1
|
Shen C, Pan Z, Xie W, Zhao J, Miao D, Zhao L, Liu M, Zhong Y, Zhong C, Gonzalez FJ, Wang W, Gao Y, Liu C. Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation. Metabolism 2024:156054. [PMID: 39489412 DOI: 10.1016/j.metabol.2024.156054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood. METHODS Mice with AAV-mediated overexpression of Slc27a4 in liver and hepatocytes-specific deletion of Slc27a4 were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence. RESULTS This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of Slc27a4 improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of Slc27a4 deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of Slc27a4 overexpression on NAFLD development. CONCLUSION These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.
Collapse
Affiliation(s)
- Chuangpeng Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China; ShenShan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei 516600,China; Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhisen Pan
- The second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenmin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Jian Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Deyu Miao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Ling Zhao
- The second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Yanhua Zhong
- The second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| | - Yong Gao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| | - Changhui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| |
Collapse
|
2
|
Huang S, Yao B, Guo Y, Chen X, Xu Y, Huang J, Liu J, Liang C, Zhang Y, Wang X. Construction of cytochrome P450 3A and P-glycoprotein knockout rats with application in rivaroxaban-verapamil interactions. Biochem Pharmacol 2024; 230:116566. [PMID: 39368750 DOI: 10.1016/j.bcp.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), as important metabolic enzymes and transporters, participate in the biological transformation and transport of many substances in the body. CYP3A and P-gp are closely related, with very high substrate overlap and regulation similarity, making it particularly difficult to investigate the function of one or the other individually in vivo. Rivaroxaban and verapamil are commonly used together to treat nonvalvular atrial fibrillation in clinical practice. However, this combination therapy can increase systemic exposure to rivaroxaban and the risk of major bleeding and intracranial hemorrhage. In this study, Cyp3a1/2 and Mdr1a/b quadruple gene knockout (qKO) rat model was generated and characterized for the first time. CYP3A1/2 and P-gp are completely absent in this novel rat model. Then, the qKO rat model was applied for the evaluation of the drug-drug interactions (DDI) between rivaroxaban and verapamil. The results demonstrated that CYP3A and P-gp were jointly and selectively involved in the pharmacokinetic interactions between rivaroxaban and verapamil. This study may provide useful information for understanding the role of CYP3A and P-gp in rivaroxaban-verapamil therapy and predicting the potential interaction between CYP3A and P-gp.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xi Chen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Xu Z, Chen M, Ng SC. Metabolic Regulation of Microbiota and Tissue Response. Gastroenterol Clin North Am 2024; 53:399-412. [PMID: 39068002 DOI: 10.1016/j.gtc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The microbiota in our gut regulates the sophisticated metabolic system that the human body has, essentially converting food into energy and the building blocks for various bodily functions. In this review, we discuss the multifaceted impact of the microbiota on host nutritional status by producing short-chain fatty acids, influencing gut hormones and mediating bile acid metabolism, and the key role in maintaining intestinal barrier integrity and immune homeostasis. Understanding and leveraging the power of the gut microbiome holds tremendous potential for enhancing human health and preventing various diseases.
Collapse
Affiliation(s)
- Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manman Chen
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Nakashima S, Fukami T, Kudo T, Nakano M, Matsui A, Ishiguro N, Nakajima M. Iminium ion metabolites are formed from nintedanib by human CYP3A4. Drug Metab Pharmacokinet 2024; 57:101025. [PMID: 39068856 DOI: 10.1016/j.dmpk.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib. To obtain a hint which may help to clarify the cause of nintedanib-induced liver injury, we investigated whether iminium ions were formed in the human liver. To detect unstable iminium ions using liquid chromatography-tandem mass spectrometry (LC-MS/MS), potassium cyanide was added to the reaction mixture as a trapping agent. Human liver and intestinal microsomes were incubated with nintedanib in the presence of NADPH to form two iminium ion metabolites on the piperazine ring. Their formation is strongly inhibited by ketoconazole, a potent cytochrome P450 (CYP) 3A4 inhibitor. Among the recombinant P450s, only CYP3A4 formed cyanide adducts. The role of CYP3A4 was supported by the positive correlation between CYP3A4 protein abundance, as determined by LC-MS-based proteomics, and the formation of cyanide adducts in 25 individual human liver microsomes. In conclusion, we have demonstrated that iminium ion metabolites are formed from nintedanib by CYP3A4 as potential reactive metabolites.
Collapse
Affiliation(s)
- Shimon Nakashima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Takashi Kudo
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Akiko Matsui
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Naoki Ishiguro
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
7
|
Casas-Rodríguez A, Medrano-Padial C, Jos A, Cameán AM, Campos A, Fonseca E. Characterization of NR1J1 Paralog Responses of Marine Mussels: Insights from Toxins and Natural Activators. Int J Mol Sci 2024; 25:6287. [PMID: 38928005 PMCID: PMC11204112 DOI: 10.3390/ijms25126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario 25, Espinardo, 30100 Murcia, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Elza Fonseca
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
8
|
Silva MH. Investigating open access new approach methods (NAM) to assess biological points of departure: A case study with 4 neurotoxic pesticides. Curr Res Toxicol 2024; 6:100156. [PMID: 38404712 PMCID: PMC10891343 DOI: 10.1016/j.crtox.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Open access new approach methods (NAM) in the US EPA ToxCast program and NTP Integrated Chemical Environment (ICE) were used to investigate activities of four neurotoxic pesticides: endosulfan, fipronil, propyzamide and carbaryl. Concordance of in vivo regulatory points of departure (POD) adjusted for interspecies extrapolation (AdjPOD) to modelled human Administered Equivalent Dose (AEDHuman) was assessed using 3-compartment or Adult/Fetal PBTK in vitro to in vivo extrapolation. Model inputs were from Tier 1 (High throughput transcriptomics: HTTr, high throughput phenotypic profiling: HTPP) and Tier 2 (single target: ToxCast) assays. HTTr identified gene expression signatures associated with potential neurotoxicity for endosulfan, propyzamide and carbaryl in non-neuronal MCF-7 and HepaRG cells. The HTPP assay in U-2 OS cells detected potent effects on DNA endpoints for endosulfan and carbaryl, and mitochondria with fipronil (propyzamide was inactive). The most potent ToxCast assays were concordant with specific components of each chemical mode of action (MOA). Predictive adult IVIVE models produced fold differences (FD) < 10 between the AEDHuman and the measured in vivo AdjPOD. The 3-compartment model was concordant (i.e., smallest FD) for endosulfan, fipronil and carbaryl, and PBTK was concordant for propyzamide. The most potent AEDHuman predictions for each chemical showed HTTr, HTPP and ToxCast were mainly concordant with in vivo AdjPODs but assays were less concordant with MOAs. This was likely due to the cell types used for testing and/or lack of metabolic capabilities and pathways available in vivo. The Fetal PBTK model had larger FDs than adult models and was less predictive overall.
Collapse
|
9
|
Abstract
Primary biliary cholangitis (PBC) is the most common of the autoimmune liver diseases, in which there is chronic small bile duct inflammation. The pathophysiology of PBC is multifactorial, involving immune dysregulation and damage to biliary epithelial cells, with influences from genetic factors, epigenetics, the gut-liver axis, and environmental exposures.
