1
|
Ghorbani B, Nasiri-Foomani N, Saedi A, Hasani-Baferani A, Samadi F. Effect of selenium nanoparticles-supplemented INRA96 extender on Turkmen stallion sperm quality and lipid peroxidation during storage at 5°C. J Equine Vet Sci 2024; 136:105073. [PMID: 38642814 DOI: 10.1016/j.jevs.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Oxidative damage to sperm during cooled storage is a significant issue, and selenium with antioxidant potential could be a solution. Moreover, nano-sized selenium offers more advantages compared to its ionic forms. This research aimed to assess the impact of selenium nanoparticles (SeNPs) supplemented in the INRA96 extender on the quality of Turkmen stallion sperm and lipid peroxidation during 72 h of cooled storage. A total of 25 ejaculates were treated using different concentrations of SeNPs, including no SeNPs (Control), 0.5 μM SeNPs (SeNPs 0.5), 1.0 μM SeNPs (SeNPs 1.0), and 1.5 μM SeNPs (SeNPs 1.5). The samples were then evaluated for sperm quality characteristics and lipid peroxidation. The results indicated a significant decrease (P < 0.05) in total and progressive motility, viability, and plasma membrane functionality after 48 h of cooled storage, along with an increase (P < 0.05) in spermatozoa abnormality and malondialdehyde (MDA) levels as the cooled storage time increased. However, SeNPs demonstrated an improvement (P < 0.05) in sperm total motility after 24 h of cooled storage, progressive motility throughout the entire 72-hour period, functionality of the plasma membrane after 48 hours of cooled storage, spermatozoa abnormality after 48 h of cooled storage, and semen MDA levels throughout the cooled storage (P < 0.05). In conclusion, the enrichment of the INRA96 extender with nano-sized selenium can enhance the quality of Turkmen stallion sperm during storage at 5 °C by increasing total, progressive, and curvilinear motilities, improving plasma membrane functionality, and reducing sperm abnormalities and lipid peroxidation.
Collapse
Affiliation(s)
- B Ghorbani
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - N Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - A Saedi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - A Hasani-Baferani
- Agricultural Research Education and Extension Organization, Tehran, Iran
| | - F Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran.
| |
Collapse
|
2
|
Nasiri-Foomani N, Ebadi M, Hassani S, Zeinoaldini S, Saedi A, Samadi F. Preparation, characterization, and ex-vivo evaluation of curcumin-loaded niosomal nanoparticles on the equine sperm quality during cooled storage. Int J Biol Macromol 2024; 264:130620. [PMID: 38447838 DOI: 10.1016/j.ijbiomac.2024.130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Oxidative damage to sperm during cooled storage is a significant issue, and curcumin, with its antioxidant properties, could be a solution. However, its low bioavailability presents a challenge that this study aims to address. The primary objective of this study was to investigate the potential of curcumin-loaded niosomal nanoparticles (Cur-LNN) to enhance the antioxidant properties of curcumin and its effect on sperm quality during 72 h cooled storage. The thin-film hydration procedure was applied to prepare Cur-LNN. The fabricated noisomal nanocarriers were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy. Moreover, the encapsulation and loading efficiency, in vitro release study, and ex-vivo antioxidant functionality of Cur-LNN on the stallion sperm preserved under cooled storage conditions were assessed. The fabricated Cur-LNN was spherical in shape and had an average particle size of 163.1 ± 1.8 nm, a zeta potential of -34.1 ± 1.9 mV, a poly-dispersity index of 0.339 ± 0.045, an encapsulation efficiency of 92.34 ± 0.18 %, and a loading efficiency of 35.57 ± 1.36 %. Ex-vivo evaluation revealed that supplementation of the semen extender with Cur-LNN has the potential to enhance sperm quality by improving total and progressive motility, plasma membrane functionality, and lipid peroxidation. These results demonstrate that Cur-LNN exhibited stronger antioxidant and protective effects than curcumin. Although further in vivo investigations are warranted, our ex-vivo results suggest that Cur-LNN has the potential to attenuate oxidative damage and can be used to fortify the antioxidant capacity of equine semen under cooled storage conditions.
Collapse
Affiliation(s)
- Niloofar Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Ebadi
- Department of Chemistry, Faculty of Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Saeed Hassani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Saeed Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Aria Saedi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
3
|
Davis MS, Bayly WM, Hansen CM, Barrett MR, Blake CA. Effects of hyperthermia and acidosis on mitochondrial production of reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2023; 325:R725-R734. [PMID: 37811714 DOI: 10.1152/ajpregu.00177.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Exercise is associated with the development of oxidative stress, but the specific source and mechanism of production of pro-oxidant chemicals during exercise has not been confirmed. We used equine skeletal muscle mitochondria to test the hypothesis that hyperthermia and acidosis affect mitochondrial oxygen consumption and production of reactive oxygen species (ROS). Skeletal muscle biopsies were obtained at rest, after an acute episode of fatiguing exercise, and after a 9-wk conditioning program to increase aerobic fitness. Mitochondrial oxygen consumption and ROS production were measured simultaneously using high-resolution respirometry. Both hyperthermia and acidosis increased nonphosphorylating (LEAK) respiration (5.8× and 3.0×, respectively, P < 0.001) and decreased efficiency of oxidative phosphorylation. The combined effects of hyperthermia and acidosis resulted in large decreases in phosphorylating respiration, further decreasing oxidative phosphorylation efficiency from 97% to 86% (P < 0.01). Increased aerobic fitness reduced the effects of acidosis on LEAK respiration. Hyperthermia increased and acidosis decreased ROS production (2× and 0.23×, respectively, P < 0.001). There was no effect of acute exercise, but an aerobic conditioning program was associated with increased ROS production during both nonphosphorylating and phosphorylating respiration. Hyperthermia increased the ratio of ROS production to O2 consumption during phosphorylating respiration, suggesting that high-temperature impaired transfer of energy through the electron transfer system despite relatively low mitochondrial membrane potential. These data support the role of skeletal muscle mitochondria in the development of exercise-induced oxidative stress, particularly during forms of exercise that result in prolonged hyperthermia without acidosis.NEW & NOTEWORTHY The results of this study provide evidence for the role of mitochondria-derived ROS in the development of systemic oxidative stress during exercise as well as skeletal muscle diseases such as exertional rhabdomyolysis.
Collapse
Affiliation(s)
- Michael S Davis
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Warwick M Bayly
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States
| | - Cristina M Hansen
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States
| | - Montana R Barrett
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Cara A Blake
- Central Hospital for Veterinary Medicine, North Haven, Connecticut, United States
| |
Collapse
|
4
|
Bachman LO, Zwezdaryk KJ. Targeting the Host Mitochondria as a Novel Human Cytomegalovirus Antiviral Strategy. Viruses 2023; 15:v15051083. [PMID: 37243170 DOI: 10.3390/v15051083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) exploits host mitochondrial function to promote viral replication. HCMV gene products have been described to directly interact and alter functional or structural aspects of host mitochondria. Current antivirals against HCMV, such as ganciclovir and letermovir, are designed against viral targets. Concerns with the current antivirals include toxicity and viral resistance. Targeting host mitochondrial function is a promising alternative or complimentary antiviral approach as (1) drugs targeting host mitochondrial function interact with host targets, minimizing viral resistance, and (2) host mitochondrial metabolism plays key roles in HCMV replication. This review describes how HCMV alters mitochondrial function and highlights pharmacological targets that can be exploited for novel antiviral development.
