1
|
Johansson L, Ringmark S, Bergquist J, Skiöldebrand E, Widgren A, Jansson A. A proteomics perspective on 2 years of high-intensity training in horses: a pilot study. Sci Rep 2024; 14:23684. [PMID: 39390056 PMCID: PMC11467344 DOI: 10.1038/s41598-024-75266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
The human plasma proteome is rather well studied, but not that of other species, including horses. The aims of this study were to (1), explore differences in plasma proteomic profile of young elite harness trotters kept under standardised conditions and subjected to two different training programmes for 2 years and (2) explore changes in proteomic profile over time during the training period. From September at age 1.5 year to March at age 2 years, 16 Standardbred horses were exposed to the same training programme. In March, high-intensity training was introduced and the horses were divided into two training groups (High and Low). Blood samples were collected at rest in December as 1.5-year-olds, July as 2-year-olds, December as 2.5-year-olds and December as 3.5-year-olds. Untargeted proteomics was performed and a hypothesis-generating approach was used in statistical analysis (t-tests). At the age of 2.5 years, the level of serotransferrin was higher in the High group (P = 0.01) and at least at one sampling occasion, proteins associated with fat metabolism, oxidant/antioxidant processes, cardiovascular responses, bone formation and inflammation were lower in High group compared to Low (P < 0.05). Analyses of changes over time revealed that levels of proteins involved in energy metabolism, red cell metabolism, circulation, oxidant/antioxidant activity, bone formation, inflammation, immune modulation and cellular and vascular damage changed (P < 0.05). The results indicate that proteomics analysis of blood plasma could be a viable tool for evaluation of exercise adaptations, performance and for health monitoring, with several potential biomarkers identified in this study.
Collapse
Affiliation(s)
- L Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - S Ringmark
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - J Bergquist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P. O. Box 599, Uppsala, 751 24, Sweden
| | - E Skiöldebrand
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - A Widgren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P. O. Box 599, Uppsala, 751 24, Sweden
| | - A Jansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden.
| |
Collapse
|
2
|
Novikova IV, Soldatova AV, Moser TH, Thibert SM, Romano CA, Zhou M, Tebo BM, Evans JE, Spiro TG. Cryo-EM Structure of the Mnx Protein Complex Reveals a Tunnel Framework for the Mechanism of Manganese Biomineralization. J Am Chem Soc 2024; 146:22950-22958. [PMID: 39056168 DOI: 10.1021/jacs.3c06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The global manganese cycle relies on microbes to oxidize soluble Mn(II) to insoluble Mn(IV) oxides. Some microbes require peroxide or superoxide as oxidants, but others can use O2 directly, via multicopper oxidase (MCO) enzymes. One of these, MnxG from Bacillus sp. strain PL-12, was isolated in tight association with small accessory proteins, MnxE and MnxF. The protein complex, called Mnx, has eluded crystallization efforts, but we now report the 3D structure of a point mutant using cryo-EM single particle analysis, cross-linking mass spectrometry, and AlphaFold Multimer prediction. The β-sheet-rich complex features MnxG enzyme, capped by a heterohexameric ring of alternating MnxE and MnxF subunits, and a tunnel that runs through MnxG and its MnxE3F3 cap. The tunnel dimensions and charges can accommodate the mechanistically inferred binuclear manganese intermediates. Comparison with the Fe(II)-oxidizing MCO, ceruloplasmin, identifies likely coordinating groups for the Mn(II) substrate, at the entrance to the tunnel. Thus, the 3D structure provides a rationale for the established manganese oxidase mechanism, and a platform for further experiments to elucidate mechanistic details of manganese biomineralization.
Collapse
Affiliation(s)
- Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Trevor H Moser
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Stephanie M Thibert
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Bradley M Tebo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - James E Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Agostini F, Sgalletta B, Bisaglia M. Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Cells 2024; 13:1376. [PMID: 39195264 DOI: 10.3390/cells13161376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Bibiana Sgalletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
4
|
Zhu J, Chen H, Wu J, Li S, Lin W, Wang N, Bai L. Ferroptosis in Glaucoma: A Promising Avenue for Therapy. Adv Biol (Weinh) 2024; 8:e2300530. [PMID: 38411382 DOI: 10.1002/adbi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Glaucoma, a blind-leading disease largely since chronic pathological intraocular high pressure (ph-IOP). Hitherto, it is reckoned incurable for irreversible neural damage and challenges in managing IOP. Thus, it is significant to develop neuroprotective strategies. Ferroptosis, initially identified as an iron-dependent regulated death that triggers Fenton reactions and culminates in lipid peroxidation (LPO), has emerged as a focal point in multiple tumors and neurodegenerative diseases. Researches show that iron homeostasis play critical roles in the optic nerve (ON) and retinal ganglion cells (RGCs), suggesting targeted treatments could be effective. In glaucoma, apart from neural lesions, disrupted metal balance and increased oxidative stress in trabecular meshwork (TM) are observed. These disturbances lead to extracellular matrix excretion disorders, known as sclerotic mechanisms, resulting in refractory blockages. Importantly, oxidative stress, a significant downstream effect of ferroptosis, is also a key factor in cell senescence. It plays a crucial role in both the etiology and risk of glaucoma. Moreover, ferroptosis also induces non-infectious inflammation, which exacerbate glaucomatous injury. Therefore, the relevance of ferroptosis in glaucoma is extensive and multifaceted. In this review, the study delves into the current understanding of ferroptosis mechanisms in glaucoma, aiming to provide clues to inform clinical therapeutic practices.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Hui Chen
- Department of Geriatrics, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Sen Li
- Department of Spinal Surgery, Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu, 210008, China
| | - Wanying Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Kitahata S, Michitaka K, Kinebuchi M, Matsuura A, Hiraoka A, Ohama H, Yanagihara E, Saneto H, Izumoto H, Kawamura T, Kuroda T, Tada F, Miyata H, Ninomiya T, Hiasa Y. Renal Cell Carcinoma and Hepatocellular Carcinoma in a Patient with Wilson's Disease. Intern Med 2024; 63:963-968. [PMID: 37612087 PMCID: PMC11045387 DOI: 10.2169/internalmedicine.2056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023] Open
Abstract
No reports of renal cancer in patients with Wilson's disease (WD) exist. We herein report a 37-year-old Japanese man diagnosed with WD who had been treated with d-penicillamine 9 years prior. Hepatocellular carcinoma had been diagnosed at 36 years old and treated with radiofrequency ablation therapy. One year later, renal cancer and recurrent hepatocellular carcinoma had developed. The hepatocellular carcinoma was treated after renal cancer surgical resection of a clear-cell-type renal cell carcinoma, with iron, rather than copper, deposited on the renal cancer cells. This patient harbored a novel mutation, p. Leu1395Terfs in ATP7B.