Collapse
Affiliation(s)
- Inbal Houri
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
10
|
Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int J Mol Sci 2023; 25:6. [PMID: 38203175 PMCID: PMC10778939 DOI: 10.3390/ijms25010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.
Collapse
Affiliation(s)
- Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yihui Shi
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA;
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
11
|
Schäfer AM, Rysz MA, Schädeli J, Hübscher M, Khosravi H, Fehr M, Seibert I, Potterat O, Smieško M, Meyer Zu Schwabedissen HE. St. John's Wort Formulations Induce Rat CYP3A23-3A1 Independent of Their Hyperforin Content. Mol Pharmacol 2023; 105:14-22. [PMID: 37863663 DOI: 10.1124/molpharm.123.000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
The pregnane X receptor (PXR) is a ligand-activated regulator of cytochrome P450 (CYP)3A enzymes. Among the ligands of human PXR is hyperforin, a constituent of St John's wort (SJW) extracts and potent inducer of human CYP3A4. It was the aim of this study to compare the effect of hyperforin and SJW formulations controlled for its content on CYP3A23-3A1 in rats. Hyperiplant was used as it contains a high hyperforin content and Rebalance because it is controlled for a low hyperforin content. In silico analysis revealed a weak hyperforin-rPXR binding affinity, which was further supported in cell-based reporter gene assays showing no hyperforin-mediated reporter activation in presence of rPXR. However, cellular exposure to Hyperiplant and Rebalance transactivated the CYP3A reporter 3.8-fold and 2.8-fold, respectively, and they induced Cyp3a23-3a1 mRNA expression in rat hepatoma cells compared with control 48-fold and 18-fold, respectively. In Wistar rats treated for 10 days with 400 mg/kg of Hyperiplant, we observed 1.8 times the Cyp3a23-3a1 mRNA expression, a 2.6-fold higher CYP3A23-3A1 protein amount, and a 1.6-fold increase in activity compared with controls. For Rebalance we only observed a 1.8-fold hepatic increase of CYP3A23-3A1 protein compared with control animals. Even though there are differing effects on rCyp3a23-3a1/CYP3A23-3A1 in rat liver reflecting the hyperforin content of the SJW extracts, the modulation is most likely not linked to an interaction of hyperforin with rPXR. SIGNIFICANCE STATEMENT: Treatment with St John's wort (SJW) has been reported to affect CYP3A expression and activity in rats. Our comparative study further supports this finding but shows that the pregnane X receptor-ligand hyperforin is not the driving force for changes in rat CYP3A23-3A1 expression and function in vivo and in vitro. Importantly, CYP3A induction mimics findings in humans, but our results suggest that another so far unknown constituent of SJW is responsible for the expression- and function-modifying effects in rat liver.
Collapse
Affiliation(s)
- Anima M Schäfer
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marta A Rysz
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Julia Schädeli
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michelle Hübscher
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Haleh Khosravi
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michelle Fehr
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Martin Smieško
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy (A.M.S., M.A.R., J.S., M.H., H.K., M.F., I.S., H.E.M.), Computational Pharmacy (M.S.), and Pharmaceutical Biology (O.P.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Xie Z, Chen C, Ma’ayan A. Dex-Benchmark: datasets and code to evaluate algorithms for transcriptomics data analysis. PeerJ 2023; 11:e16351. [PMID: 37953774 PMCID: PMC10638921 DOI: 10.7717/peerj.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Many tools and algorithms are available for analyzing transcriptomics data. These include algorithms for performing sequence alignment, data normalization and imputation, clustering, identifying differentially expressed genes, and performing gene set enrichment analysis. To make the best choice about which tools to use, objective benchmarks can be developed to compare the quality of different algorithms to extract biological knowledge maximally and accurately from these data. The Dexamethasone Benchmark (Dex-Benchmark) resource aims to fill this need by providing the community with datasets and code templates for benchmarking different gene expression analysis tools and algorithms. The resource provides access to a collection of curated RNA-seq, L1000, and ChIP-seq data from dexamethasone treatment as well as genetic perturbations of its known targets. In addition, the website provides Jupyter Notebooks that use these pre-processed curated datasets to demonstrate how to benchmark the different steps in gene expression analysis. By comparing two independent data sources and data types with some expected concordance, we can assess which tools and algorithms best recover such associations. To demonstrate the usefulness of the resource for discovering novel drug targets, we applied it to optimize data processing strategies for the chemical perturbations and CRISPR single gene knockouts from the L1000 transcriptomics data from the Library of Integrated Network Cellular Signatures (LINCS) program, with a focus on understudied proteins from the Illuminating the Druggable Genome (IDG) program. Overall, the Dex-Benchmark resource can be utilized to assess the quality of transcriptomics and other related bioinformatics data analysis workflows. The resource is available from: https://maayanlab.github.io/dex-benchmark.
Collapse
Affiliation(s)
- Zhuorui Xie
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clara Chen
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avi Ma’ayan
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Lan H, Zhang Y, Fan M, Wu B, Wang C. Pregnane X receptor as a therapeutic target for cholestatic liver injury. Drug Metab Rev 2023; 55:371-387. [PMID: 37593784 DOI: 10.1080/03602532.2023.2248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Cholestatic liver injury (CLI) is caused by toxic bile acids (BAs) accumulation in the liver and can lead to inflammation and liver fibrosis. The mechanisms underlying CLI development remain unclear, and this disease has no effective cure. However, regulating BA synthesis and homeostasis represents a promising therapeutic strategy for CLI treatment. Pregnane X receptor (PXR) plays an essential role in the metabolism of endobiotics and xenobiotics via the transcription of metabolic enzymes and transporters, which can ultimately modulate BA homeostasis and exert anticholestatic effects. Furthermore, recent studies have demonstrated that PXR exhibits antifibrotic and anti-inflammatory properties, providing novel insights into treating CLI. Meanwhile, several drugs have been identified as PXR agonists that improve CLI. Nevertheless, the precise role of PXR in CLI still needs to be fully understood. This review summarizes how PXR improves CLI by ameliorating cholestasis, inhibiting inflammation, and reducing fibrosis and discusses the progress of promising PXR agonists for treating CLI.
Collapse
Affiliation(s)
- Huan Lan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Bingxin Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
14
|
Zito P, Bekins BA, Martinović-Weigelt D, Harsha ML, Humpal KE, Trost J, Cozzarelli I, Mazzoleni LR, Schum SK, Podgorski DC. Photochemical mobilization of dissolved hydrocarbon oxidation products from petroleum contaminated soil into a shallow aquifer activate human nuclear receptors. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132312. [PMID: 37604033 DOI: 10.1016/j.jhazmat.2023.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Elevated non-volatile dissolved organic carbon (NVDOC) concentrations in groundwater (GW) monitoring wells under oil-contaminated hydrophobic soils originating from a pipeline rupture at the National Crude Oil Spill & Natural Attenuation Research Site near Bemidji, MN are documented. We hypothesized the elevated NVDOC is comprised of water-soluble photooxidation products transported from the surface to the aquifer. We use field and laboratory samples in combination with complementary analytical methods to test this hypothesis and determine the biological response to these products. Observations from optical spectroscopy and ultrahigh-resolution mass spectrometry reveal a significant correlation between the chemical composition of NVDOC leached from photochemically weathered soils and GW monitoring wells with high NVDOC concentrations measured in the aquifer beneath the contaminated soil. Conversely, the chemical composition from the uncontaminated soil photoleachate matches the NVDOC observed in the uncontaminated wells. Contaminated GW and photodissolution leachates from contaminated soil activated biological targets indicative of xenobiotic metabolism and exhibited potential for adverse effects. Newly formed hydrocarbon oxidation products (HOPs) from fresh oil could be distinguished from those downgradient. This study illustrates another pathway for dissolved HOPs to infiltrate GW and potentially affect human health and the environment.
