1
|
Huang Y, Liu J, Cheng L, Xu D, Liu S, Hu H, Ling Y, Yang R, Zhang Y. Genome-Wide Analysis of the Histone Modification Gene ( HM) Family and Expression Investigation during Anther Development in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2496. [PMID: 39273980 PMCID: PMC11396841 DOI: 10.3390/plants13172496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers' development and male sterility.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Duo Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sijia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
3
|
Sarita, Mehrotra S, Dimkpa CO, Goyal V. Survival mechanisms of chickpea (Cicer arietinum) under saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108168. [PMID: 38008005 DOI: 10.1016/j.plaphy.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
Salinity is a significant abiotic stress that is steadily increasing in intensity globally. Salinity is caused by various factors such as use of poor-quality water for irrigation, poor drainage systems, and increasing spate of drought that concentrates salt solutions in the soil; salinity is responsible for substantial agricultural losses worldwide. Chickpea (Cicer arietinum) is one of the crops most sensitive to salinity stress. Salinity restricts chickpea growth and production by interfering with various physiological and metabolic processes, downregulating genes linked to growth, and upregulating genes encoding intermediates of the tolerance and avoidance mechanisms. Salinity, which also leads to osmotic stress, disturbs the ionic equilibrium of plants. Survival under salinity stress is a primary concern for the plant. Therefore, plants adopt tolerance strategies such as the SOS pathway, antioxidative defense mechanisms, and several other biochemical mechanisms. Simultaneously, affected plants exhibit mechanisms like ion compartmentalization and salt exclusion. In this review, we highlight the impact of salinity in chickpea, strategies employed by the plant to tolerate and avoid salinity, and agricultural strategies for dealing with salinity. With the increasing spate of salinity spurred by natural events and anthropogenic agricultural activities, it is pertinent to explore and exploit the underpinning mechanisms for salinity tolerance to develop mitigation and adaptation strategies in globally important food crops such as chickpea.
Collapse
Affiliation(s)
- Sarita
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Shweta Mehrotra
- Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States.
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| |
Collapse
|
4
|
Forte FP, Malinowska M, Nagy I, Schmid J, Dijkwel P, Hume DE, Johnson RD, Simpson WR, Asp T. Methylome changes in Lolium perenne associated with long-term colonisation by the endophytic fungus Epichloë sp. LpTG-3 strain AR37. FRONTIERS IN PLANT SCIENCE 2023; 14:1258100. [PMID: 37810388 PMCID: PMC10557135 DOI: 10.3389/fpls.2023.1258100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Epichloë spp. often form mutualistic interactions with cool-season grasses, such as Lolium perenne. However, the molecular mechanisms underlying this interaction remain poorly understood. In this study, we employed reduced representation bisulfite sequencing method (epiGBS) to investigate the impact of the Epichloë sp. LpTG-3 strain AR37 on the methylome of L. perenne across multiple grass generations and under drought stress conditions. Our results showed that the presence of the endophyte leads to a decrease in DNA methylation across genomic features, with differentially methylated regions primarily located in intergenic regions and CHH contexts. The presence of the endophyte was consistently associated with hypomethylation in plants across generations. This research sheds new light on the molecular mechanisms governing the mutualistic interaction between Epichloë sp. LpTG-3 strain AR37 and L. perenne. It underscores the role of methylation changes associated with endophyte infection and suggests that the observed global DNA hypomethylation in L. perenne may be influenced by factors such as the duration of the endophyte-plant association and the accumulation of genetic and epigenetic changes over time.
Collapse
Affiliation(s)
- Flavia Pilar Forte
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Marta Malinowska
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Istvan Nagy
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Jan Schmid
- Ferguson Street Laboratories, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul Dijkwel
- Ferguson Street Laboratories, Palmerston North, New Zealand
| | - David E. Hume
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Wayne R. Simpson
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Ost C, Cao HX, Nguyen TL, Himmelbach A, Mascher M, Stein N, Humbeck K. Drought-Stress-Related Reprogramming of Gene Expression in Barley Involves Differential Histone Modifications at ABA-Related Genes. Int J Mol Sci 2023; 24:12065. [PMID: 37569441 PMCID: PMC10418636 DOI: 10.3390/ijms241512065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.
Collapse
Affiliation(s)
- Charlotte Ost
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Thuy Linh Nguyen
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| |
Collapse
|
6
|
Bano N, Fakhrah S, Lone RA, Mohanty CS, Bag SK. Genome-wide identification and expression analysis of the HD2 protein family and its response to drought and salt stress in Gossypium species. FRONTIERS IN PLANT SCIENCE 2023; 14:1109031. [PMID: 36860898 PMCID: PMC9968887 DOI: 10.3389/fpls.2023.1109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Histone deacetylase 2 (HD2) proteins play an important role in the regulation of gene expression. This helps with the growth and development of plants and also plays a crucial role in responses to biotic and abiotic stress es. HD2s comprise a C2H2-type Zn2+ finger at their C-terminal and an HD2 label, deacetylation and phosphorylation sites, and NLS motifs at their N-terminal. In this study, a total of 27 HD2 members were identified, using Hidden Markov model profiles, in two diploid cotton genomes (Gossypium raimondii and Gossypium arboretum) and two tetraploid cotton genomes (Gossypium hirsutum and Gossypium barbadense). These cotton HD2 members were classified into 10 major phylogenetic groups (I-X), of which group III was found to be the largest with 13 cotton HD2 members. An evolutionary investigation showed that the expansion of HD2 members primarily occurred as a result of segmental duplication in paralogous gene pairs. Further qRT-PCR validation of nine putative genes using RNA-Seq data suggested that GhHDT3D.2 exhibits significantly higher levels of expression at 12h, 24h, 48h, and 72h of exposure to both drought and salt stress conditions compared to a control measure at 0h. Furthermore, gene ontology, pathways, and co-expression network study of GhHDT3D.2 gene affirmed their significance in drought and salt stress responses.
Collapse
Affiliation(s)
- Nasreen Bano
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Rayees Ahmad Lone
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandra Sekhar Mohanty
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Wang J, Li X, Dong Q, Li C, Li J, Li N, Ding B, Wang X, Yu Y, Wang T, Zhang Z, Yu Y, Lang M, Zeng Z, Liu B, Gong L. Chromatin architectural alterations due to null mutation of a major CG methylase in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2396-2410. [PMID: 36194511 DOI: 10.1111/jipb.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Associations between 3D chromatin architectures and epigenetic modifications have been characterized in animals. However, any impact of DNA methylation on chromatin architecture in plants is understudied, which is confined to Arabidopsis thaliana. Because plant species differ in genome size, composition, and overall chromatin packing, it is unclear to what extent findings from A. thaliana hold in other species. Moreover, the incomplete chromatin architectural profiles and the low-resolution high-throughput chromosome conformation capture (Hi-C) data from A. thaliana have hampered characterizing its subtle chromatin structures and their associations with DNA methylation. We constructed a high-resolution Hi-C interaction map for the null OsMET1-2 (the major CG methyltransferase in rice) mutant (osmet1-2) and isogenic wild-type rice (WT). Chromatin structural changes occurred in osmet1-2, including intra-/inter-chromosomal interactions, compartment transition, and topologically associated domains (TAD) variations. Our findings provide novel insights into the potential function of DNA methylation in TAD formation in rice and confirmed DNA methylation plays similar essential roles in chromatin packing in A. thaliana and rice.
