1
|
Tseng YY. Comparative mathematical modeling reveals the differential effects of high-fat diet and ketogenic diet on the PI3K-Akt signaling pathway in heart. Nutr Metab (Lond) 2024; 21:65. [PMID: 39123207 PMCID: PMC11311919 DOI: 10.1186/s12986-024-00840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Obesity is a global health concern associated with increased risk of diseases like cardiovascular conditions including ischemic heart disease, a leading cause of mortality. The ketogenic diet (KD) has potential therapeutic applications in managing obesity and related disorders. However, the intricate effects of KD on diverse physiological conditions remain incompletely understood. The PI3K-Akt signaling pathway is critical for heart health, and its dysregulation implicates numerous cardiac diseases. METHODS We developed comprehensive mathematical models of the PI3K-Akt signaling pathway under high-fat diet (HFD) and KD conditions to elucidate their differential impacts and quantify apoptosis. Simulations and sensitivity analysis were performed. RESULTS Simulations demonstrate that KD can reduce the activation of key molecules like Erk and Trp53 to mitigate apoptosis compared to HFD. Findings align with experimental data, highlighting the potential cardiac benefits of KD. Sensitivity analysis identifies regulators like Trp53 and Bcl2l1 that critically influence apoptosis under HFD. CONCLUSIONS Mathematical modeling provides quantitative insights into the contrasting effects of HFD and KD on cardiac PI3K-Akt signaling and apoptosis. Findings have implications for precision nutrition and developing novel therapeutic strategies to address obesity-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan.
| |
Collapse
|
2
|
Onal M, Elsurer C, Duran T, Kocak N, Ulusoy B, Bozkurt MK, Onal O. Possible role of endoplasmic reticulum stress in the pathogenesis of chronic adenoiditis and adenoid hypertrophy: A prospective, parallel-group study. Laryngoscope Investig Otolaryngol 2024; 9:e1240. [PMID: 38596230 PMCID: PMC11002993 DOI: 10.1002/lio2.1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Background Adenoid tissue is a first-line host defense secondary lymphoid organ, especially in childhood. The endoplasmic reticulum (ER) is required to maintain balanced cellular activity. With impaired ER functions, protein accumulation occurs, resulting in ER stress, which plays a role in the etiopathogenesis of many diseases. Objective We aimed to investigate the relationship between ER stress and adenoid tissue disorders, thereby elucidating the mechanisms of immunity-related diseases. Methods Fifty-four pediatric patients (>3 years old) who underwent adenoidectomy for chronic adenoiditis (CA) or adenoid hypertrophy (AH) were enrolled in this prospective, parallel-group clinical study. Adenoids were divided into two groups (CA or AH) based on their size and evaluated for ER stress pathway and apoptosis pathway markers by Real-time PCR and Western blot analysis. Results ER stress pathway markers significantly differed between the CA and AH groups. Children with CA had higher ER stress marker levels than the AH group (p < .001 for ATF-4, ATF-6, and GRP78, and p < .05 for EDEM1, CHOP, EIF2AK3, ERNI, and GRP94). Apoptosis pathway marker levels (BAX and BCL-2) were not different between groups. Conclusions ER stress contributes to the etiopathogenesis of adenoid tissue diseases and the pathogenesis of adenoid tissue disorders, which are part of the immune response. These results may guide the development of new and alternative treatments for immune system disorders.
Collapse
Affiliation(s)
- Merih Onal
- Department of OtorhinolaryngologySelcuk University Faculty of MedicineKonyaTurkey
| | - Cagdas Elsurer
- Department of OtorhinolaryngologySelcuk University Faculty of MedicineKonyaTurkey
| | - Tugce Duran
- Department of Medical GeneticsKTO Karatay University Faculty of MedicineKonyaTurkey
| | - Nadir Kocak
- Department of Medical GeneticsSelcuk University Faculty of MedicineKonyaTurkey
| | - Bulent Ulusoy
- Department of OtorhinolaryngologySelcuk University Faculty of MedicineKonyaTurkey
| | - Mete Kaan Bozkurt
- Department of OtorhinolaryngologySelcuk University Faculty of MedicineKonyaTurkey
| | - Ozkan Onal
- Department of Anesthesiology and ReanimationSelcuk University Faculty of MedicineKonyaTurkey
- Outcomes Research ConsortiumCleveland Clinic Main Hospital, Anesthesiology InstituteClevelandOhioUSA
| |
Collapse
|
3
|
Wang L, Tu W, Li X, Li C, Lu J, Dai P, Chen Y, Gu M, Li M, Jiang S, Yang G, Li S. Exercise improves cardiac function and attenuates myocardial inflammation and apoptosis by regulating APJ/STAT3 in mice with stroke. Life Sci 2023; 332:122041. [PMID: 37657526 DOI: 10.1016/j.lfs.2023.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Stroke can induce cardiac dysfunction without a primary cardiac disease. Exercise can promote the overall rehabilitation of stroke patients and be beneficial for all kinds of heart diseases. However, the mechanisms underlying the protective effects of exercise in stroke-induced cardiac dysfunction are poorly understood. Hence, we aimed to distinguish the different effects of acute and long-term exercise and further study the mechanism of protection against cardiomyopathy caused by stroke. Mice underwent a single acute session or long-term exercise for 30 days, followed by middle cerebral artery occlusion surgery. The expression of apoptosis-related proteins and proinflammatory factors in the heart was evaluated. Then, overexpression of apelin peptide jejunum (APJ) transfected adeno-associated virus type 9 (AAV9) and inhibition of signal transducer and activator of transcription 3 (STAT3) by Stattic were used in stroke mice or hypoxic cardiomyocytes. ML221 were used to inhibit APJ activity in exercise mouse. Thereafter, changes in apoptotic and proinflammatory factors were evaluated. The results demonstrated that chronic exercise prevented myocardial inflammation, apoptosis and cardiac dysfunction after stroke. However, acute exercise did not have similar effects. Exercise maintained the levels of APJ expression and decreased phosphorylated-STAT3 (p-STAT3) activation to protect cardiomyocytes. Moreover, APJ overexpression promoted cardiomyocyte survival and reduced p-STAT3 levels. STAT3 inhibition also reduced apoptosis and proinflammatory factors in mice hearts. Conversely, the protective effect of exercise was eliminated by APJ inhibition. This study showed that exercise can maintain APJ expression and inhibit p-STAT3, thus, conferring protection against myocardial inflammation and apoptosis induced by stroke.