Collapse
Affiliation(s)
- Phoebe Zito
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | - Maxwell L Harsha
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Katherine E Humpal
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Jared Trost
- US Geological Survey, Mounds View, MN 55112, USA
| | - Isabelle Cozzarelli
- US Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20191, USA
| | - Lynn R Mazzoleni
- Department of Chemistry, Chemical Advanced Resolution Methods Laboratory, Michigan Technological University, 1400, Townsend Dr., Houghton, MI 49931, USA
| | - Simeon K Schum
- Department of Chemistry, Chemical Advanced Resolution Methods Laboratory, Michigan Technological University, 1400, Townsend Dr., Houghton, MI 49931, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education Research Facility, University of New Orleans, New Orleans, LA 70148 USA
| |
Collapse
|
15
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
16
|
Huangwei Z, Peiyuan J, Yixuan K, Zhimin Y, Yuxin Z, Geunhwa J, Jian H. Genome-wide transcriptional analyses of Clarireedia jacksonii isolates associated with multi-drug resistance. Front Microbiol 2023; 14:1266045. [PMID: 37840738 PMCID: PMC10570728 DOI: 10.3389/fmicb.2023.1266045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Emerging multidrug resistance (MDR) in Clarireedia spp. is a huge challenge to the management of dollar spot (DS) disease on turfgrass. Insight into the molecular basis of resistance mechanisms may help identify key molecular targets for developing novel effective chemicals. Previously, a MDR isolate (LT586) of C. jacksonii with significantly reduced sensitivities to propiconazole, boscalid, and iprodione, and a fungicide-sensitive isolate (LT15) of the same species were isolated from creeping bentgrass (Agrostis stolonifera L.). The present study aimed to further explore the molecular mechanisms of resistance by using genome-wide transcriptional analyses of the two isolates. A total of 619 and 475 differentially expressed genes (DEGs) were significantly down and upregulated in the MDR isolate LT586, compared with the sensitive isolate LT15 without fungicide treatment. Three hundreds and six and 153 DEGs showed significantly lower and higher expression in the MDR isolate LT586 than those in the sensitive isolate LT15, which were commonly induced by the three fungicides. Most of the 153 upregulated DEGs were xenobiotic detoxification-related genes and genes with transcriptional functions. Fifty and 17 upregulated DEGs were also commonly observed in HRI11 (a MDR isolate of the C. jacksonii) compared with the HRS10 (a fungicide-sensitive isolate of same species) from a previous study without and with the treatment of propiconazole, respectively. The reliability of RNA-seq data was further verified by qRT-PCR method using a few select potentially MDR-related genes. Results of this study indicated that there were multiple uncharacterized genes, possibly responsible for MDR phenotypes in Clarireedia spp., which may have important implications in understanding the molecular mechanisms underlying MDR resistance.
Collapse
Affiliation(s)
- Zhang Huangwei
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jin Peiyuan
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Kong Yixuan
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhimin
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhou Yuxin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jung Geunhwa
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Hu Jian
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Rao ZZ, Tang ZW, Wen J. Advances in drug resistance of triple negative breast cancer caused by pregnane X receptor. World J Clin Oncol 2023; 14:335-342. [PMID: 37771631 PMCID: PMC10523191 DOI: 10.5306/wjco.v14.i9.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Triple-negative breast cancer (TNBC), refers breast cancer negative for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, characterized by high drug resistance, high metastasis and high recurrence, treatment of which is a difficult problem in the clinical treatment of breast cancer. In order to better treat TNBC clinically, it is a very urgent task to explore the mechanism of TNBC resistance in basic breast cancer research. Pregnane X receptor (PXR) is a nuclear receptor whose main biological function is to participate in the metabolism, transport and clearance of allobiological agents in PXR. PXR plays an important role in drug metabolism and clearance, and PXR is highly expressed in tumor tissues of TNBC patients, which is related to the prognosis of breast cancer patients. This reviews synthesized the important role of PXR in the process of high drug resistance to TNBC chemotherapeutic drugs and related research progress.
Collapse
Affiliation(s)
- Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| | - Zhong-Wen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
18
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Wang C, Yi Z, Jiao Y, Shen Z, Yang F, Zhu S. Gut Microbiota and Adipose Tissue Microenvironment Interactions in Obesity. Metabolites 2023; 13:821. [PMID: 37512528 PMCID: PMC10383923 DOI: 10.3390/metabo13070821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity. This review provides a comprehensive summary of gut microbiota changes associated with obesity, the functional roles of gut microbiota-derived metabolites, and the importance of the complex interactions between the gut microbiota and target tissues in the pathogenesis of obesity. It places particular emphasis on the roles of adipose tissue microenvironment interactions in the onset of obesity.
Collapse
Affiliation(s)
- Congcong Wang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zihan Yi
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Tolonen H, Ranta S, Hämäläinen E, Kauppinen R, Hukkanen J. Effects of rifampicin on porphyrin metabolism in healthy volunteers. Basic Clin Pharmacol Toxicol 2023; 132:281-291. [PMID: 36535687 DOI: 10.1111/bcpt.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Pregnane X receptor (PXR) is known to stimulate haem synthesis, but detailed knowledge on the effects of PXR activation on porphyrin metabolism in humans is lacking. We utilized a randomized, crossover, open (blinded laboratory) and placebo-controlled trial with 600-mg rifampicin or placebo dosed for a week to investigate the effects of PXR activation on erythrocyte, plasma, faecal and urine porphyrins. Sixteen healthy volunteers participated on the trial, but the number of volunteers for blood and urine porphyrin analyses was 15 while the number of samples for faecal analyses was 14. Rifampicin increased urine pentaporphyrin concentration 3.7-fold (mean 1.80 ± 0.6 vs. 6.73 ± 4.4 nmol/L, p = 0.003) in comparison with placebo. Urine coproporphyrin I increased 23% (p = 0.036). Faecal protoporphyrin IX decreased (mean 31.6 ± 23.5 vs. 19.2 ± 27.8 nmol/g, p = 0.023). The number of blood erythrocytes was slightly elevated, and plasma bilirubin, catabolic metabolite of haem, was decreased. In conclusion, rifampicin dosing elevated the excretion of certain urinary porphyrin metabolites and decreased faecal protoporphyrin IX excretion. As urine pentaporphyrin and coproporphyrin I are not precursors in haem biosynthesis, increased excretion may serve as a hepatoprotective shunt when haem synthesis or porphyrin levels are increased.