Collapse
Affiliation(s)
- Lauryn O Bachman
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA 70112, USA
| | - Kevin J Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Noh JK, Woo SR, Kong M, Lee MK, Lee JW, Lee YC, Ko S, Eun Y. Gene signature predicting recurrence in oral squamous cell carcinoma is characterized by increased oxidative phosphorylation. Mol Oncol 2022; 17:134-149. [PMID: 36271693 PMCID: PMC9812830 DOI: 10.1002/1878-0261.13328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023] Open
Abstract
Although numerous studies have used systemic approaches to identify prognostic predictors in oral squamous cell carcinoma (OSCC), the effectiveness of these approaches has not been assessed clinically. Further, the mechanism underlying malignant behaviors in OSCC is poorly characterized. This study aimed to develop and verify accurate prognostic predictors for OSCC patients and assess the associated biology. We identified an OSCC-recurrence-related gene signature (ORGS) using a Cox regression analysis. Functional enrichment analysis was used to identify enriched pathways and biological processes to reveal the underlying mechanism of OSCC malignant behavior. The ORGS successfully divided OSCC patients into low- and high-risk groups with significantly different overall survivals. Pathway analysis revealed oxidative phosphorylation (OXPHOS) as a signaling pathway associated with the ORGS in OSCC. Interestingly, high OXPHOS status was strongly associated with poor overall survival in OSCC patients. Mediator complex subunit 30 (MED30) was a predicted upstream regulator of OXPHOS, and knockdown of MED30 reduced histone acetylation. We identified that the ORGS was strongly correlated with OXPHOS regulatory processes, suggesting OXPHOS as a key mechanism leading to poor prognosis in OSCC.
Collapse
Affiliation(s)
- Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Seon Rang Woo
- Department of Otolaryngology‐Head & Neck Surgery, Kyung Hee University School of MedicineKyung Hee University Medical CenterSeoulKorea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University School of MedicineKyung Hee University Medical CenterSeoulKorea
| | - Min Kyeong Lee
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Jung Woo Lee
- Department of Oral and Maxillofacial Surgery, School of DentistryKyung Hee UniversitySeoulKorea
| | - Young Chan Lee
- Department of Otolaryngology‐Head & Neck Surgery, Kyung Hee University School of MedicineKyung Hee University Medical CenterSeoulKorea
| | - Seong‐Gyu Ko
- Department of Preventive Medicine, College of Korean MedicineKyung Hee UniversitySeoulKorea
| | - Young‐Gyu Eun
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea,Department of Otolaryngology‐Head & Neck Surgery, Kyung Hee University School of MedicineKyung Hee University Medical CenterSeoulKorea
| |
Collapse
|
6
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
7
|
Principi E, Sondo E, Bianchi G, Ravera S, Morini M, Tomati V, Pastorino C, Zara F, Bruno C, Eva A, Pedemonte N, Raffaghello L. Targeting of Ubiquitin E3 Ligase RNF5 as a Novel Therapeutic Strategy in Neuroectodermal Tumors. Cancers (Basel) 2022; 14:cancers14071802. [PMID: 35406574 PMCID: PMC8997491 DOI: 10.3390/cancers14071802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
RNF5, an endoplasmic reticulum (ER) E3 ubiquitin ligase, participates to the ER-associated protein degradation guaranteeing the protein homeostasis. Depending on tumor model tested, RNF5 exerts pro- or anti-tumor activity. The aim of this study was to elucidate the controversial role of RNF5 in neuroblastoma and melanoma, two neuroectodermal tumors of infancy and adulthood, respectively. RNF5 gene levels are evaluated in publicly available datasets reporting the gene expression profile of melanoma and neuroblastoma primary tumors at diagnosis. The therapeutic effect of Analog-1, an RNF5 pharmacological activator, was investigated on in vitro and in vivo neuroblastoma and melanoma models. In both neuroblastoma and melanoma patients the high expression of RNF5 correlated with a better prognostic outcome. Treatment of neuroblastoma and melanoma cell lines with Analog-1 reduced cell viability by impairing the glutamine availability and energy metabolism through inhibition of F1Fo ATP-synthase activity. This latter event led to a marked increase in oxidative stress, which, in turn, caused cell death. Similarly, neuroblastoma- and melanoma-bearing mice treated with Analog-1 showed a significant delay of tumor growth in comparison to those treated with vehicle only. These findings validate RNF5 as an innovative drug target and support the development of Analog-1 in early phase clinical trials for neuroblastoma and melanoma patients.
Collapse
Affiliation(s)
- Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanna Bianchi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, 16132 Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Federico Zara
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | | | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
8
|
Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production. Cells 2022; 11:cells11060992. [PMID: 35326443 PMCID: PMC8946758 DOI: 10.3390/cells11060992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
This study addresses the eventual consequence of cytochrome c oxidase (CytOx) inhibition by ATP at high ATP/ADP ratio in isolated rat heart mitochondria. Earlier, it has been demonstrated that the mechanism of allosteric ATP inhibition of CytOx is one of the key regulations of mitochondrial functions. It is relevant that aiming to maintain a high ATP/ADP ratio for the measurement of CytOx activity effectuating the enzymatic inhibition as well as mitochondrial respiration, optimal concentration of mitochondria is critically important. Likewise, only at this concentration, were the differences in ΔΨm and ROS concentrations measured under various conditions significant. Moreover, when CytOx activity was inhibited in the presence of ATP, mitochondrial respiration and ΔΨm both remained static, while the ROS production was markedly decreased. Consubstantial results were found when the electron transport chain was inhibited by antimycin A, letting only CytOx remain functional to support the energy production. This seems to corroborate that the decrease in mitochondrial ROS production is solely the effect of ATP binding to CytOx which results in static respiration as well as membrane potential.
Collapse
|
9
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
10
|
Ramzan R, Napiwotzki J, Weber P, Kadenbach B, Vogt S. Cholate Disrupts Regulatory Functions of Cytochrome c Oxidase. Cells 2021; 10:1579. [PMID: 34201437 PMCID: PMC8303988 DOI: 10.3390/cells10071579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c oxidase (CytOx), the oxygen-accepting and rate-limiting enzyme of mitochondrial respiration, binds with 10 molecules of ADP, 7 of which are exchanged by ATP at high ATP/ADP-ratios. These bound ATP and ADP can be exchanged by cholate, which is generally used for the purification of CytOx. Many crystal structures of isolated CytOx were performed with the enzyme isolated from mitochondria using sodium cholate as a detergent. Cholate, however, dimerizes the enzyme isolated in non-ionic detergents and induces a structural change as evident from a spectral change. Consequently, it turns off the "allosteric ATP-inhibition of CytOx", which is reversibly switched on under relaxed conditions via cAMP-dependent phosphorylation and keeps the membrane potential and ROS formation in mitochondria at low levels. This cholate effect gives an insight into the structural-functional relationship of the enzyme with respect to ATP inhibition and its role in mitochondrial respiration and energy production.
Collapse
Affiliation(s)
- Rabia Ramzan
- Biochemical-Pharmacological Center, Cardiovascular Research Laboratory, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; (R.R.); (P.W.)
- Department of Heart Surgery, University Hospital of Giessen and Marburg, D-35043 Campus Marburg, Germany
| | | | - Petra Weber
- Biochemical-Pharmacological Center, Cardiovascular Research Laboratory, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; (R.R.); (P.W.)
| | | | - Sebastian Vogt
- Biochemical-Pharmacological Center, Cardiovascular Research Laboratory, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; (R.R.); (P.W.)