Collapse
Affiliation(s)
- Shogo Kitahata
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Kojiro Michitaka
- Department of Internal Medicine, Saiseikai Imabari Dai2 Hospital, Japan
| | - Miyuki Kinebuchi
- First Department of Pathology, Sapporo Medical University, Japan
| | | | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hideko Ohama
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Emi Yanagihara
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hironobu Saneto
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hirofumi Izumoto
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Tomoe Kawamura
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Taira Kuroda
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Fujimasa Tada
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hideki Miyata
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | | | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Elizarova AY, Sokolov AV, Vasilyev VB. Ceruloplasmin Reduces the Lactoferrin/Oleic Acid Antitumor Complex-Mediated Release of Heme-Containing Proteins from Blood Cells. Int J Mol Sci 2023; 24:16711. [PMID: 38069040 PMCID: PMC10706732 DOI: 10.3390/ijms242316711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 μM) caused hemolysis, unlike LF alone or BSA/8OA (250 μM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 μM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.
Collapse
Affiliation(s)
| | - Alexey V. Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (A.Y.E.); (V.B.V.)
| | | |
Collapse
|
7
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
8
|
Ponnampalam EN, Kiani A, Santhiravel S, Holman BWB, Lauridsen C, Dunshea FR. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals (Basel) 2022; 12:ani12233279. [PMID: 36496798 PMCID: PMC9738477 DOI: 10.3390/ani12233279] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The biological effects of oxidative stress and associated free radicals on farm animal performance, productivity, and product quality may be managed via dietary interventions-specifically, the provision of feeds, supplements, and forages rich in antioxidants. To optimize this approach, it is important first to understand the development of free radicals and their contributions to oxidative stress in tissue systems of farm animals or the human body. The interactions between prooxidants and antioxidants will impact redox homeostasis and, therefore, the well-being of farm animals. The impact of free radical formation on the oxidation of lipids, proteins, DNA, and biologically important macromolecules will likewise impact animal performance, meat and milk quality, nutritional value, and longevity. Dietary antioxidants, endogenous antioxidants, and metal-binding proteins contribute to the 'antioxidant defenses' that control free radical formation within the biological systems. Different bioactive compounds of varying antioxidant potential and bio-accessibility may be sourced from tailored feeding systems. Informed and successful provision of dietary antioxidants can help alleviate oxidative stress. However, knowledge pertaining to farm animals, their unique biological systems, and the applications of novel feeds, specialized forages, bioactive compounds, etc., must be established. This review summarized current research to direct future studies towards more effective controls for free radical formation/oxidative stress in farm animals so that productivity and quality of meat and milk can be optimized.
Collapse
Affiliation(s)
- Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Ali Kiani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Armenta-Medina D, Brambila-Tapia AJL, Miranda-Jiménez S, Rodea-Montero ER. A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics (Basel) 2022; 12:887. [PMID: 35453935 PMCID: PMC9028729 DOI: 10.3390/diagnostics12040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, a web application was developed that comprises scientific literature associated with the Coronaviridae family, specifically for those viruses that are members of the Genus Betacoronavirus, responsible for emerging diseases with a great impact on human health: Middle East Respiratory Syndrome-Related Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV, SARS-CoV-2). The information compiled on this webserver aims to understand the basics of these viruses' infection, and the nature of their pathogenesis, enabling the identification of molecular and cellular components that may function as potential targets on the design and development of successful treatments for the diseases associated with the Coronaviridae family. Some of the web application's primary functions are searching for keywords within the scientific literature, natural language processing for the extraction of genes and words, the generation and visualization of gene networks associated with viral diseases derived from the analysis of latent semantic space, and cosine similarity measures. Interestingly, our gene association analysis reveals drug targets in understudies, and new targets suggested in the scientific literature to treat coronavirus.