Collapse
Affiliation(s)
- Hanna Tolonen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sirpa Ranta
- Clinical Chemistry, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esa Hämäläinen
- School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Raili Kauppinen
- Clinical Chemistry, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne Hukkanen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
The Novel RXR Agonist MSU-42011 Differentially Regulates Gene Expression in Mammary Tumors of MMTV-Neu Mice. Int J Mol Sci 2023; 24:ijms24054298. [PMID: 36901727 PMCID: PMC10001983 DOI: 10.3390/ijms24054298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Retinoid X receptor (RXR) agonists, which activate the RXR nuclear receptor, are effective in multiple preclinical cancer models for both treatment and prevention. While RXR is the direct target of these compounds, the downstream changes in gene expression differ between compounds. RNA sequencing was used to elucidate the effects of the novel RXRα agonist MSU-42011 on the transcriptome in mammary tumors of HER2+ mouse mammary tumor virus (MMTV)-Neu mice. For comparison, mammary tumors treated with the FDA approved RXR agonist bexarotene were also analyzed. Each treatment differentially regulated cancer-relevant gene categories, including focal adhesion, extracellular matrix, and immune pathways. The most prominent genes altered by RXR agonists positively correlate with survival in breast cancer patients. While MSU-42011 and bexarotene act on many common pathways, these experiments highlight the differences in gene expression between these two RXR agonists. MSU-42011 targets immune regulatory and biosynthetic pathways, while bexarotene acts on several proteoglycan and matrix metalloproteinase pathways. Exploration of these differential effects on gene transcription may lead to an increased understanding of the complex biology behind RXR agonists and how the activities of this diverse class of compounds can be utilized to treat cancer.
Collapse
|
22
|
Husain I, Dale OR, Martin K, Gurley BJ, Adams SJ, Avula B, Chittiboyina AG, Khan IA, Khan SI. Screening of medicinal plants for possible herb-drug interactions through modulating nuclear receptors, drug-metabolizing enzymes and transporters. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115822. [PMID: 36223846 DOI: 10.1016/j.jep.2022.115822] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The last three decades have witnessed a surge in popularity and consumption of herbal products. An unintended consequence of such popularity is that chronic consumption of these products can often modulate the functions of various proteins involved in drug disposition and may, in turn, impose risks for herb-drug interactions (HDIs), leading to serious adverse health outcomes. Identifying plants that may give rise to clinically relevant HDIs is essential, and proactive dissemination of such research outcomes is necessary for researchers, clinicians, and average consumers. AIM OF THE STUDY The main objective of this study was to evaluate the HDI potential of plants commonly used as ingredients in many herbal products, including BDS. MATERIALS AND METHODS The dried material of 123 plants selected from the NCNPR repository was extracted with 95% ethanol. The extracts were screened for agonistic effects on nuclear receptors (PXR and AhR) by reporter gene assays in PXR-transfected HepG2 and AhR-reporter cells. For cytochrome P450 enzyme (CYP) inhibition studies, CYP450 baculosomes were incubated with enzyme-specific probe substrates by varying concentrations of extracts. The inhibitory effect on the efflux transporter P-glycoprotein (P-gp) was investigated via rhodamine (Rh-123) uptake assay in P-gp overexpressing MDR1-MDCK cells. RESULTS Out of 123 plants, 16 increased transcriptional activity of human PXR up to 4 to 7-fold at 60 μg/mL, while 18 plants were able to increase AhR activity up to 10 to 40-fold at 30 μg/mL. Thirteen plants inhibited the activity of CYP3A4, while 10 plants inhibited CYP1A2 activity with IC50 values in the range of 1.3-10 μg/mL. Eighteen plants (at 50 μg/mL) increased intracellular accumulation of Rh-123 (>150%) in MDR1-MDCK cells. Additionally, other plants tested in this study were able to activate PXR, AhR, or both to lesser extents, and several inhibited the catalytic activity of CYPs at higher concentrations (IC50 >10 μg/mL). CONCLUSIONS The results indicate that prolonged or excessive consumption of herbal preparations rich in such plants (presented in Figs. 1a, 2a, 3a, 4a, and 5a) may pose a risk for CYP- and P-gp-mediated HDIs, leading to unwanted side effects due to the altered pharmacokinetics of concomitantly ingested medications.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Katherine Martin
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Sebastian J Adams
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, Mississippi, 38677, United States.
| |
Collapse
|
23
|
Majait S, Nieuwdorp M, Kemper M, Soeters M. The Black Box Orchestra of Gut Bacteria and Bile Acids: Who Is the Conductor? Int J Mol Sci 2023; 24:ijms24031816. [PMID: 36768140 PMCID: PMC9916144 DOI: 10.3390/ijms24031816] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Over the past decades the potential role of the gut microbiome and bile acids in type 2 diabetes mellitus (T2DM) has been revealed, with a special reference to low bacterial alpha diversity. Certain bile acid effects on gut bacteria concern cytotoxicity, or in the case of the microbiome, bacteriotoxicity. Reciprocally, the gut microbiome plays a key role in regulating the bile acid pool by influencing the conversion and (de)conjugation of primary bile acids into secondary bile acids. Three main groups of bacterial enzymes responsible for the conversion of bile acids are bile salt hydrolases (BSHs), hydroxysteroid dehydrogenases (HSDHs) and enzymes encoded in the bile acid inducible (Bai) operon genes. Interventions such as probiotics, antibiotics and fecal microbiome transplantation can impact bile acids levels. Further evidence of the reciprocal interaction between gut microbiota and bile acids comes from a multitude of nutritional interventions including macronutrients, fibers, prebiotics, specific individual products or diets. Finally, anatomical changes after bariatric surgery are important because of their metabolic effects. The heterogeneity of studies, diseases, bacterial species and (epi)genetic influences such as nutrition may challenge establishing specific and detailed interventions that aim to tackle the gut microbiome and bile acids.
Collapse
Affiliation(s)
- Soumia Majait
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Marleen Kemper
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Maarten Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
24
|
Van Hul M, Cani PD. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat Rev Endocrinol 2023; 19:258-271. [PMID: 36650295 DOI: 10.1038/s41574-022-00794-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
Obesity is caused by a long-term difference between energy intake and expenditure - an imbalance that is seemingly easily restored by increasing exercise and reducing caloric consumption. However, as simple as this solution appears, for many people, losing excess weight is difficult to achieve and even more difficult to maintain. The reason for this difficulty is that energy intake and expenditure, and by extension body weight, are regulated through complex hormonal, neural and metabolic mechanisms that are under the influence of many environmental factors and internal responses. Adding to this complexity, the microorganisms (microbes) that comprise the gut microbiota exert direct effects on the digestion, absorption and metabolism of food. Furthermore, the gut microbiota exerts a miscellany of protective, structural and metabolic effects both on the intestinal milieu and peripheral tissues, thus affecting body weight by modulating metabolism, appetite, bile acid metabolism, and the hormonal and immune systems. In this Review, we outline historical and recent advances in understanding how the gut microbiota is involved in regulating body weight homeostasis. We also discuss the opportunities, limitations and challenges of using gut microbiota-related approaches as a means to achieve and maintain a healthy body weight.
