatzas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Papadaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | - Georgios Banilas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | |
Collapse
|
27
|
Rojas M, Ruwe H, Miranda RG, Zoschke R, Hase N, Schmitz-Linneweber C, Barkan A. Unexpected functional versatility of the pentatricopeptide repeat proteins PGR3, PPR5 and PPR10. Nucleic Acids Res 2019; 46:10448-10459. [PMID: 30125002 PMCID: PMC6212717 DOI: 10.1093/nar/gky737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of helical repeat proteins that bind RNA in mitochondria and chloroplasts. Sites of PPR action have been inferred primarily from genetic data, which have led to the view that most PPR proteins act at a very small number of sites in vivo. Here, we report new functions for three chloroplast PPR proteins that had already been studied in depth. Maize PPR5, previously shown to promote trnG splicing, is also required for rpl16 splicing. Maize PPR10, previously shown to bind the atpI-atpH and psaJ-rpl33 intercistronic regions, also stabilizes a 3′-end downstream from psaI. Arabidopsis PGR3, shown previously to bind upstream of petL, also binds the rpl14-rps8 intercistronic region where it stabilizes a 3′-end and stimulates rps8 translation. These functions of PGR3 are conserved in maize. The discovery of new functions for three proteins that were already among the best characterized members of the PPR family implies that functional repertoires of PPR proteins are more complex than have been appreciated. The diversity of sequences bound by PPR10 and PGR3 in vivo highlights challenges of predicting binding sites of native PPR proteins based on the amino acid code for nucleotide recognition by PPR motifs.
Collapse
Affiliation(s)
- Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Hannes Ruwe
- Department of Life Sciences, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Reimo Zoschke
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Nora Hase
- Department of Life Sciences, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
28
|
Krupinska K, Braun S, Nia MS, Schäfer A, Hensel G, Bilger W. The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. PLANTA 2019; 249:1337-1347. [PMID: 30631956 DOI: 10.1007/s00425-018-03085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
Chloroplasts deficient in the major chloroplast nucleoid-associated protein WHIRLY1 have an enhanced ratio of LHCs to reaction centers, indicating that WHIRLY1 is required for a coordinate assembly of the photosynthetic apparatus during chloroplast development. Chloroplast development was found to be delayed in barley plants with an RNAi-mediated knockdown of WHIRLY1 encoding a major nucleoid-associated protein of chloroplasts. The plastids of WHIRLY1 deficient plants had a reduced ribosome content. Accordingly, plastid-encoded proteins of the photosynthetic apparatus showed delayed accumulation during chloroplast development coinciding with a delayed increase in photosystem II efficiency measured by chlorophyll fluorescence. In contrast, light harvesting complex proteins being encoded in the nucleus had a high abundance as in the wild type. The unbalanced assembly of the proteins of the photosynthetic apparatus in WHIRLY1-deficient plants coincided with the enhanced contents of chlorophyll b and xanthophylls. The lack of coordination was most obvious at the early stages of development. Overaccumulation of LHC proteins in comparison to reaction center proteins at the early stages of chloroplast development did not correlate with enhanced expression levels of the corresponding genes in the nucleus. This work revealed that WHIRLY1 does not influence LHC abundance at the transcriptional level. Rather, WHIRLY1 in association with nucleoids might play a structural role for both the assembly of ribosomes and the complexes of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Susanne Braun