Collapse
Affiliation(s)
- Dagoberto Armenta-Medina
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | | - Sabino Miranda-Jiménez
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | |
Collapse
|
10
|
Kontoghiorghes GJ. Questioning Established Theories and Treatment Methods Related to Iron and Other Metal Metabolic Changes, Affecting All Major Diseases and Billions of Patients. Int J Mol Sci 2022; 23:1364. [PMID: 35163288 PMCID: PMC8836132 DOI: 10.3390/ijms23031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
The medical and scientific literature is dominated by highly cited historical theories and findings [...].
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
11
|
Moretti R, Giuffrè M, Merli N, Caruso P, Di Bella S, Tiribelli C, Crocè LS. Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders. Brain Sci 2021; 11:1569. [PMID: 34942871 PMCID: PMC8699483 DOI: 10.3390/brainsci11121569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C Virus (HCV), despite being a hepatotropic virus, is the causative agent of many systemic disorders, such as vasculitis, autoimmune diseases, lymphoproliferative disorders, and a broad spectrum of neurological and psychiatric manifestations. Although symptoms have been misdiagnosed or underdiagnosed, only recently, evidence of direct (inflammatory) or indirect (immune-mediated) HCV-dependent cerebral effects has been established. HCV infection can promote acute inflammatory response, pro-coagulative status and ischemic disorders, and neurodegeneration. These effects rely on cerebral HCV replication, possibly mediated by blood-brain barrier alterations. Further study is needed to better understand the HCV-related mechanisms of brain damage.
Collapse
Affiliation(s)
- Rita Moretti
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Mauro Giuffrè
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Nicola Merli
- Department Neurological Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Caruso
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Stefano Di Bella
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | | | - Lory Saveria Crocè
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| |
Collapse
|
12
|
Sakajiri T, Nakatsuji M, Teraoka Y, Furuta K, Ikuta K, Shibusa K, Sugano E, Tomita H, Inui T, Yamamura T. Zinc mediates the interaction between ceruloplasmin and apo-transferrin for the efficient transfer of Fe(III) ions. Metallomics 2021; 13:6427378. [PMID: 34791391 DOI: 10.1093/mtomcs/mfab065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Fe(II) exported from cells is oxidized to Fe(III), possibly by a multi-copper ferroxidase (MCF) such as ceruloplasmin (CP), to efficiently bind with the plasma iron transport protein transferrin (TF). As unbound Fe(III) is highly insoluble and reactive, its release into the blood during the transfer from MCF to TF must be prevented. A likely mechanism for preventing the release of unbound Fe(III) is via direct interaction between MCF and TF; however, the occurrence of this phenomenon remains controversial. This study aimed to reveal the interaction between these proteins, possibly mediated by zinc. Using spectrophotometric, isothermal titration calorimetric, and surface plasmon resonance methods, we found that Zn(II)-bound CP bound to iron-free TF (apo-TF) with a Kd of 4.2 μM and a stoichiometry CP:TF of ∼2:1. Computational modeling of the complex between CP and apo-TF predicted that each of the three Zn(II) ions that bind to CP further binds to acidic amino acid residues of apo-TF to play a role as a cross-linker connecting both proteins. Domain 4 of one CP molecule and domain 6 of the other CP molecule fit tightly into the clefts in the N- and C-lobes of apo-TF, respectively. Upon the binding of two Fe(III) ions to apo-TF, the resulting diferric TF [Fe(III)2TF] dissociated from CP by conformational changes in TF. In human blood plasma, zinc deficiency reduced the production of Fe(III)2TF and concomitantly increased the production of non-TF-bound iron. Our findings suggest that zinc may be involved in the transfer of iron between CP and TF.
Collapse
Affiliation(s)
- Tetsuya Sakajiri
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Faculty of Nutritional Sciences, the University of Morioka, 808 Sunakomi, Takizawa, Iwate 020-0694, Japan.,Qualtec Co. Ltd., 4-230 Sambo-cho, Sakai, Osaka 590-0906, Japan.,Department of Nutrition, Kyushu Nutrition Welfare University, 5-1-1 Shimoitozu, Kitakyushu Kokurakita-ku, Fukuoka 803-0846, Japan
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiaki Teraoka
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kosuke Furuta
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.,Japanese Red Cross Hokkaido Blood Center, 2-1 Nijuyonken, Nishi-ku, Sapporo, Hokkaido 063-0802, Japan
| | - Kotoe Shibusa
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.,Hokkaido System Science Co., Ltd., 2-1 Shinkawa Nishi, Kita-ku, Sapporo, Hokkaido 001-0932, Japan
| | - Eriko Sugano
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takaki Yamamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Faculty of Nutritional Sciences, the University of Morioka, 808 Sunakomi, Takizawa, Iwate 020-0694, Japan
| |
Collapse
|
13
|
[ 68Ga]Ga-4HMSA a promising new PET tracer for imaging inflammation. EJNMMI Res 2021; 11:114. [PMID: 34718888 PMCID: PMC8557227 DOI: 10.1186/s13550-021-00856-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Imaging diagnosis of inflammation has been challenging for many years. Inflammation imaging agents commonly used in nuclear medicine, such as [67Ga]Ga-citrate and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) showed some limitations. The identification of a radiotracer with high specificity and low radiation dose is clinically important. With the commercialization of 68Ge/68Ga generators and the high 68Ga cyclotron production capacity, the study of 68Ga-based tracer for inflammation has increased and shown good potential. In the present work, we report the synthesis of 4HMSA, a new acyclic chelator, and its first investigation for 68Ga complexation and as a new positron emission tomography (PET) imaging agent of inflammation in comparison to [68Ga]Ga-citrate. RESULTS The present experimental studies have shown that the novel [68Ga]Ga-4HMSA is stable allowing imaging of inflammation in a preclinical model of adjuvant- and pathogen-based inflammation involving intraplantar injection of complete Freund's adjuvant (CFA). We also found that [68Ga]Ga-4HMSA displayed similar uptakes in the inflamed paw than [68Ga]Ga-citrate, which are superior compared to those of contralateral (non-injected) paws at days 1-3 from PET imaging. [68Ga]Ga-citrate accumulated in the upper body of the animal such as the liver, lungs and the heart, whereas the [68Ga]Ga-4HMSA revealed low uptakes in the majority of the organs and was cleared relatively rapidly from blood circulation through the kidneys and bladder. CONCLUSION The results highlight the potential of [68Ga]Ga-4HMSA as an interesting alternative to [68Ga]Ga-citrate for inflammation imaging by PET. The new PET tracer also offers additional advantages than [68Ga]Ga-citrate in term of dosimetry and lower overall background activity.
