1
|
Li J, Li G, Zhu C, Wang S, Zhang S, Li F, Zhang H, Sun R, Yuan L, Chen G, Tang X, Wang C, Zhang S. Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation. PLANTS (BASEL, SWITZERLAND) 2025; 14:268. [PMID: 39861625 PMCID: PMC11769027 DOI: 10.3390/plants14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants. bHLH constitutes one of the largest families of transcription factors in eukaryotes, of which MYC is a subfamily member. However, studies on bHLH-MYC transcription factors in mustard have yet to be reported. In this study, a total of 45 bHLH-MYC transcription factors were identified within the Brassica juncea genome, and a comprehensive series of bioinformatic analyses were conducted on their structures and properties: an examination of protein physicochemical properties, an exploration of conserved structural domains, an assessment of chromosomal positional distributions, an analysis of the conserved motifs, an evaluation of the gene structures, microsynteny analyses, three-dimensional structure prediction, and an analysis of sequence signatures. Finally, transcriptome analyses and a subcellular localization examination were performed. The results revealed that these transcription factors were unevenly distributed across 18 chromosomes, showing relatively consistent conserved motifs and gene structures and high homology. The final results of the transcriptome analysis and gene annotation showed a high degree of variability in the expression of bHLH-MYC transcription factors. Five genes that may be associated with trichome development (BjuVA09G22490, BjuVA09G13750, BjuVB04G14560, BjuVA05G24810, and BjuVA06G44820) were identified. The subcellular localization results indicated that the transcription and translation products of these five genes were expressed in the same organelle: the nucleus. This finding provides a basis for elucidating the roles of bHLH-MYC family members in plant growth and development, and the molecular mechanisms underlying trichome development in mustard leaves.
Collapse
Affiliation(s)
- Jianzhong Li
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Caishuo Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shaoxing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Lingyun Yuan
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Guohu Chen
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Xiaoyan Tang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Chenggang Wang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| |
Collapse
|
2
|
Hu Y, Wang F, Chen H, Chen L, Liu Y. Integrated nutritional and functional components analyses reveal insights into the peel and pulp quality at different harvest times of 'Dahongpao' tangerine (Citrus reticulata Blanco). Food Chem 2025; 463:141263. [PMID: 39306996 DOI: 10.1016/j.foodchem.2024.141263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
The fruit of Citrus reticulata 'Dahongpao' (DHP) is typically harvested when fully ripe, exhibiting a dark red color, high sweetness, and pleasant taste. However, it remains uncertain whether the optimum harvesting time for its medicinal part (peel) aligns with that of the fruit. The findings of the study indicated that the peel exhibited the highest concentration of total flavonoids (4.018 mg/g) during the middle stage of maturity. Additionally, the total polysaccharide content increased progressively with ripening, reaching its peak (5.36 %) at full maturity. Furthermore, the DHP pulp demonstrated the highest concentration of total polyphenols (11.5 %) and the lowest titrable acid content (0.97 %) during the middle stage of maturity. Furthermore, the peel and pulp of DHP at the middle stage of ripening exhibited the highest antioxidant capacity. Considering the nutritional and functional components at various harvest times of DHP, it is recommended to harvest the peel at the intermediate stage of ripeness. Additionally, during this stage, the pulp also exhibited greater abundance of nutritional components. The findings of this study elucidate the process of accumulation and alteration of nutritional and functional constituents during the ripening of DHP fruit.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Fu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Hongping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Lin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| | - Youping Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhou Y, Singh SK, Patra B, Liu Y, Pattanaik S, Yuan L. Mitogen-activated protein kinase-mediated regulation of plant specialized metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:262-276. [PMID: 39305223 DOI: 10.1093/jxb/erae400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 01/11/2025]
Abstract
Post-transcriptional and post-translational modification of transcription factors (TFs) and pathway enzymes significantly affect the stress-stimulated biosynthesis of specialized metabolites (SMs). Protein phosphorylation is one of the conserved and ancient mechanisms that critically influences many biological processes including specialized metabolism. The phosphorylation of TFs and enzymes by protein kinases (PKs), especially the mitogen-activated protein kinases (MAPKs), is well studied in plants. While the roles of MAPKs in plant growth and development, phytohormone signaling, and immunity are well elucidated, significant recent advances have also been made in understanding the involvement of MAPKs in specialized metabolism. However, a comprehensive review highlighting the significant progress in the past several years is notably missing. This review focuses on MAPK-mediated regulation of several important SMs, including phenylpropanoids (flavonoids and lignin), terpenoids (artemisinin and other terpenoids), alkaloids (terpenoid indole alkaloids and nicotine), and other nitrogen- and sulfur-containing SMs (camalexin and indole glucosinolates). In addition to MAPKs, other PKs also regulate SM biosynthesis. For comparison, we briefly discuss the regulation by other PKs, such as sucrose non-fermenting-1 (SNF)-related protein kinases (SnRKs) and calcium-dependent protein kinases (CPKs). Furthermore, we provide future perspectives in this active area of research.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
4
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03502-z. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
5
|
Zhang Y, Hu L, Wang S, Gou X, Guo Q, Liang G. Genome-wide identification of R2R3-MYB family in Eriobotrya japonica and functional analysis of EjMYB5 involved in proanthocyanidin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112198. [PMID: 39029629 DOI: 10.1016/j.plantsci.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Loquat (Eriobotrya japonica Lindl.) is a popular fruit and medicinal plant. Proanthocyanidins (PAs), as one of the main types of flavonoids, are the key components of loquat fruit quality and medicinal properties. However, the identification of transcription factors (TFs) involved in PA accumulation in loquat remains limited. R2R3-MYB TFs play key regulatory role in PA accumulation in plants. In this study, 190 R2R3-MYB TFs were identified in loquat genome. Combined with transcriptome data, R2R3-MYB TF EjMYB5 involved in PA accumulation in loquat was isolated. EjMYB5 was transcriptional activator localized to nucleus. Expression of EjMYB5 was closely related to PA accumulation in loquat fruits. Heterogenous overexpression of EjMYB5 in tomato (Solanum lycopersicum) inhibited anthocyanin accumulation and promoted PA accumulation. Additionally, transient overexpression of EjMYB5 in tobacco (Nicotiana benthamiana) leaves promoted PA accumulation by upregulating flavonoid biosynthesis genes (NtDFR, NtANS, and NtLAR). Transcriptome analysis of EjMYB5-overexpressing tomato fruits suggested that EjMYB5 was involved in several biological pathways, including lipid metabolism, MAPK signaling, phenylpropanoid biosynthesis, and flavonoid biosynthesis. Collectively, our findings provided basic data for further analysis the function of R2R3-MYB TFs in loquat, and revealed that EjMYB5 functioned as PA accumulation in loquat.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Luyan Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Xiuhong Gou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Hazrati S, Mousavi Z, Nicola S. Harvest time optimization for medicinal and aromatic plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108735. [PMID: 38781639 DOI: 10.1016/j.plaphy.2024.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Plant secondary metabolites (SMs) play a crucial role in shielding plants from pathogens and environmental stressors. These natural products find widespread applications across various industries, including pharmaceutical, food, cosmetic, and healthcare. However, the quantity and quality of these compounds in plants can be influenced by factors such as genetics, morphology, plant age, and the seasonal and daily variations. The timing of harvest holds particular significance for medicinal and aromatic plants (MAPs) as their active compounds peak at a specific moment during the plant growth cycle. Determining the optimal harvest time is essential to ensure the plants meet their intended cultivation goal. In this review, we analyzed how developmental and external factors impact the qualitative and quantitative effectiveness of SMs in MAPs. We examined recent studies on the effects of environmental and developmental factors on SMs of MAPs, compiling relevant data for analysis. The results of this review demonstrate how these factors influence the quantity and quality of plant SMs, underscoring the importance of determining the optimal harvest time (known as the balsamic time) to maximize the utilization of these compounds. Our findings offer crucial insights into the factors affecting SMs, serving as a tool for quality control in MAPs production. Moreover, this review can be a valuable resource for researchers, farmers, and industrial users aiming to optimize plant growth and harvest timing for maximum yield. Overall, our review provides valuable information for devising effective strategies to produce high-quality MAPs products.