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Ebihara T, Matsuda T, Sugita C, Ichinose M, Yamamoto H, Shikanai T, Sugita M. The P-class pentatricopeptide repeat protein PpPPR_21 is needed for accumulation of the psbI-ycf12 dicistronic mRNA in Physcomitrella chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1120-1131. [PMID: 30536655 DOI: 10.1111/tpj.14187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Chloroplast gene expression is controlled by numerous nuclear-encoded RNA-binding proteins. Among these, pentatricopeptide repeat (PPR) proteins are known to be key players in post-transcriptional regulation in chloroplasts. However, the functions of many PPR proteins remain unknown. In this study, we characterized the function of a chloroplast-localized P-class PPR protein PpPPR_21 in Physcomitrella patens. Knockout (KO) mutants of PpPPR_21 exhibited reduced protonemata growth and lower photosynthetic activity. Immunoblot analysis and blue-native gel analysis showed a remarkable reduction of the photosystem II (PSII) reaction center protein and poor formation of the PSII supercomplexes in the KO mutants. To assess whether PpPPR_21 is involved in chloroplast gene expression, chloroplast genome-wide microarray analysis and Northern blot hybridization were performed. These analyses indicated that the psbI-ycf12 transcript encoding the low molecular weight subunits of PSII did not accumulate in the KO mutants while other psb transcripts accumulated at similar levels in wild-type and KO mutants. A complemented PpPPR_21KO moss transformed with the cognate full-length PpPPR_21cDNA rescued the level of accumulation of psbI-ycf12 transcript. RNA-binding experiments showed that the recombinant PpPPR_21 bound efficiently to the 5' untranslated and translated regions of psbImRNA. The present study suggests that PpPPR_21 may be essential for the accumulation of a stable psbI-ycf12mRNA.
Collapse
Affiliation(s)
- Tetsuo Ebihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Matsuda
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
30
|
Murata MM, Omar AA, Mou Z, Chase CD, Grosser JW, Graham JH. Novel Plastid-Nuclear Genome Combinations Enhance Resistance to Citrus Canker in Cybrid Grapefruit. FRONTIERS IN PLANT SCIENCE 2019; 9:1858. [PMID: 30666259 PMCID: PMC6330342 DOI: 10.3389/fpls.2018.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/30/2018] [Indexed: 05/23/2023]
Abstract
Host disease resistance is the most desirable strategy for control of citrus canker, a disease caused by a gram-negative bacterium Xanthomonas citri subsp. citri. However, no resistant commercial citrus cultivar has been identified. Cybridization, a somatic hybridization approach that combines the organelle and nuclear genomes from different species, was used to create cybrids between citrus canker resistant 'Meiwa' kumquat (Fortunella crassifolia Swingle snym. Citrus japonica Thunb.) and susceptible grapefruit (Citrus paradisi Macfad) cultivars. From these fusions, cybrids with grapefruit nucleus, kumquat mitochondria and kumquat chloroplasts and cybrids with grapefruit nucleus, kumquat mitochondria and grapefruit chloroplasts were generated. These cybrids showed a range of citrus canker response, but all cybrids with kumquat chloroplasts had a significantly lower number of lesions and lower Xanthomonas citri subsp. citri populations than the grapefruit controls. Cybrids with grapefruit chloroplasts had a significantly higher number of lesions than those with kumquat chloroplasts. To understand the role of chloroplasts in the cybrid disease defense, quantitative PCR was performed on both cybrid types and their parents to examine changes in gene expression during Xanthomonas citri subsp. citri infection. The results revealed chloroplast influences on nuclear gene expression, since isonuclear cybrids and 'Marsh' grapefruit had different gene expression profiles. In addition, only genotypes with kumquat chloroplasts showed an early up-regulation of reactive oxygen species genes upon Xanthomonas citri subsp. citri infection. These cybrids have the potential to enhance citrus canker resistance in commercial grapefruit orchards. They also serve as models for understanding the contribution of chloroplasts to plant disease response and raise the question of whether other alien chloroplast genotypes would condition similar results.