Collapse
Affiliation(s)
- Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yiyang Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Man Lang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
10
|
Tahir MS, Karagiannis J, Tian L. HD2A and HD2C co-regulate drought stress response by modulating stomatal closure and root growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1062722. [PMID: 36507458 PMCID: PMC9727301 DOI: 10.3389/fpls.2022.1062722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylase 2 (HD2) is a unique family of histone deacetylases (HDACs) in plants. Despite evidence that certain HD2 family HDACs play an important role in plant growth and stress response, the coordination of HD2s in these processes remains largely unknown. We found that HD2-type, HD2A and HD2C coordinate to play a role in drought stress response in Arabidopsis. We showed that the hd2a.hd2c double mutant (Mac16) exhibit decreased drought survival and increased water loss as compared to the single mutants, hd2a and hd2c. Gene expression analysis showed that the ABI1 and ABI2 genes were upregulated and SLAC1 was downregulated which led to the modified stomatal functioning in the Mac16 as compared to the single mutants. Overexpression of HD2A and HD2C showed enhanced drought survival and decreased water loss. We also showed that the GA2ox1 and GA2ox2 genes, which are involved in the catabolism of bioactive gibberellic acids, were upregulated in the Mac16 as compared to the single mutants, which led to a decreased root growth in the Mac16. Furthermore, we showed that HD2A and HD2C can physically interact and increased genome-wide H3K9 acetylation was observed in the Mac16, compared to the single mutants. Overall, our investigation revealed that HD2A and HD2C coordinate to play a cumulative role in drought stress response and root growth in Arabidopsis.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
11
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Yadav N, Nagar P, Rakhi R, Kumar A, Rai A, Mustafiz A. Transcript profiling of Polycomb gene family in Oryza sativa indicates their abiotic stress-specific response. Funct Integr Genomics 2022; 22:1211-1227. [PMID: 36197542 DOI: 10.1007/s10142-022-00906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The precise regulation of gene expression is required for the determination of cell fate, differentiation, and developmental programs in eukaryotes. The Polycomb Group (PcG) genes are the key transcriptional regulators that constitute the repressive system, with two major protein complexes, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2). Previous studies have demonstrated the significance of these proteins in regulation of normal growth and development processes. However, the role of PcG in adaptation of crops to abiotic stress is still not well understood. The present study aimed to a comprehensive genome-wide identification of the PcG gene family in one of the economically important staple crops, Oryza sativa. Here, a total of 14 PcG genes have been identified, which were distributed over eight chromosomes. Protein structure analysis revealed that both the complexes have distinct domain and motifs that are conserved within the complexes. In silico promoter analysis showed that PcG gene promoters have abundance of abiotic stress-responsive elements. RNA-seq based expression analysis revealed that PcG genes are differentially expressed in different tissues and responded variably in different environmental stress. Validation of gene expression by qRT-PCR showed that most of the genes were upregulated at 1-h time point in shoot tissue and at 24-h time point in root tissue under the drought and salinity stress conditions. These findings provide important and extensive information on the PcG family of O. sativa, which will pave the path for understanding their role in stress signaling in plants.
Collapse
Affiliation(s)
- Nikita Yadav
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - R Rakhi
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Archita Rai
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
13
|
Molecular and epigenetic basis of heat stress responses and acclimatization in plants. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Genome-Wide Identification and Spatial Expression Analysis of Histone Modification Gene Families in the Rubber Dandelion Taraxacum kok-saghyz. PLANTS 2022; 11:plants11162077. [PMID: 36015381 PMCID: PMC9415798 DOI: 10.3390/plants11162077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Taraxacum kok-saghyz (Tks), also known as the Russian dandelion, is a recognized alternative source of natural rubber quite comparable, for quality and use, to the one obtained from the so-called rubber tree, Hevea brasiliensis. In addition to that, Tks roots produce several other compounds, including inulin, whose use in pharmaceutical and dietary products is quite extensive. Histone-modifying genes (HMGs) catalyze a series of post-translational modifications that affect chromatin organization and conformation, which, in turn, regulate many downstream processes, including gene expression. In this study, we present the first analysis of HMGs in Tks. Altogether, we identified 154 putative Tks homologs: 60 HMTs, 34 HDMs, 42 HATs, and 18 HDACs. Interestingly, whilst most of the classes showed similar numbers in other plant species, including M. truncatula and A. thaliana, HATs and HMT-PRMTs were indeed more abundant in Tks. Composition and structure analysis of Tks HMG proteins showed, for some classes, the presence of novel domains, suggesting a divergence from the canonical HMG model. The analysis of publicly available transcriptome datasets, combined with spatial expression of different developmental tissues, allowed us to identify several HMGs with a putative role in metabolite biosynthesis. Overall, our work describes HMG genomic organization and sets the premises for the functional characterization of epigenetic modifications in rubber-producing plants.
Collapse
|
15
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Wu X, Xu J, Meng X, Fang X, Xia M, Zhang J, Cao S, Fan T. Linker histone variant HIS1-3 and WRKY1 oppositely regulate salt stress tolerance in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1833-1847. [PMID: 35474141 PMCID: PMC9237719 DOI: 10.1093/plphys/kiac174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 06/12/2023]
Abstract
The salt overly sensitive (SOS) pathway plays an important role in plant salt stress; however, the transcriptional regulation of the genes in this pathway is unclear. In this study, we found that Linker histone variant HIS1-3 and WRKY1 oppositely regulate the salt stress response in Arabidopsis (Arabidopsis thaliana) through the transcriptional regulation of SOS genes. The expression of HIS1-3 was inhibited by salt stress, and the disruption of HIS1-3 resulted in enhanced salt tolerance. Conversely, the expression of WRKY1 was induced by salt stress, and the loss of WRKY1 function led to increased salt sensitivity. The expression of SOS1, SOS2, and SOS3 was repressed and induced by HIS1-3 and WRKY1, respectively, and HIS1-3 regulated the expression of SOS1 and SOS3 by occupying the WRKY1 binding sites on their promoters. Moreover, WRKY1 and HIS1-3 acted upstream of the SOS pathway. Together, our results indicate that HIS1-3 and WRKY1 oppositely modulate salt tolerance in Arabidopsis through transcriptional regulation of SOS genes.