Collapse
Affiliation(s)
- Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Junhong Lu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuewei Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Meilin Gu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ming Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Guanhu Yang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China; Department of Specialty Medicine, Ohio University, Athens, OH 45701, United States
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
4
|
Zhao Z, Wang X, Lu M, Gao Y. Rosuvastatin Improves Endothelial Dysfunction in Diabetes by Normalizing Endoplasmic Reticulum Stress via Calpain-1 Inhibition. Curr Pharm Des 2023; 29:2579-2590. [PMID: 37881071 DOI: 10.2174/0113816128250494231016065438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Rosuvastatin contributes to the improvement of vascular complications in diabetes, but the protective mechanisms remain unclear. The aim of the present study was to investigate the effect and mechanism of rosuvastatin on endothelial dysfunction induced by diabetes. METHODS Calpain-1 knockout (Capn1 EK684-/-) and C57BL/6 mice were intraperitoneally injected with STZ to induce type 1 diabetes. Human umbilical vein endothelial cells (HUVECs) were incubated with high glucose in this study. The function of isolated vascular rings, apoptosis, and endoplasmic reticulum stress (ERS) indicators were measured in this experiment. RESULTS The results showed that rosuvastatin (5 mg/kg/d) and calpain-1 knockout improved impaired vasodilation in an endothelial-dependent manner, and this effect was abolished by an ERS inducer. Rosuvastatin administration inhibited calpain-1 activation and ERS induced by high glucose, as well as apoptosis and oxidative stress both in vivo and in vitro. In addition, an ERS inducer (tunicamycin) offset the beneficial effect of rosuvastatin on endothelial dysfunction and ERS, which was accompanied by increased calpain-1 expression. The ERS inhibitor showed a similar improvement in endothelial dysfunction with rosuvastatin but could not increase the improvement in endothelial function of rosuvastatin. CONCLUSION These results suggested that rosuvastatin improves endothelial dysfunction by suppressing calpain- 1 and normalizing ERS, subsequently decreasing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhao Zhao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinpeng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Liaoning Provincial Key Laboratory of Cardiovascular Drugs, Jinzhou Medical University, Jinzhou, China
| | - Yuxia Gao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Ji XY, Zheng D, Ni R, Wang JX, Shao JQ, Vue Z, Hinton A, Song LS, Fan GC, Chakrabarti S, Su ZL, Peng TQ. Sustained over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice through aberrant autophagy. Acta Pharmacol Sin 2022; 43:2873-2884. [PMID: 35986214 PMCID: PMC9622835 DOI: 10.1038/s41401-022-00965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/24/2022] [Indexed: 11/09/2022] Open
Abstract
Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.
Collapse
Affiliation(s)
- Xiao-Yun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Jin-Xi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tian-Qing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
6
|
Li X, Wang L, Ying X, Zheng Y, Tan Q, Yu X, Gong J, Li M, Deng X, Yang G, Li S, Jiang S. Electroacupuncture pre-treatment alleviates sepsis-induced cardiac inflammation and dysfunction by inhibiting the calpain-2/STAT3 pathway. Front Physiol 2022; 13:961909. [PMID: 36160853 PMCID: PMC9489935 DOI: 10.3389/fphys.2022.961909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Electroacupuncture (EA) has both anti-inflammatory and cardio-protective effects. Activation of calpain pathway is involved in several myocardiopathy. In sepsis, the role of calpain-2-regulated STAT3 in cardio-protective mechanism of electroacupuncture remains unclear. In this study, we aimed to elucidate the mechanism by which electroacupuncture reduces cardiac inflammation and apoptosis and improves cardiac function during sepsis. Electroacupuncture pretreatment for 7 days was applied in septic cardiomyopathy model induced by lipopolysaccharide (LPS). lipopolysaccharide-induced sepsis was associated with a dramatically systemic inflammation and cardiac dysfunction, which was alleviated by electroacupuncture pre-treatment. Lipopolysaccharide resulted in increases of pro-inflammatory factors (TNF-α,IL1βand IL-6) and apoptosis (TUNEL staining and BAX/Bcl2) via activation of calpain-2/STAT3 pathway.Electroacupuncture pre-treatment inhibited LPS-induced activation of cardiac calpain-2/STAT3 signalling and ameliorated inflammatory and apoptosis. Additionally, inhibition of calpain-2 expression using the corresponding siRNA decreased the Phosphorylation of STAT3,pro-inflammatory factors and apoptosis in lipopolysaccharide- treated cardiomyocytes, confirming that calpain-2 activated p-STAT3 participate in septic cardiomyopathy. Furthermore, suppression of STAT3 by stattic enhanced anti-inflammatory and anti-apoptosis effects of electroacupuncture. These findings reveal mechanisms of electroacupuncture preconditioning protection against cardiac inflammation and apoptosis in sepsis mouse via calpain-2/STAT3 pathway and may provide novel targets for clinical treatments of the sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinwang Ying
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yujun Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Tan
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolan Yu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahong Gong
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofeng Deng
- Wenzhou Sports School, Wenzhou Sports Science Research Institute, Wenzhou, Zhejiang, China
| | - Guanhu Yang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guanhu Yang, ; Shengcun Li, Songhe Jiang,
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guanhu Yang, ; Shengcun Li, Songhe Jiang,
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guanhu Yang, ; Shengcun Li, Songhe Jiang,
| |
Collapse
|
7
|
Raja R, Fonseka O, Ganenthiran H, Liu W. The multifaceted roles of ER and Golgi in metabolic cardiomyopathy. Front Cardiovasc Med 2022; 9:999044. [PMID: 36119738 PMCID: PMC9479098 DOI: 10.3389/fcvm.2022.999044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic cardiomyopathy is a significant global financial and health challenge; however, pathophysiological mechanisms governing this entity remain poorly understood. Among the main features of metabolic cardiomyopathy, the changes to cellular lipid metabolism have been studied and targeted for the discovery of novel treatment strategies obtaining contrasting results. The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein modification, sorting, and secretion activities that are more commonly studied from the perspective of protein quality control; however, they also drive the maintenance of lipid homeostasis. In response to metabolic stress, ER and GA regulate the expression of genes involved in cardiac lipid biogenesis and participate in lipid droplet formation and degradation. Due to the varied roles these organelles play, this review will focus on recapitulating the alterations and crosstalk between ER, GA, and lipid metabolism in cardiac metabolic syndrome.