Collapse
Affiliation(s)
- Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
31
|
Liu J, Chang X, Ding B, Zhong S, Peng L, Wei Q, Meng J, Yu Y. PhDHS Is Involved in Chloroplast Development in Petunia. FRONTIERS IN PLANT SCIENCE 2019; 10:284. [PMID: 30930919 PMCID: PMC6424912 DOI: 10.3389/fpls.2019.00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 05/06/2023]
Abstract
Deoxyhypusine synthase (DHS) is encoded by a nuclear gene and is the key enzyme involved in the post-translational activation of the eukaryotic translation initiation factor eIF5A. DHS plays important roles in plant growth and development. To gain a better understanding of DHS, the petunia (Petunia hybrida) PhDHS gene was isolated, and the role of PhDHS in plant growth was analyzed. PhDHS protein was localized to the nucleus and cytoplasm. Virus-mediated PhDHS silencing caused a sectored chlorotic leaf phenotype. Chlorophyll levels and photosystem II activity were reduced, and chloroplast development was abnormal in PhDHS-silenced leaves. In addition, PhDHS silencing resulted in extended leaf longevity and thick leaves. A proteome assay revealed that 308 proteins are upregulated and 266 proteins are downregulated in PhDHS-silenced plants compared with control, among the latter, 21 proteins of photosystem I and photosystem II and 12 thylakoid (thylakoid lumen and thylakoid membrane) proteins. In addition, the mRNA level of PheIF5A-1 significantly decreased in PhDHS-silenced plants, while that of another three PheIF5As were not significantly affected in PhDHS-silenced plants. Thus, silencing of PhDHS affects photosynthesis presumably as an indirect effect due to reduced expression of PheIF5A-1 in petunia. Significance: PhDHS-silenced plants develop yellow leaves and exhibit a reduced level of photosynthetic pigment in mesophyll cells. In addition, arrested development of chloroplasts is observed in the yellow leaves.
Collapse
|
32
|
Zhang Y, Giuliani R, Zhang Y, Zhang Y, Araujo WL, Wang B, Liu P, Sun Q, Cousins A, Edwards G, Fernie A, Brutnell TP, Li P. Characterization of maize leaf pyruvate orthophosphate dikinase using high throughput sequencing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:670-690. [PMID: 29664234 DOI: 10.1111/jipb.12656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
In C4 photosynthesis, pyruvate orthophosphate dikinase (PPDK) catalyzes the regeneration of phosphoenolpyruvate in the carbon shuttle pathway. Although the biochemical function of PPDK in maize is well characterized, a genetic analysis of PPDK has not been reported. In this study, we use the maize transposable elements Mutator and Ds to generate multiple mutant alleles of PPDK. Loss-of-function mutants are seedling lethal, even when plants were grown under 2% CO2 , and they show very low capacity for CO2 assimilation, indicating C4 photosynthesis is essential in maize. Using RNA-seq and GC-MS technologies, we examined the transcriptional and metabolic responses to a deficiency in PPDK activity. These results indicate loss of PPDK results in downregulation of gene expression of enzymes of the C4 cycle, the Calvin cycle, and components of photochemistry. Furthermore, the loss of PPDK did not change Kranz anatomy, indicating that this metabolic defect in the C4 cycle did not impinge on the morphological differentiation of C4 characters. However, sugar metabolism and nitrogen utilization were altered in the mutants. An interaction between light intensity and genotype was also detected from transcriptome profiling, suggesting altered transcriptional and metabolic responses to environmental and endogenous signals in the PPDK mutants.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rita Giuliani
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Youjun Zhang
- Max-Planck-Insitut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Yang Zhang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska, USA
| | - Wagner Luiz Araujo
- Max-Planck-Insitut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Baichen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York 14850, USA
| | - Asaph Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gerald Edwards
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Alisdair Fernie
- Max-Planck-Insitut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
33
|
Sun F, Zhang X, Shen Y, Wang H, Liu R, Wang X, Gao D, Yang YZ, Liu Y, Tan BC. The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:919-932. [PMID: 30003606 DOI: 10.1111/tpj.14030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 05/23/2023]