Collapse
Affiliation(s)
- Saeid Hazrati
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Zahra Mousavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, Horticultural Sciences - Inhortosanitas Lab, University of Turin, 10095, Grugliasco (TO), Italy.
| |
Collapse
|
7
|
Bonthala VS, Stich B. StCoExpNet: a global co-expression network analysis facilitates identifying genes underlying agronomic traits in potatoes. PLANT CELL REPORTS 2024; 43:117. [PMID: 38622429 PMCID: PMC11018665 DOI: 10.1007/s00299-024-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE We constructed a gene expression atlas and co-expression network for potatoes and identified several novel genes associated with various agronomic traits. This resource will accelerate potato genetics and genomics research. Potato (Solanum tuberosum L.) is the world's most crucial non-cereal food crop and ranks third in food production after wheat and rice. Despite the availability of several potato transcriptome datasets at public databases like NCBI SRA, an effort has yet to be put into developing a global transcriptome atlas and a co-expression network for potatoes. The objectives of our study were to construct a global expression atlas for potatoes using publicly available transcriptome datasets, identify housekeeping and tissue-specific genes, construct a global co-expression network and identify co-expression clusters, investigate the transcriptional complexity of genes involved in various essential biological processes related to agronomic traits, and provide a web server (StCoExpNet) to easily access the newly constructed expression atlas and co-expression network to investigate the expression and co-expression of genes of interest. In this study, we used data from 2299 publicly available potato transcriptome samples obtained from 15 different tissues to construct a global transcriptome atlas. We found that roughly 87% of the annotated genes exhibited detectable expression in at least one sample. Among these, we identified 281 genes with consistent and stable expression levels, indicating their role as housekeeping genes. Conversely, 308 genes exhibited marked tissue-specific expression patterns. We exemplarily linked some co-expression clusters to important agronomic traits of potatoes, such as self-incompatibility, anthocyanin biosynthesis, tuberization, and defense responses against multiple pathogens. The dataset compiled here constitutes a new resource (StCoExpNet), which can be accessed at https://stcoexpnet.julius-kuehn.de . This transcriptome atlas and the co-expression network will accelerate potato genetics and genomics research.
Collapse
Affiliation(s)
- Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Julius Kühn-Institut (JKI), Institute for Breeding Research On Agricultural Crops, Rudolf-Schick-Platz 3a, OT Groß Lüsewitz, 18190, Sanitz, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Cluster of Excellence On Plant Sciences, From Complex Traits Towards Synthetic Modules, Düsseldorf, Germany
| |
Collapse
|
8
|
Gupta N, Bhattacharya S, Dutta A, Tauchen J, Landa P, Urbanová K, Houdková M, Fernández-Cusimamani E, Leuner O. Synthetic polyploidization induces enhanced phytochemical profile and biological activities in Thymus vulgaris L. essential oil. Sci Rep 2024; 14:5608. [PMID: 38454146 PMCID: PMC10920654 DOI: 10.1038/s41598-024-56378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Essential oil from Thymus vulgaris L. has valuable therapeutic potential that is highly desired in pharmaceutical, food, and cosmetic industries. Considering these advantages and the rising market demand, induced polyploids were obtained using oryzalin to enhance essential oil yield. However, their therapeutic values were unexplored. So, this study aims to assess the phytochemical content, and antimicrobial, antioxidant, and anti-inflammatory activities of tetraploid and diploid thyme essential oils. Induced tetraploids had 41.11% higher essential oil yield with enhanced thymol and γ-terpinene content than diploid. Tetraploids exhibited higher antibacterial activity against all tested microorganisms. Similarly, in DPPH radical scavenging assay tetraploid essential oil was more potent with half-maximal inhibitory doses (IC50) of 180.03 µg/mL (40.05 µg TE/mg) than diploid with IC50 > 512 µg/mL (12.68 µg TE/mg). Tetraploids exhibited more effective inhibition of in vitro catalytic activity of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) than diploids at 50 µg/mL concentration. Furthermore, molecular docking revealed higher binding affinity of thymol and γ-terpinene towards tested protein receptors, which explained enhanced bioactivity of tetraploid essential oil. In conclusion, these results suggest that synthetic polyploidization using oryzalin could effectively enhance the quality and quantity of secondary metabolites and can develop more efficient essential oil-based commercial products using this induced genotype.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Suchdol, Prague 6, Czech Republic
| | - Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague 6, 165 00, Czech Republic
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Suchdol, Prague 6, Czech Republic
| | - Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02, Lysolaje, Prague 6, Czech Republic
| | - Klára Urbanová
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Markéta Houdková
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Suchdol, Prague 6, Czech Republic
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Suchdol, Prague 6, Czech Republic.
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Suchdol, Prague 6, Czech Republic
| |
Collapse
|
9
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
10
|
Liu X, Yan W, Liu S, Wu J, Leng P, Hu Z. LiNAC100 contributes to linalool biosynthesis by directly regulating LiLiS in Lilium 'Siberia'. PLANTA 2024; 259:73. [PMID: 38393405 DOI: 10.1007/s00425-024-04340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024]
Abstract
MAIN CONCLUSION The transcription factor LiNAC100 has a novel function of regulating floral fragrance by directly regulating linalool synthase gene LiLiS. Lilium 'Siberia', an Oriental hybrid, is renowned as both a cut flower and garden plant, prized for its color and fragrance. The fragrance comprises volatile organic compounds (VOCs), primarily monoterpenes found in the plant. While the primary terpene synthases in Lilium 'Siberia' were identified, the transcriptional regulation of these terpene synthase (TPS) genes remains unclear. Thus, understanding the regulatory mechanisms of monoterpene biosynthesis is crucial for breeding flower fragrance, thereby improving ornamental and commercial values. In this study, we isolated a nuclear-localized LiNAC100 transcription factor from Lilium 'Siberia'. The virus-induced gene silencing (VIGS) of LiNAC100 was found to down-regulate the expression of linalool synthase gene (LiLiS) and significantly inhibit linalool synthesis. Conversely, transient overexpression of LiNAC100 produced opposite effects. Additionally, yeast one-hybrid and dual-luciferase assays confirmed that LiNAC100 directly activates LiLiS expression. Our findings reveal that LiNAC100 plays a key role in monoterpene biosynthesis in Lilium 'Siberia', promoting linalool synthesis through the activation of LiLiS expression. These results offer insights into the molecular mechanisms of terpene biosynthesis in Lilium 'Siberia' and open avenues for biotechnological enhancement of floral scent.
Collapse
Affiliation(s)
- Xuping Liu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Wenxin Yan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Sijia Liu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Jing Wu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China.
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China.