Collapse
Affiliation(s)
- Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
25
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
26
|
Bolleddula J, Gopalakrishnan S, Hu P, Dong J, Venkatakrishnan K. Alternatives to rifampicin: A review and perspectives on the choice of strong CYP3A inducers for clinical drug-drug interaction studies. Clin Transl Sci 2022; 15:2075-2095. [PMID: 35722783 PMCID: PMC9468573 DOI: 10.1111/cts.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosamine (NA) impurities are considered genotoxic and have gained attention due to the recall of several marketed drug products associated with higher-than-permitted limits of these impurities. Rifampicin is an index inducer of multiple cytochrome P450s (CYPs) including CYP2B6, 2C8, 2C9, 2C19, and 3A4/5 and an inhibitor of OATP1B transporters (single dose). Hence, rifampicin is used extensively in clinical studies to assess drug-drug interactions (DDIs). Despite NA impurities being reported in rifampicin and rifapentine above the acceptable limits, these critical anti-infective drugs are available for therapeutic use considering their benefit-risk profile. Reports of NA impurities in rifampicin products have created uncertainty around using rifampicin in clinical DDI studies, especially in healthy volunteers. Hence, a systematic investigation through a literature search was performed to determine possible alternative index inducer(s) to rifampicin. The available strong CYP3A inducers were selected from the University of Washington DDI Database and their in vivo DDI potential assessed using the data from clinical DDI studies with sensitive CYP3A substrates. To propose potential alternative CYP3A inducers, factors including lack of genotoxic potential, adequate safety, feasibility of multiple dose administration to healthy volunteers, and robust in vivo evidence of induction of CYP3A were considered. Based on the qualifying criteria, carbamazepine, phenytoin, and lumacaftor were identified to be the most promising alternatives to rifampicin for conducting CYP3A induction DDI studies. Strengths and limitations of the proposed alternative CYP3A inducers, the magnitude of in vivo CYP3A induction, appropriate study designs for each alternative inducer, and future perspectives are presented in this paper.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | | | - Ping Hu
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Jennifer Dong
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Karthik Venkatakrishnan
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| |
Collapse
|
27
|
Li M, Nawa Y, Ishida S, Kanda Y, Fujita S, Fujita K. Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Commun Biol 2022; 5:778. [PMID: 35995965 PMCID: PMC9395422 DOI: 10.1038/s42003-022-03713-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Although investigating drug modulation of cytochrome P450 (CYP) activity under physiological conditions is crucial in drug development to avoid severe adverse drug reactions, the current evaluation approaches that rely on the destructive and end-point analysis can be misleading due to invasive treatments and cellular heterogeneity. Here, we propose a non-destructive and high-content method for visualizing and quantifying intracellular CYP activity under drug administration by Raman microscopy. The redox-state and spin-state sensitive Raman measurement indicated that the induced CYPs in living hepatocytes were in oxidized and low-spin state, which is related to monooxygenase function of CYP. Moreover, glycogen depletion associated with CYP induction was simultaneously observed, indicating a relevant effect on glucose metabolism. By deciphering the overall changes in the biochemical fingerprints of hepatocytes, Raman microscopy offers a non-destructive and quantitative chemical imaging method to evaluate CYP activity at the single-cell level with the potential to facilitate future drug development schemes.
Collapse
Affiliation(s)
- Menglu Li
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasunori Nawa
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Ishida
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yasunari Kanda
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Satoshi Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Katsumasa Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
29
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
30
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
31
|
Hirte S, Burk O, Tahir A, Schwab M, Windshügel B, Kirchmair J. Development and Experimental Validation of Regularized Machine Learning Models Detecting New, Structurally Distinct Activators of PXR. Cells 2022; 11:cells11081253. [PMID: 35455933 PMCID: PMC9029776 DOI: 10.3390/cells11081253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The pregnane X receptor (PXR) regulates the metabolism of many xenobiotic and endobiotic substances. In consequence, PXR decreases the efficacy of many small-molecule drugs and induces drug-drug interactions. The prediction of PXR activators with theoretical approaches such as machine learning (ML) proves challenging due to the ligand promiscuity of PXR, which is related to its large and flexible binding pocket. In this work we demonstrate, by the example of random forest models and support vector machines, that classifiers generated following classical training procedures often fail to predict PXR activity for compounds that are dissimilar from those in the training set. We present a novel regularization technique that penalizes the gap between a model’s training and validation performance. On a challenging test set, this technique led to improvements in Matthew correlation coefficients (MCCs) by up to 0.21. Using these regularized ML models, we selected 31 compounds that are structurally distinct from known PXR ligands for experimental validation. Twelve of them were confirmed as active in the cellular PXR ligand-binding domain assembly assay and more hits were identified during follow-up studies. Comprehensive analysis of key features of PXR biology conducted for three representative hits confirmed their ability to activate the PXR.
Collapse
Affiliation(s)
- Steffen Hirte
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany; (O.B.); (M.S.)
| | - Ammar Tahir
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany; (O.B.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72074 Tübingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72074 Tübingen, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research Screening Port, 22525 Hamburg, Germany;
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Johannes Kirchmair
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-4277-55104
| |
Collapse
|
32
|
Sang H, Chang HX, Choi S, Son D, Lee G, Chilvers MI. Genome-wide transcriptional response of the causal soybean sudden death syndrome pathogen Fusarium virguliforme to a succinate dehydrogenase inhibitor fluopyram. PEST MANAGEMENT SCIENCE 2022; 78:530-540. [PMID: 34561937 DOI: 10.1002/ps.6657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) have been widely used to manage plant diseases caused by phytopathogenic fungi. Although attention to and use of SDHI fungicides has recently increased, molecular responses of fungal pathogens to SDHIs have often not been investigated. A SDHI fungicide, fluopyram, has been used as a soybean seed treatment and has displayed effective control of Fusarium virguliforme, one of the causal agents of soybean sudden death syndrome. To examine genome-wide gene expression of F. virguliforme to fluopyram, RNA-seq analysis was conducted on two field strains of F. virguliforme with differing SDHI fungicide sensitivity in the absence and presence of fluopyram. RESULTS The analysis indicated that several xenobiotic detoxification-related genes, such as those of deoxygenase, transferases and transporters, were highly induced by fluopyram. Among the genes, four ATP-binding cassette (ABC) transporters were characterized by the yeast expression system. The results revealed that expression of three ABCG transporters was associated with reduced sensitivity to multiple fungicides including fluopyram. In addition, heterologous expression of a major facilitator superfamily (MFS) transporter that was highly expressed in the fluopyram-insensitive F. virguliforme strain in the yeast system conferred decreased sensitivity to fluopyram. CONCLUSION This study demonstrated that xenobiotic detoxification-related genes were highly upregulated in response to fluopyram, and expression of ABC or MFS transporter genes was associated with reduced sensitivity to the SDHI fungicide. This is the first transcriptomic analysis of the fungal species response to fluopyram and the finding will help elucidate the molecular mechanisms of SDHI resistance. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Sungyu Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Doeun Son
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Gahee Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
33
|
Pes K, Ortiz-Delgado JB, Sarasquete C, Laizé V, Fernández I. Short-term exposure to pharmaceuticals negatively impacts marine flatfish species: Histological, biochemical and molecular clues for an integrated ecosystem risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103822. [PMID: 35101594 DOI: 10.1016/j.etap.2022.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The marine habitat and its biodiversity can be impacted by released pharmaceuticals. The short-term (7 days) effect of 3 commonly used drugs - warfarin, dexamethasone and imidazole - on Senegalese sole (Solea senegalensis) juveniles was investigated. Occurrence of hemorrhages, histopathological alterations, antioxidant status, activity of antioxidant enzymes and expression of genes involved in the xenobiotic response (pxr, abcb1 and cyp1a), were evaluated. The results showed a time and drug-dependent effect. Warfarin exposure induced hemorrhages, hepatocyte vacuolar degeneration, and altered the activity of glutathione peroxidase (GPx) and the expression of all the studied genes. Dexamethasone exposure increased liver glycogen content, altered antioxidant status, GPx and superoxide dismutase activities, as well as abcb1 and cyp1a expression. Imidazole induced hepatocyte vacuolar degeneration and ballooning, and altered the antioxidant status and expression of the tested genes. The present work anticipates a deeper impact of pharmaceuticals on the aquatic environment than previously reported, thus underlining the urgent need for an integrated risk assessment.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain; Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), 36390 Vigo, Spain.