Abstract
Splicing of plant organellar group II introns is under accurate nuclear control that employs many nucleus-encoded protein cofactors from various families. For mitochondrial introns, only a few splicing factors have been characterized because disruption of their functions often causes embryo lethality. Here, we report the function of Empty Pericarp8 (Emp8) in the splicing of three group II introns in mitochondria, complex I biogenesis, and seed development in maize. Emp8 encodes a P subfamily pentatricopeptide repeat protein that localizes in mitochondria. The loss-of-function mutants of Emp8 are embryo lethal, showing severely arrested embryo and endosperm development in maize. The respiration rate in the emp8 mutants is reduced with substantially enhanced expression of alternative oxidases. Transcript analysis indicated that the trans-splicing of nad1 intron 4 and cis-splicing of nad4 intron 1 are abolished, and the cis-splicing of nad2 intron 1 is severely impaired in the emp8 mutants. These defects consequently lead to the disassembly of mitochondrial complex I and a dramatic reduction in its activity. Together, these results suggest that Emp8 is required for the trans-splicing of nad1 intron 4 and cis-splicing of nad4 intron 1 and nad2 intron 1, which is essential to mitochondrial complex I assembly and hence to embryogenesis and endosperm development in maize.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaoyan Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yun Shen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hongchun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yiwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
34
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
35
|
Vitlin Gruber A, Feiz L. Rubisco Assembly in the Chloroplast. Front Mol Biosci 2018; 5:24. [PMID: 29594130 PMCID: PMC5859369 DOI: 10.3389/fmolb.2018.00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step in the Calvin-Benson cycle, which transforms atmospheric carbon into a biologically useful carbon source. The slow catalytic rate of Rubisco and low substrate specificity necessitate the production of high levels of this enzyme. In order to engineer a more efficient plant Rubisco, we need to better understand its folding and assembly process. Form I Rubisco, found in green algae and vascular plants, is a hexadecamer composed of 8 large subunits (RbcL), encoded by the chloroplast genome and 8 small, nuclear-encoded subunits (RbcS). Unlike its cyanobacterial homolog, which can be reconstituted in vitro or in E. coli, assisted by bacterial chaperonins (GroEL-GroES) and the RbcX chaperone, biogenesis of functional chloroplast Rubisco requires Cpn60-Cpn20, the chloroplast homologs of GroEL-GroES, and additional auxiliary factors, including Rubisco accumulation factor 1 (Raf1), Rubisco accumulation factor 2 (Raf2) and Bundle sheath defective 2 (Bsd2). The discovery and characterization of these factors paved the way for Arabidopsis Rubisco assembly in E. coli. In the present review, we discuss the uniqueness of hetero-oligomeric chaperonin complex for RbcL folding, as well as the sequential or concurrent actions of the post-chaperonin chaperones in holoenzyme assembly. The exact stages at which each assembly factor functions are yet to be determined. Expression of Arabidopsis Rubisco in E. coli provided some insight regarding the potential roles for Raf1 and RbcX in facilitating RbcL oligomerization, for Bsd2 in stabilizing the oligomeric core prior to holoenzyme assembly, and for Raf2 in interacting with both RbcL and RbcS. In the long term, functional characterization of each known factor along with the potential discovery and characterization of additional factors will set the stage for designing more efficient plants, with a greater biomass, for use in biofuels and sustenance.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leila Feiz
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
36
|
Rühle T, Reiter B, Leister D. Chlorophyll Fluorescence Video Imaging: A Versatile Tool for Identifying Factors Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:55. [PMID: 29472935 PMCID: PMC5810273 DOI: 10.3389/fpls.2018.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/10/2018] [Indexed: 05/12/2023]
Abstract