Collapse
Affiliation(s)
| | | | | | - Xue Fang
- School of Horticulture, Anhui Agricultural University, Hefei 230009, China
| | - Minghui Xia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | | |
Collapse
|
17
|
Unraveling the DNA Methylation in the rDNA Foci in Mutagen-Induced Brachypodium distachyon Micronuclei. Int J Mol Sci 2022; 23:ijms23126797. [PMID: 35743241 PMCID: PMC9224279 DOI: 10.3390/ijms23126797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Many years have passed since micronuclei were first observed then accepted as an indicator of the effect of mutagens. However, the possible mechanisms of their formation and elimination from the cell are still not fully understood. Various stresses, including mutagens, can alter gene expression through changes in DNA methylation in plants. In this study we demonstrate for the first time DNA methylation in the foci of 5S and 35S rDNA sequences in individual Brachypodium distachyon micronuclei that are induced by mutagenic treatment with maleic acid hydrazide (MH). The impact of MH on global epigenetic modifications in nuclei and micronuclei has been studied in plants before; however, no in situ analyses of DNA methylation in specific DNA sequence sites are known. To address this problem, we used sequential immunodetection of 5-methylcytosine and fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes on the non-dividing cells of B. distachyon. Such investigations into the presence or absence of DNA methylation within specific DNA sequences are extremely important in plant mutagenesis in the light of altering gene expression.
Collapse
|
18
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. Chromatin-Based Transcriptional Reprogramming in Plants under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:1449. [PMID: 35684223 PMCID: PMC9182740 DOI: 10.3390/plants11111449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Plants' stress response machinery is characterized by an intricate network of signaling cascades that receive and transmit environmental cues and ultimately trigger transcriptional reprogramming. The family of epigenetic regulators that are the key players in the stress-induced signaling cascade comprise of chromatin remodelers, histone modifiers, DNA modifiers and regulatory non-coding RNAs. Changes in the histone modification and DNA methylation lead to major alterations in the expression level and pattern of stress-responsive genes to adjust with abiotic stress conditions namely heat, cold, drought and salinity. The spotlight of this review falls primarily on the chromatin restructuring under severe abiotic stresses, crosstalk between epigenetic regulators along with a brief discussion on stress priming in plants.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| |
Collapse
|
19
|
Liu M, Jiang J, Han Y, Shi M, Li X, Wang Y, Dong Z, Yang C. Functional Characterization of the Lysine-Specific Histone Demethylases Family in Soybean. PLANTS 2022; 11:plants11111398. [PMID: 35684171 PMCID: PMC9182794 DOI: 10.3390/plants11111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Histone modifications, such as methylation and demethylation, have crucial roles in regulating chromatin structure and gene expression. Lysine-specific histone demethylases (LSDs) belong to the amine oxidase family, which is an important family of histone lysine demethylases (KDMs), and functions in maintaining homeostasis of histone methylation. Here, we identified six LSD-like (LDL) genes from the important leguminous soybean. Phylogenetic analyses divided the six GmLDLs into four clusters with two highly conserved SWRIM and amine oxidase domains. Indeed, demethylase activity assay using recombinant GmLDL proteins in vitro demonstrated that GmLDLs have demethylase activity toward mono- and dimethylated Lys4 but not trimethylated histone 3, similar to their orthologs previously reported in animals. Using real-time PCR experiments in combination with public transcriptome data, we found that these six GmLDL genes exhibit comparable expressions in multiple tissues or in response to different abiotic stresses. Moreover, our genetic variation investigation of GmLDL genes among 761 resequenced soybean accessions indicates that GmLDLs are well conserved during soybean domestication and improvement. Taken together, these findings demonstrate that GmFLD, GmLDL1a, and GmLDL1b are bona fide H3K4 demethylases towards H4K4me1/2 and GmLDLs exist in various members with likely conserved and divergent roles in soybeans.
Collapse
Affiliation(s)
- Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Yapeng Han
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200240, China; (Y.H.); (Y.W.)
| | - Mengying Shi
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Xianli Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200240, China; (Y.H.); (Y.W.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhicheng Dong
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (Z.D.); (C.Y.)
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
- Correspondence: (Z.D.); (C.Y.)
| |
Collapse
|
20
|
Thakur RK, Prasad P, Bhardwaj SC, Gangwar OP, Kumar S. Epigenetics of wheat-rust interaction: an update. PLANTA 2022; 255:50. [PMID: 35084577 DOI: 10.1007/s00425-022-03829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The outcome of different host-pathogen interactions is influenced by both genetic and epigenetic systems, which determine the response of plants to pathogens and vice versa. This review highlights key molecular mechanisms and conceptual advances involved in epigenetic research and the progress made in epigenetics of wheat-rust interactions. Epigenetics implies the heritable changes in the way of gene expression as a consequence of the modification of DNA bases, histone proteins, and/or non-coding-RNA biogenesis without disturbing the underlying nucleotide sequence. The changes occurring between DNA and its surrounding chromatin without altering its DNA sequence and leading to significant changes in the genome of any organism are called epigenetic changes. Epigenetics has already been used successfully to explain the mechanism of human pathogens and in the identification of pathogen-induced modifications within various host plants. Wheat rusts are one of the most vital fungal diseases throughout the major wheat-growing areas of the world. The epigenome in plant pathogens causing diseases such as wheat rusts is mysterious. The investigations of host and pathogen epigenetics in the wheat rusts system can offer a piece of suitable evidence for elucidation of the molecular basis of host-pathogen interaction. Besides, the information on the epigenetic regulation of the genes involved in resistance or pathogenicity will provide better insights into the complex resistance signaling pathways and could provide answers to certain key questions, such as whether epigenetic regulation of certain genes is imparting resistance to host in response of certain pathogen elicitors or not. In the last few years, there has been an upsurge in research on the host as well as pathogen epigenetics and its outcome in plant-pathogen interactions. This review summarizes the progress made in the areas related to the epigenetic control of host-pathogen interaction with particular emphasis on wheat rusts.