Collapse
|
14
|
van Rensburg SJ, van Toorn R, Erasmus RT, Hattingh C, Johannes C, Moremi KE, Kemp MC, Engel-Hills P, Kotze MJ. Pathology-supported genetic testing as a method for disability prevention in multiple sclerosis (MS). Part I. Targeting a metabolic model rather than autoimmunity. Metab Brain Dis 2021; 36:1151-1167. [PMID: 33909200 DOI: 10.1007/s11011-021-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
In this Review (Part I), we investigate the scientific evidence that multiple sclerosis (MS) is caused by the death of oligodendrocytes, the cells that synthesize myelin, due to a lack of biochemical and nutritional factors involved in mitochondrial energy production in these cells. In MS, damage to the myelin sheaths surrounding nerve axons causes disruption of signal transmission from the brain to peripheral organs, which may lead to disability. However, the extent of disability is not deterred by the use of MS medication, which is based on the autoimmune hypothesis of MS. Rather, disability is associated with the loss of brain volume, which is related to the loss of grey and white matter. A pathology-supported genetic testing (PSGT) method, developed for personalized assessment and treatment to prevent brain volume loss and disability progression in MS is discussed. This involves identification of MS-related pathogenic pathways underpinned by genetic variation and lifestyle risk factors that may converge into biochemical abnormalities associated with adverse expanded disability status scale (EDSS) outcomes and magnetic resonance imaging (MRI) findings during patient follow-up. A Metabolic Model is presented which hypothesizes that disability may be prevented or reversed when oligodendrocytes are protected by nutritional reserve. Evidence for the validity of the Metabolic Model may be evaluated in consecutive test cases following the PSGT method. In Part II of this Review, two cases are presented that describe the PSGT procedures and the clinical outcomes of these individuals diagnosed with MS.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Ronald van Toorn
- Department of Pediatric Medicine and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rajiv T Erasmus
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Coenraad Hattingh
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Clint Johannes
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kelebogile E Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Merlisa C Kemp
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| |
Collapse
|
15
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
16
|
The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:133-162. [PMID: 33485481 DOI: 10.1016/bs.apcsb.2020.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron transport in the central nervous system (CNS) is a highly regulated process in which several important proteins participate to ensure this important metal reaches its sites of action. However, iron accumulation has been shown to be a common factor in different neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple Sclerosis, and Sanfilippo syndrome. This review is divided into four parts. The first part describes brain iron transport in homeostasis, mentioning the main proteins involved, whereas the second part contrasts the consequences of iron dysregulation, elaborating on its role in the aforementioned neurodegenerative diseases. The third part details the functions of the main proteins involved in brain iron homeostasis and their role in neurodegeneration. In the fourth part, in order to highlight the importance of transport proteins, the focus is set on human serum transferrin, the main iron transport protein. This final part describes perspectives about the mechanisms and chemical properties of human transferrin for the development of potential targeted drug delivery systems across the blood-brain barrier (BBB) or enhancers for the treatment of neurological diseases.