| |
Collapse
|
11
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
12
|
Kim JM, Lee JW, Seo JS, Ha BK, Kwon SJ. Differentially Expressed Genes Related to Isoflavone Biosynthesis in a Soybean Mutant Revealed by a Comparative Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:584. [PMID: 38475431 DOI: 10.3390/plants13050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Soybean [Glycine max (L.) Merr.] isoflavones, which are secondary metabolites with various functions, are included in food, cosmetics, and medicine. However, the molecular mechanisms regulating the glycosylation and malonylation of isoflavone glycoconjugates remain unclear. In this study, we conducted an RNA-seq analysis to compare soybean genotypes with different isoflavone contents, including Danbaek and Hwanggeum (low-isoflavone cultivars) as well as DB-088 (high-isoflavone mutant). The transcriptome analysis yielded over 278 million clean reads, representing 39,156 transcripts. The analysis of differentially expressed genes (DEGs) detected 2654 up-regulated and 1805 down-regulated genes between the low- and high-isoflavone genotypes. The putative functions of these 4459 DEGs were annotated on the basis of GO and KEGG pathway enrichment analyses. These DEGs were further analyzed to compare the expression patterns of the genes involved in the biosynthesis of secondary metabolites and the genes encoding transcription factors. The examination of the relative expression levels of 70 isoflavone biosynthetic genes revealed the HID, IFS, UGT, and MAT expression levels were significantly up/down-regulated depending on the genotype and seed developmental stage. These expression patterns were confirmed by quantitative real-time PCR. Moreover, a gene co-expression analysis detected potential protein-protein interactions, suggestive of common functions. The study findings provide valuable insights into the structural genes responsible for isoflavone biosynthesis and accumulation in soybean seeds.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jeong Woo Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
13
|
Yeom WW, Kim HJ, Lee JH, Jeong Jeong Y, Choi HK, Jung HW, Heo JB, Kim CY, Chung YS. Overexpression of R2R3-MYB IbMYB1a induces anthocyanin pigmentation in soybean cotyledon. PLANT CELL REPORTS 2024; 43:56. [PMID: 38319432 DOI: 10.1007/s00299-024-03142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE This is the first report showing anthocyanin accumulation in the soybean cotyledon via genetic transformation of a single gene. Soybean [Glycine max (L.) Merrill] contains valuable components, including anthocyanins. To enhance anthocyanin production in Korean soybean Kwangankong, we utilized the R2R3-type MYB gene (IbMYB1a), known for inducing anthocyanin pigmentation in Arabidopsis. This gene was incorporated into constructs using two promoters: the CaMV 35S promoter (P35S) and the β-conglycinin promoter (Pβ-con). Kwangankong was transformed using Agrobacterium, and the presence of IbMYB1a and Bar transgenes in T0 plants was confirmed through polymerase chain reaction (PCR), followed by gene expression validation. Visual inspection revealed that one P35S:IbMYB1a and three Pβ-con:IbMYB1a lines displayed seed color change. Pβ-con:IbMYB1a T1 seeds accumulated anthocyanins in cotyledon outer layers, whereas P35S:IbMYB1a and non-transgenic black soybean (Cheongja 5 and Seum) accumulated anthocyanins in the seed coat. During the germination and growth phase, T1 seedlings from Pβ-con:IbMYB1a lines exhibited anthocyanin pigmentation in cotyledons for up to 1 month without growth aberrations. High-performance liquid chromatography confirmed cyanidin-3-O-glucoside as the major anthocyanin in the Pβ-con:IbMYB1a line (#3). We analyzed the expression patterns of anthocyanin biosynthesis genes, chalcone synthase 7,8, chalcone isomerase 1A, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, dihydroflavanol reductase 1, dihydroflavanol reductase 2, anthocyanidin synthase 2, anthocyanidin synthase 3, and UDP glucose flavonoid 3-O-glucosyltransferase in transgenic and control Kwangankong and black soybean (Cheongja 5 and Seum) seeds using quantitative real-time PCR. We conclude that the induction of gene expression in transgenic plants in comparison with Kwangankong was attributable to IbMYB1a transformation. Notably, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, and dihydroflavanol reductase 1 were abundantly expressed in black soybean seed coat, distinguishing them from transgenic cotyledons.
Collapse
Affiliation(s)
- Wan Woo Yeom
- Department of Molecular Genetics, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Hye Jeong Kim
- Department of Molecular Genetics, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Jin Hwan Lee
- Department of Life Resources Industry, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, Korea
| | - Hong Kyu Choi
- Department of Molecular Genetics, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Ho Won Jung
- Department of Molecular Genetics, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Jae Bok Heo
- Department of Molecular Genetics, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, Korea.
| | - Young-Soo Chung
- Department of Molecular Genetics, College of National Resources and Life Science, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
14
|
Li Y, Zhang X, Ye J, Xu F, Zhang W, Liao Y, Yang X. The long noncoding RNAs lnc10 and lnc11 regulating flavonoid biosynthesis in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111948. [PMID: 38097046 DOI: 10.1016/j.plantsci.2023.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Although long non-coding RNAs have been recognized to play important roles in plant, their possible functions and potential mechanism in Ginkgo biloba flavonoid biosynthesis are poorly understood. Flavonoids are important secondary metabolites and healthy components of Ginkgo biloba. They have been widely used in food, medicine, and natural health products. Most previous studies have focused on the molecular mechanisms of structural genes and transcription factors that regulate flavonoid biosynthesis. Few reports have examined the biological functions of flavonoid biosynthesis by long non-coding RNAs in G. biloba. Long noncoding RNAs associated with flavonoid biosynthesis in G. biloba have been identified through RNA sequencing, but the function of lncRNAs has not been reported. In this study, the expression levels of lnc10 and lnc11 were identified. Quantitative real-time polymerase chain reaction analysis revealed that lnc10 and lnc11 were expressed in all detected organs, and they showed significantly higher levels in immature and mature leaves than in other organs. In addition, to fully identify the function of lnc10 and lnc11 in flavonoid biosynthesis in G. biloba, lnc10 and lnc11 were cloned from G. biloba, and were transformed into Arabidopsis and overexpressed. Compared with the wild type, the flavonoid content was increased in transgenic plants. Moreover, the RNA-sequencing analysis of wild-type, lnc10-overexpression, and lnc11-overexpression plants screened out 2019 and 2552 differentially expressed genes, and the transcript levels of structural genes and transcription factors associated with flavonoid biosynthesis were higher in transgenic Arabidopsis than in the wild type, indicating that lnc10 and lnc11 activated flavonoid biosynthesis in the transgenic lines. Overall, these results suggest that lnc10 and lnc11 positively regulate flavonoid biosynthesis in G. biloba.
Collapse
Affiliation(s)
- Yuting Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoxi Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
15
|
Pashkovskiy P, Vereshchagin M, Kartashov A, Ivanov Y, Ivanova A, Zlobin I, Abramova A, Ashikhmina D, Glushko G, Kreslavski VD, Kuznetsov VV. Influence of Additional White, Red and Far-Red Light on Growth, Secondary Metabolites and Expression of Hormone Signaling Genes in Scots Pine under Sunlight. Cells 2024; 13:194. [PMID: 38275819 PMCID: PMC10813845 DOI: 10.3390/cells13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The influence of short-term additional white (WL), red (RL) and far-red (FRL) light and combined RL+FRL on the physiological morphological and molecular characteristics of two-year-old Scots pine plants grown in a greenhouse under sunlight was studied. Additional RL and RL+FRL increased the number of xylem cells, transpiration and the expression of a group of genes responsible for the biosynthesis and signaling of auxins (AUX/IAA, ARF3/4, and ARF16) and brassinosteroids (BR-α-RED and BRZ2), while the expression of genes related to the signaling pathway related to jasmonic acid was reduced. Additionally, WL, RL and RL+FRL increased the content of proanthocyanidins and catechins in young needles; however, an increase in the expression of the chalcone synthase gene (CHS) was found under RL, especially under RL+FRL, which possibly indicates a greater influence of light intensity than observed in the spectrum. Additional WL increased photosynthetic activity, presumably by increasing the proportion and intensity of blue light; at the same time, the highest transpiration index was found under RL. The results obtained indicate that the combined effect of additional RL+FRL can accelerate the development of pine plants by increasing the number of xylem cells and increasing the number of aboveground parts but not the photosynthetic activity or the accumulation of secondary metabolites.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Ilya Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Darya Ashikhmina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Galina Glushko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (Y.I.); (A.I.); (I.Z.); (A.A.); (D.A.); (G.G.)
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
16
|
Yang W, Jiang T, Wang Y, Wang X, Wang R. Combined Transcriptomics and Metabolomics Analysis Reveals the Effect of Selenium Fertilization on Lycium barbarum Fruit. Molecules 2023; 28:8088. [PMID: 38138577 PMCID: PMC10745541 DOI: 10.3390/molecules28248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
As a beneficial nutrient and essential trace element, selenium plays a significant role in plant growth functions and human protein biosynthesis. Plant selenium enrichment is mainly obtained from both natural soil and exogenous selenium supplementation, while human beings consume selenium-enriched foods for the purposes of selenium supplementation. In this study, different types of selenium fertilizers were sprayed onto Lycium barbarum in Ningxia, and transcriptomics and metabolomics techniques were used to explore the effects of selenium on the fruit differentials and differential genes in Lycium barbarum. Taking the "Ning Qiyi No.1" wolfberry as the research object, sodium selenite, nano-selenium, and organic selenium were sprayed at a concentration of 100 mg·L-1 three times from the first fruiting period to the harvesting period, with a control treatment comprising the spraying of clear water. We determined the major metabolites and differential genes of the amino acids and derivatives, flavonoids, and alkaloids in ripe wolfberries. We found that spraying selenium significantly enhanced the Lycium barbarum metabolic differentiators; the most effective spray was the organic selenium, with 129 major metabolic differentiators and 10 common metabolic pathways screened after spraying. Nano-selenium was the next best fertilizer we screened, with 111 major metabolic differentiators, the same number as organic selenium in terms of differential genes and common metabolite pathways. Sodium selenite was the least effective of the three, with only 59 of its major metabolic differentials screened, but its differential genes and metabolites were enriched for five common pathways.