- Department of Heart Surgery, University Hospital of Giessen and Marburg, D-35043 Campus Marburg, Germany
| |
Collapse
|
11
|
Khlopkov A, Sherstneva O, Ladeynova M, Grinberg M, Yudina L, Sukhov V, Vodeneev V. Participation of calcium ions in induction of respiratory response caused by variation potential in pea seedlings. PLANT SIGNALING & BEHAVIOR 2021; 16:1869415. [PMID: 33404323 PMCID: PMC7971294 DOI: 10.1080/15592324.2020.1869415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Electrical signals in plants caused by external stimuli are capable of inducing various physiological responses. The mechanisms of transformation of a long-distance electrical signal (ES) into a functional response remain largely unexplored and require additional research. In this work, we investigated the role of calcium ions in the development of ES-induced respiratory response. Gradual heating of the leaf causes the propagation of variation potential (VP) in the pea seedling. The propagation of VP leads to a transient activation of respiration in an unaffected leaf. During the VP generation, a transient increase in the intracellular calcium concentration takes place. A calcium channel blocker inhibits the respiratory response, and a calcium ionophore induces the activation of respiration. Inhibitory analysis has showed that the VP-induced increase in respiration activity is probably associated with calcium-mediated activation of rotenone-insensitive alternative NADPH dehydrogenases in mitochondria.
Collapse
Affiliation(s)
- Andrey Khlopkov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Oksana Sherstneva
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria Ladeynova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Lyubov Yudina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion 2021; 57:23-36. [PMID: 33340709 PMCID: PMC10494232 DOI: 10.1016/j.mito.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Taylor Andrews
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
13
|
Ramzan R, Kadenbach B, Vogt S. Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase. Cells 2021; 10:cells10030514. [PMID: 33671025 PMCID: PMC7997345 DOI: 10.3390/cells10030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the "allosteric ATP inhibition of COX" is described here in more detail. Most regulatory properties of COX are related to "supernumerary" subunits, which are largely absent in bacterial COX. The "allosteric ATP inhibition of COX" was also recently described in intact isolated rat heart mitochondria.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany;
| | - Bernhard Kadenbach
- Fachbereich Chemie, Philipps-University, D-35032 Marburg, Germany
- Correspondence:
| | - Sebastian Vogt
- Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany;
| |
Collapse
|
14
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. ACTA ACUST UNITED AC 2020; 42:536-551. [PMID: 32267339 PMCID: PMC7524405 DOI: 10.1590/1516-4446-2019-0732] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by changes in mood that alternate between mania and hypomania or between depression and mixed states, often associated with functional impairment. Although effective pharmacological and non-pharmacological treatments are available, several patients with BD remain symptomatic. The advance in the understanding of the neurobiology underlying BD could help in the identification of new therapeutic targets as well as biomarkers for early detection, prognosis, and response to treatment in BD. In this review, we discuss genetic, epigenetic, molecular, physiological and neuroimaging findings associated with the neurobiology of BD. Despite the advances in the pathophysiological knowledge of BD, the diagnosis and management of the disease are still essentially clinical. Given the complexity of the brain and the close relationship between environmental exposure and brain function, initiatives that incorporate genetic, epigenetic, molecular, physiological, clinical, environmental data, and brain imaging are necessary to produce information that can be translated into prevention and better outcomes for patients with BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Alexandre P Diaz
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA
| | - Camila N Lima
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| |
Collapse
|
16
|
Nath S. Molecular-level understanding of biological energy coupling and transduction: Response to "Chemiosmotic misunderstandings". Biophys Chem 2020; 268:106496. [PMID: 33160142 DOI: 10.1016/j.bpc.2020.106496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
In a recent paper entitled "Chemiosmotic misunderstandings", it is claimed that "enough shortcomings in Mitchell's chemiosmotic theory have not been found and that a novel paradigm that offers at least as much explanatory power as chemiosmosis is not ready." This view is refuted by a wealth of molecular-level experimental data and strong new theoretical and computational evidence. It is shown that the chemiosmotic theory was beset with a large number of major shortcomings ever since the time when it was first proposed in the 1960s. These multiple shortcomings and flaws of chemiosmosis were repeatedly pointed out in incisive critiques by biochemical authorities of the late 20th century. All the shortcomings and flaws have been shown to be rectified by a quantitative, unified molecular-level theory that leads to a deeper and far more accurate understanding of biological energy coupling and ATP synthesis. The new theory is shown to be consistent with pioneering X-ray and cryo-EM structures and validated by state-of-the-art single-molecule techniques. Several new biochemical experimental tests are proposed and constructive ways for providing a revitalizing conceptual background and theory for integration of the available experimental information are suggested.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
17
|
Kim MS, Gernapudi R, Cedeño YC, Polster BM, Martinez R, Shapiro P, Kesari S, Nurmemmedov E, Passaniti A. Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Oncotarget 2020; 11:3863-3885. [PMID: 33196708 PMCID: PMC7597410 DOI: 10.18632/oncotarget.27743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and β subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| |
Collapse
|
18
|
Kadenbach B. Complex IV - The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2020; 58:296-302. [PMID: 33069909 DOI: 10.1016/j.mito.2020.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
ATP, the universal energy currency in all living cells, is mainly synthesized in mitochondria by oxidative phosphorylation (OXPHOS). The final and rate limiting step of the respiratory chain is cytochrome c oxidase (COX) which represents the regulatory center of OXPHOS. COX is regulated through binding of various effectors to its "supernumerary" subunits, by reversible phosphorylation, and by expression of subunit isoforms. Of particular interest is its feedback inhibition by ATP, the final product of OXPHOS. This "allosteric ATP-inhibition" of phosphorylated and dimeric COX maintains a low and healthy mitochondrial membrane potential (relaxed state), and prevents the formation of ROS (reactive oxygen species) which are known to cause numerous diseases. Excessive work and stress abolish this feedback inhibition of COX by Ca2+-activated dephosphorylation which leads to monomerization and movement of NDUFA4 from complex I to COX with higher rates of COX activity and ATP synthesis (active state) but increased ROS formation and decreased efficiency.
Collapse
|
19
|
Kadenbach B. Regulation of cytochrome c oxidase contributes to health and optimal life. World J Biol Chem 2020; 11:52-61. [PMID: 33024517 PMCID: PMC7520645 DOI: 10.4331/wjbc.v11.i2.52] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Fachbereich Chemie, Philipps-Universität Marburg, Marburg D-35043, Hessen, Germany
| |
Collapse
|
20
|
Carotenoid metabolism in mitochondrial function. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Mitochondria are highly dynamic organelles that are found in most eukaryotic organisms. It is broadly accepted that mitochondria originally evolved from prokaryotic bacteria, e.g. proteobacteria. The mitochondrion has its independent genome that encodes 37 genes, including 13 genes for oxidative phosphorylation. Accumulative evidence demonstrates that mitochondria are not only the powerhouse of the cells by supplying adenosine triphosphate, but also exert roles as signalling organelles in the cell fate and function. Numerous factors can affect mitochondria structurally and functionally. Carotenoids are a large group of fat-soluble pigments commonly found in our diets. Recently, much attention has been paid in carotenoids as dietary bioactives in mitochondrial structure and function in human health and disease, though the mechanistic research is limited. Here, we update the recent progress in mitochondrial functioning as signalling organelles in human health and disease, summarize the potential roles of carotenoids in regulation of mitochondrial redox homeostasis, biogenesis, and mitophagy, and discuss the possible approaches for future research in carotenoid regulation of mitochondrial function.