Collapse
|
17
|
Kell DB, Heyden EL, Pretorius E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front Immunol 2020; 11:1221. [PMID: 32574271 PMCID: PMC7271924 DOI: 10.3389/fimmu.2020.01221] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Aragón CC, Tafúr RA, Suárez-Avellaneda A, Martínez MDT, Salas ADL, Tobón GJ. Urinary biomarkers in lupus nephritis. J Transl Autoimmun 2020; 3:100042. [PMID: 32743523 PMCID: PMC7388339 DOI: 10.1016/j.jtauto.2020.100042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypical autoimmune disease that can affect any organ of the body. Multiple mechanisms may contribute to the pathophysiology of systemic lupus, including failure to remove apoptotic bodies, hyperactivity of self-reactive B and T lymphocytes, abnormal exposure to autoantigens, and increased levels of B-cell stimulatory cytokines. The involvement of the kidney, called lupus nephritis (LN), during the course of the disease affects between 30% and 60% of adult SLE patients, and up to 70% of children. LN is an immune-mediated glomerulonephritis that is a common and serious finding in patients with SLE. Nowadays, renal biopsy is considered the gold standard for classifying LN, besides its degree of activity or chronicity. Nevertheless, renal biopsy lacks the ability to predict which patients will respond to immunosuppressive therapy and is a costly and risky procedure that is not practical in the monitoring of LN because serial repetitions would be necessary. Consequently, many serum and urinary biomarkers have been studied in SLE patients for the complementary study of LN, existing conventional biomarkers like proteinuria, protein/creatinine ratio in spot urine, 24 h urine proteinuria, creatinine clearance, among others and non-conventional biomarkers, like Monocyte chemoattractant protein-1 (MCP-1), have been correlated with the histological findings of the different types of LN. In this article, we review the advances in lupus nephritis urinary biomarkers. Such markers ideally should be capable of predicting early sub-clinical flares and could be used to follow response to therapy. In addition, some of these markers have been found to be involved in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Cristian C. Aragón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Raúl-Alejandro Tafúr
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Ana Suárez-Avellaneda
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - MD. Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Alejandra de las Salas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Gabriel J. Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| |
Collapse
|
19
|
The concentration of ceruloplasmin in blood of tumor-bearing rats after administration of a dirhenium(III) compound and cisplatin. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Improvement in Impaired Social Cognition but Not Seizures by Everolimus in a Child with Tuberous Sclerosis-Associated Autism through Increased Serum Antioxidant Proteins and Oxidant/Antioxidant Status. Case Rep Pediatr 2019; 2019:2070619. [PMID: 31871809 PMCID: PMC6907049 DOI: 10.1155/2019/2070619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
We investigated the effect of the mammalian target of rapamycin (mTOR) inhibitor everolimus on tuberous sclerosis complex- (TSC-) associated autistic symptoms and focal seizures with impaired awareness in a female child with TSC. We further evaluated the relationship between improved autistic symptoms and seizures and increased the serum levels of the antioxidant proteins, ceruloplasmin (Cp) and transferrin (Tf), and oxidant-antioxidant status indicated by the oxidant marker oxidized low-density lipoprotein (ox-LDL) and the antioxidant marker total antioxidant power (TAP). Everolimus treatment improved impaired social cognition and autistic behaviors; however, seizure and epileptic activity persisted. Serum Cp and Tf levels gradually increased in response to improved autistic symptoms. Serum TAP levels gradually decreased from baseline to the lowest value at 16 weeks and then increased at 24 weeks, showing a trend toward decreased total score of the Aberrant Behavior Checklist. This study revealed that everolimus treatment improved impaired social cognition with increased serum levels of the copper mediator (Cp) and iron mediator (Tf) via homeostatic control of mTOR activity accompanied by overlap of the oxidant-antioxidant system. Everolimus had no effect on TSC-related epileptiform discharges, and thus, the autistic symptoms and epileptic activity may be two independent end results of a common central nervous system disorder including mTOR hyperactivity. This trial is registered with JMAS-IIA00258.
Collapse
|
21
|
Lisowska-Myjak B, Skarżyńska E, Płazińska M, Jakimiuk A. Relationships between meconium concentrations of acute phase proteins. Clin Exp Pharmacol Physiol 2019; 45:1218-1220. [PMID: 29908081 DOI: 10.1111/1440-1681.12995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/12/2023]
Abstract
Meconium concentrations of naturally accumulated ceruloplasmin (CER), lactoferrin (LF), and neutrophil gelatinase-associated lipocalin (NGAL) and their relationships considered as a panel of acute phase proteins could be used for the assessment of fetal homeostasis. CER, LF and NGAL concentrations were measured using enzyme-linked immunosorbent assay kits in meconium portions (n = 80) collected from 19 healthy neonates. The coefficients of variation (CV) of the meconium LF (1.77) and NGAL (1.26) were about two-fold higher than that of CER (0.73) with significant (P < 0.05) correlations between all three parameters. The LF to NGAL ratio (CV = 0.67) correlated strongly with the CER concentrations (r = 0.39, P < 0.01). These correlations between CER, LF and NGAL concentrations suggest their combined involvement in the metabolic processes in the developing fetus.