Collapse
|
8
|
Cao T, Ni R, Ding W, Ji X, Li L, Liao G, Lu Y, Fan GC, Zhang Z, Peng T. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc Diabetol 2022; 21:165. [PMID: 36030201 PMCID: PMC9420252 DOI: 10.1186/s12933-022-01602-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Cardiomyocyte death contributes to cardiac pathology of diabetes. Studies have shown that the RIPK3/MLKL necroptosis signaling is activated in diabetic hearts. Deletion of RIPK3 was reported to attenuate myocardial injury and heart dysfunction in streptozocin (STZ)-induced diabetic mice, suggesting a potential role of necroptosis in diabetic cardiomyopathy. This study characterized cardiomyocyte necroptosis in diabetic hearts and investigated whether MLKL-mediated necroptosis is a target for cardiac protection in diabetes. Methods Type 1 diabetes was induced in RIPK3 knockout, MLKL knockout and wild-type mice. Akita Type-1 diabetic mice were injected with shRNA for MLKL. Myocardial function was assessed by echocardiography. Immuno-histological analyses determined cardiomyocyte death and fibrosis in the heart. Cultured adult mouse cardiomyocytes were incubated with high glucose in the presence of various drugs. Cell death and phosphorylation of RIPK3 and MLKL were analysed. Results We showed that the levels of phosphorylated RIPK3 and MLKL were higher in high glucose-stimulated cardiomyocytes and hearts of STZ-induced type-1 diabetic mice, akita mice and type-1 diabetic monkeys when compared to non-diabetic controls. Inhibition of RIPK3 by its pharmacological inhibitor or gene deletion, or MLKL deletion prevented high glucose-induced MLKL phosphorylation and attenuated necroptosis in cardiomyocytes. In STZ-induced type-1 diabetic mice, cardiomyocyte necroptosis was present along with elevated cardiac troponin I in serum and MLKL oligomerization, and co-localized with phosphorylated MLKL. Deletion of RIPK3 or MLKL prevented MLKL phosphorylation and cardiac necroptosis, attenuated serum cardiac troponin I levels, reduced myocardial collagen deposition and improved myocardial function in STZ-injected mice. Additionally, shRNA-mediated down-regulation of MLKL reduced cardiomyocyte necroptosis in akita mice. Interestingly, incubation with anti-diabetic drugs (empagliflozin and metformin) prevented phosphorylation of RIPK3 and MLKL, and reduced cell death in high glucose-induced cardiomyocytes. Conclusions We have provided evidence that cardiomyocyte necroptosis is present in diabetic hearts and that MLKL-mediated cardiomyocyte necroptosis contributes to diabetic cardiomyopathy. These findings highlight MLKL-mediated necroptosis as a target for cardiac protection in diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01602-9.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Weimin Ding
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoyun Ji
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 5W9, Canada. .,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada. .,Department of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
9
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun 2022; 613:127-132. [PMID: 35550199 DOI: 10.1016/j.bbrc.2022.04.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| |
Collapse
|
10
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
11
|
Zhang M, Zhong H, Cao T, Huang Y, Ji X, Fan GC, Peng T. Gamma-Aminobutyrate Transaminase Protects against Lipid Overload-Triggered Cardiac Injury in Mice. Int J Mol Sci 2022; 23:ijms23042182. [PMID: 35216295 PMCID: PMC8874535 DOI: 10.3390/ijms23042182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022] Open
Abstract
Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT’s GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.
Collapse
Affiliation(s)
- Mengxiao Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
- School of Pharmacy, Bengbu Medical College, Bengbu 233000, China
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
| | - Huiting Zhong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Yifan Huang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Xiaoyun Ji
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Medicine, Western University, London, ON N6A 5W9, Canada
- VRLA6-140, 800 Commissioners Road, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-6858500-55441
| |
Collapse
|
12
|
Liu L, Luo H, Liang Y, Tang J, Shu Y. Dapagliflozin Ameliorates STZ-Induced Cardiac Hypertrophy in Type 2 Diabetic Rats by Inhibiting the Calpain-1 Expression and Nuclear Transfer of NF- κB. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3293054. [PMID: 35096128 PMCID: PMC8794691 DOI: 10.1155/2022/3293054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of dapagliflozin (DAPA) on cardiac hypertrophy induced by type 2 diabetes mellitus (T2DM) and its mechanism. METHODS SD rats with T2DM were divided into a T2DM group (n = 6) and DAPA group (n = 6). They were, respectively, fed with the same amount of normal saline and 1 mg/kg DAPA. The control group (n = 6) was also fed with normal saline. The hearts were tested by the application of echocardiography and hemodynamics. Subsequently, fasting blood glucose (FBG), serum total cholesterol (TC), and triglyceride (TG) as well as interleukin- (IL-) 10, IL-6, and tumor necrosis factor (TNF)-α in serum were tested. H&E and Masson staining was performed to observe the degree of cardiac tissue lesions, and expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), calpain-1, p-IκBα, and p65 in myocardial tissue was tested by qRT-PCR and Western blot. RESULTS Compared with the control group, rats in the T2DM group exhibited significant diabetic symptoms: FBG was significantly elevated, and the levels of TC, TG, IL-6, and TNF-α were significantly increased, while the levels of IL-10 and the calpain activity were evidently decreased. However, DAPA treatment could improve the above changes. At the same time, the damage and fibrosis of the heart tissue in the DAPA group were markedly improved. Additionally, the mRNA expression of ANP and BNP in myocardial tissue of the DAPA group was markedly increased. And DAPA could inhibit the expression of p-IκBα/IκBα in the cytoplasm and p65 in the nucleus as well as the expression of calpain-1 in myocardial tissue. CONCLUSION DAPA treatment ameliorates the cardiac hypertrophy caused by T2DM by decreasing body blood glucose, while reducing the expression of calpain-1 in cardiomyocytes and inhibiting the nuclear translocation of NF-κB.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Benzhydryl Compounds/pharmacology
- Blood Glucose/metabolism
- Calpain/antagonists & inhibitors
- Calpain/metabolism
- Cardiomegaly/drug therapy
- Cardiomegaly/etiology
- Cardiomegaly/metabolism
- Computational Biology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Glucosides/pharmacology
- Inflammation Mediators/blood
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NF-kappa B/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Streptozocin/toxicity
Collapse
Affiliation(s)
- Lei Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province 510515, China
| | - Haizhao Luo
- Department of Endocrinology, Nanhai People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Foshan City, Guangdong Province 528200, China
| | - Yunyi Liang
- Department of Endocrinology, Nanhai People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Foshan City, Guangdong Province 528200, China
| | - Jielong Tang
- Department of Endocrinology, Nanhai People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Foshan City, Guangdong Province 528200, China
| | - Yi Shu
- Department of Endocrinology, Nanhai People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Foshan City, Guangdong Province 528200, China
| |
Collapse
|
13
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
14
|
Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, Jubaidi FF, Budin SB. Therapeutic Approach of Flavonoid in Ameliorating Diabetic Cardiomyopathy by Targeting Mitochondrial-Induced Oxidative Stress. Int J Mol Sci 2021; 22:11616. [PMID: 34769045 PMCID: PMC8583796 DOI: 10.3390/ijms222111616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 46300, Malaysia;
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| |
Collapse
|
15
|
Cardiac-specific CGI-58 deficiency activates the ER stress pathway to promote heart failure in mice. Cell Death Dis 2021; 12:1003. [PMID: 34702801 PMCID: PMC8548506 DOI: 10.1038/s41419-021-04282-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Excess myocardial triacylglycerol accumulation (i.e., cardiac steatosis) impairs heart function, suggesting that enzymes promoting triacylglycerol metabolism exert essential regulatory effects on heart function. Comparative gene identification 58 (CGI-58) is a key enzyme that promotes the hydrolysis of triglycerides by activating adipose triglyceride lipase and plays a protective role in maintaining heart function. In this study, the effects of CGI-58 on heart function and the underlying mechanism were investigated using cardiac-specific CGI58-knockout mice (CGI-58cko mice). Echocardiography and pathological staining were performed to detect changes in the structure and function of the heart. Proteomic profiling, immunofluorescent staining, western blotting, and real-time PCR were used to evaluate molecular changes. In CGI-58cko mice, we detected cardiac hypertrophic remodeling and heart failure associated with excessive cardiac lipid accumulation, ROS production, and decreased expression of regulators of fatty acid metabolism. These changes were markedly attenuated in CGI-58cko mice injected with rAAV9-CGI58. A quantitative proteomics analysis revealed significant increases in the expression of ER stress-related proteins and decreases in proteins related to fatty acid and amino acid metabolism in the hearts of CGI-58cko mice. Furthermore, the inhibition of ER stress by the inhibitor 4-PBA improved mitochondrial dysfunction, reduced oxidative stress, and reversed cardiac remodeling and dysfunction in cultured cardiomyocytes or in CGI-58cko mice. Our results suggested that CGI-58 is essential for the maintenance of heart function by reducing lipid accumulation and ER stress in cardiomyocytes, providing a new therapeutic target for cardiac steatosis and dysfunction.