Measurements of chlorophyll fluorescence provide an elegant and non-invasive means of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll fluorescence have now made it possible to study photosynthesis at all levels from individual cells to entire crop populations. Since the technology delivers quantitative data, is easily scaled up and can be readily combined with other approaches, it has become a powerful phenotyping tool for the identification of factors relevant to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to high-throughput phenotyping in quantitative genetics and highlight potential future developments.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | |
Collapse
|
37
|
Meurer J, Schmid LM, Stoppel R, Leister D, Brachmann A, Manavski N. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:400-413. [PMID: 28805278 DOI: 10.1111/tpj.13662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/11/2023]
Abstract
The plant-specific PALE CRESS (PAC) protein has previously been shown to be essential for photoautotrophic growth. Here we further investigated the molecular function of the PAC protein. PAC localizes to plastid nucleoids and forms large proteinaceous and RNA-containing megadalton complexes. It co-immunoprecipitates with a specific subset of chloroplast RNAs including psbK-psbI, ndhF, ndhD, and 23S ribosomal RNA (rRNA), as demonstrated by RNA immunoprecipitation in combination with high throughput RNA sequencing (RIP-seq) analyses. Furthermore, it co-migrates with premature 50S ribosomal particles and specifically binds to 23S rRNA in vitro. This coincides with severely reduced levels of 23S rRNA in pac leading to translational deficiencies and related alterations of plastid transcript patterns and abundance similar to plants treated with the translation inhibitor lincomycin. Thus, we conclude that deficiency in plastid ribosomes accounts for the pac phenotype. Moreover, the absence or reduction of PAC levels in the corresponding mutants induces structural changes of the 23S rRNA, as demonstrated by in vivo RNA structure probing. Our results indicate that PAC binds to the 23S rRNA to promote the biogenesis of the 50S subunit.
Collapse
Affiliation(s)
- Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Rhea Stoppel
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
38
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Feng D, Wang Y, Lu T, Zhang Z, Han X. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves. PLoS One 2017; 12:e0180670. [PMID: 28732011 PMCID: PMC5521766 DOI: 10.1371/journal.pone.0180670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.
Collapse
Affiliation(s)
- Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yanwei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (ZZ); (XH)
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (ZZ); (XH)
| |
Collapse
|
40
|
Kolesinski P, Rydzy M, Szczepaniak A. Is RAF1 protein from Synechocystis sp. PCC 6803 really needed in the cyanobacterial Rubisco assembly process? PHOTOSYNTHESIS RESEARCH 2017; 132:135-148. [PMID: 28108864 PMCID: PMC5387032 DOI: 10.1007/s11120-017-0336-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 05/29/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is responsible for carbon dioxide conversion during photosynthesis and, therefore, is the most important protein in biomass generation. Modifications of this biocatalyst toward improvements in its properties are hindered by the complicated and not yet fully understood assembly process required for the formation of active holoenzymes. An entire set of auxiliary factors, including chaperonin GroEL/GroES and assembly chaperones RbcX or Rubisco accumulation factor 1 (RAF1), is involved in the folding and subsequent assembly of Rubisco subunits. Recently, it has been shown that cyanobacterial RAF1 acts during the formation of the large Rubisco subunit (RbcL) dimer. However, both its physiological function and its necessity in the prokaryotic Rubisco formation process remain elusive. Here, we demonstrate that the Synechocystis sp. PCC 6803 strain with raf1 gene disruption shows the same growth rate as wild-type cells under standard conditions. Moreover, the Rubisco biosynthesis process seems to be unperturbed in mutant cells despite the absence of RbcL-RAF1 complexes. However, in the tested environmental conditions, sulfur starvation triggers the degradation of RbcL and subsequent proteolysis of other polypeptides in wild-type but not Δraf1 strains. Pull-down experiments also indicate that, apart from Rubisco, RAF1 co-purifies with phycocyanins. We postulate that RAF1 is not an obligatory factor in cyanobacterial Rubisco assembly, but rather participates in environmentally regulated Rubisco homeostasis.