Collapse
Affiliation(s)
- Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
21
|
Du Q, Fang Y, Jiang J, Chen M, Fu X, Yang Z, Luo L, Wu Q, Yang Q, Wang L, Qu Z, Li X, Xie X. Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 2022; 23:28. [PMID: 34991465 PMCID: PMC8739980 DOI: 10.1186/s12864-021-08229-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) play an important role in the regulation of gene expression, which is indispensable in plant growth, development, and responses to environmental stresses. In Arabidopsis and rice, the molecular functions of HDACs have been well-described. However, systematic analysis of the HDAC gene family and gene expression in response to biotic and abiotic stresses has not been reported for sorghum. RESULTS We conducted a systematic analysis of the sorghum HDAC gene family and identified 19 SbHDACs mainly distributed on eight chromosomes. Phylogenetic tree analysis of SbHDACs showed that the gene family was divided into three subfamilies: RPD3/HDA1, SIR2, and HD2. Tissue-specific expression results showed that SbHDACs displayed different expression patterns in different tissues, indicating that these genes may perform different functions in growth and development. The expression pattern of SbHDACs under different stresses (high and low temperature, drought, osmotic and salt) and pathogen-associated molecular model (PAMPs) elf18, chitin, and flg22) indicated that SbHDAC genes may participate in adversity responses and biological stress defenses. Overexpression of SbHDA1, SbHDA3, SbHDT2 and SbSRT2 in Escherichia coli promoted the growth of recombinant cells under abiotic stress. Interestingly, we also showed that the sorghum acetylation level was enhanced when plants were under cold, heat, drought, osmotic and salt stresses. The findings will help us to understand the HDAC gene family in sorghum, and illuminate the molecular mechanism of the responses to abiotic and biotic stresses. CONCLUSION We have identified and classified 19 HDAC genes in sorghum. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Meiqing Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qijiao Wu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Lujie Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhiguang Qu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
22
|
Zheng L, Ma S, Shen D, Fu H, Wang Y, Liu Y, Shah K, Yue C, Huang J. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses. BMC PLANT BIOLOGY 2021; 21:543. [PMID: 34800975 PMCID: PMC8605605 DOI: 10.1186/s12870-021-03332-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND In plants, histone modification (HM) genes participate in various developmental and defense processes. Gramineae plants (e.g., Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Setaria italica, Setaria viridis, and Zea mays) are important crop species worldwide. However, little information on HM genes is in Gramineae species. RESULTS Here, we identified 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs, and 90 ZmHMs in the above six Gramineae species, respectively. Detailed information on their chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements, and gene structures were determined. Among the HMs, most motifs were conserved, but several unique motifs were also identified. Our results also suggested that gene and genome duplications potentially impacted the evolution and expansion of HMs in wheat. The number of orthologous gene pairs between rice (Oryza sativa) and each Gramineae species was much greater than that between Arabidopsis and each Gramineae species, indicating that the dicotyledons shared common ancestors. Moreover, all identified HM gene pairs likely underwent purifying selection based on to their non-synonymous (Ka)/synonymous (Ks) nucleotide substitutions. Using published transcriptome data, changes in TaHM gene expression in developing wheat grains treated with brassinosteroid, brassinazole, or activated charcoal were investigated. In addition, the transcription models of ZmHMs in developing maize seeds and after gibberellin treatment were also identified. We also examined plant stress responses and found that heat, drought, salt, insect feeding, nitrogen, and cadmium stress influenced many TaHMs, and drought altered the expression of several ZmHMs. Thus, these findings indicate their important functions in plant growth and stress adaptations. CONCLUSIONS Based on a comprehensive analysis of Gramineae HMs, we found that TaHMs play potential roles in grain development, brassinosteroid- and brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptations. Furthermore, ZmHMs likely participate in seed development, gibberellin-mediated leaf growth, and drought adaptation.
Collapse
Affiliation(s)
- Liwei Zheng
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Shengjie Ma
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Dandan Shen
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Kamran Shah
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
23
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
24
|
Wang J, Song J, Wu XB, Deng QQ, Zhu ZY, Ren MJ, Ye M, Zeng RS. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. PEST MANAGEMENT SCIENCE 2021; 77:4709-4718. [PMID: 34146457 DOI: 10.1002/ps.6513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Qian-Qian Deng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ming-Jian Ren
- Guizhou Branch of the National Wheat Improvement Center, Guiyang, China
| | - Mao Ye
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ren-Sen Zeng
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Uses of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Tahir MS, Tian L. HD2-type histone deacetylases: unique regulators of plant development and stress responses. PLANT CELL REPORTS 2021; 40:1603-1615. [PMID: 34041586 DOI: 10.1007/s00299-021-02688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Plants have developed sophisticated and complex epigenetic regulation-based mechanisms to maintain stable growth and development under diverse environmental conditions. Histone deacetylases (HDACs) are important epigenetic regulators in eukaryotes that are involved in the deacetylation of lysine residues of histone H3 and H4 proteins. Plants have developed a unique HDAC family, HD2, in addition to the RPD3 and Sir2 families, which are also present in other eukaryotes. HD2s are well conserved plant-specific HDACs, which were first identified as nucleolar phosphoproteins in maize. The HD2 family plays important roles not only in fundamental developmental processes, including seed germination, root and leaf development, floral transition, and seed development but also in regulating plant responses to biotic and abiotic stresses. Some of the HD2 members coordinate with each other to function. The HD2 family proteins also show functional association with RPD3-type HDACs and other transcription factors as a part of repression complexes in gene regulatory networks involved in environmental stress responses. This review aims to analyse and summarise recent research progress in the HD2 family, and to describe their role in plant growth and development and in response to different environmental stresses.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
26
|
Plants' Epigenetic Mechanisms and Abiotic Stress. Genes (Basel) 2021; 12:genes12081106. [PMID: 34440280 PMCID: PMC8394019 DOI: 10.3390/genes12081106] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Plants are sessile organisms that need to adapt to constantly changing environmental conditions. Unpredictable climate change places plants under a variety of abiotic stresses. Studying the regulation of stress-responsive genes can help to understand plants’ ability to adapt to fluctuating environmental conditions. Changes in epigenetic marks such as histone modifications and DNA methylation are known to regulate gene expression by their dynamic variation in response to stimuli. This can then affect their phenotypic plasticity, which helps with the adaptation of plants to adverse conditions. Epigenetic marks may also provide a mechanistic basis for stress memory, which enables plants to respond more effectively and efficiently to recurring stress and prepare offspring for potential future stresses. Studying epigenetic changes in addition to genetic factors is important to better understand the molecular mechanisms underlying plant stress responses. This review summarizes the epigenetic mechanisms behind plant responses to some main abiotic stresses.