Collapse
|
16
|
Chen J, Gong J, Chen H, Li X, Wang L, Qian X, Zhou K, Wang T, Jiang S, Li L, Li S. Ischemic stroke induces cardiac dysfunction and alters transcriptome profile in mice. BMC Genomics 2021; 22:641. [PMID: 34481466 PMCID: PMC8418010 DOI: 10.1186/s12864-021-07938-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background Stroke can induce cardiac dysfunction in the absence of primary cardiac disease; however, the mechanisms underlying the interaction between the neurological deficits and the heart are poorly understood. The objective of this study was to investigate the effects of stroke on cardiac function and to identify the transcriptome characteristics of the heart. Results Stroke significantly decreased heart weight/tibia length ratio and cardiomyocyte cross-sectional areas and increased atrogin-1 and the E3 ubiquitin ligase MuRF-1, indicating myocardial atrophy in MCAO-induced mouse hearts. RNA sequencing of mRNA revealed 383 differentially expressed genes (DEGs) in MCAO myocardium, of which 221 were downregulated and 162 upregulated. Grouping of DEGs based on biological function and quantitative PCR validation indicated that suppressed immune response and collagen synthesis and altered activity of oxidoreductase, peptidase, and endopeptidase may be involved in MCAO-induced cardiomyopathy. The DEGs were mainly distributed in the membrane or extracellular region of cardiomyocytes and acted as potential mediators of stroke-induced cardiac dysregulation involved in cardiac atrophy. Conclusion Stroke induced a unique transcriptome response in the myocardium and resulted in immediate cardiac atrophy and dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07938-y.
Collapse
Affiliation(s)
- Jie Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahong Gong
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Haili Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiaoli Qian
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Kecheng Zhou
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ting Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
18
|
Targeting JP2: A New Treatment for Pulmonary Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2003446. [PMID: 34394822 PMCID: PMC8363443 DOI: 10.1155/2021/2003446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary hypertension (PH) is a disease with a complex etiology and high mortality rate. Abnormal pulmonary vasoconstriction and pulmonary vascular remodeling lead to an increase in mean pulmonary arterial blood pressure for which, and there is currently no cure. Junctophilin-2 (JP2) is beneficial for the assembly of junctional membrane complexes, the structural basis for excitation-contraction coupling that tethers the plasma membrane to the sarcoplasmic reticulum/endoplasmic reticulum and is involved in maintaining intracellular calcium concentration homeostasis and normal muscle contraction function. Recent studies have shown that JP2 maintains normal contraction and relaxation of vascular smooth muscle. In some experimental studies of drug treatments for PH, JP2 expression was increased, which improved pulmonary vascular remodeling and right ventricular function. Based on JP2 research to date, this paper summarizes the current understanding of JP2 protein structure, function, and related heart diseases and mechanisms and analyzes the feasibility and possible therapeutic strategies for targeting JP2 in PH.
Collapse
|
19
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
20
|
Li S, Qian X, Gong J, Chen J, Tu W, Chen X, Chu M, Yang G, Li L, Jiang S. Exercise Training Reverses Lipotoxicity-induced Cardiomyopathy by Inhibiting HMGCS2. Med Sci Sports Exerc 2021; 53:47-57. [PMID: 32826638 DOI: 10.1249/mss.0000000000002453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to determine the effect of exercise training on preventing lipotoxic cardiomyopathy and to investigate the role of the 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and miR-344g-5p in cardiomyocytes. METHODS Male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 wk then began swimming exercise or remained sedentary for 8 wk. Thereafter, cardiac function was assessed by echocardiography, and heart tissue and plasma were collected for further measurements. The molecular mechanism of exercise was investigated after treating Hmgcs2 siRNA in palmitate-induced neonatal mouse cardiomyocytes. RESULTS HFD induced myocardial hypertrophy and fibrosis and reduced coronary reserve and cardiac function. HMGCS2 levels increased, but junctophilin-2 (JPH2) levels decreased in HFD mice hearts. Such effects were attenuated by swimming exercise. Mechanistically, Hmgcs2 silencing prevented apoptosis and caspase-3 cleavage and elevated the expression of JPH2 in palmitate-stimulated cardiomyocytes. In addition, exercise promoted miR-344g-5p expression in HFD hearts. The overexpression of miR-344g-5p by chemical mimic reduced HMGCS2, apoptosis, and caspase-3 cleavage and elevated JPH2 expression in palmitate-induced cardiomyocytes. CONCLUSION Our results suggest that exercise limits lipid metabolic disorder, cardiac hypertrophy, and fibrosis and aids in the prevention of lipotoxic cardiomyopathy. Exercise-mediated cardioprotection by upregulating miR-344g-5p, which targets Hmgcs2 mRNA, prohibits HMGCS2 upregulation and thus lipotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, CHINA
| | | | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, CHINA
| | | |
Collapse
|
21
|
Wang Q, Luo C, Lu G, Chen Z. Effect of adenosine monophosphate-activated protein kinase-p53-Krüppel-like factor 2a pathway in hyperglycemia-induced cardiac remodeling in adult zebrafish. J Diabetes Investig 2020; 12:320-333. [PMID: 32881390 PMCID: PMC7926222 DOI: 10.1111/jdi.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Aims/Introduction Diabetic cardiomyopathy is a type of myocardial disease. It causes left ventricular hypertrophy, followed by diastolic and systolic dysfunction, eventually leading to congestive heart failure. However, the underlying mechanism still requires further elucidation. Materials and Methods A high‐glucose zebrafish model was constructed by administering streptozocin intraperitoneally to enhance the development of cardiomyopathy and then treated with adenosine monophosphate‐activated protein kinase (AMPK) activator. Cardiac structure and function, and protein and gene expression were then analyzed. Cardiomyocytes (CMs) culture in vitro using lentivirus were used for detection of AMPK, p53 and Krüppel‐like factor 2a (klf2a) gene expression. Results In the hyperglycemia group, electrocardiogram findings showed arrhythmia, echocardiography results showed heart enlargement and dysfunction, and many differences, such as increased apoptosis and myocardial fiber loss, were observed. The phospho‐AMPK and klf2a expression were downregulated, and p53 expression was upregulated. Activation of phospho‐AMPK reduced p53 and increased klf2a expression, alleviated apoptosis in CMs and improved cardiac function in the hyperglycemic zebrafish. In vitro knockdown system of AMPK, p53 and klf2a using lentivirus illustrated an increased p53 expression and decreased klf2a expression in CMs by inhibiting AMPK. Repression of p53 and upregulation of klf2a expression were observed, but no changes in the expression of AMPK and its phosphorylated type. Conclusions In the model of streptozocin‐induced hyperglycemia zebrafish, the reduction of phosphorylated AMPK increased p53, which led to KLF2a decrease to facilitate apoptosis of CMs, inducing the cardiac remodeling and cardiac dysfunction. These results can be reversed by AMPK activator, which means the AMPK–p53–klf2a pathway might be a potential target for diabetic cardiomyopathy intervention.