Collapse
Affiliation(s)
- Piotr Kolesinski
- Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| | - Malgorzata Rydzy
- Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Andrzej Szczepaniak
- Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| |
Collapse
|
41
|
Ferrari R, Tadini L, Moratti F, Lehniger MK, Costa A, Rossi F, Colombo M, Masiero S, Schmitz-Linneweber C, Pesaresi P. CRP1 Protein: (dis)similarities between Arabidopsis thaliana and Zea mays. FRONTIERS IN PLANT SCIENCE 2017; 8:163. [PMID: 28261232 PMCID: PMC5309229 DOI: 10.3389/fpls.2017.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/26/2017] [Indexed: 05/25/2023]
Abstract
Biogenesis of chloroplasts in higher plants is initiated from proplastids, and involves a series of processes by which a plastid able to perform photosynthesis, to synthesize amino acids, lipids, and phytohormones is formed. All plastid protein complexes are composed of subunits encoded by the nucleus and chloroplast genomes, which require a coordinated gene expression to produce the correct concentrations of organellar proteins and to maintain organelle function. To achieve this, hundreds of nucleus-encoded factors are imported into the chloroplast to control plastid gene expression. Among these factors, members of the Pentatricopeptide Repeat (PPR) containing protein family have emerged as key regulators of the organellar post-transcriptional processing. PPR proteins represent a large family in plants, and the extent to which PPR functions are conserved between dicots and monocots deserves evaluation, in light of differences in photosynthetic metabolism (C3 vs. C4) and localization of chloroplast biogenesis (mesophyll vs. bundle sheath cells). In this work we investigated the role played in the process of chloroplast biogenesis by At5g42310, a member of the Arabidopsis PPR family which we here refer to as AtCRP1 (Chloroplast RNA Processing 1), providing a comparison with the orthologous ZmCRP1 protein from Zea mays. Loss-of-function atcrp1 mutants are characterized by yellow-albinotic cotyledons and leaves owing to defects in the accumulation of subunits of the thylakoid protein complexes. As in the case of ZmCRP1, AtCRP1 associates with the 5' UTRs of both psaC and, albeit very weakly, petA transcripts, indicating that the role of CRP1 as regulator of chloroplast protein synthesis has been conserved between maize and Arabidopsis. AtCRP1 also interacts with the petB-petD intergenic region and is required for the generation of petB and petD monocistronic RNAs. A similar role has been also attributed to ZmCRP1, although the direct interaction of ZmCRP1 with the petB-petD intergenic region has never been reported, which could indicate that AtCRP1 and ZmCRP1 differ, in part, in their plastid RNA targets.
Collapse
Affiliation(s)
- Roberto Ferrari
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | | | - Alex Costa
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | - Fabio Rossi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli studi di MilanoMilano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | | | - Paolo Pesaresi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli studi di MilanoMilano, Italy
| |
Collapse
|
42
|
Zoschke R, Chotewutmontri P, Barkan A. Translation and Co-translational Membrane Engagement of Plastid-encoded Chlorophyll-binding Proteins Are Not Influenced by Chlorophyll Availability in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:385. [PMID: 28400776 PMCID: PMC5368244 DOI: 10.3389/fpls.2017.00385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
Chlorophyll is an indispensable constituent of the photosynthetic machinery in green organisms. Bound by apoproteins of photosystems I and II, chlorophyll performs light-harvesting and charge separation. Due to the phototoxic nature of free chlorophyll and its precursors, chlorophyll synthesis is regulated to comply with the availability of nascent chlorophyll-binding apoproteins. Conversely, the synthesis and co-translational insertion of such proteins into the thylakoid membrane have been suggested to be influenced by chlorophyll availability. In this study, we addressed these hypotheses by using ribosome profiling to examine the synthesis and membrane targeting of chlorophyll-binding apoproteins in chlorophyll-deficient chlH maize mutants (Zm-chlH). ChlH encodes the H subunit of the magnesium chelatase (also known as GUN5), which catalyzes the first committed step in chlorophyll synthesis. Our results show that the number and distribution of ribosomes on plastid mRNAs encoding chlorophyll-binding apoproteins are not substantially altered in Zm-chlH mutants, suggesting that chlorophyll has no impact on ribosome dynamics. Additionally, a Zm-chlH mutation does not change the amino acid position at which nascent chlorophyll-binding apoproteins engage the thylakoid membrane, nor the efficiency with which membrane-engagement occurs. Together, these results provide evidence that chlorophyll availability does not selectively activate the translation of plastid mRNAs encoding chlorophyll apoproteins. Our results imply that co- or post-translational proteolysis of apoproteins is the primary mechanism that adjusts apoprotein abundance to chlorophyll availability in plants.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