Collapse
Affiliation(s)
- Wenqin Yang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| | - Tingting Jiang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| | - Yaqi Wang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| | - Xiaojing Wang
- Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products, Yinchuan 750001, China
| | - Rui Wang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| |
Collapse
|
17
|
Tang Q, Xu Y, Gao F, Xu Y, Cheng C, Deng C, Chen J, Yuan X, Zhang X, Su J. Transcriptomic and metabolomic analyses reveal the differential accumulation of phenylpropanoids and terpenoids in hemp autotetraploid and its diploid progenitor. BMC PLANT BIOLOGY 2023; 23:616. [PMID: 38049730 PMCID: PMC10696708 DOI: 10.1186/s12870-023-04630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cannabis sativa, a dioecious plant that has been cultivated worldwide for thousands of years, is known for its secondary metabolites, especially cannabinoids, which possess several medicinal effects. In this study, we investigated the autopolyploidization effects on the biosynthesis and accumulation of these metabolites, transcriptomic and metabolomic analyses were performed to explore the gene expression and metabolic variations in industrial hemp autotetraploids and their diploid progenitors. RESULTS Through these analyses, we obtained 1,663 differentially expressed metabolites and 1,103 differentially expressed genes. Integrative analysis revealed that phenylpropanoid and terpenoid biosynthesis were regulated by polyploidization. No substantial differences were found in the cannabidiol or tetrahydrocannabinol content between tetraploids and diploids. Following polyploidization, some transcription factors, including nine bHLH and eight MYB transcription factors, affected the metabolic biosynthesis as regulators. Additionally, several pivotal catalytic genes, such as flavonol synthase/flavanone 3-hydroxylase, related to the phenylpropanoid metabolic pathway, were identified as being modulated by polyploidization. CONCLUSIONS This study enhances the overall understanding of the impact of autopolyploidization in C. sativa and the findings may encourage the application of polyploid breeding for increasing the content of important secondary metabolites in industrial hemp.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Feng Gao
- Yunnan Academy of Industrial Hemp, Kunming, 650214, Yunnan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoge Yuan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| |
Collapse
|
18
|
Ding Y, Wang MY, Yang DH, Hao DC, Li WS, Ling P, Xie SQ. Transcriptome analysis of flower colour reveals the correlation between SNP and differential expression genes in Phalaenopsis. Genes Genomics 2023; 45:1611-1621. [PMID: 37414912 DOI: 10.1007/s13258-023-01422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Phalaenopsis is an important ornamental plant that has great economic value in the world flower market as one of the most popular flower resources. OBJECTIVE To investigate the flower colour formation of Phalaenopsis at the transcription level, the genes involved in flower color formation were identified from RNA-seq in this study. METHODS In this study, white and purple petals of Phalaenopsis were collected and analyzed to obtained (1) differential expression genes (DEGs) between white and purple flower color and (2) the association between single nucleotide polymorphisms (SNP) mutations and DEGs at the transcriptome level. RESULTS The results indicated that a total of 1,175 DEGs were identified, and 718 and 457 of them were up- and down-regulated genes, respectively. Gene Ontology and pathway enrichment showed that the biosynthesis of the secondary metabolites pathway was key to color formation, and the expression of 12 crucial genes (C4H, CCoAOMT, F3'H, UA3'5'GT, PAL, 4CL, CCR, CAD, CALDH, bglx, SGTase, and E1.11.17) that are involved in the regulation of flower color in Phalaenopsis. CONCLUSION This study reported the association between the SNP mutations and DEGs for color formation at RNA level, and provides a new insight to further investigate the gene expression and its relationship with genetic variants from RNA-seq data in other species.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, 570228, China
| | - Ma-Yin Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, 570228, China
| | - Ding-Hai Yang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, 570228, China
| | - Dai-Cheng Hao
- Hainan Boda Orchid Technology Co. Ltd, Haikou, 570311, China
| | - Wei-Shi Li
- Hainan Boda Orchid Technology Co. Ltd, Haikou, 570311, China
| | - Peng Ling
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, 570228, China.
| | - Shang-Qian Xie
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
19
|
Gupta N, Bhattacharya S, Urbanová K, Dutta A, Hazra AK, Fernández-Cusimamani E, Leuner O. Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria. Heliyon 2023; 9:e22480. [PMID: 38107328 PMCID: PMC10724571 DOI: 10.1016/j.heliyon.2023.e22480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Essential oils (EOs) from Indian spices like Elettaria cardamomum (L.) Maton (small green cardamom), Syzygium aromaticum (L.) Merr. & L.M. Perry (clove), Cinnamomum zeylanicum Blume (cinnamon quills), and Cinnamomum tamala (Buch.-Ham.) T. Nees & C. H. Eberm (Indian bay leaves) exhibit a broad spectrum range of biological activity including antibacterial and antifungal activity. Yet, there is a lack of data regarding the antimicrobial activity of their formulations. Also, the link between the antimicrobial effect of individual EO with their chemical composition and molecular interaction with bacterial pathogens has not been systematically explored. Therefore, the objectives of the current study were to evaluate the antimicrobial activity and phytochemical characterization of EOs and to bridge the gap between them through in-silico molecular interactions. The antibacterial activity of EOs of four different spices and their formulations against foodborne pathogens such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was evaluated using the disc volatilization method. The chemical profile of the individual EO was determined through GC-MS analysis and molecular interactions of identified major components with bacterial proteins were carried out through molecular docking studies. All EOs and their formulations exhibited antibacterial activity ranging from 5.92 to 24.55 mm and 11-23.52 mm, respectively. Among all EOs, cinnamon and formulation C (cardamom: cinnamon- 2:1) exhibited the highest antibacterial activity. The composition of the EOs included sesquiterpenes, monoterpenoids, monoterpenes, and, phenylpropanoids such as (E)-cinnamaldehyde, δ-cadinene, α-copaene, eugenol, caryophyllene, eugenol acetate, methyl eugenol, menthadiene, eucalyptol, α-terpinyl acetate, and sabinene. Furthermore, docking study revealed that the abundant compounds from cinnamon EO mainly α-copaene and δ-cadinene had a high binding affinity towards the bacterial essential proteins which increases the bacterial susceptibility towards cinnamon EO. The selected EOs and their formulations were systematically analysed and they were effective against foodborne pathogens. The current findings suggest the application of these EOs against food pathogens with further research.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - Klára Urbanová
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | | | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| |
Collapse
|
20
|
Hou X, Singh SK, Werkman JR, Liu Y, Yuan Q, Wu X, Patra B, Sui X, Lyu R, Wang B, Liu X, Li Y, Ma W, Pattanaik S, Yuan L. Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism. Int J Biol Macromol 2023; 252:126472. [PMID: 37625752 DOI: 10.1016/j.ijbiomac.2023.126472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The activity of bHLH transcription factor MYC2, a key regulator in jasmonate signaling and plant specialized metabolism, is sensitive to repression by JASMONATE-ZIM-domain (JAZ) proteins and co-activation by the mediator subunit MED25. The substitution of a conserved aspartic acid (D) to asparagine (N) in the JAZ-interacting domain (JID) of Arabidopsis MYC2 affects interaction with JAZ, although the mechanism remained unclear. The effects of the conserved residue MYC2D128 on interaction with MED25 have not been investigated. Using tobacco as a model, we generated all possible substitutions of aspartic acid 128 (D128) in NtMYC2a. NtMYC2aD128N partially desensitized the repression by JAZ proteins, while strongly interacting with MED25, resulting in increased expression of nicotine pathway genes and nicotine accumulation in tobacco hairy roots overexpressing NtMYC2aD128N compared to those overexpressing NtMYC2a. The proline substitution, NtMYC2aD128P, negatively affected transactivation and abolished the interaction with JAZ proteins and MED25. Structural modeling and simulation suggest that the overall stability of the JID binding pocket is a predominant cause for the observed effects of substitutions at D128. The D128N substitution has an overall stabilizing effect on the binding pocket, which is destabilized by D128P. Our study offers an innovative tool to increase the production of plant natural products.