Collapse
Affiliation(s)
- Qiuyun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Luo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenyue Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicol Rep 2020; 7:1178-1186. [PMID: 32995293 PMCID: PMC7501485 DOI: 10.1016/j.toxrep.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (CP) is a powerful antineoplastic chemotherapeutic agent with broad-spectrum properties. Acute and cumulative cardiotoxicity are major limiting factors for CP therapy. Various pathogenic pathways have been suggested to CP-induced cardiotoxicity; oxidative damage, ER stress, and programmed cell death/apoptosis. The present study aimed to assess the signaling mechanisms related to the advantageous effects of rosuvastatin (RSV) and simvastatin (SMV) against CP-related cardiac ER stress dependent apoptotic death in rats. Acute cardiotoxicity was induced by a single dose of CP (10 mg/kg, i.p.) on the 10th day of the experiment. RSV (10 mg/ kg/day) and SMV (10 mg/kg/day) were orally administered for 15 days. CP-treated rats showed significant alterations in electrocardiographic recordings and elevation in serum cardiac function biomarkers; troponin T content, lactate dehydrogenase and creatine kinase-MB levels as well as boost in the cardiac oxidative stress biomarkers. In addition, CP exposure resulted in GRP78 induction; an ER stress and elevation marker at calpain-1 content as well as activation of activated caspase-3 (ACASP3) and caspase-12 were reflected on CP-triggered apoptosis evidenced by elevation in the Bax/Bcl-2 ratio. However, RSV and SMV administration mitigate those adverse CP effects. Statins administration prominently alleviated CP-induced cardiac abnormalities exerting improvement in the ECG pattern and cardiac enzyme biomarkers. Interestingly, statins; RSV and SMV, disrupted CP-induced ER stress and the consequent apoptotic cell death evidenced by downregulation of ER-chaperone GRP78, calpain-1, ACASP3 and caspase-12 as well as decline in the Bax/Bcl-2 ratio. From all the previous findings, it can be suggested that statins namely; RSV and SMV, play protective role against CP-induced cardiac injury by regulating ER stress-mediated apoptotic pathways.
Collapse
Affiliation(s)
- Dalia O Saleh
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Dina F Mansour
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Rasha E Mostafa
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| |
Collapse
|
23
|
Kaludercic N, Di Lisa F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front Cardiovasc Med 2020; 7:12. [PMID: 32133373 PMCID: PMC7040199 DOI: 10.3389/fcvm.2020.00012] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy is a result of diabetes-induced changes in the structure and function of the heart. Hyperglycemia affects multiple pathways in the diabetic heart, but excessive reactive oxygen species (ROS) generation and oxidative stress represent common denominators associated with adverse tissue remodeling. Indeed, key processes underlying cardiac remodeling in diabetes are redox sensitive, including inflammation, organelle dysfunction, alteration in ion homeostasis, cardiomyocyte hypertrophy, apoptosis, fibrosis, and contractile dysfunction. Extensive experimental evidence supports the involvement of mitochondrial ROS formation in the alterations characterizing the diabetic heart. In this review we will outline the central role of mitochondrial ROS and alterations in the redox status contributing to the development of diabetic cardiomyopathy. We will discuss the role of different sources of ROS involved in this process, with a specific emphasis on mitochondrial ROS producing enzymes within cardiomyocytes. Finally, the therapeutic potential of pharmacological inhibitors of ROS sources within the mitochondria will be discussed.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Wu Y, Chen F, Huang X, Zhang R, Yu Z, Chen Z, Liu J. Berberine (BBR) Attenuated Palmitic Acid (PA)-Induced Lipotoxicity in Human HK-2 Cells by Promoting Peroxisome Proliferator-Activated Receptor α (PPAR-α). Med Sci Monit 2019; 25:7702-7708. [PMID: 31607744 PMCID: PMC6812469 DOI: 10.12659/msm.916686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Berberine (BBR), a natural alkaloid isolated from Coptis chinensis, has frequently been reported as an antidiabetic reagent, partly due to its lipid-lowering activity. Evidence suggests that BBR ameliorates palmitate-induced lipid deposition and apoptosis in renal tubular epithelial cells (TECs), which tracks in tandem with the enhancement of peroxisome proliferator-activated receptor alpha (PPAR-alpha). The study aim was to investigate the roles of BBR in renal lipotoxicity in vitro, and investigate whether PPAR-alpha was the underlying mechanism. MATERIAL AND METHODS Human TECs (HK-2 cells) were injured with palmitic acid (PA), and then treated with BBR, BBR+PPAR-alpha inhibitor (GW6471), and PA+PPAR-alpha agonist (fenofibrate). Endoplasmic reticulum (ER) stress was assessed by measuring the expression of prospective evaluation of radial keratotomy (PERK), C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). Lipid metabolism was assessed by determining lipid anabolism-associated genes, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and lipoprotein lipase (LPL), as well as lipid catabolism-associated gene, including carnitine palmitoyl transferase 1 (CPT1). Inflammatory response of HK-2 cells was evaluated by measuring interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha. Cell apoptosis and protein levels of cleaved-caspase-3 were evaluated. RESULTS PA downregulated PPAR-alpha and induced server lipotoxicity in HK-2 cells by ER stress, increasing lipid deposition, and elevating inflammatory response of HK-2 cells accompanied with inducting cell apoptosis and cleaved-caspase-3, which were obviously reversed by additional treatment of BBR or PPAR-alpha agonist. However, the protective effect of BBR in PA-induced lipotoxicity in HK-2 cells was significantly ameliorated by PPAR-alpha inhibitor. CONCLUSIONS BBR attenuated PA-induced lipotoxicity via the PPAR-alpha pathway.