Collapse
Affiliation(s)
- Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Skarżyńska
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Maria Płazińska
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Institute of Mother and Child, Reproductive Health Department, Warsaw, Poland
| |
Collapse
|
22
|
Zhang WZ, Butler JJ, Cloonan SM. Smoking-induced iron dysregulation in the lung. Free Radic Biol Med 2019; 133:238-247. [PMID: 30075191 PMCID: PMC6355389 DOI: 10.1016/j.freeradbiomed.2018.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Iron is one of the most abundant transition elements and is indispensable for almost all organisms. While the ability of iron to participate in redox chemistry is an essential requirement for participation in a range of vital enzymatic reactions, this same feature of iron also makes it dangerous in the generation of hydroxyl radicals and superoxide anions. Given the high local oxygen tensions in the lung, the regulation of iron acquisition, utilization, and storage therefore becomes vitally important, perhaps more so than in any other biological system. Iron plays a critical role in the biology of essentially every cell type in the lung, and in particular, changes in iron levels have important ramifications on immune function and the local lung microenvironment. There is substantial evidence that cigarette smoke causes iron dysregulation, with the implication that iron may be the link between smoking and smoking-related lung diseases. A better understanding of the connection between cigarette smoke, iron, and respiratory diseases will help to elucidate pathogenic mechanisms and aid in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY 10021, USA
| | - James J Butler
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
23
|
Zanardi A, Conti A, Cremonesi M, D'Adamo P, Gilberti E, Apostoli P, Cannistraci CV, Piperno A, David S, Alessio M. Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model of aceruloplasminemia. EMBO Mol Med 2019; 10:91-106. [PMID: 29183916 PMCID: PMC5760856 DOI: 10.15252/emmm.201708361] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aceruloplasminemia is a monogenic disease caused by mutations in the ceruloplasmin gene that result in loss of protein ferroxidase activity. Ceruloplasmin plays a role in iron homeostasis, and its activity impairment leads to iron accumulation in liver, pancreas, and brain. Iron deposition promotes diabetes, retinal degeneration, and progressive neurodegeneration. Current therapies mainly based on iron chelation, partially control systemic iron deposition but are ineffective on neurodegeneration. We investigated the potential of ceruloplasmin replacement therapy in reducing the neurological pathology in the ceruloplasmin-knockout (CpKO) mouse model of aceruloplasminemia. CpKO mice were intraperitoneal administered for 2 months with human ceruloplasmin that was able to enter the brain inducing replacement of the protein levels and rescue of ferroxidase activity. Ceruloplasmin-treated mice showed amelioration of motor incoordination that was associated with diminished loss of Purkinje neurons and reduced brain iron deposition, in particular in the choroid plexus. Computational analysis showed that ceruloplasmin-treated CpKO mice share a similar pattern with wild-type animals, highlighting the efficacy of the therapy. These data suggest that enzyme replacement therapy may be a promising strategy for the treatment of aceruloplasminemia.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Marco Cremonesi
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia D'Adamo
- Molecular Genetics of Intellectual Disabilities, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Apostoli
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden, Dresden, Germany.,Brain Bio-Inspired Computation (BBC) Lab, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Alberto Piperno
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.,Centre for Diagnosis and Treatment of Hemochromatosis, ASST-S.Gerardo Hospital, Monza, Italy
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of The McGill University Health Center, Montreal, QC, Canada
| | - Massimo Alessio
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Barinov NA, Vlasova II, Sokolov AV, Kostevich VA, Dubrovin EV, Klinov DV. High-resolution atomic force microscopy visualization of metalloproteins and their complexes. Biochim Biophys Acta Gen Subj 2018; 1862:2862-2868. [DOI: 10.1016/j.bbagen.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
|
25
|
Wang PW, Wu TH, Pan TL, Chen MH, Goto S, Chen CL. Integrated Proteome and Cytokine Profiles Reveal Ceruloplasmin Eliciting Liver Allograft Tolerance via Antioxidant Cascades. Front Immunol 2018; 9:2216. [PMID: 30319655 PMCID: PMC6168655 DOI: 10.3389/fimmu.2018.02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022] Open
Abstract
Acute rejection (AR) and spontaneous tolerance may occur after allograft orthotopic liver transplants (OLT) performed in certain combinations of donor and recipient rat strains, yet the underlying molecular cascades involved in these conditions remain poorly understood. Comprehensive analysis with proteomic tools revealed that ceruloplasmin was highly expressed during the tolerant period on day 63 post-OLT (POD 63) compared to the rejected samples on POD 14. Meanwhile, cytokine expression profiles implied that the inflammation was significantly stimulated in the AR subjects. Again, protein carbonylation was dramatically upregulated in the rejected subject within the tolerant group. Knockdown of ceruloplasmin would elicit more severe ROS damage, leading to cell death in the presence of H2O2, which induced Nrf2 cascade and the recovery of ceruloplasmin to mediate spontaneous tolerance. In summary, ceruloplasmin may contribute to amending the oxidative stress that eventually causes cell apoptosis and to maintaining the survival of hepatocytes in a drug-free tolerance OLT model.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tung-Ho Wu
- Division of Cardiovascular Surgery, Veterans General Hospital, Kaohsiung, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shigeru Goto
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Tao L, Stich TA, Soldatova AV, Tebo BM, Spiro TG, Casey WH, Britt RD. Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 2018; 23:1093-1104. [PMID: 29968177 DOI: 10.1007/s00775-018-1587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