Collapse
|
27
|
Skorupa M, Szczepanek J, Mazur J, Domagalski K, Tretyn A, Tyburski J. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS One 2021; 16:e0251675. [PMID: 34043649 PMCID: PMC8158878 DOI: 10.1371/journal.pone.0251675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
Here we determined the impact of salt shock and salt stress on the level of DNA methylation in selected CpG islands localized in promoters or first exons of sixteen salt-responsive genes in beets. Two subspecies differing in salt tolerance were subjected for analysis, a moderately salt-tolerant sugar beet Beta vulgaris ssp. vulgaris cv. Huzar and a halophytic beet, Beta vulgaris ssp. maritima. The CpG island methylation status was determined. All target sequences were hyper- or hypomethylated under salt shock and/or salt stress in one or both beet subspecies. It was revealed that the genomic regions analyzed were highly methylated in both, the salt treated plants and untreated controls. Methylation of the target sequences changed in a salt-dependent manner, being affected by either one or both treatments. Under both shock and stress, the hypomethylation was a predominant response in sugar beet. In Beta vulgaris ssp. maritima, the hypermethylation occurred with higher frequency than hypomethylation, especially under salt stress and in the promoter-located CpG sites. Conversely, the hypomethylation of the promoter-located CpG sites predominated in sugar beet plants subjected to salt stress. This findings suggest that DNA methylation may be involved in salt-tolerance and transcriptomic response to salinity in beets.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Mazur
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Domagalski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
28
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
29
|
Sharma M, Jamsheer K. M, Shukla BN, Sharma M, Awasthi P, Mahtha SK, Yadav G, Laxmi A. Arabidopsis Target of Rapamycin Coordinates With Transcriptional and Epigenetic Machinery to Regulate Thermotolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:741965. [PMID: 34777423 PMCID: PMC8581614 DOI: 10.3389/fpls.2021.741965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/01/2021] [Indexed: 05/08/2023]
Abstract
Global warming exhibits profound effects on plant fitness and productivity. To withstand stress, plants sacrifice their growth and activate protective stress responses for ensuring survival. However, the switch between growth and stress is largely elusive. In the past decade, the role of the target of rapamycin (TOR) linking energy and stress signalling is emerging. Here, we have identified an important role of Glucose (Glc)-TOR signalling in plant adaptation to heat stress (HS). Glc via TOR governs the transcriptome reprogramming of a large number of genes involved in heat stress protection. Downstream to Glc-TOR, the E2Fa signalling module regulates the transcription of heat shock factors through direct recruitment of E2Fa onto their promoter regions. Also, Glc epigenetically regulates the transcription of core HS signalling genes in a TOR-dependent manner. TOR acts in concert with p300/CREB HISTONE ACETYLTRANSFERASE1 (HAC1) and dictates the epigenetic landscape of HS loci to regulate thermotolerance. Arabidopsis plants defective in TOR and HAC1 exhibited reduced thermotolerance with a decrease in the expression of core HS signalling genes. Together, our findings reveal a mechanistic framework in which Glc-TOR signalling through different modules integrates stress and energy signalling to regulate thermotolerance.
Collapse
|
30
|
Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat ( Triticum aestivum L.). PLANTS 2020; 10:plants10010019. [PMID: 33374252 PMCID: PMC7823868 DOI: 10.3390/plants10010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.
Collapse
|
31
|
Jung C, Nguyen NH, Cheong JJ. Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. Int J Mol Sci 2020; 21:ijms21249517. [PMID: 33327661 PMCID: PMC7765119 DOI: 10.3390/ijms21249517] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology, Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam;
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4888; Fax: +82-2-873-5260
| |
Collapse
|
32
|
2-oxoglutarate-dependent dioxygenases: A renaissance in attention for ascorbic acid in plants. PLoS One 2020; 15:e0242833. [PMID: 33290424 PMCID: PMC7723244 DOI: 10.1371/journal.pone.0242833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022] Open
Abstract
L-Ascorbic acid (ascorbate, Vitamin C) is an essential human micronutrient that is predominantly obtained from plants. It is known to work as the major antioxidant in plants, and it underpins several environmentally induced stresses due to its use as a co-factor by certain 2-oxoglutarate-dependent (2-OG) dioxygenases [2(OG)-dioxygenases]. It is important to understand the role of 2(OG)-dioxygenases in the biosynthesis of ascorbate. The present study examined contents of ascorbate and protein-protein interaction in nine T-DNA mutants of Arabidopsis containing an insert in their respective (2-OG) dioxygenase genes (At1g20270, At1g68080, At2g17720, At3g06290, At3g28490, At4g35810, At4g35820, At5g18900, At5g66060). In this study, the amount of ascorbate in five of the mutants was shown to be almost two-fold or more than two-fold higher than in the wild type. This result may be a consequence of the insertion of the T-DNA. The prediction of possible protein interactions between 2(OG)-dioxygenases and relevant ascorbate-function players may indicate the oxidative effects of certain dioxygenase proteins in plants. It is expected that certain dioxygenases are actively involved in the metabolic and biosynthetic pathways of ascorbate. This involvement may be of importance to increase ascorbate amounts in plants for human nutrition, and to protect plant species against stress conditions.
Collapse
|
33
|
Wu J, Yan M, Zhang D, Zhou D, Yamaguchi N, Ito T. Histone Demethylases Coordinate the Antagonistic Interaction Between Abscisic Acid and Brassinosteroid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:596835. [PMID: 33324437 PMCID: PMC7724051 DOI: 10.3389/fpls.2020.596835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/03/2020] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) interacts antagonistically with brassinosteroids (BRs) to control plant growth and development in response to stress. The response to environmental cues includes hormonal control via epigenetic regulation of gene expression. However, the details of the ABA-BR crosstalk remain largely unknown. Here, we show that JUMONJI-C domain containing histone demethylases (JMJs) coordinate the antagonistic interaction between ABA and BR signaling pathways during the post-germination stage in Arabidopsis. BR blocks ABA-mediated seedling arrest through repression of JMJ30. JMJs remove the repressive histone marks from the BRASSINAZOLE RESISTANT1 (BZR1) locus for its activation to balance ABA and BR signaling pathways. JMJs and BZR1 co-regulate genes encoding three membrane proteins, a regulator of vacuole morphology, and two lipid-transfer proteins, each of which play a different role in transport. BZR1 also regulates stimuli-related target genes in a JMJ-independent pathway. Our findings suggest that the histone demethylases integrate ABA and BR signals, leading to changes in growth program after germination.