Collapse
|
25
|
Chen Q, Thompson J, Hu Y, Dean J, Lesnefsky EJ. Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. Am J Physiol Cell Physiol 2019; 317:C910-C921. [PMID: 31411917 DOI: 10.1152/ajpcell.00190.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of calpain 1 (CPN1) and calpain 2 (CPN2) contributes to cardiac injury during ischemia (ISC) and reperfusion (REP). Complex I activity is decreased in heart mitochondria following ISC-REP. CPN1 and CPN2 are ubiquitous calpains that exist in both cytosol (cs)-CPN1 and 2 and mitochondria (mit)-CPN1 and 2. Recent work shows that the complex I subunit (NDUFS7) is a potential substrate of the mit-CPN1. We asked whether ISC-REP led to decreased complex I activity via proteolysis of the NDUFS7 subunit via activation of mit-CPN1 and -2. Activation of cs-CPN1 and -2 decreases mitophagy in hepatocytes following ISC-REP. We asked whether activation of cs-CPN1 and -2 impaired mitophagy in the heart following ISC-REP. Buffer-perfused rat hearts underwent 25 min of global ISC and 30 min of REP. MDL-28170 (MDL; 10 µM) was used to inhibit CPN1 and -2. Cytosol, subsarcolemmal mitochondria (SSM), and interfibrillar mitochondria (IFM) were isolated at the end of heart perfusion. Cardiac ISC-REP led to decreased complex I activity with a decrease in the content of NDUFS7 in both SSM and IFM. ISC-REP also resulted in a decrease in cytosolic beclin-1 content, a key component of the autophagy pathway required to form autophagosomes. MDL treatment protected the contents of cytosolic beclin-1 and mitochondrial NDUFS7 in hearts following ISC-REP. These results support that activation of both cytosolic and mitochondrial calpains impairs mitochondria during cardiac ISC-REP. Mitochondria-localized calpains impair complex I via cleavage of a key subunit. Activation of cytosolic calpains contributes to mitochondrial dysfunction by impairing removal of the impaired mitochondria through depletion of a key component of the mitophagy process.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph Dean
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
26
|
Meng Y, Sun T, Wu C, Dong C, Xiong S. Calpain regulates CVB3 induced viral myocarditis by promoting autophagic flux upon infection. Microbes Infect 2019; 22:46-54. [PMID: 31319178 DOI: 10.1016/j.micinf.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/22/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
Calpains are calcium-activated neutral cysteine proteases. The dysregulation of calpain activity has been found to be related to cardiovascular diseases, for which calpain inhibition is used as a treatment. Viral myocarditis (VMC) is primarily caused by Coxsackievirus group B3 virus infection (CVB3). CVB3 virus infection induces autophagy and hijacks this process to facilitate its replication. In this study, we found that calpain was significantly activated in hearts affected by VMC. However, pharmacologically inhibiting calpain aggravated VMC symptoms in mice due to myocardial inflammation and cardiac dysfunction. The inhibition of calpain activity in vitro led to the accumulation of LC3-II and increased levels of p62/SQSTM1 protein expression, suggesting that autophagic flux was impaired by calpain inhibition. These effects of calpain inhibition were also observed in capn4-specific myocardial knockout mice in vivo. Furthermore, our results provided evidence that calpain inhibition in VMC, unlike other cardiovascular diseases, exacerbated the disease symptom by impairing CVB3-induced autophagic flux, which may subsequently reduce virus autolysosome degradation. Our findings indicated that calpain inhibition may not be a good treatment for VMC disease in a clinical setting.
Collapse
Affiliation(s)
- Yawen Meng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Chuanjian Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
27
|
Teng X, Ji C, Zhong H, Zheng D, Ni R, Hill DJ, Xiong S, Fan GC, Greer PA, Shen Z, Peng T. Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis. Diabetologia 2019; 62:860-872. [PMID: 30778623 PMCID: PMC6702672 DOI: 10.1007/s00125-019-4828-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The role of non-cardiomyocytes in diabetic cardiomyopathy has not been fully addressed. This study investigated whether endothelial cell calpain plays a role in myocardial endothelial injury and microvascular rarefaction in diabetes, thereby contributing to diabetic cardiomyopathy. METHODS Endothelial cell-specific Capns1-knockout (KO) mice were generated. Conditions mimicking prediabetes and type 1 and type 2 diabetes were induced in these KO mice and their wild-type littermates. Myocardial function and coronary flow reserve were assessed by echocardiography. Histological analyses were performed to determine capillary density, cardiomyocyte size and fibrosis in the heart. Isolated aortas were assayed for neovascularisation. Cultured cardiac microvascular endothelial cells were stimulated with high palmitate. Angiogenesis and apoptosis were analysed. RESULTS Endothelial cell-specific deletion of Capns1 disrupted calpain 1 and calpain 2 in endothelial cells, reduced cardiac fibrosis and hypertrophy, and alleviated myocardial dysfunction in mouse models of diabetes without significantly affecting systemic metabolic variables. These protective effects of calpain disruption in endothelial cells were associated with an increase in myocardial capillary density (wild-type vs Capns1-KO 3646.14 ± 423.51 vs 4708.7 ± 417.93 capillary number/high-power field in prediabetes, 2999.36 ± 854.77 vs 4579.22 ± 672.56 capillary number/high-power field in type 2 diabetes and 2364.87 ± 249.57 vs 3014.63 ± 215.46 capillary number/high-power field in type 1 diabetes) and coronary flow reserve. Ex vivo analysis of neovascularisation revealed more endothelial cell sprouts from aortic rings of prediabetic and diabetic Capns1-KO mice compared with their wild-type littermates. In cultured cardiac microvascular endothelial cells, inhibition of calpain improved angiogenesis and prevented apoptosis under metabolic stress. Mechanistically, deletion of Capns1 elevated the protein levels of β-catenin in endothelial cells of Capns1-KO mice and constitutive activity of calpain 2 suppressed β-catenin protein expression in cultured endothelial cells. Upregulation of β-catenin promoted angiogenesis and inhibited apoptosis whereas knockdown of β-catenin offset the protective effects of calpain inhibition in endothelial cells under metabolic stress. CONCLUSIONS/INTERPRETATION These results delineate a primary role of calpain in inducing cardiac endothelial cell injury and impairing neovascularisation via suppression of β-catenin, thereby promoting diabetic cardiomyopathy, and indicate that calpain is a promising therapeutic target to prevent diabetic cardiac complications.