Collapse
|
21
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
22
|
Hotka M, Cagalinec M, Hilber K, Hool L, Boehm S, Kubista H. L-type Ca 2+ channel-mediated Ca 2+ influx adjusts neuronal mitochondrial function to physiological and pathophysiological conditions. Sci Signal 2020; 13:eaaw6923. [PMID: 32047116 PMCID: PMC7116774 DOI: 10.1126/scisignal.aaw6923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
L-type voltage-gated Ca2+ channels (LTCCs) are implicated in neurodegenerative processes and cell death. Accordingly, LTCC antagonists have been proposed to be neuroprotective, although this view is disputed, because intentional LTCC activation can also have beneficial effects. LTCC-mediated Ca2+ influx influences mitochondrial function, which plays a crucial role in the regulation of cell viability. Hence, we investigated the effect of modulating LTCC-mediated Ca2+ influx on mitochondrial function in cultured hippocampal neurons. To activate LTCCs, neuronal activity was stimulated by increasing extracellular K+ or by application of the GABAA receptor antagonist bicuculline. The activity of LTCCs was altered by application of an agonistic (Bay K8644) or an antagonistic (isradipine) dihydropyridine. Our results demonstrated that activation of LTCC-mediated Ca2+ influx affected mitochondrial function in a bimodal manner. At moderate stimulation strength, ATP synthase activity was enhanced, an effect that involved Ca2+-induced Ca2+ release from intracellular stores. In contrast, high LTCC-mediated Ca2+ loads led to a switch in ATP synthase activity to reverse-mode operation. This effect, which required nitric oxide, helped to prevent mitochondrial depolarization and sustained increases in mitochondrial Ca2+ Our findings indicate a complex role of LTCC-mediated Ca2+ influx in the tuning and maintenance of mitochondrial function. Therefore, the use of LTCC inhibitors to protect neurons from neurodegeneration should be reconsidered carefully.
Collapse
Affiliation(s)
- Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria.
| | - Michal Cagalinec
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Laboratory of Mitochondrial Dynamics, Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50 411 Tartu, Estonia
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
| | - Livia Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA 6009, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Tuning mitochondrial structure and function to criticality by fluctuation-driven mechanotransduction. Sci Rep 2020; 10:407. [PMID: 31941960 PMCID: PMC6962425 DOI: 10.1038/s41598-019-57301-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/28/2019] [Indexed: 01/11/2023] Open
Abstract
Cells in vascular walls are exposed to blood pressure variability (BPV)-induced cycle-by-cycle fluctuations in mechanical forces which vary considerably with pathology. For example, BPV is elevated in hypertension but reduced under anesthesia. We hypothesized that the extent of mechanical fluctuations applied to vascular smooth muscle cells (VSMCs) regulates mitochondrial network structure near the percolation transition, which also influences ATP and reactive oxygen species (ROS) production. We stretched VSMCs in culture with cycle-by-cycle variability in area strain ranging from no variability (0%), as in standard laboratory conditions, through abnormally small (6%) and physiological (25%) to pathologically high (50%) variability mimicking hypertension, superimposed on 0.1 mean area strain. To explore how oxidative stress and ATP-dependent metabolism affect mitochondria, experiments were repeated in the presence of hydrogen peroxide and AMP-PNP, an ATP analog and competitive inhibitor of ATPases. Physiological 25% variability maintained activated mitochondrial cluster structure at percolation with a power law distribution and exponent matching the theoretical value in 2 dimensions. The 25% variability also maximized ATP and minimized cellular and mitochondrial ROS production via selective control of fission and fusion proteins (mitofusins, OPA1 and DRP1) as well as through stretch-sensitive regulation of the ATP synthase and VDAC1, the channel that releases ATP into the cytosol. Furthermore, pathologically low or high variability moved mitochondria away from percolation which reduced the effectiveness of the electron transport chain by lowering ATP and increasing ROS productions. We conclude that normal BPV is required for maintaining optimal mitochondrial structure and function in VSMCs.
Collapse
|
24
|
Trubitsyn AG. The Mechanism of Programmed Aging: The Way to Create a Real Remedy for Senescence. Curr Aging Sci 2020; 13:31-41. [PMID: 31660847 PMCID: PMC7403645 DOI: 10.2174/1874609812666191014111422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Accumulation of various damages is considered the primary cause of aging throughout the history of gerontology. No progress has been made in extending animal lifespan under the guidance of this concept. This concept denies the existence of longevity genes, but it has been experimentally shown that manipulating genes that affect cell division rates can increase the maximum lifespan of animals. These methods of prolonging life are unsuitable for humans because of dangerous side effects, but they undoubtedly indicate the programmed nature of aging. OBJECTIVE The objective was to understand the mechanism of programmed aging to determine how to solve the problem of longevity. METHODS Fundamental research has already explored key details relating to the mechanism of programmed aging, but they are scattered across different fields of knowledge. The way was to recognize and combine them into a uniform mechanism. RESULTS Only a decrease in bioenergetics is under direct genetic control. This causes many different harmful processes that serve as the execution mechanism of the aging program. The aging rate and, therefore, lifespan are determined by the rate of cell proliferation and the magnitude of the decrease in bioenergetics per cell division in critical tissues. CONCLUSION The mechanism of programmed aging points the way to achieving an unlimited healthy life; it is necessary to develop a means for managing bioenergetics. It has already been substantially studied by molecular biologists and is now waiting for researchers from gerontology.
Collapse
Affiliation(s)
- Alexander G. Trubitsyn
- Institute of Biology of Far Eastern Branch of Russian Academy of Sciences, pr. 100-letiya Vladivostoka 159, Vladivostok, 690022, Russia
| |
Collapse
|
25
|
Howald S, Cominassi L, LeBayon N, Claireaux G, Mark FC. Future ocean warming may prove beneficial for the northern population of European seabass, but ocean acidification will not. ACTA ACUST UNITED AC 2019; 222:jeb.213017. [PMID: 31624098 DOI: 10.1242/jeb.213017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
The world's oceans are acidifying and warming as a result of increasing atmospheric CO2 concentrations. The thermal tolerance of fish greatly depends on the cardiovascular ability to supply the tissues with oxygen. The highly oxygen-dependent heart mitochondria thus might play a key role in shaping an organism's tolerance to temperature. The present study aimed to investigate the effects of acute and chronic warming on the respiratory capacity of European sea bass (Dicentrarchus labrax L.) heart mitochondria. We hypothesized that acute warming would impair mitochondrial respiratory capacity, but be compensated for by life-time conditioning. Increasing P CO2 may additionally cause shifts in metabolic pathways by inhibiting several enzymes of the cellular energy metabolism. Among other shifts in metabolic pathways, acute warming of heart mitochondria of cold life-conditioned fish increased leak respiration rate, suggesting a lower aerobic capacity to synthesize ATP with acute warming. However, thermal conditioning increased mitochondrial functionality, e.g. higher respiratory control ratios in heart mitochondria of warm life-conditioned compared with cold life-conditioned fish. Exposure to high P CO2 synergistically amplified the effects of acute and long-term warming, but did not result in changes by itself. This high ability to maintain mitochondrial function under ocean acidification can be explained by the fact that seabass are generally able to acclimate to a variety of environmental conditions. Improved mitochondrial energy metabolism after warm conditioning could be due to the origin of this species in the warm waters of the Mediterranean. Our results also indicate that seabass are not yet fully adapted to the colder temperatures in their northern distribution range and might benefit from warmer temperatures in these latitudes.
Collapse
Affiliation(s)
- Sarah Howald
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570 Bremerhaven, Germany .,Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767 Hamburg, Germany
| | - Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767 Hamburg, Germany
| | - Nicolas LeBayon
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, 29280 Plouzané, France
| | - Guy Claireaux
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, 29280 Plouzané, France.,Université de Bretagne Occidentale, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570 Bremerhaven, Germany
| |
Collapse
|
26
|
Boeckx J, Pols S, Hertog MLATM, Nicolaï BM. Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1384. [PMID: 31737012 PMCID: PMC6831743 DOI: 10.3389/fpls.2019.01384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 05/07/2023]
Abstract
After harvest, fruit remain metabolically active and continue to ripen. The main goal of postharvest storage is to slow down the metabolic activity of the detached fruit. In many cases, this is accomplished by storing fruit at low temperature in combination with low oxygen (O2) and high carbon dioxide (CO2) partial pressures. However, altering the normal atmospheric conditions is not without any risk and can induce low-O2 stress. This review focuses on the central carbon metabolism of apple fruit during postharvest storage, both under normal O2 conditions and under low-O2 stress conditions. While the current review is focused on apple fruit, most research on the central carbon metabolism, low-O2 stress, and O2 sensing has been done on a range of different model plants (e.g., Arabidopsis, potato, rice, and maize) using various plant organs (e.g., seedlings, tubers, roots, and leaves). This review pulls together this information from the various sources into a coherent overview to facilitate the research on the central carbon metabolism in apple fruit exposed to postharvest low-O2 stress.