| |
Collapse
|
34
|
Karpale M, Hukkanen J, Hakkola J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells 2022; 11:cells11030313. [PMID: 35159123 PMCID: PMC8833906 DOI: 10.3390/cells11030313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a major global health concern. The central modifiable risk factors and causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce morbidity and mortality, a thorough understanding of the factors that influence an individual’s cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism and molecular mediator of clinically significant drug–drug interactions, has been shown to induce hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
- Correspondence:
| |
Collapse
|
35
|
Jing L, Sun Y, Wang J, Zhou X, Shi Z. Oxidative stress and endoplasmic reticulum stress contributed to hepatotoxicity of decabromodiphenyl ethane (DBDPE) in L-02 cells. CHEMOSPHERE 2022; 286:131550. [PMID: 34293569 DOI: 10.1016/j.chemosphere.2021.131550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/23/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is one of the most commonly used novel brominated flame retardants (NBFRs), and its mass production and widespread application have caused health threats to the human being. Existing studies have shown that DBDPE has hepatotoxicity. And we have found that DBDPE could change cytochrome P450 3A (CYP3A) expression levels in rat livers, whereas the mechanism is unclear. In this study, we exposed human normal hepatocyte (L-02) to DBDPE to further study the effect and mechanism of DBDPE on hepatocellular injury and liver metabolic enzyme CYP3A changes in vitro. The results showed that DBDPE caused L-02 cell viability decrease, lactate dehydrogenase (LDH) and transaminase release, ultrastructural damage, and apoptosis. Moreover, DBDPE exposure induced oxidative stress (i.e., increased ROS generation and MDA levels and decreased GSH content, SOD activity, and mitochondrial membrane potential) and endoplasmic reticulum (ER) stress in L-02 cells as evidenced by the elevated PERK and IRE-1α expression levels. These results confirmed that DBDPE is toxic to hepatocytes. Besides, the CYP3A expression level was decreased in DBDPE exposed L-02 cells. However, pretreatment of L-02 cells with antioxidant N-Acetyl-l-cysteine (NAC) and endoplasmic reticulum stress inhibitor 4-PBA inhibited DBDPE-induced oxidative stress, endoplasmic reticulum stress, CYP3A expression decrease, and apoptosis. Therefore, we demonstrated that DBDPE could exert toxic effects and decrease CYP3A expression on L-02 cells by inducing ER stress and oxidative stress.
Collapse
Affiliation(s)
- Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanmin Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
36
|
Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput Struct Biotechnol J 2022; 20:3004-3018. [PMID: 35782743 PMCID: PMC9218138 DOI: 10.1016/j.csbj.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
|
37
|
Udomsak W, Chatuphonprasert W, Jarukamjorn K. Dill Shows Potential for Herb-Drug Interactions via Up-Regulation of CYP1A2, CYP2C19, SULT1A1, NAT2 and ABCB1 in Caco-2 Cells. Pak J Biol Sci 2022; 25:56-66. [PMID: 35001576 DOI: 10.3923/pjbs.2022.56.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
<b>Background and Objective:</b> Dill<i> </i>(<i>Anethum graveolens</i> L.) has the potential to develop as a new alternative medicine due to its pharmacological activities. However, studies into its safety regarding herb-drug interactions have been neglected. This study investigated the risk of dill-induced herb-drug interactions (HDI) by examining its effect on the expression of phase I and II drug-metabolizing enzyme and transporter genes in Caco-2 cells. <b>Materials and Methods:</b> Caco-2 cells (5×10<sup>5</sup> cells/well) were treated with 10 μM ketoconazole, 20 μM rifampicin or dill extract (60-240 μg mL<sup>1</sup>) for 72 hrs. Cell viability was assessed using the resazurin assay and reactive oxygen species (ROS) content was determined with 2 ,7 -dichlorofluorescein diacetate. Aspartate (AST) and alanine aminotransferase (ALT) levels were measured using L-aspartate and L-alanine with α-ketoglutarate as substrate. Expression of phase I (<i>CYP1A2</i>, <i>CYP2C19</i>, <i>CYP2D6</i>, <i>CYP2E1 </i>and <i>CYP3A4</i>) and II (<i>UGT1A6</i>,<i> SULT1A1</i>,<i> NAT1</i>,<i> NAT2 </i>and<i> GSTA1/2</i>) metabolizing genes and transporters (<i>ABCB1</i>,<i> ABCC2</i>,<i> ABCG2 </i>and <i>SLCO1B1</i>) were determined by RT/qPCR. <b>Results:</b> All tested concentrations of dill did not affect cell viability or AST and ALT levels. The highest concentration of dill extract (240 μg mL<sup>1</sup>) significantly lowered the ROS level. Expression of <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and <i>ABCB1 </i>mRNA was significantly up-regulated by dill extract. <b>Conclusion:</b> Dill extract did not directly damage Caco-2 cells but prolonged use of dill may increase the risk of HDI via the up-regulation of the drug-metabolizing genes <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and the transporter <i>ABCB1</i>.
Collapse
|
38
|
Singkham N, Avihingsanon A, Brundage RC, Birnbaum AK, Thammajaruk N, Ruxrungtham K, Bunupuradah T, Kiertiburanakul S, Chetchotisakd P, Punyawudho B. Pharmacogenetics-based population pharmacokinetic analysis for dose optimization of ritonavir-boosted atazanavir in Thai adult HIV-infected patients. Expert Rev Clin Pharmacol 2021; 15:99-108. [PMID: 34727835 DOI: 10.1080/17512433.2022.2000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND This population pharmacokinetic-pharmacogenetic study aimed to investigate the optimal dose of RTV-boosted ATV (ATV/RTV) for Thai adult HIV-infected patients. METHODS A total of 1460 concentrations of ATV and RTV from 544 patients receiving an ATV/RTV-based regimen were analyzed. The CYP3A5 6986 A > G, ABCB1 3435 C > T, ABCB1 2677 G > T, SLCO1B1 521 T > C, and NR1I2 63396 C > T were genotyped. A population pharmacokinetic model was performed using a nonlinear mixed-effect model (NONMEM®). Monte Carlo simulations were conducted to compare the percentages of patients achieving the therapeutic range of ATV through concentrations (Ctrough). RESULTS The apparent oral clearance of ATV (CL/FATV) without RTV was 7.69 L/h with interindividual variability (IIV) of 28.7%. Patients with CYP3A5 6986 GG had a 7.1% lower CL/FATV than those with AA or AG genotype. The CL/FATV decreased by 10.8% for females compared with males. Simulation results showed higher percentages (~70%) of patient receiving doses of 200/100 or 200/50 mg achieved the target ATV Ctrough, while more patients (~40%) receiving a standard dose (300/100 mg) had ATV Ctrough above this target. CONCLUSIONS Both CYP3A5 6986 A > G and female decreased CL/FATV in Thai HIV-infected patients. Simulations supported that the reduced dose of ATV/RTV was sufficient to achieve the target concentration for Thai population.