Collapse
Affiliation(s)
- Jinfeng Wu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dawei Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dinggang Zhou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
34
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020; 11:576086. [PMID: 33193691 PMCID: PMC7581891 DOI: 10.3389/fgene.2020.576086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Cadavid IC, da Fonseca GC, Margis R. HDAC inhibitor affects soybean miRNA482bd expression under salt and osmotic stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153261. [PMID: 32947244 DOI: 10.1016/j.jplph.2020.153261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that modulate gene expression through targeting mRNA by specific-sequence cleavage, translation inhibition, or transcriptional regulation. miRNAs are key molecules in regulatory networks in abiotic stresses such as salt stress and water deficit in plants. Throughout the world, soybean is a critical crop, the production of which is affected by environmental stress conditions. In this study, RNA-Seq libraries from leaves of soybean under salt treatment were analyzed. 17 miRNAs and 31 putative target genes were identified with inverse differential expression patterns, indicating miRNA-target interaction. The differential expression of six miRNAs, including miR482bd-5p, and their potential targets, were confirmed by RT-qPCR. The miR482bd-5p expression was repressed, while its potential HEC1 and BAK1 targets were increased. Polyethylene glycol experiment was used to simulate drought stress, and miR482bd-5p, HEC1, and BAK1 presented a similar expression pattern, as found in salt stress. Histone modifications occur in response to abiotic stress, where histone deacetylases (HDACs) can lead to gene repression and silencing. The miR482bd-5p epigenetic regulation by histone deacetylation was evaluated by using the SAHA-HDAC inhibitor. The miR482bd-5p was up-regulated, and HEC1 was down-regulated under SAHA-salt treatment. It suggests an epigenetic regulation, where the miRNA gene is repressed by HDAC under salt stress, reducing its transcription, with an associated increase in the HEC1 target expression.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
36
|
Zhang JB, He SP, Luo JW, Wang XP, Li DD, Li XB. A histone deacetylase, GhHDT4D, is positively involved in cotton response to drought stress. PLANT MOLECULAR BIOLOGY 2020; 104:67-79. [PMID: 32621165 DOI: 10.1007/s11103-020-01024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Acetylation and deacetylation of histones are important for regulating a series of biological processes in plants. Histone deacetylases (HDACs) control the histone deacetylation that plays an important role in plant response to abiotic stress. In our study, we show the evidence that GhHDT4D (a member of the HD2 subfamily of HDACs) is involved in cotton (Gossypium hirsutum) response to drought stress. Overexpression of GhHDT4D in Arabidopsis increased plant tolerance to drought, whereas silencing GhHDT4D in cotton resulted in plant sensitivity to drought. Simultaneously, the H3K9 acetylation level was altered in the GhHDT4D silenced cotton, compared with the controls. Further study revealed that GhHDT4D suppressed the transcription of GhWRKY33, which plays a negative role in cotton defense to drought, by reducing its H3K9 acetylation level. The expressions of the stress-related genes, such as GhDREB2A, GhDREB2C, GhSOS2, GhRD20-1, GhRD20-2 and GhRD29A, were significantly decreased in the GhHDT4D silenced cotton, but increased in the GhWRKY33 silenced cotton. Given these data together, our findings suggested that GhHDT4D may enhance drought tolerance by suppressing the expression of GhWRKY33, thereby activating the downstream drought response genes in cotton.
Collapse
Affiliation(s)
- Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shao-Ping He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Wen Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xin-Peng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
37
|
Alterations of Rice ( Oryza sativa L.) DNA Methylation Patterns Associated with Gene Expression in Response to Rice Black Streaked Dwarf Virus. Int J Mol Sci 2020; 21:ijms21165753. [PMID: 32796598 PMCID: PMC7570085 DOI: 10.3390/ijms21165753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) causes severe yield losses in rice (Oryza sativa L.) in China. Studies have shown that the mechanisms of DNA methylation-mediated plant defense against DNA viruses and RNA viruses are different. However, in rice its function in response to infection of RBSDV, a double-stranded RNA virus, remains unclear. In this study, high-throughput single-base resolution bisulfite sequencing (BS-Seq) was carried out to analyze the distribution pattern and characteristics of cytosine methylation in RBSDV-infected rice. Widespread differences were identified in CG and non-CG contexts between the RBSDV-infected and RBSDV-free rice. We identified a large number of differentially methylated regions (DMRs) along the genome of RBSDV-infected rice. Additionally, the transcriptome sequencing analysis obtained 1119 differentially expressed genes (DEGs). Correlation analysis of DMRs-related genes (DMGs) and DEGs filtered 102 genes with positive correlation and 71 genes with negative correlation between methylation level at promoter regions and gene expression. Key genes associated with maintaining DNA methylation in rice were analyzed by RT-qPCR and indicated that OsDMT702 might be responsible for the global increase of DNA methylation level in rice under RBSDV stress. Our results suggest important roles of rice DNA methylation in response to RBSDV and provide potential target genes for rice antiviral immunity.
Collapse
|
38
|
Rehman M, Tanti B. Understanding epigenetic modifications in response to abiotic stresses in plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Whole-genome landscape of H3K4me3, H3K36me3 and H3K9ac and their association with gene expression during Paulownia witches' broom disease infection and recovery processes. 3 Biotech 2020; 10:336. [PMID: 32670736 DOI: 10.1007/s13205-020-02331-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Histone methylation and acetylation participate in the modulation of gene expression. Here, chromatin immunoprecipitation sequencing (ChIP-Seq) was used to determine genome-wide patterns of three histone modifications, H3K4me3, H3K36me3, and H3K9ac (associated with actively expressed genes) and their associations with gene expression in Paulownia fortunei following phytoplasma infection and recovery from Paulownia witches' broom (PaWB) disease after methyl methane sulfonate treatment. The three histone marks were preferentially deposited in genic regions, especially downstream of transcription start sites, and were highly concurrent with gene expression. Genes with all three histone marks exhibited the highest expression levels. Based on the comparison scheme, we detected 365, 2244, and 752 PaWB-associated genes with H3K4me3, H3K36me3, and H3K9ac marks, separately. KEGG pathway analysis showed that these genes were involved in plant-pathogen interaction, plant hormone signal transduction, and starch and sucrose metabolism. A small proportion of differentially modified genes showed changes in expression in response to phytoplasma infection, including genes involved in calcium ion signal transduction, abscisic acid signal transduction, and ethylene biosynthesis. This comprehensive analysis of genome-wide histone modifications and gene expression in Paulownia following phytoplasma infection provides new insights into the epigenetic responses to phytoplasma infection and will be useful for further studies on epigenetic regulation mechanisms in plants under biotic stress.