The multi-copper oxidase (MCO) MnxG from marine Bacillus bacteria plays an essential role in geochemical cycling of manganese by oxidizing Mn2+(aq) to form manganese oxide minerals at rates that are three to five orders of magnitude faster than abiotic rates. The MCO MnxG protein is isolated as part of a multi-protein complex, denoted as Mnx, which includes one MnxG unit and a hexamer of MnxE3F3 subunit. During the oxidation of Mn2+(aq) catalyzed by the Mnx protein complex, an enzyme-bound Mn(III) species was trapped recently in the presence of pyrophosphate (PP) and analyzed using parallel-mode electron paramagnetic resonance (EPR) spectroscopy. Herein, we provide a full analysis of this enzyme-bound Mn(III) intermediate via temperature dependence studies and spectral simulations. This Mnx-bound Mn(III) species is characterized by a hyperfine-coupling value of A(55Mn) = 4.2 mT (corresponding to 120 MHz) and a negative zero-field splitting (ZFS) value of D = - 2.0 cm-1. These magnetic properties suggest that the Mnx-bound Mn(III) species could be either six-coordinate with a 5B1g ground state or square-pyramidal five-coordinate with a 5B1 ground state. In addition, as a control, Mn(III)PP is also analyzed by parallel-mode EPR spectroscopy. It exhibits distinctly different magnetic properties with a hyperfine-coupling value of A(55Mn) = 4.8 mT (corresponding to 140 MHz) and a negative ZFS value of D = - 2.5 cm-1. The different ZFS values suggest differences in ligand environment of Mnx-bound Mn(III) and aqueous Mn(III)PP species. These studies provide further insights into the mechanism of biological Mn2+(aq) oxidation.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Troy A Stich
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - William H Casey
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Geology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - R David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
27
|
Utility of urinary transferrin and ceruloplasmin in patients with systemic lupus erythematosus for differentiating patients with lupus nephritis. ACTA ACUST UNITED AC 2018. [PMID: 29530762 DOI: 10.1016/j.reuma.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Diagnosis of lupus nephritis (LN) is usually based on renal biopsy, which is an invasive technique that involves multiple risks. Therefore, different biomarkers have emerged as alternatives for the diagnosis of LN. Nonetheless, studies regarding urinary biomarkers in Latin American patients are limited. The objective of this study was to assess the diagnostic value of urinary transferrin and ceruloplasmin to differentiate patients who have renal involvement from those who do not. MATERIALS AND METHODS Systemic lupus erythematosus (SLE) patients that met the revised American College of Rheumatology (ACR) classification criteria were recruited. Patients with another autoimmune disease, active infection (urinary tract or systemic infection), renal replacement therapy, human immunodeficiency virus infection or pregnancy were excluded. A urine sample was collected from each patient. LN was diagnosed according to ACR criteria. The activity and chronicity of LN were measured using the Austin indices. Urinary transferrin and ceruloplasmin levels were measured using commercial enzyme-linked immunosorbent assay (ELISA) kits. Mann-Whitney U test and Student's t-test were used to compare data. Spearman's rank correlation was used to determine associations. Lastly, receiver operating characteristic (ROC) curves were created. RESULTS The study involved 120 SLE patients. In all, 85% were female, 76% mestizo, the mean age was 32.8±12.1years and mean systemic lupus erythematosus disease activity index (SLEDAI) was 8.4±8.9; 64% had renal involvement. Urinary levels of the two biomarkers were significantly higher in patients with LN compared to those without LN. Similarly, urinary levels of both biomarkers were significantly higher in patients with active LN compared to those with inactive LN. Furthermore, urinary transferrin levels were significantly higher in Afro-Latin American patients. On the other hand, urinary transferrin levels correlated with SLEDAI and proteinuria, and transferrin and ceruloplasmin levels correlated with each other. The diagnostic value of ROC curves for these urinary biomarkers for LN were good. CONCLUSIONS In our cohort of SLE patients, we found that transferrin and ceruloplasmin were potential biomarkers for LN, and can even differentiate active LN.
Collapse
|
28
|
Sokolov AV, Voynova IV, Kostevich VA, Vlasenko AY, Zakharova ET, Vasilyev VB. Comparison of interaction between ceruloplasmin and lactoferrin/transferrin: to bind or not to bind. BIOCHEMISTRY (MOSCOW) 2017; 82:1073-1078. [DOI: 10.1134/s0006297917090115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Li H, Huang X, Zeng Z, Peng XX, Peng B. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection. Int J Biochem Cell Biol 2016; 78:260-267. [PMID: 27458055 DOI: 10.1016/j.biocel.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Xiaoyan Huang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Zaohai Zeng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China.
| |
Collapse
|
30
|
Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 2016; 8:887-905. [PMID: 27426697 DOI: 10.1039/c6mt00103c] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We know that blood plasma contains many proteins and also other components that bind copper. The largest contributor to copper in the plasma is ceruloplasmin, which accounts for 40-70 percent. Apart from ceruloplasmin and albumin, most of these components have not been studied extensively, and even for ceruloplasmin and albumin, much remains to be discovered. New components with new functions, and new functions of known components are emerging, some warranting reconsideration of earlier findings. The author's laboratory has been actively involved in research on this topic. This review summarizes and updates our knowledge of the nature and functions of ceruloplasmin and the other known and emerging copper-containing molecules (principally proteins) in this fluid, to better understand how they contribute to copper homeostasis and consider their potential significance to health and disease.
Collapse
Affiliation(s)
- M C Linder
- California State University, Fullerton, CA, USA.
| |
Collapse
|
31
|
Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, Linder MC. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS One 2016; 11:e0149516. [PMID: 26934375 PMCID: PMC4774968 DOI: 10.1371/journal.pone.0149516] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42) with tight junctions grown in bicameral chambers, and purified human (64)Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the (64)Cu over 16h and secreted half into the apical (milk) fluid. This was partly inhibited by Ag(I). The (64)Cu in ceruloplasmin purified from plasma of (64)Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs) over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2 °C. The ceruloplasmin-derived (64)Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption) increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II)- or Fe(III)-NTA (substrates for cell surface reductases), or Cu(I)-NTA (to compete for transporter uptake) almost eliminated uptake of (64)Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB). However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I) that enters cells through CTR1 and an unknown copper uptake transporter.