Collapse
Affiliation(s)
- Xin Hou
- Department of Tobacco, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Joshua R Werkman
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Qinghua Yuan
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou 510640, China
| | - Xia Wu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Xiaoyu Liu
- Pomology Institute, Shanxi Agricultural University, Taigu 030815, Shanxi, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
21
|
Madhuvanthi CK, Muthulakshmi E, Ghosh Dasgupta M. Integrated mRNA and small RNA sequencing reveals post-transcriptional regulation of the sesquiterpene pathway in Santalum album L. (Indian sandalwood). 3 Biotech 2023; 13:387. [PMID: 37942052 PMCID: PMC10628100 DOI: 10.1007/s13205-023-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Key message In sandalwood, negative pattern of regulation by miRNAs was documented in key genes from the sesquiterpene pathway, with cytochrome P450 reductase showing maximum miRNA targets, followed by sesquisabianene synthase 1. Abstract A comprehensive knowledge of the molecular regulation of sesquiterpene biosynthetic pathway through transcriptomic studies is well established in Santalum album (Indian Sandalwood). However, the post-transcriptional regulation of the genes regulating the pathway is still elusive in this genus. In the present study, an integrated analysis of wood transcriptome and small RNA datasets was conducted to investigate the role of miRNAs in regulating the expression of transcripts involved in santalol production mediated by the sesquiterpene biosynthesis pathway. A total of 24,237 transcripts were annotated from the wood transcriptome, and 45 transcripts were mapped to the sesquiterpenoid pathway. Small RNA data analysis identified 257 conserved miRNAs belonging to 50 families and 7 novel putative miRNAs. Sa-miR156, Sa-miR396, Sa-miR166, and Sa-miR319 had the most number of members among the miRNA families. An integrated analysis predicted 69 miRNA members belonging to 12 families that targeted 12 transcripts from the sesquiterpene pathway, with a maximum of 24 miRNAs regulating cytochrome P450 reductase, followed by sesquisabianene synthase 1, which was targeted by 23 miRNAs. Validation of miRNA-mRNA interaction by qRT-PCR revealed a negative pattern of regulation in six miRNA-mRNA target pairs across wood tissues sourced from four genotypes. The present study provides the first crucial insight into the post-transcriptional regulation of the sesquiterpene pathway genes in the genus Santalum and opens up a new perspective in metabolite engineering for enhanced essential oil production in sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03816-4.
Collapse
Affiliation(s)
- Chandramouli K. Madhuvanthi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| | - Eswaran Muthulakshmi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| |
Collapse
|
22
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
23
|
Souza HCA, Souza MDA, Sousa CS, Viana EKA, Alves SKS, Marques AO, Ribeiro ASN, de Sousa do Vale V, Islam MT, de Miranda JAL, da Costa Mota M, Rocha JA. Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2. Adv Respir Med 2023; 91:464-485. [PMID: 37987297 PMCID: PMC10660866 DOI: 10.3390/arm91060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, Mpro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol-1) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.
Collapse
Affiliation(s)
- Hellen Cris Araújo Souza
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Maycon Douglas Araújo Souza
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Cássio Silva Sousa
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Edilanne Katrine Amparo Viana
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Sabrina Kelly Silva Alves
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Alex Oliveira Marques
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Arthur Serejo Neves Ribeiro
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Vanessa de Sousa do Vale
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - João Antônio Leal de Miranda
- Department of Medicine, Senador Helvidio Nunes de Barros Center, Federal University of Piauí (UFPI), Picos 64607-670, PI, Brazil
| | - Marcelo da Costa Mota
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Jefferson Almeida Rocha
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| |
Collapse
|
24
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
25
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
26
|
Sun Z, Zhou Y, Zhu W, Yin Y. Assessment of the Fruit Chemical Characteristics and Antioxidant Activity of Different Mulberry Cultivars ( Morus spp.) in Semi-Arid, Sandy Regions of China. Foods 2023; 12:3495. [PMID: 37761204 PMCID: PMC10529437 DOI: 10.3390/foods12183495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As a traditional cash crop with ecological and nutritional values, mulberry is gradually expanding its consumption worldwide due to its great regional adaptability and superior health functions. The widespread interest in nutrients has led to a growing need to explore in depth the health benefits of mulberries. Many studies are actively being conducted to investigate the adaptability of the diversity of mulberries in different applications. This study systematically investigated the physicochemical properties and antioxidant activity of four mulberry genotypes cultivated in China's semi-arid sandy regions to better understand the composition and health-promoting potential of this super crop. Chemical composition identification was identified via HPLC and antioxidant activity was further determined via DPPH and FRAP. The moisture, crude protein, ash, soluble solids, phenolics, anthocyanins, and flavonoids contents of mulberry were comparatively analyzed. The study revealed that the four mulberry genotypes showed significant differences in quality and content of the analyzed characteristics. The greatest antioxidant activity was found in Shensang 1, which had the most soluble solids (17%) and the highest amounts of free sugar (fructose: 5.14% and glucose: 5.46%). Ji'an had the most minerals (K: 2.35 mg/g, Ca: 2.27 mg/g, and Fe: 467.32 mg/kg) and it also contained chlorogenic acid, which has the potential to be turned into a natural hypoglycemic agent. PCA and Pearson correlation analysis indicated that the antioxidant activity was closely related to the chemical contents of total phenols, flavonoids, anthocyanins, and soluble sugars. If the antioxidant activity and nutrient content of the developed plants are considered, Shen Sang 1 is the most favorable variety. This finding can be used to support the widespread cultivation of mulberries to prevent desertification as well as to promote the development of the mulberry industry.
Collapse
Affiliation(s)
- Zhiyu Sun
- Life Science and Technology College, Dalian University, Dalian 116622, China;
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yongbin Zhou
- Life Science and Technology College, Dalian University, Dalian 116622, China;
- Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 110161, China
| | - You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 110161, China
| |
Collapse
|
27
|
Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, De Jaeger G, Hwang I, Wim VDE, Rolland F. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1193-1213. [PMID: 37219821 DOI: 10.1111/tpj.16312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Plants have evolved an extensive specialized secondary metabolism. The colorful flavonoid anthocyanins, for example, not only stimulate flower pollination and seed dispersal, but also protect different tissues against high light, UV and oxidative stress. Their biosynthesis is highly regulated by environmental and developmental cues and induced by high sucrose levels. Expression of the biosynthetic enzymes involved is controlled by a transcriptional MBW complex, comprising (R2R3) MYB- and bHLH-type transcription factors and the WD40 repeat protein TTG1. Anthocyanin biosynthesis is not only useful, but also carbon- and energy-intensive and non-vital. Consistently, the SnRK1 protein kinase, a metabolic sensor activated in carbon- and energy-depleting stress conditions, represses anthocyanin biosynthesis. Here we show that Arabidopsis SnRK1 represses MBW complex activity both at the transcriptional and post-translational level. In addition to repressing expression of the key transcription factor MYB75/PAP1, SnRK1 activity triggers MBW complex dissociation, associated with loss of target promoter binding, MYB75 protein degradation and nuclear export of TTG1. We also provide evidence for direct interaction with and phosphorylation of multiple MBW complex proteins. These results indicate that repression of expensive anthocyanin biosynthesis is an important strategy to save energy and redirect carbon flow to more essential processes for survival in metabolic stress conditions.