Collapse
Affiliation(s)
| | | | | | - Bart M. Nicolaï
- KU Leuven, BIOSYST-MeBioS, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| |
Collapse
|
27
|
Ramzan R, Rhiel A, Weber P, Kadenbach B, Vogt S. Reversible dimerization of cytochrome c oxidase regulates mitochondrial respiration. Mitochondrion 2019; 49:149-155. [PMID: 31419492 DOI: 10.1016/j.mito.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Almost all energy consumed by higher organisms, either in the form of ATP or heat, is produced in mitochondria by respiration and oxidative phosphorylation through five protein complexes in the inner membrane. High-resolution x-ray analysis of crystallized cytochrome c oxidase (CytOx), the final oxygen-accepting complex of the respiratory chain, isolated by using cholate as detergent, revealed a dimeric structure with 13 subunits in each monomer. In contrast, CytOx isolated with non-ionic detergents appeared to be monomeric. Our data indicate in vivo a continuous transition between CytOx monomers and dimers via reversible phosphorylation. Increased intracellular calcium, as a consequence of stress, dephosphorylates and monomerises CytOx, whereas cAMP rephosphorylates and dimerises it. Only dimeric CytOx exhibits an "allosteric ATP-inhibition" which inhibits respiration at high cellular ATP/ADP-ratios and could prevent oxygen radical formation and the generation of diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; Department of Heart Surgery, University Hospital of Giessen and Marburg, Campus Marburg, D-35043, Germany
| | - Annika Rhiel
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany
| | - Petra Weber
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany
| | | | - Sebastian Vogt
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; Department of Heart Surgery, University Hospital of Giessen and Marburg, Campus Marburg, D-35043, Germany
| |
Collapse
|
28
|
Frión-Herrera Y, Gabbia D, Díaz-García A, Cuesta-Rubio O, Carrara M. Chemosensitizing activity of Cuban propolis and nemorosone in doxorubicin resistant human colon carcinoma cells. Fitoterapia 2019; 136:104173. [DOI: 10.1016/j.fitote.2019.104173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
|
29
|
Vogt S, Irqsusi M, Naraghi H, Sattler A, Ruppert V, Weber P, Rhiel A, Ramzan R. Mitochondrial active and relaxed state respiration after heat shock mRNA response in the heart. J Therm Biol 2019; 80:106-112. [PMID: 30784473 DOI: 10.1016/j.jtherbio.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Induction of Heat Shock Proteins results in cytoprotection. Beneficial effect results from transcription and translational cellular components' involvement that defends metabolism and thus induce ischemic protection of the tissue. Mitochondrial respiration is also involved in stress- induced conditions. It is not a uniform process. Cytochrome c Oxidase (CytOx) representing complex IV of the Electron Transfer Chain (ETC) has a regulatory role for mitochondrial respiratory activity, which is tested in our study after hsp induction. Moreover, protein translation for mitochondrial components was probed by the detection of MT-CO1 for Subunit 1 of CytOx neosynthesis. Wistar rats were subjected to whole-body hyperthermia at 42.0-42.5 °C for 15 min followed by a normothermic recovery period. Heat shock response was monitored time dependent from LV biopsies of all control and heat treated animals with PCR-analysis for hsp 32, 60, 70.1, 70.2, 90 and MT-CO1 expression at 15, 30, 45, 60, 120 and 360 min recovery (n = 5 in each group), respectively. Enzymatic activity of CytOx were evaluated polarographically. High energy phosphates were detected by chromatographic analysis. The mRNA expression of MT-CO1 peaked at 60 min and was accompanied by hsp 32 (r = 0.457; p = 0.037) and hsp 70.2 (r = 0.615; p = 0.003) upregulation. With hsp induction, mitochondrial respiration was increased initially. Enzymatic activity reconciled from active into relaxed status wherein CytOx activity was completely inhibited by ATP. Myocardial ATP content increased from stress induced point i.e. < 1 µmol g-1 protein w/w to finally 1.5 ± 0.53 µmol g-1 protein w/w at 120 min recovery interval. Hyperthermic, myocardial hsp- induction goes along with increased CytOx activity representing an increased "active" mitochondrial respiration. In parallel, de -novo holoenzyme assembly of CytOx begins as shown by MT-CO1 upregulation at 60 min recovery time crossing with a final return to the physiological "relaxed" state and ATP -inhibited respiration.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany.
| | - Marc Irqsusi
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Hamid Naraghi
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Alexander Sattler
- Center for Internal Medicine, Cardiology, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Volker Ruppert
- Center for Internal Medicine, Cardiology, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Petra Weber
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany
| | - Annika Rhiel
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany
| | - Rabia Ramzan
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany
| |
Collapse
|
30
|
Park CB, Choi VN, Jun JB, Kim JH, Lee Y, Lee J, Lim G, Kim J, Jeong SY, Yim SY. Identification of a rare homozygous c.790C>T variation in the TFB2M gene in Korean patients with autism spectrum disorder. Biochem Biophys Res Commun 2018; 507:148-154. [PMID: 30414672 DOI: 10.1016/j.bbrc.2018.10.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction and subsequent enhanced oxidative stress is implicated in the pathogenesis of autism spectrum disorder (ASD). Mitochondrial transcription factor B2 (TFB2M) is an essential protein in mitochondrial gene expression. No reports have described TFB2M mutations and variations involved in any human diseases. We identified a rare homozygous c.790C>T (His264Tyr) variation in TFB2M gene in two Korean siblings with ASD by whole-exome sequencing. The roles of the TFB2M variation in the pathogenesis of ASD were investigated. Patient fibroblasts revealed increased transcription of mitochondrial genes and mitochondrial function in terms of ATP, membrane potential, oxygen consumption, and reactive oxygen species (ROS). Overexpression of the TFB2M variant in primary-cultured fibroblasts demonstrated significantly increased transcription of mitochondrial genes and mitochondrial function compared with overexpression of wild-type TFB2M. Molecular dynamics simulation of the TFB2M variant protein suggested an increase in the rigidity of the hinge region, which may cause alterations in loading and/or unloading of TFB2M on target DNA. Our results suggest that augmentation of mitochondrial gene expression and subsequent enhancement of mitochondrial function may be associated with the pathogenesis of ASD in Korean patients.