Collapse
Affiliation(s)
- Danny Ramos
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - David Mar
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michael Ishida
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Rebecca Vargas
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michaella Gaite
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Aaron Montgomery
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Maria C. Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Marano M, Vespasiani Gentilucci U, Altamura C, Siotto M, Squitti R, Bucossi S, Quintiliani L, Migliore S, Greco F, Scarciolla L, Quattrocchi CC, Picardi A, Vernieri F. Altered metal metabolism in patients with HCV-related cirrhosis and hepatic encephalopathy. Metab Brain Dis 2015; 30:1445-52. [PMID: 26307419 DOI: 10.1007/s11011-015-9721-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022]
Abstract
Dysfunctional metal homeostasis contributes to oxidative stress and neuronal damage. These have been implicated in hepatic encephalopathy pathogenesis. To investigate whether altered metal metabolism is associated with hepatic encephalopathy. Twenty-one controls and 34 HCV-cirrhotic patients (ENC/NEC patients according to presence/absence of previous overt episodes of hepatic encephalopathy) and a control group were studied. Serum iron, copper, ceruloplasmin, ceruloplasmin activity, transferrin, and ceruloplasmin/transferrin ratio were determined. Neuropsychological tests were performed by the repeatable battery of neuropsychological status. Magnetic resonance assessed basal ganglia volumes and metal deposition (pallidal index and T2*). Cirrhotic patients performed worse than controls at cognitive tests, especially ENC patients,. At biochemical analysis copper concentrations, ceruloplasmin activity and transferrin levels were lower in ENC than in NEC patients and controls (p < 0.05 and p < 0.01, respectively). Ceruloplasmin/transferrin ratio was higher in ENC compared to NEC patients (p < 0.05), and controls (p < 0.01). By brain magnetic resonance, ENC patients showed reduced caudate and globus pallidus volumes compared to controls (p < 0.05), and ENC and NEC patients an increased pallidal index compared to controls (p < 0.01). In ENC patients, ceruloplasmin activity correlated with caudate volume and pallidal index (ρ = 0.773 and ρ = -0.683, p < 0.05). Altered metal metabolism likely contributes to cirrhotic hepatic encephalopathy.
Collapse
Affiliation(s)
- Massimo Marano
- Neurology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy.
| | - Umberto Vespasiani Gentilucci
- Internal Medicine and Hepatology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Claudia Altamura
- Neurology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | | | - Rosanna Squitti
- Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
- Laboratorio di Neurodegenerazione, IRCCS San Raffaele Pisana, Rome, Italy
| | - Serena Bucossi
- Laboratorio di Neurodegenerazione, IRCCS San Raffaele Pisana, Rome, Italy
| | - Livia Quintiliani
- Clinical psychology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Simone Migliore
- Clinical psychology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Federico Greco
- Radiology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Laura Scarciolla
- Radiology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Radiology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Antonio Picardi
- Internal Medicine and Hepatology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Fabrizio Vernieri
- Neurology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| |
Collapse
|
33
|
Serum copper to zinc ratio: Relationship with aging and health status. Mech Ageing Dev 2015; 151:93-100. [DOI: 10.1016/j.mad.2015.01.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
|
34
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 527] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
35
|
Sokolov AV, Zakharova ET, Zakahrova ET, Kostevich VA, Samygina VR, Vasilyev VB. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes. Biometals 2014; 27:815-28. [PMID: 24966132 DOI: 10.1007/s10534-014-9755-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 12/17/2022]
Abstract
Copper-containing plasma protein ceruloplasmin (Cp) forms a complex with lactoferrin (Lf), an iron-binding protein, and with the heme-containing myeloperoxidase (Mpo). In case of inflammation, Lf and Mpo are secreted from neutrophil granules. Among the plasma proteins, Cp seems to be the preferential partner of Lf and Mpo. After an intraperitoneal injection of Lf to rodents, the "Cp-Lf" complex has been shown to appear in their bloodstream. Cp prevents the interaction of Lf with protoplasts of Micrococcus luteus. Upon immunoprecipitation of Cp, the blood plasma becomes depleted of Lf and in a dose-dependent manner loses the capacity to inhibit the peroxidase activity of Mpo, but not the Mpo-catalyzed oxidation of thiocyanate in the (pseudo)halogenating cycle. Antimicrobial effect against E. coli displayed by a synergistic system that includes Lf and Mpo-H2O2-chloride, but not thiocyanate, as the substrate for Mpo is abrogated when Cp is added. Hence, Cp can be regarded as an anti-inflammatory factor that restrains the halogenating cycle and redirects the synergistic system Mpo-H2O2-chloride/thiocyanate to production of hypothiocyanate, which is relatively harmless for the human organism. Structure and functions of the "2Cp-2Lf-Mpo" complex and binary complexes Cp-Lf and 2Cp-Mpo in inflammation are discussed.
Collapse
Affiliation(s)
- Alexey V Sokolov
- N-W Branch of the Russian Academy of Medical Sciences, Institute for Experimental Medicine, Pavlov Street 12, Saint Petersburg, 197376, Russia,
| | | | | | | | | | | |
Collapse
|
36
|
Eid C, Hémadi M, Ha-Duong NT, El Hage Chahine JM. Iron uptake and transfer from ceruloplasmin to transferrin. Biochim Biophys Acta Gen Subj 2014; 1840:1771-81. [DOI: 10.1016/j.bbagen.2014.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/03/2023]
|
37
|
Abstract
Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Leida Tandara
- Department of Medical Laboratory Diagnosis, University Hospital Center Split, Split, Croatia.
| | | |
Collapse
|