Collapse
Affiliation(s)
- Ellen Broucke
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Thi Tuong Vi Dang
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Yi Li
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Van den Ende Wim
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| |
Collapse
|
28
|
Shams S, Ismaili A, Firouzabadi FN, Mumivand H, Sorkheh K. Comparative transcriptome analysis to identify putative genes involved in carvacrol biosynthesis pathway in two species of Satureja, endemic medicinal herbs of Iran. PLoS One 2023; 18:e0281351. [PMID: 37418504 PMCID: PMC10328369 DOI: 10.1371/journal.pone.0281351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/22/2023] [Indexed: 07/09/2023] Open
Abstract
Satureja is rich in phenolic monoterpenoids, mainly carvacrol, that is of interest due to diverse biological activities including antifungal and antibacterial. However, limited information is available regarding the molecular mechanisms underlying carvacrol biosynthesis and its regulation for this wonderful medicinal herb. To identify the putative genes involved in carvacrol and other monoterpene biosynthesis pathway, we generated a reference transcriptome in two endemic Satureja species of Iran, containing different yields (Satureja khuzistanica and Satureja rechingeri). Cross-species differential expression analysis was conducted between two species of Satureja. 210 and 186 transcripts related to terpenoid backbone biosynthesis were identified for S. khuzistanica and S. rechingeri, respectively. 29 differentially expressed genes (DEGs) involved in terpenoid biosynthesis were identified, and these DEGs were significantly enriched in monoterpenoid biosynthesis, diterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, carotenoid biosynthesis and ubiquinone and other terpenoid-quinone biosynthesis pathways. Expression patterns of S. khuzistanica and S. rechingeri transcripts involved in the terpenoid biosynthetic pathway were evaluated. In addition, we identified 19 differentially expressed transcription factors (such as MYC4, bHLH, and ARF18) that may control terpenoid biosynthesis. We confirmed the altered expression levels of DEGs that encode carvacrol biosynthetic enzymes using quantitative real-time PCR (qRT-PCR). This study is the first report on de novo assembly and transcriptome data analysis in Satureja which could be useful for an understanding of the main constituents of Satureja essential oil and future research in this genus.
Collapse
Affiliation(s)
- Somayeh Shams
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Hasan Mumivand
- Faculty of Agriculture, Department of Horticultural Science, Lorestan University, Khorramabad, Iran
| | - Karim Sorkheh
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
29
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
30
|
Li Z, Liu W, Chen Q, Zhang S, Mei Z, Yu L, Wang C, Mao Z, Chen Z, Chen X, Wang N. Mdm-miR858 targets MdMYB9 and MdMYBPA1 to participate anthocyanin biosynthesis in red-fleshed apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1295-1309. [PMID: 36651024 DOI: 10.1111/tpj.16111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Anthocyanins are important secondary metabolites in plants. They are important for human health because of their antioxidant activities and because their dietary intake reduces the incidence of cardiovascular and cerebrovascular diseases and tumors. The biosynthesis of anthocyanins and its regulation in fruits and vegetables is a global research hotspot. Compared with cultivated apples, the red-fleshed apple is a relatively new and popular commodity in the market. Previous studies on red-fleshed apples have focused on the basis for the high anthocyanin content and the transcriptional regulation of anthocyanin synthesis. In the present study, we focused on the mechanism of microRNA-mediated post-transcriptional regulation of anthocyanin synthesis in red-fleshed apples. We identified a microRNA (miRNA), designated mdm-miR858, that is specifically expressed in the flesh of apple fruit. The expression level of miR858 was significantly lower in red-fleshed apples than in white-fleshed apples. The overexpression of mdm-miR858 significantly inhibited anthocyanin accumulation, whereas the silencing of mdm-miR858 promoted anthocyanin synthesis in STTM858 transgenic apple calli. Further analyses showed that mdm-miR858 targets the transcription factor genes MdMYB9 and MdMYBPA1 to participate anthocyanin accumulation in apple. Our results also show that MdHY5, a transcription factor in the light signaling pathway, can bind to the promoter of mdm-miR858 to inhibit its transcription, thereby regulating anthocyanin synthesis. Based on our results, we describe a novel HY5-miR858-MYB loop involved in the modulation of anthocyanin biosynthesis. These findings provide new information about how plant miRNAs regulate anthocyanin anabolism and provide a basis for breeding new anthocyanin-rich, red-fleshed apple varieties.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Qiaojing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Zhuoxin Mei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| |
Collapse
|
31
|
Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023; 26:105903. [PMID: 36818280 PMCID: PMC9932491 DOI: 10.1016/j.isci.2022.105903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
32
|
Nong Q, Malviya MK, Solanki MK, Lin L, Xie J, Mo Z, Wang Z, Song X, Huang X, Li C, Li Y. Integrated metabolomic and transcriptomic study unveils the gene regulatory mechanisms of sugarcane growth promotion during interaction with an endophytic nitrogen-fixing bacteria. BMC PLANT BIOLOGY 2023; 23:54. [PMID: 36694111 PMCID: PMC9872334 DOI: 10.1186/s12870-023-04065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sugarcane growth and yield are complex biological processes influenced by endophytic nitrogen-fixing bacteria, for which the molecular mechanisms involved are largely unknown. In this study, integrated metabolomic and RNA-seq were conducted to investigate the interaction between an endophytic bacterial strain, Burkholderia GXS16, and sugarcane tissue culture seedlings. RESULTS During treatment, the colonization of GXS16 in sugarcane roots were determined, along with the enhanced activities of various antioxidant enzymes. Accordingly, 161, 113, and 37 differentially accumulated metabolites (DAMs) were found in the pairwise comparisons of adjacent stages. In addition, transcriptomic analyses obtained 1,371 (IN-vs-CN), 1,457 (KN-vs-IN), and 365 (LN-vs-KN) differentially expressed genes (DEGs), which were mainly involved in the pathways of glutathione metabolism and carbon metabolism. We then assessed the pattern of metabolite accumulation and gene expression in sugarcane during GXS16 colonization. The results showed that both DAMs and DGEs in the upregulated expression profiles were involved in the flavonoid biosynthesis pathway. Overall, p-coumaroyl-CoA in sugarcane roots transferred into homoeriodictyol chalcone and 5-deoxyleucopelargonidin due to the upregulation of the expression of genes shikimate O-hydroxycinnamoyltransferase (HCT), chalcone synthase (CHS), and phlorizin synthase (PGT1). CONCLUSIONS This study provides insights into the gene regulatory mechanisms involved in the interaction between GXS16 and sugarcane roots, which will facilitate future applications of endophytic nitrogen-fixing bacteria to promote crop growth.
Collapse
Affiliation(s)
- Qian Nong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zhanghong Mo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zeping Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Changning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| |
Collapse
|
33
|
Ren L, Wan W, Yin D, Deng X, Ma Z, Gao T, Cao X. Genome-wide analysis of WRKY transcription factor genes in Toona sinensis: An insight into evolutionary characteristics and terpene synthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1063850. [PMID: 36743538 PMCID: PMC9895799 DOI: 10.3389/fpls.2022.1063850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
WRKY transcription factors (TFs), one of the largest TF families, serve critical roles in the regulation of secondary metabolite production. However, little is known about the expression pattern of WRKY genes during the germination and maturation processes of Toona sinensis buds. In the present study, the new assembly of the T. sinensis genome was used for the identification of 78 TsWRKY genes, including gene structures, phylogenetic features, chromosomal locations, conserved protein domains, cis-regulatory elements, synteny, and expression profiles. Gene duplication analysis revealed that gene tandem and segmental duplication events drove the expansion of the TsWRKYs family, with the latter playing a key role in the creation of new TsWRKY genes. The synteny and evolutionary constraint analyses of the WRKY proteins among T. sinensis and several distinct species provided more detailed evidence of gene evolution for TsWRKYs. Besides, the expression patterns and co-expression network analysis show TsWRKYs may multi-genes co-participate in regulating terpenoid biosynthesis. The findings revealed that TsWRKYs potentially play a regulatory role in secondary metabolite synthesis, forming the basis for further functional characterization of WRKY genes with the intention of improving T. sinensis.