Collapse
Affiliation(s)
- Chan Bae Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Vit-Na Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Medical Genetics, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Republic of Korea
| | - Ji-Hae Kim
- Institute of Rheumatology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngsoo Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jinhyuk Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - GyuTae Lim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeonghyun Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Medical Genetics, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Seon-Yong Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Medical Genetics, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Shin-Young Yim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
31
|
Vogt S, Ruppert V, Pankuweit S, Paletta JPJ, Rhiel A, Weber P, Irqsusi M, Cybulski P, Ramzan R. Myocardial insufficiency is related to reduced subunit 4 content of cytochrome c oxidase. J Cardiothorac Surg 2018; 13:95. [PMID: 30223867 PMCID: PMC6142347 DOI: 10.1186/s13019-018-0785-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/11/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Treatment of heart failure remains one of the most challenging task for intensive care medicine, cardiology and cardiac surgery. New options and better indicators are always required. Understanding the basic mechanisms underlying heart failure promote the development of adjusted therapy e.g. assist devices and monitoring of recovery. If cardiac failure is related to compromised cellular respiration of the heart, remains unclear. Myocardial respiration depends on Cytochrome c- Oxidase (CytOx) activity representing the rate limiting step for the mitochondrial respiratory chain. The enzymatic activity as well as mRNA expression of enzyme's mitochondrial encoded catalytic subunit 2, nuclear encoded regulatory subunit 4 and protein contents were studied in biopsies of cardiac patients suffering from myocardial insufficiency and dilated cardiomyopathy (DCM). METHODS Fifty-four patients were enrolled in the study and underwent coronary angiography. Thirty male patients (mean age: 45 +/- 15 yrs.) had a reduced ejection fraction (EF) 35 ± 12% below 45% and a left ventricular end diastolic diameter (LVEDD) of 71 ± 10 mm bigger than 56 mm. They were diagnosed as having idiopathic dilated cardiomyopathy (DCM) without coronary heart disease and NYHA-class 3 and 4. Additionally, 24 male patients (mean age: 52 +/- 11 yrs.) after exclusion of secondary cardiomyopathies, coronary artery or valve disease, served as control (EF: 68 ± 7, LVEDD: 51 ± 7 mm). Total RNA was extracted from two biopsies of each person. Real-time PCR analysis was performed with specific primers followed by a melt curve analysis. Corresponding protein expression in the tissue was studied with immune-histochemistry while enzymatic activity was evaluated by spectroscopy. RESULTS Gene and protein expression analysis of patients showed a significant decrease of subunit 4 (1.1 vs. 0.6, p < 0.001; 7.7 ± 3.1% vs. 2.8 ± 1.4%, p < 0.0001) but no differences in subunit 2. Correlations were found between reduced subunit 2 expression, low EF (r = 0.766, p < 0.00045) and increased LVEDD (r = 0.492, p < 0.0068). In case of DCM less subunit 4 expression and reduced shortening fraction (r = 0.524, p < 0.017) was found, but enzymatic activity was higher (0.08 ± 0.06 vs. 0.26 ± 0.08 U/mg, p < 0.001) although myocardial oxygen consumption continued to the same extent. CONCLUSION In case of myocardial insufficiency and DCM, decreased expression of COX 4 results in an impaired CytOx activity. Higher enzymatic activity but equal oxygen consumption contribute to the pathophysiology of the myocardial insufficiency and appears as an indicator of oxidative stress. This kind of dysregulation should be in the focus for the development of diagnostic and therapy procedures.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany. .,Heart Surgery, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany.
| | - Volker Ruppert
- Department for Internal Medicine- Cardiology, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Sabine Pankuweit
- Department for Internal Medicine- Cardiology, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Jürgen P J Paletta
- Clinic for Orthopedics and Rheumatology, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Annika Rhiel
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Petra Weber
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Marc Irqsusi
- Heart Surgery, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Pia Cybulski
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Rabia Ramzan
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany.,Heart Surgery, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| |
Collapse
|
32
|
Tatematsu Y, Fujita H, Hayashi H, Yamamoto A, Tabata A, Nagamune H, Ohkura K. Effects of the Nonsteroidal Anti-inflammatory Drug Celecoxib on Mitochondrial Function. Biol Pharm Bull 2018; 41:319-325. [PMID: 29491208 DOI: 10.1248/bpb.b17-00527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and pain. In the present study, we examined the effects of celecoxib, a cyclooxygenase-2 (COX-2)-selective NSAID, on rat liver mitochondrial function. Celecoxib dose-dependently induced mitochondria swelling, which was not suppressed by cyclosporine A (CsA). The oxygen consumption rate in mitochondria-suspended solution was facilitated by the addition of celecoxib, and its uncoupling activity was observed. Celecoxib also suppressed SF6847-induced uncoupling, and appeared to exert inhibitory effects on the electron transport chain. Celecoxib suppressed the state 3 oxygen consumption rate in the presence of ADP. Protein release from the mitochondrial matrix was detected following the addition of celecoxib, and aldehyde dehydrogenase 2 (ALDH2) and hydroxymethylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) bands were confirmed in a Western blot analysis. On the other hand, protein release of cytochrome C (CytC), which is an inducer of apoptosis, from the intermembrane space was not observed. Celecoxib enhanced the membrane permeability of human erythrocytes and synthesized liposomes dose-dependently. It then induced the membrane-involving mitochondrial swelling and suppressed mitochondrial function.
Collapse
Affiliation(s)
- Yohei Tatematsu
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Haruhi Fujita
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hiroki Hayashi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Yamamoto
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Kazuto Ohkura
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
33
|
Regulation of mitochondrial respiration and ATP synthesis via cytochrome c oxidase. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Drummond‐Main CD, Rho JM. Electrophysiological characterization of a mitochondrial inner membrane chloride channel in rat brain. FEBS Lett 2018; 592:1545-1553. [DOI: 10.1002/1873-3468.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Christopher D. Drummond‐Main
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
| | - Jong M. Rho
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
- Departments of Pediatrics Clinical Neurosciences, and Physiology & Pharmacology University of Calgary Alberta Canada
- Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Alberta Canada
| |
Collapse
|
35
|
Neuronal control of astrocytic respiration through a variant of the Crabtree effect. Proc Natl Acad Sci U S A 2018; 115:1623-1628. [PMID: 29378955 DOI: 10.1073/pnas.1716469115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic glycolysis is a phenomenon that in the long term contributes to synaptic formation and growth, is reduced by normal aging, and correlates with amyloid beta deposition. Aerobic glycolysis starts within seconds of neural activity and it is not obvious why energetic efficiency should be compromised precisely when energy demand is highest. Using genetically encoded FRET nanosensors and real-time oxygen measurements in culture and in hippocampal slices, we show here that astrocytes respond to physiological extracellular K+ with an acute rise in cytosolic ATP and a parallel inhibition of oxygen consumption, explained by glycolytic stimulation via the Na+-bicarbonate cotransporter NBCe1. This control of mitochondrial respiration via glycolysis modulation is reminiscent of a phenomenon previously described in proliferating cells, known as the Crabtree effect. Fast brain aerobic glycolysis may be interpreted as a strategy whereby neurons manipulate neighboring astrocytes to obtain oxygen, thus maximizing information processing.
Collapse
|
36
|
Bartolák-Suki E, Imsirovic J, Nishibori Y, Krishnan R, Suki B. Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors. Int J Mol Sci 2017; 18:E1812. [PMID: 28825689 PMCID: PMC5578198 DOI: 10.3390/ijms18081812] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging.