- *Correspondence: Reimo Zoschke,
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, EugeneOR, USA
| |
Collapse
|
43
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
44
|
Dworak A, Nykiel M, Walczak B, Miazek A, Szworst-Łupina D, Zagdańska B, Kiełkiewicz M. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. PLANTA 2016; 244:939-60. [PMID: 27334025 PMCID: PMC5018026 DOI: 10.1007/s00425-016-2559-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
In maize, leaf proteome responses evoked by soil drought applied separately differ from those evoked by mite feeding or both types of stresses occurring simultaneously. This study focuses on the involvement of proteomic changes in defence responses of a conventional maize cultivar (Bosman) to the two-spotted spider mite infestation, soil drought and both stresses coexisting for 6 days. Under watering cessation or mite feeding applied separately, the protein carbonylation was not directly linked to the antioxidant enzymes' activities. Protein carbonylation increased at higher and lower SOD, APX, GR, POX, PPO activities following soil drought and mite feeding, respectively. Combination of these stresses resulted in protein carbonylation decrease despite the increased activity of all antioxidant enzymes (except the CAT). However, maize protein network modification remains unknown upon biotic/abiotic stresses overlapping. Here, using multivariate chemometric methods, 94 leaf protein spots (out of 358 considered; 2-DE) were identified (LC-MS/MS) as differentiating the studied treatments. Only 43 of them had individual discrimination power. The soil drought increased abundance of leaf proteins related mainly to photosynthesis, carbohydrate metabolism, defence (molecular chaperons) and protection. On the contrary, mite feeding decreased the abundance of photosynthesis related proteins and enhanced the abundance of proteins protecting the mite-infested leaf against photoinhibition. The drought and mites occurring simultaneously increased abundance of proteins that may improve the efficiency of carbon fixation, as well as carbohydrate and amino acid metabolism. Furthermore, increased abundance of the Rubisco large subunit-binding protein (subunit β), fructose-bisphosphate aldolase and mitochondrial precursor of Mn-SOD and decreased abundance of the glycolysis-related enzymes in the mite-free leaf (in the vicinity of mite-infested leaf) illustrate the involvement of these proteins in systemic maize response to mite feeding.
Collapse
Affiliation(s)
- Anna Dworak
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Beata Walczak
- Institute of Chemistry, Silesian University, 9 Szkolna, 40-006, Katowice, Poland
| | - Anna Miazek
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Dagmara Szworst-Łupina
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Barbara Zagdańska
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Kiełkiewicz
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland.
| |
Collapse
|
45
|
|
46
|
Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 2016; 7:11708. [PMID: 27339440 DOI: 10.1038/ncomms11708] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/20/2016] [Indexed: 12/31/2022] Open
Abstract
Zea mays is an important genetic model for elucidating transcriptional networks. Uncertainties about the complete structure of mRNA transcripts limit the progress of research in this system. Here, using single-molecule sequencing technology, we produce 111,151 transcripts from 6 tissues capturing ∼70% of the genes annotated in maize RefGen_v3 genome. A large proportion of transcripts (57%) represent novel, sometimes tissue-specific, isoforms of known genes and 3% correspond to novel gene loci. In other cases, the identified transcripts have improved existing gene models. Averaging across all six tissues, 90% of the splice junctions are supported by short reads from matched tissues. In addition, we identified a large number of novel long non-coding RNAs and fusion transcripts and found that DNA methylation plays an important role in generating various isoforms. Our results show that characterization of the maize B73 transcriptome is far from complete, and that maize gene expression is more complex than previously thought.