Collapse
|
40
|
Upadhyay RK, Fatima T, Handa AK, Mattoo AK. Polyamines and Their Biosynthesis/Catabolism Genes Are Differentially Modulated in Response to Heat Versus Cold Stress in Tomato Leaves ( Solanum lycopersicum L.). Cells 2020; 9:cells9081749. [PMID: 32707844 PMCID: PMC7465501 DOI: 10.3390/cells9081749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Polyamines (PAs) regulate growth in plants and modulate the whole plant life cycle. They have been associated with different abiotic and biotic stresses, but little is known about the molecular regulation involved. We quantified gene expression of PA anabolic and catabolic pathway enzymes in tomato (Solanum lycopersicum cv. Ailsa Craig) leaves under heat versus cold stress. These include arginase1 and 2, arginine decarboxylase 1 and 2, agmatine iminohydrolase/deiminase 1, N-carbamoyl putrescine amidase, two ornithine decarboxylases, three S-adenosylmethionine decarboxylases, two spermidine synthases; spermine synthase; flavin-dependent polyamine oxidases (SlPAO4-like and SlPAO2) and copper dependent amine oxidases (SlCuAO and SlCuAO-like). The spatiotemporal transcript abundances using qRT-PCR revealed presence of their transcripts in all tissues examined, with higher transcript levels observed for SAMDC1, SAMDC2 and ADC2 in most tissues. Cellular levels of free and conjugated forms of putrescine and spermidine were found to decline during heat stress while they increased in response to cold stress, revealing their differential responses. Transcript levels of ARG2, SPDS2, and PAO4-like increased in response to both heat and cold stresses. However, transcript levels of ARG1/2, AIH1, CPA, SPDS1 and CuAO4 increased in response to heat while those of ARG2, ADC1,2, ODC1, SAMDC1,2,3, PAO2 and CuPAO4-like increased in response to cold stress, respectively. Transcripts of ADC1,2, ODC1,2, and SPMS declined in response to heat stress while ODC2 transcripts declined under cold stress. These results show differential expression of PA metabolism genes under heat and cold stresses with more impairment clearly seen under heat stress. We interpret these results to indicate a more pronounced role of PAs in cold stress acclimation compared to that under heat stress in tomato leaves.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Tahira Fatima
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Correspondence: ; Tel.: +1-301-504-6622
| |
Collapse
|
41
|
Yan K, Ran M, Li S, Zhang J, Wang Y, Wang Z, Wei D, Tang Q. The delayed senescence of postharvest buds in salt ions was related to antioxidant activity, HDA9 and CCX1 in broccoli (Brassica oleracea L. var. Italic Planch.). Food Chem 2020; 324:126887. [PMID: 32339788 DOI: 10.1016/j.foodchem.2020.126887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Epigenetic regulation and salt ions play essential roles in senescence control, but the underlying regulatory mechanism of senescence has not been thoroughly revealed in broccoli postharvest buds. Here, we found 200 mmol·L-1 NaCl, 400 mmol·L-1 KCl, 40 mmol·L-1 CaCl2 and 0.5 μmol·L-1 Trichostatin-A (TSA, a histone deacetylase inhibitor) delayed the bud senescence. They resulted in significantly inhibiting the malondialdehyde (MDA) content, and dramatically promoting the contents of superoxide dismutase (SOD), peroxidase (POD) and Chlorophyll. Furthermore, the expression of PHEOPHYTINASE (PPH) and NONYELLOWING (NYE1), but not SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), were remarkably repressed by salt ions and TSA. Interestingly, HISTONE DEACETYLASE 9 (HDA9) and CATION/Ca2+ EXCHANGER 1 (CCX1) were down-regulated by NaCl, CaCl2 and TSA. Further assays demonstrated that HDA9 could not interact with CCX1 promoter. It suggested that CCX1 along with HDA9 were involved in inhibiting the senescence of broccoli buds, and regulated aging by indirect interaction.
Collapse
Affiliation(s)
- Kai Yan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chengdu Agricultural College, Chengdu 611130, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Maolin Ran
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Rice and Sorghum Institute, Sichuan Academy of Agricultural Sciences, Sichuan Deyang 618000, China
| | - Shengnan Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Junli Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Yu Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China.
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
42
|
Kong L, Liu Y, Wang X, Chang C. Insight into the Role of Epigenetic Processes in Abiotic and Biotic Stress Response in Wheat and Barley. Int J Mol Sci 2020; 21:ijms21041480. [PMID: 32098241 PMCID: PMC7073019 DOI: 10.3390/ijms21041480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental stresses such as salinity, drought, heat, freezing, heavy metal and even pathogen infections seriously threaten the growth and yield of important cereal crops including wheat and barley. There is growing evidence indicating that plants employ sophisticated epigenetic mechanisms to fine-tune their responses to environmental stresses. Here, we provide an overview of recent developments in understanding the epigenetic processes and elements—such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs—involved in plant responses to abiotic and biotic stresses in wheat and barley. Potentials of exploiting epigenetic variation for the improvement of wheat and barley are discussed.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Yanna Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-532-85953227
| |
Collapse
|
43
|
Zhang K, Yu L, Pang X, Cao H, Si H, Zang J, Xing J, Dong J. In silico analysis of maize HDACs with an emphasis on their response to biotic and abiotic stresses. PeerJ 2020; 8:e8539. [PMID: 32095360 PMCID: PMC7023831 DOI: 10.7717/peerj.8539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023] Open
Abstract
Histone deacetylases (HDACs) are key epigenetic factors in regulating chromatin structure and gene expression in multiple aspects of plant growth, development, and response to abiotic or biotic stresses. Many studies on systematic analysis and molecular function of HDACs in Arabidopsis and rice have been conducted. However, systematic analysis of HDAC gene family and gene expression in response to abiotic and biotic stresses has not yet been reported. In this study, a systematic analysis of the HDAC gene family in maize was performed and 18 ZmHDACs distributed on nine chromosomes were identified. Phylogenetic analysis of ZmHDACs showed that this gene family could be divided into RPD3/HDA1, SIR2, and HD2 groups. Tissue-specific expression results revealed that ZmHDACs exhibited diverse expression patterns in different tissues, indicating that these genes might have diversified functions in growth and development. Expression pattern of ZmHDACs in hormone treatment and inoculation experiment suggested that several ZmHDACs might be involved in jasmonic acid or salicylic acid signaling pathway and defense response. Interestingly, HDAC genes were downregulated under heat stress, and immunoblotting results demonstrated that histones H3K9ac and H4K5ac levels were increased under heat stress. These results provide insights into ZmHDACs, which could help to reveal their functions in controlling maize development and responses to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Kang Zhang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Lu Yu
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Xi Pang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Hongzhe Cao
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Helong Si
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jinping Zang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jihong Xing
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jingao Dong
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| |
Collapse
|
44
|
Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments. Int J Mol Sci 2020; 21:ijms21010321. [PMID: 31947720 PMCID: PMC6981504 DOI: 10.3390/ijms21010321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Histone deacetylases (HDACs) play a significant role in a plant’s development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutumHDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G.hirsutumHDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.
Collapse
|
45
|
Fiust A, Rapacz M. Downregulation of three novel candidate genes is important for freezing tolerance of field and laboratory cold acclimated barley. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153049. [PMID: 31760347 DOI: 10.1016/j.jplph.2019.153049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diversity arrays technology (DArT) marker sequences for barley were used for identifying new potential candidate genes for freezing tolerance (FT). We used quantitative trait loci (QTL) genetic linkage maps for FT and photosynthetic acclimation to cold for six- and two-row barley populations, and a set of 20 DArT markers obtained using the association mapping of parameters for photosynthetic acclimation to low temperatures in barley for the bioinformatics analyses. Several nucleotide and amino acid sequence, annotation databases and associated algorithms were used to identify the similarities of six of the marker sequences to potential genes involved in plant low temperature response. Gene ontology (GO) annotations based on similarities to database sequences were assigned to these marker sequences, and indicated potential involvement in signal transduction pathways in response to stress factors and epigenetic processes, as well as auxin transport mechanisms. Furthermore, relative gene expressions for three of six of new identified genes (Hv.ATPase, Hv.DDM1, and Hv.BIG) were assessed within four barley genotypes of different FT. A physiological assessment of FT was conducted based on plant survival rates in two field-laboratory and one laboratory experiments. The results suggested that plant survival rate after freezing but not the degree of freezing-induced leaf damage between the tested accessions can be correlated with the degree of low-temperature downregulation of the studied candidate genes, which encoded proteins involved in the control of plant growth and development. Additionally, candidate genes for qRT-PCR suitable for the analysis of cold acclimation response in barley were suggested after validation.