Collapse
Affiliation(s)
- Noppaket Singkham
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.,School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Anchalee Avihingsanon
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Tuberculosis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Angela K Birnbaum
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Narukjaporn Thammajaruk
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Kiat Ruxrungtham
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Torsak Bunupuradah
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | | | - Baralee Punyawudho
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
39
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
40
|
Smutny T, Bernhauerova V, Smutna L, Tebbens JD, Pavek P. Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids. Arch Toxicol 2021; 96:195-210. [PMID: 34689256 DOI: 10.1007/s00204-021-03177-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 µM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| | - Veronika Bernhauerova
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| |
Collapse
|
41
|
Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth. Int J Mol Sci 2021; 22:ijms22157899. [PMID: 34360662 PMCID: PMC8347496 DOI: 10.3390/ijms22157899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/29/2023] Open
Abstract
A well-functioning placenta is crucial for normal gestation and regulates the nutrient, gas, and waste exchanges between the maternal and fetal circulations and is an important endocrine organ producing hormones that regulate both the maternal and fetal physiologies during pregnancy. Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We proposed that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may ultimately result in SPTB. To explore our hypothesis, we performed a RNA-seq study in male and female placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation) to assess the alterations in the gene expression profiles. We focused exclusively on Black women (cases and controls), who are at the highest risk of SPTB. Six hundred and seventy differentially expressed genes were identified in male SPTB placentas. Among them, 313 and 357 transcripts were increased and decreased, respectively. In contrast, only 61 differentially expressed genes were identified in female SPTB placenta. The ingenuity pathway analysis showed alterations in the genes and canonical pathways critical for regulating inflammation, oxidative stress, detoxification, mitochondrial function, energy metabolism, and the extracellular matrix. Many upstream regulators and master regulators important for nutrient-sensing and metabolism were also altered in SPTB placentas, including the PI3K complex, TGFB1/SMADs, SMARCA4, TP63, CDKN2A, BRCA1, and NFAT. The transcriptome was integrated with published human placental metabolome to assess the interactions of altered genes and metabolites. Collectively, significant and biologically relevant alterations in the transcriptome were identified in SPTB placentas with fetal sex disparities. Altered energy metabolism, mitochondrial function, inflammation, and detoxification may underly the mechanisms of placental dysfunction in SPTB.
Collapse
|
42
|
Di(2-ethylhexyl)phthalate exposure exacerbates metabolic disorders in diet-induced obese mice. Food Chem Toxicol 2021; 156:112439. [PMID: 34303773 DOI: 10.1016/j.fct.2021.112439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Both phthalate exposure and obesity are positively associated with metabolic disorders. The study aimed to investigate whether DEHP exposure caused metabolic disorders in an obesity-dependent manner. Both lean and diet-induced obese mice were subjected to environmentally relevant DEHP exposure. DEHP-treated obese mice exhibited higher glucose intolerance and insulin resistance than obese mice; the metabolic disorders were accompanied by increased blood levels of leptin, LDL cholesterol, and alanine transaminase. In obese mice, DEHP enhanced macrophage infiltration into epididymal white adipose tissue (eWAT) and hepatic tissue, and promoted hepatic steatosis/steatohepatitis. The DEHP effects were not observed in lean mice. Transcriptomic changes in eWAT and hepatic tissue were determined with microarray analysis. Results indicated that obesity and DEHP synergistically regulated carbohydrate uptake, lipolysis, and abnormality of adipose tissue, via the upstream regulators Pparg, Lipe, Cd44, and Irs1. Meanwhile, obesity and DEHP differentially modulated transcriptomic changes in hepatic tissue. Obesity was associated with lipid/cholesterol synthesis, lipid accumulation, and inflammation in hepatic tissue via the upstream regulators Zbtb20 and Nr1i2. In obese mice, DEHP exposure caused hepatic injury, cell migration, and changes in glycogen quantity mainly via Cd44. Microarray analysis suggested the potential mechanism underlying the early onset of metabolic disorders in DEHP-treated obese mice.
Collapse
|
43
|
Effects of rifampicin on hepatic antioxidant enzymes in PXR and CAR double humanized mice. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Nebot N, Won CS, Moreno V, Muñoz-Couselo E, Lee DY, Gasal E, Bouillaud E. Evaluation of the Effects of Repeat-Dose Dabrafenib on the Single-Dose Pharmacokinetics of Rosuvastatin (OATP1B1/1B3 Substrate) and Midazolam (CYP3A4 Substrate). Clin Pharmacol Drug Dev 2021; 10:1054-1063. [PMID: 33932130 PMCID: PMC8453865 DOI: 10.1002/cpdd.937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Dabrafenib is an oral BRAF kinase inhibitor approved for the treatment of various BRAF V600 mutation–positive solid tumors. In vitro observations suggesting cytochrome P450 (CYP) 3A induction and organic anion transporting polypeptide (OATP) inhibition prompted us to evaluate the effect of dabrafenib 150 mg twice daily on the pharmacokinetics of midazolam 3 mg (CYP3A substrate) and rosuvastatin 10 mg (OATP1B1/1B3 substrate) in a clinical phase 1, open‐label, fixed‐sequence study in patients with BRAF V600 mutation–positive tumors. Repeat dabrafenib dosing resulted in a 2.56‐fold increase in rosuvastatin maximum observed concentration (Cmax), an earlier time to Cmax, but only a 7% increase in area under the concentration‐time curve from time 0 (predose) extrapolated to infinite time. Midazolam Cmax and AUC extrapolated to infinite time decreased by 47% and 65%, respectively, with little effect on time to Cmax. No new safety findings were reported. Exposure of drugs that are CYP3A4 substrates is likely to decrease when coadministered with dabrafenib. Concentrations of medicinal products that are sensitive OATP1B1/1B3 substrates may increase during the absorption phase.
Collapse
Affiliation(s)
- Noelia Nebot
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Christina S Won
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Eva Muñoz-Couselo
- VHIO - Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Dung-Yang Lee
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Eduard Gasal
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | |
Collapse
|
45
|
Kennedy CJ. P-glycoprotein induction and its energetic costs in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:265-279. [PMID: 33405060 DOI: 10.1007/s10695-020-00911-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Biological organisms are constantly challenged by xenobiotics and have evolved mechanisms to reduce, neutralize, or repair toxic outcomes. The various chemical defenses all utilize energy, but their specific costs and impacts on energy budgets are currently unknown. In this study, the energetic costs associated with the induction and substrate transport of the efflux transporter P-glycoprotein (P-gp [ABCB1, MDR1]) were examined in rainbow trout. An intraperitoneal injection of the P-gp inducer clotrimazole (0, 0.1, 1.0, and 10 mg/kg) increased P-gp activity (as measured by a competitive rhodamine 123 transport assay in hepatocytes) in a dose-dependent manner reaching a maximum induction of 2.8-fold. Maximum P-gp induction occurred at 50 h post-administration with the highest dose; significant induction of P-gp activity remained elevated over constitutive values until the last sampling time point (168 h). In vitro measurements of hepatocyte respiration indicated that basal P-gp activity transporting R123 as a substrate did not significantly increase respiration rates (range 18.0 to 23.2 ng O2/min/106 cells); however, following the induction of P-gp by clotrimazole and exposure to the P-gp substrate R123, respiration rates increased significantly (3.52-fold) over baseline values. Using whole animal respirometry, it was shown that respiration rates in fish exposed to R123 only or induced with clotrimazole were not different from controls (range 1.2 to 2.1 mg O2/kg/min); however, respiration rates were significantly increased in fish with induced P-gp levels and also exposed to R123. This work indicates that basal and induced levels of P-gp activity do not incur significant energetic costs to fish; however, upon induction of P-gp and concomitant substrate exposures, energetic costs can increase and could pose challenges to organisms facing limited energy resources.