Collapse
Affiliation(s)
- Xiaomei Teng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- Institute for Cardiovascular Science, Soochow University, Suzhou, China
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Chen Ji
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Huiting Zhong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Dong Zheng
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Rui Ni
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - David J Hill
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Medicine, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
- Department of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
28
|
Sun X, Zhao D, Lu F, Peng S, Yu M, Liu N, Sun Y, Du H, Wang B, Chen J, Dong S, Lu F, Zhang W. Hydrogen sulfide regulates muscle RING finger-1 protein S-sulfhydration at Cys 44 to prevent cardiac structural damage in diabetic cardiomyopathy. Br J Pharmacol 2019; 177:836-856. [PMID: 30734268 DOI: 10.1111/bph.14601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/04/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S) plays important roles as a gasotransmitter in pathologies. Increased expression of the E3 ubiquitin ligase, muscle RING finger-1 (MuRF1), may be involved in diabetic cardiomyopathy. Here we have investigated whether and how exogenous H2 S alleviates cardiac muscle degradation through modifications of MuRF1 S-sulfhydration in db/db mice. EXPERIMENTAL APPROACH Neonatal rat cardiomyocytes were treated with high glucose (40 mM), oleate (100 μM), palmitate (400 μM), and NaHS (100 μM) for 72 hr. MuRF1 was silenced with siRNA technology and mutation at Cys44 . Endoplasmic reticulum stress markers, MuRF1 expression, and ubiquitination level were measured. db/db mice were injected with NaHS (39 μmol·kg-1 ) for 20 weeks. Echocardiography, cardiac ultrastructure, cystathionine-γ-lyase, cardiac structure proteins expression, and S-sulfhydration production were measured. KEY RESULTS H2 S levels and cystathionine-γ-lyase protein expression in myocardium were decreased in db/db mice. Exogenous H2 S reversed endoplasmic reticulum stress, including impairment of the function of cardiomyocytes and structural damage in db/db mice. Exogenous H2 S could suppress the levels of myosin heavy chain 6 and myosin light chain 2 ubiquitination in cardiac tissues of db/db mice, and MuRF1 was modified by S-sulfhydration, following treatment with exogenous H2 S, to reduce the interaction between MuRF1 and myosin heavy chain 6 and myosin light chain 2. CONCLUSIONS AND IMPLICATIONS Our findings suggest that H2 S regulates MuRF1 S-sulfhydration at Cys44 to prevent myocardial degradation in the cardiac tissues of db/db mice. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuo Peng
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Miao Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Haining Du
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Bingzhu Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jian Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University Ministry of Education, Harbin, China
| |
Collapse
|
29
|
Cao T, Fan S, Zheng D, Wang G, Yu Y, Chen R, Song LS, Fan GC, Zhang Z, Peng T. Increased calpain-1 in mitochondria induces dilated heart failure in mice: role of mitochondrial superoxide anion. Basic Res Cardiol 2019; 114:17. [PMID: 30874894 DOI: 10.1007/s00395-019-0726-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
We and others have reported that calpain-1 was increased in myocardial mitochondria from various animal models of heart disease. This study investigated whether constitutive up-regulation of calpain-1 restricted to mitochondria induced myocardial injury and heart failure and, if so, whether these phenotypes could be rescued by selective inhibition of mitochondrial superoxide production. Transgenic mice with human CAPN1 up-regulation restricted to mitochondria in cardiomyocytes (Tg-mtCapn1/tTA) were generated and characterized with low and high over-expression of transgenic human CAPN1 restricted to mitochondria, respectively. Transgenic up-regulation of mitochondria-targeted CAPN1 dose-dependently induced cardiac cell death, adverse myocardial remodeling, heart failure, and early death in mice, the changes of which were associated with mitochondrial dysfunction and mitochondrial superoxide generation. Importantly, a daily injection of mitochondria-targeted superoxide dismutase mimetics mito-TEMPO for 1 month starting from age 2 months attenuated cardiac cell death, adverse myocardial remodeling and heart failure, and reduced mortality in Tg-mtCapn1/tTA mice. In contrast, administration of TEMPO did not achieve similar cardiac protection in transgenic mice. Furthermore, transgenic up-regulation of mitochondria-targeted CAPN1 induced a reduction of ATP5A1 protein and ATP synthase activity in hearts. In cultured cardiomyocytes, increased calpain-1 in mitochondria promoted mitochondrial permeability transition pore (mPTP) opening and induced cell death, which were prevented by over-expression of ATP5A1, mito-TEMPO or cyclosporin A, an inhibitor of mPTP opening. In conclusion, this study has provided direct evidence demonstrating that increased mitochondrial calpain-1 is an important mechanism contributing to myocardial injury and heart failure by disrupting ATP synthase, and promoting mitochondrial superoxide generation and mPTP opening.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuai Fan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4S2, Canada
- Department of Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yong Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhuxu Zhang
- Department of Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4S2, Canada.
- Department of Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada.
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada.
| |
Collapse
|
30
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
31
|
Zheng D, Su Z, Zhang Y, Ni R, Fan GC, Robbins J, Song LS, Li J, Peng T. Calpain-2 promotes MKP-1 expression protecting cardiomyocytes in both in vitro and in vivo mouse models of doxorubicin-induced cardiotoxicity. Arch Toxicol 2019; 93:1051-1065. [DOI: 10.1007/s00204-019-02405-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
32
|
Li S, Ma J, Li JB, Lacefield JC, Jones DL, Peng TQ, Wei M. Over-expression of calpastatin attenuates myocardial injury following myocardial infarction by inhibiting endoplasmic reticulum stress. J Thorac Dis 2018; 10:5283-5297. [PMID: 30416776 DOI: 10.21037/jtd.2018.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Ischemic heart injury activates calpains and endoplasmic reticulum (ER) stress in cardiomyocytes. This study investigated whether over-expression of calpastatin, an endogenous calpain inhibitor, protects the heart against myocardial infarction (MI) by inhibiting ER stress. Methods Mice over-expressing calpastatin (Tg-CAST) and littermate wild type (WT) mice were divided into four groups: WT-sham, Tg-CAST-sham, WT-MI, and Tg-CAST-MI, respectively. WT-sham and Tg-CAST-sham mice showed similar cardiac function at baseline. MI for 7 days impaired cardiac function in WT-MI mice, which was ameliorated in Tg-CAST-MI mice. Results Tg-CAST-MI mice exhibited significantly decreased diameter of the left ventricular cavity, scar area, and cardiac cell death compared to WT-MI mice. WT-MI mice had higher cardiac expression of C/EBP homologous protein (CHOP) and BIP, indicators of ER stress, compared to WT-sham mice, indicative of MI-induced ER stress. This increase was abolished in Tg-CAST-MI hearts. Furthermore, administration of tauroursodeoxycholic acid, an inhibitor of ER stress, reduced MI-induced expression of CHOP and BIP, scar area, and myocardial dysfunction. In an in vitro model of oxidative stress, H2O2 stimulation of H9c2 cardiomyoblasts induced calpain activation, CHOP expression, and cell death, all of which were prevented by the calpain inhibitor PD150606, as well as CHOP silencing. Conclusions Over-expression of calpastatin ameliorates MI-induced myocardial injury in mice. These protective effects of calpastatin are partially achieved through suppression of the ER stress/CHOP pathway.
Collapse
Affiliation(s)
- Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - James C Lacefield
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Douglas L Jones
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Tian-Qing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
33
|
Wang Y, Chen B, Huang CK, Guo A, Wu J, Zhang X, Chen R, Chen C, Kutschke W, Weiss RM, Boudreau RL, Margulies KB, Hong J, Song LS. Targeting Calpain for Heart Failure Therapy: Implications From Multiple Murine Models. JACC Basic Transl Sci 2018; 3:503-517. [PMID: 30175274 PMCID: PMC6115647 DOI: 10.1016/j.jacbts.2018.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/20/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Calpain is hyperactivated in human failing hearts and rodent heart failure models of different etiologies. Inhibition of calpain activity with MDL-28170 protects against cardiac dysfunction by preserving JP2 expression and T-tubule ultrastructural integrity in murine models of heart failure. Overexpression of JP2 delays the onset of early cardiac sudden death and heart failure, induced by calpain overactivation.