Collapse
Affiliation(s)
- Liping Ren
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Wenyang Wan
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Dandan Yin
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Xianhui Deng
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zongxin Ma
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaohan Cao
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
34
|
Zuo ZF, Lee HY, Kang HG. Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. Int J Mol Sci 2023; 24:ijms24021419. [PMID: 36674933 PMCID: PMC9867082 DOI: 10.3390/ijms24021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors are involved in many physiological processes, and they play important roles in the abiotic stress responses. The literature related to genome sequences has increased, with genome-wide studies on the bHLH transcription factors in plants. Researchers have detailed the functionally characterized bHLH transcription factors from different aspects in the model plant Arabidopsis thaliana, such as iron homeostasis and abiotic stresses; however, other important economic crops, such as rice, have not been summarized and highlighted. The bHLH members in the same subfamily have similar functions; therefore, unraveling their regulatory mechanisms will help us to identify and understand the roles of some of the unknown bHLH transcription factors in the same subfamily. In this review, we summarize the available knowledge on functionally characterized bHLH transcription factors according to four categories: plant growth and development; metabolism synthesis; plant signaling, and abiotic stress responses. We also highlight the roles of the bHLH transcription factors in some economic crops, especially in rice, and discuss future research directions for possible genetic applications in crop breeding.
Collapse
|
35
|
Castro-Moretti FR, Cocuron JC, Castillo-Gonzalez H, Escudero-Leyva E, Chaverri P, Guerreiro-Filho O, Slot JC, Alonso AP. A metabolomic platform to identify and quantify polyphenols in coffee and related species using liquid chromatography mass spectrometry. FRONTIERS IN PLANT SCIENCE 2023; 13:1057645. [PMID: 36684722 PMCID: PMC9852862 DOI: 10.3389/fpls.2022.1057645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family Rubiaceae is extremely diverse and abundant in Central America and contains several economically important genera, e.g. Coffea and other medicinal plants. These are known for the production of bioactive polyphenols (e.g. caffeine and quinine), which have had major impacts on human society. The overall goal of this study was to develop a high-throughput workflow to identify and quantify plant polyphenols. METHODS First, a method was optimized to extract over 40 families of phytochemicals. Then, a high-throughput metabolomic platform has been developed to identify and quantify 184 polyphenols in 15 min. RESULTS The current metabolomics study of secondary metabolites was conducted on leaves from one commercial coffee variety and two wild species that also belong to the Rubiaceae family. Global profiling was performed using liquid chromatography high-resolution time-of-flight mass spectrometry. Features whose abundance was significantly different between coffee species were discriminated using statistical analysis and annotated using spectral databases. The identified features were validated by commercially available standards using our newly developed liquid chromatography tandem mass spectrometry method. DISCUSSION Caffeine, trigonelline and theobromine were highly abundant in coffee leaves, as expected. Interestingly, wild Rubiaceae leaves had a higher diversity of phytochemicals in comparison to commercial coffee: defense-related molecules, such as phenylpropanoids (e.g., cinnamic acid), the terpenoid gibberellic acid, and the monolignol sinapaldehyde were found more abundantly in wild Rubiaceae leaves.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | | | - Humberto Castillo-Gonzalez
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Efrain Escudero-Leyva
- School of Biology and Natural Products Research Center Centro de Investigaciones en Productos Naturales (CIPRONA), University of Costa Rica, San Jose, Costa Rica
- Centro Nacional de Alta Technologia-Consejo Nacional de Rectores (CeNAT-CONARE), National Center for Biotechnological Innovations (CENIBiot), San Jose, Costa Rica
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
- School of Biology and Natural Products Research Center Centro de Investigaciones en Productos Naturales (CIPRONA), University of Costa Rica, San Jose, Costa Rica
| | | | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Ana Paula Alonso
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioAnalytical Facility, University of North Texas, Denton, TX, United States
| |
Collapse
|
36
|
Amiri F, Moghadam A, Tahmasebi A, Niazi A. Identification of key genes involved in secondary metabolite biosynthesis in Digitalis purpurea. PLoS One 2023; 18:e0277293. [PMID: 36893121 PMCID: PMC9997893 DOI: 10.1371/journal.pone.0277293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/25/2022] [Indexed: 03/10/2023] Open
Abstract
The medicinal plant Digitalis purpurea produces cardiac glycosides that are useful in the pharmaceutical industry. These bioactive compounds are in high demand due to ethnobotany's application to therapeutic procedures. Recent studies have investigated the role of integrative analysis of multi-omics data in understanding cellular metabolic status through systems metabolic engineering approach, as well as its application to genetically engineering metabolic pathways. In spite of numerous omics experiments, most molecular mechanisms involved in metabolic pathways biosynthesis in D. purpurea remain unclear. Using R Package Weighted Gene Co-expression Network Analysis, co-expression analysis was performed on the transcriptome and metabolome data. As a result of our study, we identified transcription factors, transcriptional regulators, protein kinases, transporters, non-coding RNAs, and hub genes that are involved in the production of secondary metabolites. Since jasmonates are involved in the biosynthesis of cardiac glycosides, the candidate genes for Scarecrow-Like Protein 14 (SCL14), Delta24-sterol reductase (DWF1), HYDRA1 (HYD1), and Jasmonate-ZIM domain3 (JAZ3) were validated under methyl jasmonate treatment (MeJA, 100 μM). Despite early induction of JAZ3, which affected downstream genes, it was dramatically suppressed after 48 hours. SCL14, which targets DWF1, and HYD1, which induces cholesterol and cardiac glycoside biosynthesis, were both promoted. The correlation between key genes and main metabolites and validation of expression patterns provide a unique insight into the biosynthesis mechanisms of cardiac glycosides in D. purpurea.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- * E-mail:
| | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
37
|
Chen L, Wang X, Cui L, Li Y, Liang Y, Wang S, Chen Y, Zhou L, Zhang Y, Li F. Transcriptome and metabolome analyses reveal anthocyanins pathways associated with fruit color changes in plum ( Prunus salicina Lindl.). PeerJ 2022; 10:e14413. [PMID: 36530399 PMCID: PMC9756864 DOI: 10.7717/peerj.14413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Plum (Prunus salicina Lindl.) is one of the most widely cultivated and important fruit trees in temperate and cold regions. Fruit color is a significant trait relating to fruit quality in plum. However, its development mechanism has not been studied from the aspects of transcriptional regulation and metabolomic progress. To reveal the mechanism of fruit color developments in plums, we selected the fruits of two plum cultivars, 'Changli84' (Ch84, red fruit) and 'Dahuangganhe' (D, yellow fruit) as plant materials for transcriptome sequencing and metabolomic analysis were performed. Based on the data of transcriptome and metabolome at three fruit developmental stages, young fruit stage, color-change stage, and maturation stage, we identified 2,492 differentially expressed genes (DEGs) and 54 differential metabolites (DMs). The KEGG analysis indicated that "Flavonoid biosynthesis" was significantly enriched during three fruit development stages. Some DEGs in the "Flavonoid biosynthesis" pathway, had opposite trends between Ch84 and D, including chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS). Also, the genes encoding MYB-bHLH-WD (MBW) protein complexes, especially MYBs and bHLHs, showed a close relationship with plum fruit color. In the current study, DMs like procyanidin B1, cyanidin 3-glucoside, and cyanidin-3-O-alpha-arabinopyranoside were key pigments (or precursors), while the carotene and carotenoids did not show key relationships with fruit color. In conclusion, the anthocyanins dominate the color change of plum fruit. Carotenes and carotenoids might be related to the color of plum fruit, but do not play a dominate role.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Xuesong Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Long Cui
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yuebo Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yinghai Liang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Shanshan Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yubo Chen
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Lan Zhou
- Academy of Agricultural Sciences of Yanbian, Longjing, Jilin Province, China
| | - Yanbo Zhang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Feng Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| |
Collapse
|
38
|
Liang S, Zhang J, Liu Y, Wen Z, Liu X, Dang F, Xie T, Wang J, Wang Z, Wu H. Study on Flavonoids and Bioactivity Features of Pericarp of Citrus reticulata "Chachi" at Different Harvest Periods. PLANTS (BASEL, SWITZERLAND) 2022; 11:3390. [PMID: 36501428 PMCID: PMC9737822 DOI: 10.3390/plants11233390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Dry mature pericarp of Citrus reticulata "Chachi" (PCR), Pericarpium Citri Reticulatae Chachiensis, is a traditional Chinese medicine that displays characteristics of different usage at different harvest times in clinical use. The corresponding changes in the bioactive components in PCR from different harvest times remain unclear. Therefore, in this study, broadly targeted metabolomics technology was used to compare the differences in bioactive components among pericarps of PCR, which are the raw material of PCR at different growth stages. In the results, 210 kinds of flavonoid metabolites were detected. The content of hesperidin in red PCR harvested in December was higher than that in Citri Reticulatae Pericarpium Viride (CRPV) and reddish PCR harvested from July to November. Furthermore, the content of nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone in CRPV from July to September was higher than that in the PCR harvested at other times. In addition, the result of cluster analysis and PCA showed that CRPV harvested from July to September had an obvious grouping pattern with the reddish PCR and the red PCR harvested from October to December. Differential metabolites in six comparison groups (A1 vs. A6, A1 vs. A2, A2 vs. A3, A3 vs. A4, A4 vs. A5, A5 vs. A6) were 67, 48, 14, 51, 42, and 40, respectively. The common differential metabolite of four comparison groups was 3',4',7-trihydroxyflavone (A1 vs. A2, A2 vs. A3, A3 vs. A4, A4 vs. A5). All the flavonoid differential metabolites screened were enriched in 16 metabolic pathways. Moreover, the results of the evaluation of the total antioxidant capacity indicated that CRPV in August was a suitable raw material for the production of antioxidants. Through molecular docking, the content of potential anti-SARS-CoV-2 components in the PCR in October was higher than that in the PCR in other periods. These results further proved that PCR at different harvest times was endowed with different efficacy and usage due to the difference in the accumulation of bioactive components.