Collapse
Affiliation(s)
- Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
46
|
Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients 2021; 13:nu13041104. [PMID: 33800566 PMCID: PMC8066182 DOI: 10.3390/nu13041104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
| | - Weikun Huang
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- The ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Richard L. Young
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute, Adelaide 5005, Australia
| | - Karen L. Jones
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Michael Horowitz
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
- Correspondence:
| |
Collapse
|
47
|
Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight 2021; 6:144294. [PMID: 33320836 PMCID: PMC7934873 DOI: 10.1172/jci.insight.144294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this –3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the –3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA
| | | | - Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Olivier B Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA.,Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Sean P Colgan
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA.,Molecular, Cellular and Developmental Biology, and.,Computer Science, CU Boulder, Boulder, Colorado, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
48
|
Husain I, Manda V, Alhusban M, Dale OR, Bae JY, Avula B, Gurley BJ, Chittiboyina AG, Khan IA, Khan SI. Modulation of CYP3A4 and CYP2C9 activity by Bulbine natalensis and its constituents: An assessment of HDI risk of B. natalensis containing supplements. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153416. [PMID: 33321412 DOI: 10.1016/j.phymed.2020.153416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bulbine natalensis is an African-folk medicinal plant used as a dietary supplement for enhancing sexual function and muscle strength in males by presumably boosting testosterone levels, but no scientific information is available about the possible herb-drug interaction (HDI) risk when bulbine-containing supplements are concomitantly taken with prescription drugs. PURPOSE This study was aimed to investigate the HDI potential of B. natalensis in terms of the pregnane X receptor (PXR)-mediated induction of major drug-metabolizing cytochrome P450 enzyme isoforms (i.e., CYP3A4 and CYP2C9) as well as inhibition of their catalytic activity. RESULTS We found that a methanolic extract of B. natalensis activated PXR (EC50 6.2 ± 0.6 µg/ml) in HepG2 cells resulting in increased mRNA expression of CYP3A4 (2.40 ± 0.01 fold) and CYP2C9 (3.37 ± 0.3 fold) at 30 µg/ml which was reflected in increased activites of the two enzymes. Among the constituents of B. natalensis, knipholone was the most potent PXR activator (EC50 0.3 ± 0.1 µM) followed by bulbine-knipholone (EC50 2.0 ± 0.5 µM), and 6'-methylknipholone (EC50 4.0 ± 0.5 µM). Knipholone was also the most effective in increasing the expression of CYP3A4 (8.47 ± 2.5 fold) and CYP2C9 (2.64 ± 0.3 fold) at 10 µM. Docking studies further confirmed the unique structural features associated with knipholones for their superior inductive potentials in the activation of PXR compared to other anthraquinones. In a CYP inhibition assay, the methanolic extract as well as the anthraquinones strongly inhibited the catalytic activity of CYP2C9 while, inhibition of CYP3A4 was weak. CONCLUSIONS These results suggest that consumption of B. natalensis may pose a potential risk for HDI if taken with conventional medications that are substrates of CYP3A4 and CYP2C9 and may contribute to unanticipated adverse reactions or therapeutic failures. Further studies are warranted to validate these findings and establish their clinical relevancy.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vamshi Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Manal Alhusban
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ji-Yeong Bae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States.
| |
Collapse
|
49
|
Wang LX, Frey MR, Kohli R. The Role of FGF19 and MALRD1 in Enterohepatic Bile Acid Signaling. Front Endocrinol (Lausanne) 2021; 12:799648. [PMID: 35116006 PMCID: PMC8804323 DOI: 10.3389/fendo.2021.799648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bile acids are the catabolic end products of cholesterol metabolism that are best known for their role in the digestion of lipids. In the last two decades, extensive investigation has shown bile acids to be important signaling molecules in metabolic processes throughout the body. Bile acids are ligands that can bind to several receptors, including the nuclear receptor farnesoid X receptor (FXR) in ileal enterocytes. FXR activation induces the expression of fibroblast growth factor (FGF) 15/19, a hormone that can modulate bile acid levels, repress gluconeogenesis and lipogenesis, and promote glycogen synthesis. Recent studies have described a novel intestinal protein, MAM and LDL Receptor Class A Domain containing 1 (MALRD1) that positively affects FGF15/19 levels. This signaling pathway presents an exciting target for treating metabolic disease and bile acid-related disorders.
Collapse
|
50
|
Zhang C, Meng D, Wang W, Dai T, Wang J, Guan A, Liu C, Liu X. Overexpression of three P450 genes is responsible for resistance to novel pyrimidine amines in Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2020; 76:4268-4277. [PMID: 32638503 DOI: 10.1002/ps.5991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A series of pyrimidine amine derivatives has been synthesized by modifying the pyrimidine ring group of diflumetorim-a mitochondrial complex I inhibiting fungicide. One derivative, code number SYP-34773, is investigated in this study involving Magnaporthe oryzae, the causal agent of rice blast, which is the most devastating disease in rice. The response, resistance profile and mechanism of M. oryzae to SYP-34773 were investigated, which provides or provide?? important data for the registration and rational use of pyrimidine amines. RESULTS SYP-34773 showed greater control efficacy than fungicide isoprothiolane in the field. The baseline sensitivity was established at a mean 50% effective concentration (EC50 ) of 0.08 μg ml-1 . Four stable SYP-34773-resistant isolates with reduced sensitivity were generated from one (S118) of ten sensitive isolates with a resistance factor of EC50 ranging from 7.00 to 15.00. Conidia production and pathogenicity were similar to that of S118, although there was a significant decrease in mycelial growth and conidial germination in resistant isolates. Positive cross-resistance was observed between SYP-34773 and diflumetorim; and the SYP-34773-resistant isolates were still sensitive to isoprothiolane, carbendazim, fluazinam, azoxystrobin, or prochloraz. RNA-Seq analyses revealed three cytochrome P450 genes were upregulated in the resistant isolate under the treatment with SYP-34773, as confirmed by quantitative real-time PCR. The SYP-34773 content was significantly reduced in the resistant isolate when compared with the parental isolate. CONCLUSION The study demonstrated that SYP-34773 exhibits high activity against M. oryzae. Overexpression of three cytochrome P450 genes has an important role in the resistance of M. oryzae to novel pyrimidine amines. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Dehao Meng
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tan Dai
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Junfeng Wang
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Aiying Guan
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Changling Liu
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|