Collapse
Affiliation(s)
| | - Jasmin Imsirovic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Yuichiro Nishibori
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Peredo-Silva L, Fuentes-Retamal S, Sandoval-Acuña C, Pavani M, Maya JD, Castro-Castillo V, Madrid-Rojas M, Rebolledo S, Kemmerling U, Parra E, Ferreira J. Derivatives of alkyl gallate triphenylphosphonium exhibit antitumor activity in a syngeneic murine model of mammary adenocarcinoma. Toxicol Appl Pharmacol 2017; 329:334-346. [PMID: 28647477 DOI: 10.1016/j.taap.2017.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
We previously demonstrated that alkyl gallates coupled to triphenylphosphine have a selective and efficient antiproliferative effect by inducing mitochondrial uncoupling in vitro due to the increased mitochondrial transmembrane potential of tumor cells. Therefore, in this work, the in vivo antitumor activities of alkyl gallate triphenylphosphonium derivatives (TPP+C8, TPP+C10 and TPP+C12) were evaluated in a syngeneic murine model of breast cancer. We found that TPP+C10 increased the cytosolic ADP/ATP ratio and significantly increased the AMP levels in a concentration-dependent manner in TA3/Ha murine mammary adenocarcinoma cells. Interestingly, TPP+C10 induced a decrease in the levels of cellular proliferation markers and promoted caspase-3 activation in tumor-bearing mice. Additionally, TPP+C10 inhibited tumor growth in the syngeneic mouse model. Importantly, 30days of intraperitoneal (i.p.) administration of the combination of TPP+C10 (10mg/kg/48h) and the antibiotic doxycycline (10mg/kg/24h) completely eliminated the subcutaneous tumor burden in mice (n=6), without any relapses at 60days post-treatment. This enhancement of the individual activities of TPP+C10 and doxycycline is due to the uncoupling of oxidative phosphorylation by TPP+C10 and the inhibition of mitochondrial biogenesis by doxycycline, as demonstrated by loss of mitochondrial mass and overexpression of PGC1-α as an adaptive response. Moreover, i.p. administration of TPP+C10 (10mg/kg/24h) to healthy mice did not produce toxicity or damage in organs important for drug metabolism and excretion, as indicated by hematological, biochemical and histological assessments. These findings suggest that the combination of TPP+C10 with doxycycline is a valuable candidate therapy for breast cancer management.
Collapse
Affiliation(s)
- Liliana Peredo-Silva
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology, Czech Academy of Sciences, Průmyslová 595, Vestec, 25250, Prague, Czech Republic
| | - Mario Pavani
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Juan D Maya
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Vicente Castro-Castillo
- Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8380494, Chile
| | - Matías Madrid-Rojas
- Department of Chemistry, Faculty of Basic Sciences, Metropolitan University of Educational Sciences, Av. José Pedro Alessandri 774, Santiago 7760197, Chile
| | - Solange Rebolledo
- Department of Chemistry, Faculty of Basic Sciences, Metropolitan University of Educational Sciences, Av. José Pedro Alessandri 774, Santiago 7760197, Chile
| | - Ulrike Kemmerling
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Eduardo Parra
- School of Medicine, Faculty of Health Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000007, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile.
| |
Collapse
|
38
|
Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem 2017; 398:737-750. [PMID: 27926476 DOI: 10.1515/hsz-2016-0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/30/2016] [Indexed: 11/15/2022]
Abstract
In the past, divergent results have been reported based on different methods and conditions used for enzymatic activity measurements of cytochrome c oxidase (CytOx). Here, we analyze in detail and show comparable and reproducible polarographic activity measurements of ATP-dependent inhibition of CytOx kinetics in intact and non-intact rat heart mitochondria and mitoplasts. We found that this mechanism is always present in isolated rat heart mitochondria and mitoplasts; however, it is measurable only at high ATP/ADP ratios using optimal protein concentrations. In the kinetics assay, measurement of this mechanism is independent of presence or absence of Tween-20 and the composition of measuring buffer. Furthermore, the effect of atractyloside on intact rat heart mitochondria confirms that (i) ATP inhibition occurs under uncoupled conditions [in the presence of carbonly cyanide m-chlorophenyl hydrazone (CCCP)] when the classical respiratory control is absent and (ii) high ATP/ADP ratios in the matrix as well as in the cytosolic space are required for full ATP inhibition of CytOx. Additionally, ATP inhibition measured in intact mitochondria extends in the presence of oligomycin, thus indicating further that the problem to measure the inhibitory effect of ATP on CytOx is apparently due to the lack of very high ATP/ADP ratios in isolated mitochondria.
Collapse
|
39
|
Martos-Sitcha JA, Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Gene expression profiling of whole blood cells supports a more efficient mitochondrial respiration in hypoxia-challenged gilthead sea bream ( Sparus aurata). Front Zool 2017; 14:34. [PMID: 28694839 PMCID: PMC5501551 DOI: 10.1186/s12983-017-0220-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acclimation to abiotic challenges, including decreases in O2 availability, requires physiological and anatomical phenotyping to accommodate the organism to the environmental conditions. The retention of a nucleus and functional mitochondria in mature fish red blood cells makes blood a promising tissue to analyse the transcriptome and metabolic responses of hypoxia-challenged fish in an integrative and non-invasive manner. METHODS Juvenile gilthead sea bream (Sparus aurata) were reared at 20-21 °C under normoxic conditions (> 85% O2 saturation) followed by exposure to a gradual decrease in water O2 concentration to 3.0 ppm (41-42% O2 saturation) for 24 h or 1.3 ppm (18-19% O2 saturation) for up to 4 h. Blood samples were collected at three different sampling points for haematological, biochemical and transcriptomic analysis. RESULTS Blood physiological hallmarks remained almost unaltered at 3.0 ppm, but the haematocrit and circulating levels of haemoglobin, glucose and lactate were consistently increased when fish were maintained below the limiting oxygen saturation at 1.3 ppm. These findings were concurrent with an increase in total plasma antioxidant activity and plasma cortisol levels, whereas the opposite trend was observed for growth-promoting factors, such as insulin-like growth factor I. Additionally, gene expression profiling of whole blood cells revealed changes in upstream master regulators of mitochondria (pgcβ and nrf1), antioxidant enzymes (gpx1, gst3, and sod2), outer and inner membrane translocases (tom70, tom22, tim44, tim10, and tim9), components of the mitochondrial dynamics system (mfn2, miffb, miro1a, and miro2), apoptotic factors (aifm1), uncoupling proteins (ucp2) and oxidative enzymes of fatty acid β-oxidation (acca2, ech, and hadh), the tricarboxylic acid cycle (cs) and the oxidative phosphorylation pathway. The overall response is an extensive reduction in gene expression of almost all respiratory chain enzyme subunits of the five complexes, although mitochondrial-encoded catalytic subunits and nuclear-encoded regulatory subunits of Complex IV were primarily increased in hypoxic fish. CONCLUSIONS Our results demonstrate the re-adjustment of mitochondrial machinery at transcriptional level to cope with a decreased basal metabolic rate, consistent with a low risk of oxidative stress, diminished aerobic ATP production and higher O2-carrying capacity. Taken together, these results suggest that whole blood cells can be used as a highly informative target tissue of metabolic condition.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595 Castellón, Spain
| | - Azucena Bermejo-Nogales
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595 Castellón, Spain
- Present address: Endocrine Disruption and Toxicity of Contaminants, Department of Environment, INIA, Madrid, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595 Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595 Castellón, Spain
| |
Collapse
|
40
|
Suki B, Parameswaran H, Imsirovic J, Bartolák-Suki E. Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function. Physiology (Bethesda) 2017; 31:346-58. [PMID: 27511461 DOI: 10.1152/physiol.00051.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells in the body are exposed to irregular mechanical stimuli. Here, we review the so-called fluctuation-driven mechanotransduction in which stresses stretching cells vary on a cycle-by-cycle basis. We argue that such mechanotransduction is an emergent network phenomenon and offer several potential mechanisms of how it regulates cell function. Several examples from the vasculature, the lung, and tissue engineering are discussed. We conclude with a list of important open questions.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Jasmin Imsirovic
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | |
Collapse
|
41
|
Gsy, a novel glucansucrase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress. Sci Rep 2016; 6:38122. [PMID: 27924943 PMCID: PMC5141493 DOI: 10.1038/srep38122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Leuconostoc mesenteroides is a member of lactic acid bacteria (LAB) with wide applications in the food and medical industries. Species in the genus Leuconostoc are catalase-negative and generally regarded as facultative anaerobic or aerotolerant organisms. Despite their extensive use in industry, certain issues concerning the aerobic life of L. mesenteroides, e.g., the mechanism involved in the tolerance to oxygen, remain to be addressed. In this manuscript, a survival strategy employed by L. mesenteroides BD3749 in response to oxidative stress was elucidated. BD3749 cells cultivated in medium with sucrose available synthesized large amounts of exopolysaccharides, mostly consisting of insoluble EPS. When BD3749 cells were challenged with oxidative stress, the amount of insoluble EPS was greatly enhanced. The synthesized EPSs reduced the accumulation of reactive oxygen species (ROS) in bacterial cells and improved their survival during chronic oxidative stress. Another study showed that Gsy, a novel glucansucrase in the GH70 family that is induced by sucrose and up-regulated following exposure to oxygen, was responsible for the synthesis of insoluble EPS. Gsy was subsequently demonstrated to play pivotal roles in the formation of aggregates to alleviate the detrimental effects on BD3749 cells exerted by oxygen.