Collapse
Affiliation(s)
- Anna Fiust
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239, Krakow, Poland.
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239, Krakow, Poland.
| |
Collapse
|
46
|
Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun DJ. Histone Deacetylase HDA9 With ABI4 Contributes to Abscisic Acid Homeostasis in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:143. [PMID: 32158458 PMCID: PMC7052305 DOI: 10.3389/fpls.2020.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Drought stress, a major environmental factor, significantly affects plant growth and reproduction. Plants have evolved complex molecular mechanisms to tolerate drought stress. In this study, we investigated the function of the Arabidopsis thaliana RPD3-type HISTONE DEACETYLASE 9 (HDA9) in response to drought stress. The loss-of-function mutants hda9-1 and hda9-2 were insensitive to abscisic acid (ABA) and sensitive to drought stress. The ABA content in the hda9-1 mutant was reduced in wild type (WT) plant. Most histone deacetylases in animals and plants form complexes with other chromatin-remodeling components, such as transcription factors. In this study, we found that HDA9 interacts with the ABA INSENSITIVE 4 (ABI4) transcription factor using a yeast two-hybrid assay and coimmunoprecipitation. The expression of CYP707A1 and CYP707A2, which encode (+)-ABA 8'-hydroxylases, key enzymes in ABA catabolic pathways, was highly induced in hda9-1, hda9-2, abi4, and hda9-1 abi4 mutants upon drought stress. Chromatin immunoprecipitation and quantitative PCR showed that the HDA9 and ABI4 complex repressed the expression of CYP707A1 and CYP707A2 by directly binding to their promoters in response to drought stress. Taken together, these data suggest that HDA9 and ABI4 form a repressive complex to regulate the expression of CYP707A1 and CYP707A2 in response to drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
47
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020. [PMID: 33193691 DOI: 10.3389/fgene.2020.576086/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
48
|
Identification, Evolution, and Expression Profiling of Histone Lysine Methylation Moderators in Brassica rapa. PLANTS 2019; 8:plants8120526. [PMID: 31756989 PMCID: PMC6963287 DOI: 10.3390/plants8120526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Histone modifications, such as methylation and demethylation, are vital for regulating chromatin structure, thus affecting its expression patterns. The objective of this study is to understand the phylogenetic relationships, genomic organization, diversification of motif modules, gene duplications, co-regulatory network analysis, and expression dynamics of histone lysine methyltransferases and histone demethylase in Brassica rapa. We identified 60 SET (HKMTases), 53 JmjC, and 4 LSD (HDMases) genes in B. rapa. The domain composition analysis subcategorized them into seven and nine subgroups, respectively. Duplication analysis for paralogous pairs of SET and JmjC (eight and nine pairs, respectively) exhibited variation. Interestingly, three pairs of SET exhibited Ka/Ks > 1.00 values, signifying positive selection, whereas the remaining underwent purifying selection with values less than 1.00. Furthermore, RT-PCR validation analysis and RNA-sequence data acquired on six different tissues (i.e., leaf, stem, callus, silique, flower, and root) revealed dynamic expression patterns. This comprehensive study on the abundance, classification, co-regulatory network analysis, gene duplication, and responses to heat and cold stress of SET and JmjC provides insights into the structure and diversification of these family members in B. rapa. This study will be helpful to reveal functions of these putative SET and JmjC genes in B. rapa.
Collapse
|
49
|
Darkness-induced effects on gene expression in Cosmarium crenatum (Zygnematophyceae) from a polar habitat. Sci Rep 2019; 9:10559. [PMID: 31332253 PMCID: PMC6646379 DOI: 10.1038/s41598-019-47041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Light is a key environmental regulator in all photosynthetic organisms. Many studies focused on the physiologic response to changes in light availability of species from the Zygnematophyceae, but the impact of the absence of light and the molecular acclimation process on the other side have been poorly understood. Here we present transcriptomic analyses of Cosmarium crenatum from a polar habitat exposed to darkness. The algae were cultured in dark for one week; cell number and quantum yield of photosystem II (Fv/Fm) were monitored. Cell number was stable, but the Fv/Fm decreased in both groups, darkness-treated and control. Gene expression analysis revealed a strong repression of transcripts associated with photosynthesis, photorespiration and cell wall development. General carbohydrate and lipid metabolism were differentially regulated, but starch is shown to be the primary energy source in these conditions. Additionally, C. crenatum induced mRNA responsible for epigenetic modifications which may be a specific response to an adaption and acclimation to polar conditions. Our study sheds light on the molecular acclimation process to darkness and provides ecological implications for new perspectives in this specialized group of green algae.
Collapse
|
50
|
Pavia I, Roque J, Rocha L, Ferreira H, Castro C, Carvalho A, Silva E, Brito C, Gonçalves A, Lima-Brito J, Correia C. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:27-42. [PMID: 31078782 DOI: 10.1016/j.plaphy.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 05/24/2023]
Abstract
Drought is one of most important limiting factors in wheat productivity worldwide. The need to increase drought tolerance during anthesis is of the utmost importance for high yield potentials and yield stability. Photosynthesis is one of the major physiological processes affected by drought. Damages in the photosynthetic apparatus may also arise due to non-regulated dissipation of excessive energy. Zinc (Zn) is an indispensable micronutrient for plants and is required for a wide range of physiological and biochemical processes. In this work we evaluated the stress mitigation effects of Zn seed priming alone and coupled with Zn foliar application in wheat plants submitted to severe drought during anthesis, followed by a recovery period. Under such severe drought stress, photosynthesis was constrained by both stomatal and non-stomatal limitation. Severe drought also induced an increase in non-regulated energy dissipation and hindered a full recovery of the plant's photosynthetic processes after rewatering. We also report possible activation of transposable elements due to drought stress and Zn application. Yield was severely decreased by drought and Zn treatments were unable to counteract this effect. Although unable to oppose the reduction of net photosynthesis, Zn treatments positively enhance photoprotection. At the end of drought period, Zn priming alone and coupled with Zn foliar application increased, respectively, over 2- and 3- fold the regulated dissipation of excess energy. Zn treatments lessened the non-regulated energy dissipation caused by drought, protected the plants against irreversible damages to the photosynthetic apparatus and enabled a better recovery of wheat plants after stress relief.
Collapse
Affiliation(s)
- Ivo Pavia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João Roque
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Luís Rocha
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Castro
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Carvalho
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ermelinda Silva
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Alexandre Gonçalves
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Carlos Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|