Heart failure remains a major cause of morbidity and mortality in developed countries. There is still a strong need to devise new mechanism-based treatments for heart failure. Numerous studies have suggested the importance of the Ca2+-dependent protease calpain in cardiac physiology and pathology. However, no drugs are currently under development or testing in human patients to target calpain for heart failure treatment. Herein the data demonstrate that inhibition of calpain activity protects against deleterious ultrastructural remodeling and cardiac dysfunction in multiple rodent models of heart failure, providing compelling evidence that calpain inhibition is a promising therapeutic strategy for heart failure treatment.
Collapse
Key Words
- CAPN1-OE, calpain-1 overexpressing
- E-C coupling, excitation-contraction coupling
- EF, ejection fraction
- IP, intraperitoneally
- ISO, isoproterenol
- JP2, junctophilin-2
- JP2-OE, junctophilin-2 overexpressing
- LV, left ventricle/ventricular
- MI, myocardial infarction
- RV, right ventricular
- SR, sarcoplasmic reticulum
- T-tubule, transverse tubule
- T-tubules
- TAB, transverse aortic banding
- TTpower, strength of regularity of the T-tubule system
- WT, wild-type
- calcium
- calpain
- excitation-contraction coupling
- heart failure
Collapse
Affiliation(s)
- Yihui Wang
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa.,Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Chun-Kai Huang
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Jennifer Wu
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Xiaoming Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Rong Chen
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Cheng Chen
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - William Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Robert M Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Ryan L Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jiang Hong
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine & François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine; Iowa City, Iowa.,Department of Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
34
|
Dong Z, Gong H, Chen Y, Wu H, Wu J, Deng Y, Song X. LH-21, A Peripheral Cannabinoid Receptor 1 Antagonist, Exerts Favorable Metabolic Modulation Including Antihypertensive Effect in KKAy Mice by Regulating Inflammatory Cytokines and Adipokines on Adipose Tissue. Front Endocrinol (Lausanne) 2018; 9:167. [PMID: 29731737 PMCID: PMC5920035 DOI: 10.3389/fendo.2018.00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Patients with obesity are susceptible to hypertension and diabetes. Over-activation of cannabinoid receptor 1 (CB1R) in adipose tissue is proposed in the pathophysiology of metabolic disorders, which led to the metabolic dysfunction of adipose tissue and deregulated production and secretion of adipokines. In the current study, we determined the impact of LH-21, a representative peripheral CB1R antagonist, on the obesity-accompanied hypertension and explored the modulatory action of LH-21 on the adipose tissue in genetically obese and diabetic KKAy mice. 3-week LH-21 treatment significantly decreased blood pressure with a concomitant reduction in body weight, white adipose tissue (WAT) mass, and a slight loss on food intake in KKAy mice. Meanwhile, glucose handling and dyslipidemia were also markedly ameliorated after treatment. Gene expression of pro-inflammatory cytokines in WAT and the aortae were both attenuated apparently by LH-21, as well the mRNA expression of adipokines (lipocalin-2, leptin) in WAT. Concomitant amelioration on the accumulation of lipocalin-2 was observed in both WAT and aortae. In corresponding with this, serum inflammatory related cytokines (tumor necrosis factor α, IL-6, and CXCL1), and lipocalin-2 and leptin were lowered notably. Thus according to current results, it can be concluded that the peripheral CB1R antagonist LH-21 is effective in managing the obesity-accompanied hypertension in KKAy mice. These metabolic benefits are closely associated with the regulation on the production and secretion of inflammatory cytokines and adipokines in the WAT, particularly alleviated circulating lipocalin-2 and its accumulation in aortae.
Collapse
Affiliation(s)
- Ziqi Dong
- Department of Cardiology, Jinshan Hospital of FuDan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of FuDan University, Shanghai, China
- *Correspondence: Hui Gong, ; Xinmao Song,
| | - Yadan Chen
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Hong Wu
- Department of Cardiology, Jinshan Hospital of FuDan University, Shanghai, China
| | - Jun Wu
- Department of Cardiology, Jinshan Hospital of FuDan University, Shanghai, China
| | - Yinghong Deng
- Department of Cardiology, Jinshan Hospital of FuDan University, Shanghai, China
| | - Xinmao Song
- Department of Radiation Oncology, Eye, Ear, Nose & Throat, Hospital of FuDan University, Shanghai, China
- *Correspondence: Hui Gong, ; Xinmao Song,
| |
Collapse
|
35
|
Guo Y, Zhuang X, Huang Z, Zou J, Yang D, Hu X, Du Z, Wang L, Liao X. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2017; 1864:238-251. [PMID: 28982613 DOI: 10.1016/j.bbadis.2017.09.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01mg/kg per 48h for 3months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Yue Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zena Huang
- Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | - Daya Yang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhimin Du
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Lichun Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
36
|
Wu J, Tian Z, Sun Y, Lu C, Liu N, Gao Z, Zhang L, Dong S, Yang F, Zhong X, Xu C, Lu F, Zhang W. Exogenous H 2S facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy. Cell Death Dis 2017; 8:e2992. [PMID: 28796243 PMCID: PMC5596567 DOI: 10.1038/cddis.2017.380] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. Hydrogen sulphide (H2S), a newly found gaseous signalling molecule, has an important role in many regulatory functions. The purpose of this study is to investigate the effects of exogenous H2S on autophagy and its possible mechanism in DCM induced by type II diabetes (T2DCM). In this study, we found that sodium hydrosulphide (NaHS) attenuated the augment in left ventricular (LV) mass and increased LV volume, decreased reactive oxygen species (ROS) production and ameliorated H2S production in the hearts of db/db mice. NaHS facilitated autophagosome content degradation, reduced the expression of P62 (a known substrate of autophagy) and increased the expression of microtubule-associated protein 1 light chain 3 II. It also increased the expression of autophagy-related protein 7 (ATG7) and Beclin1 in db/db mouse hearts. NaHS increased the expression of Kelch-like ECH-associated protein 1 (Keap-1) and reduced the ubiquitylation level in the hearts of db/db mice. 1,4-Dithiothreitol, an inhibitor of disulphide bonds, increased the ubiquitylation level of Keap-1, suppressed the expression of Keap-1 and abolished the effects of NaHS on ubiquitin aggregate clearance and ROS production in H9C2 cells treated with high glucose and palmitate. Overall, we concluded that exogenous H2S promoted ubiquitin aggregate clearance via autophagy, which might exert its antioxidative effect in db/db mouse myocardia. Moreover, exogenous H2S increased Keap-1 expression by suppressing its ubiquitylation, which might have an important role in ubiquitin aggregate clearance via autophagy. Our findings provide new insight into the mechanisms responsible for the antioxidative effects of H2S in the context of T2DCM.
Collapse
Affiliation(s)
- Jichao Wu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Zhiliang Tian
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Zhaopeng Gao
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Linxue Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
37
|
Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice. Basic Res Cardiol 2016; 112:10. [DOI: 10.1007/s00395-016-0596-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
|