Collapse
Affiliation(s)
- Bo Wang
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Elizabeth Tseng
- Pacific Biosciences, 1380 Willow Road, Menlo Park, California 94025, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Tyson A Clark
- Pacific Biosciences, 1380 Willow Road, Menlo Park, California 94025, USA
| | - Ting Hon
- Pacific Biosciences, 1380 Willow Road, Menlo Park, California 94025, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Joshua C Stein
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.,USDA ARS NEA Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
47
|
Hammani K, Takenaka M, Miranda R, Barkan A. A PPR protein in the PLS subfamily stabilizes the 5'-end of processed rpl16 mRNAs in maize chloroplasts. Nucleic Acids Res 2016; 44:4278-88. [PMID: 27095196 PMCID: PMC4872118 DOI: 10.1093/nar/gkw270] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of helical-repeat proteins that bind RNA in mitochondria and chloroplasts. Precise RNA targets and functions have been assigned to only a small fraction of the >400 members of the PPR family in plants. We used the amino acid code governing the specificity of RNA binding by PPR repeats to infer candidate-binding sites for the maize protein PPR103 and its ortholog Arabidopsis EMB175. Genetic and biochemical data confirmed a predicted binding site in the chloroplast rpl16 5′UTR to be a site of PPR103 action. This site maps to the 5′ end of transcripts that fail to accumulate in ppr103 mutants. A small RNA corresponding to the predicted PPR103 binding site accumulates in a PPR103-dependent fashion, as expected of PPR103's in vivo footprint. Recombinant PPR103 bound specifically to this sequence in vitro. These observations imply that PPR103 stabilizes rpl16 mRNA by impeding 5′→3′ RNA degradation. Previously described PPR proteins with this type of function consist of canonical PPR motifs. By contrast, PPR103 is a PLS-type protein, an architecture typically associated with proteins that specify sites of RNA editing. However, PPR103 is not required to specify editing sites in chloroplasts.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | - Rafael Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
48
|
Zoschke R, Watkins KP, Miranda RG, Barkan A. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:594-606. [PMID: 26643268 PMCID: PMC4777676 DOI: 10.1111/tpj.13093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 05/09/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are helical repeat proteins that bind RNA and influence gene expression in mitochondria and chloroplasts. Several PPR proteins in plants harbor a carboxy-terminal small-MutS-related (SMR) domain, but the functions of the SMR appendage are unknown. To address this issue, we studied a maize PPR-SMR protein denoted PPR53 (GRMZM2G438524), which is orthologous to the Arabidopsis protein SOT1 (AT5G46580). Null ppr53 alleles condition a chlorotic, seedling-lethal phenotype and a reduction in plastid ribosome content. Plastome-wide transcriptome and translatome analyses revealed strong defects in the expression of the ndhA and rrn23 genes, which were superimposed on secondary effects resulting from a decrease in plastid ribosome content. Transcripts with processed 5'-ends mapping approximately 70 nucleotides upstream of rrn23 and ndhA are absent in ppr53 mutants, and the translational efficiency of the residual ndhA mRNAs is reduced. Recombinant PPR53 binds with high affinity and specificity to the 5' proximal region of the PPR53-dependent 23S rRNA, suggesting that PPR53 protects this RNA via a barrier mechanism similar to that described for several PPR proteins lacking SMR motifs. However, recombinant PPR53 did not bind with high affinity to the ndhA 5' untranslated region, suggesting that PPR53's RNA-stabilization and translation-enhancing effects at the ndhA locus involve the participation of other factors.
Collapse
Affiliation(s)
- Reimo Zoschke
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | | | - Rafael G. Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
49
|
Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis. PLoS One 2015; 10:e0143249. [PMID: 26600124 PMCID: PMC4657901 DOI: 10.1371/journal.pone.0143249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.
Collapse
|
50
|
Zhang L. Chloroplast Biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:759-60. [PMID: 26113324 DOI: 10.1016/j.bbabio.2015.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences Nanxincun 20, Xiangshan, Beijing, 100093, CHINA.
| |
Collapse
|