Collapse
|
42
|
Qiao J, Mu X, Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens Bioelectron 2016; 85:403-413. [DOI: 10.1016/j.bios.2016.04.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
43
|
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68:694-713. [PMID: 27377693 DOI: 10.1016/j.neubiorev.2016.06.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andre F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health and The Centre for Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
44
|
β-Sitosterol increases mitochondrial electron transport by fluidizing mitochondrial membranes and enhances mitochondrial responsiveness to increasing energy demand by the induction of uncoupling in C2C12 myotubes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
45
|
Alam MM, Sohoni S, Kalainayakan SP, Garrossian M, Zhang L. Cyclopamine tartrate, an inhibitor of Hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells. BMC Cancer 2016; 16:150. [PMID: 26911235 PMCID: PMC4766751 DOI: 10.1186/s12885-016-2200-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 02/17/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. METHODS The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT's impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. RESULTS Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and mitochondrial fragmentation, thereby disrupting mitochondrial function in NSCLC cells. CONCLUSIONS Together, our work demonstrates that CycT, and likely other Hh signaling inhibitors, can interrupt NSCLC cell function by promoting mitochondrial fission and fragmentation, mitochondrial membrane hyperpolarization, and ROS generation, thereby diminishing mitochondrial respiration, suppressing cell proliferation, and causing apoptosis. Our work provides novel mechanistic insights into the action of Hh inhibitors in cancer cells.
Collapse
Affiliation(s)
- Md Maksudul Alam
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Sagar Sohoni
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Sarada Preeta Kalainayakan
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | | | - Li Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA. .,The Cecil H. and Ida Green Distinguished Chair, Department of Biological Sciences, The University of Texas at Dallas, Mail Stop RL11, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
46
|
King MA, Clanton TL, Laitano O. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2016; 310:R105-14. [DOI: 10.1152/ajpregu.00395.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022]
Abstract
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume.
Collapse
Affiliation(s)
| | | | - Orlando Laitano
- University of Florida, Applied Physiology and Kinesiology, and
- Universidade Federal do Vale do São Francisco, Colegiado de Educação Física, Brazil
| |
Collapse
|
47
|
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103:11-22. [PMID: 26435077 DOI: 10.1016/j.steroids.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.
Collapse
Affiliation(s)
- Federico Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico.
| | - Sofia Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Mercedes Esparza-Perusquia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Erika Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| |
Collapse
|
48
|
Oliveira MG, Mazorra LM, Souza AF, Silva GMC, Correa SF, Santos WC, Saraiva KDC, Teixeira AJ, Melo DF, Silva MG, Silva MAP, Arrabaça JDC, Costa JH, Oliveira JG. Involvement of AOX and UCP pathways in the post-harvest ripening of papaya fruits. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:42-50. [PMID: 26513459 DOI: 10.1016/j.jplph.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Enhanced respiration during ripening in climacteric fruits is sometimes associated with an uncoupling between the ATP synthesis and the mitochondrial electron transport chain. While the participation of two energy-dissipating systems, one of which is mediated by the alternative oxidase (AOX) and the other mediated by the uncoupling protein (UCP), has been linked to fruit ripening, the relation between the activation of both mitochondrial uncoupling systems with the transient increase of ethylene synthesis (ethylene peak) remains unclear. To elucidate this question, ethylene emission and the two uncoupling (AOX and UCP) pathways were monitored in harvested papaya fruit during the ripening, from green to fully yellow skin. The results confirmed the typical climacteric behavior for papaya fruit: an initial increase in endogenous ethylene emission which reaches a maximum (peak) in the intermediate ripening stage, before finally declining to a basal level in ripe fruit. Respiration of intact fruit also increased and achieved higher levels at the end of ripening. On the other hand, in purified mitochondria extracted from fruit pulp the total respiration and respiratory control decrease while an increase in the participation of AOX and UCP pathways was markedly evident during papaya ripening. There was an increase in the AOX capacity during the transition from green fruit to the intermediate stage that accompanied the transient ethylene peak, while the O2 consumption triggered by UCP activation increased by 80% from the beginning to end stage of fruit ripening. Expression analyses of AOX (AOX1 and 2) and UCP (UCP1-5) genes revealed that the increases in the AOX and UCP capacities were linked to a higher expression of AOX1 and UCP (mainly UCP1) genes, respectively. In silico promoter analyses of both genes showed the presence of ethylene-responsive cis-elements in UCP1 and UCP2 genes. Overall, the data suggest a differential activation of AOX and UCP pathways in regulation related to the ethylene peak and induction of specific genes such as AOX1 and UCP1.
Collapse
Affiliation(s)
- M G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - L M Mazorra
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - A F Souza
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - G M C Silva
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - S F Correa
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - W C Santos
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - K D C Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - A J Teixeira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - D F Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - M G Silva
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - M A P Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570000, Brazil
| | - J D C Arrabaça
- Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749016, Portugal
| | - J H Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - J G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil.
| |
Collapse
|
49
|
Deremiens L, Schwartz L, Angers A, Glémet H, Angers B. Interactions between nuclear genes and a foreign mitochondrial genome in the redbelly dace Chrosomus eos. Comp Biochem Physiol B Biochem Mol Biol 2015; 189:80-6. [PMID: 26277640 DOI: 10.1016/j.cbpb.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Given the coevolution process occurring between nuclear and mitochondrial genomes, the effects of introgressive hybridization remain puzzling. In this study, we take advantage of the natural co-occurrence of two biotypes bearing a similar nuclear genome (Chrosomus eos) but harbouring mitochondria from different species (wild type: C. eos; cybrids: Chrosomus neogaeus) to determine the extent of phenotype changes linked to divergence in the mitochondrial genome. Changes were assessed through differences in gene expression, enzymatic activity, proteomic and swimming activity. Our data demonstrate that complex IV activity was significantly higher in cybrids compared to wild type. This difference could result from one variable amino acid on the COX3 mitochondrial subunit and/or from a tremendous change in the proteome. We also show that cybrids present a higher swimming performance than wild type. Ultimately, our results demonstrate that the absence of coevolution for a period of almost ten million years between nuclear and mitochondrial genomes does not appear to be necessarily deleterious but could even have beneficial effects. Indeed, the capture of foreign mitochondria could be an efficient way to circumvent the selection process of genomic coevolution, allowing the rapid accumulation of new mutations in C. eos cybrids.
Collapse
Affiliation(s)
- Léo Deremiens
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.
| | - Logan Schwartz
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Annie Angers
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Hélène Glémet
- Department of Environmental Sciences, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
50
|
Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 2015; 24:64-76. [PMID: 26190566 DOI: 10.1016/j.mito.2015.07.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022]
Abstract
Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.
Collapse
Affiliation(s)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|