Collapse
Affiliation(s)
- Shejian Liang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
- Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiongbin Zhang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Yufang Liu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijia Wen
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinxin Liu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Dang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Tianxiao Xie
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Wang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhanqian Wang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, College of Life Science, South China Agricultural University, Guangzhou 510642, China
- Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
39
|
Combined analysis of transcriptomics and metabolomics revealed complex metabolic genes for diterpenoids biosynthesis in different organs of Anoectochilus roxburghii. CHINESE HERBAL MEDICINES 2022. [DOI: 10.1016/j.chmed.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Leksungnoen N, Andriyas T, Ngernsaengsaruay C, Uthairatsamee S, Racharak P, Sonjaroon W, Kjelgren R, Pearson BJ, McCurdy CR, Sharma A. Variations in mitragynine content in the naturally growing Kratom ( Mitragyna speciosa) population of Thailand. FRONTIERS IN PLANT SCIENCE 2022; 13:1028547. [PMID: 36388525 PMCID: PMC9648690 DOI: 10.3389/fpls.2022.1028547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
We analyzed the content of mitragynine (MG) found in kratom leaves (Mitragyna speciosa) and the influence of different environmental conditions (air and soil variables) on the yield in various regions of Thailand. The content of MG in kratom leaves ranged from 7.5 - 26.6 mg g-1 of dry leaf weight. Canonical correspondence analysis showed that the most significant environmental variables affecting the MG content among the various regions were light intensity, relative humidity, soil volumetric water content (VW), soil pH, and calcium. This study is a first step towards providing information about environmental conditions suitable to maximize the quality and quantity of bioactive alkaloids in kratom. Future studies should focus on leaf collection and the post-harvest processes in order to assure the desired alkaloidal content in finished products, when produced under suitable environmental conditions identified in this study.
Collapse
Affiliation(s)
- Nisa Leksungnoen
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
- Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Tushar Andriyas
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Suwimon Uthairatsamee
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Phruet Racharak
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Roger Kjelgren
- The University of Florida (UF)/Institute of Food and Agricultural Sciences (IFAS) Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Brian J. Pearson
- The University of Florida (UF)/Institute of Food and Agricultural Sciences (IFAS) Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Sharma S, Kumar A, Singh D, Kumari A, Kapoor P, Kaur S, Shreon B, Garg M. Integrated transcriptional and metabolomics signature pattern of pigmented wheat to insight the seed pigmentation and other associated features. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:59-70. [PMID: 36055054 DOI: 10.1016/j.plaphy.2022.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanin biosynthesis in plants is complex, especially in a polyploid monocot wheat plant. Using whole-genome sequencing, transcriptomics, and LC-MS/MS, we investigated anthocyanin pigmentation patterns in (black, blue, and purple) colored wheat seeds. According to differential gene expression profiling, 2AS-MYC, 7DL-MYB, and WD40 regulatory genes control purple pericarp coloration, 4DL-MYC, 2AS-MYC, 7DL-MYB, WD40 control blue aleurone coloration, and 4DL-MYC, 7DL-MYB, WD40 controls black aleurone color. We hypothesized that at least one MYC and MYB isoform is sufficient to regulate the anthocyanin synthesis in pericarp or aleurone. Transcriptomics and metabolomics revealed that the purple pericarp trait is associated with acylated anthocyanins compared to blue aleurone. Based upon the reduced expressions of the genes belonging to the 4D, SSR molecular marker mapping, variant calling using genome sequencing, and IGV browser gene structure visualization, it was inferred that the advanced black and blue wheat lines were substitution lines (4E{4D}), with very small recombinations. Pericarp anthocyanin pigmentation is controlled by a mutation in chromosome 2AS of purple wheat, and environmental variations influence pigmented pericarp trait. The expression patterns of anthocyanin structural and other genes varied in different colored wheat, corroborating differences in agronomical metrics. Ovate seed shape trait in black and blue wheat dragged with 4E chromosome.
Collapse
Affiliation(s)
- Saloni Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dalwinder Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Payal Kapoor
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India; Department of Biotechnology, Panjab University, Chandigarh, Punjab, India
| | - Bhawna Shreon
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India; Regional Centre of Biotechnology, Faridabad, Haryana, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| |
Collapse
|
42
|
Godbole RC, Pable AA, Singh S, Barvkar VT. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022; 12:250. [PMID: 36051988 PMCID: PMC9424429 DOI: 10.1007/s13205-022-03316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.
Collapse
Affiliation(s)
- Rucha C. Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Anupama A. Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007 India
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085 India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
43
|
Riveros-Loaiza LM, Benhur-Cardona N, Lopez-Kleine L, Soto-Sedano JC, Pinzón AM, Mosquera-Vásquez T, Roda F. Uncovering anthocyanin diversity in potato landraces (Solanum tuberosum L. Phureja) using RNA-seq. PLoS One 2022; 17:e0273982. [PMID: 36136976 PMCID: PMC9498938 DOI: 10.1371/journal.pone.0273982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Potato (Solanum tuberosum L.) is the third largest source of antioxidants in the human diet, after maize and tomato. Potato landraces have particularly diverse contents of antioxidant compounds such as anthocyanins. We used this diversity to study the evolutionary and genetic basis of anthocyanin pigmentation. Specifically, we analyzed the transcriptomes and anthocyanin content of tubers from 37 landraces with different colorations. We conducted analyses of differential expression between potatoes with different colorations and used weighted correlation network analysis to identify genes whose expression is correlated to anthocyanin content across landraces. A very significant fraction of the genes identified in these two analyses had annotations related to the flavonoid-anthocyanin biosynthetic pathway, including 18 enzymes and 5 transcription factors. Importantly, the causal genes at the D, P and R loci governing anthocyanin accumulation in potato cultivars also showed correlations to anthocyanin production in the landraces studied here. Furthermore, we found that 60% of the genes identified in our study were located within anthocyanin QTLs. Finally, we identified new candidate enzymes and transcription factors that could have driven the diversification of anthocyanins. Our results indicate that many anthocyanins biosynthetic genes were manipulated in ancestral potato breeding and can be used in future breeding programs.
Collapse
Affiliation(s)
- Luis Miguel Riveros-Loaiza
- Área Curricular de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Antioquia, Colombia
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Nicolás Benhur-Cardona
- Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Liliana Lopez-Kleine
- Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Johana Carolina Soto-Sedano
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | | | - Teresa Mosquera-Vásquez
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
44
|
Devi A, Seth R, Masand M, Singh G, Holkar A, Sharma S, Singh A, Sharma RK. Spatial Genomic Resource Reveals Molecular Insights into Key Bioactive-Metabolite Biosynthesis in Endangered Angelica glauca Edgew. Int J Mol Sci 2022; 23:ijms231911064. [PMID: 36232367 PMCID: PMC9569870 DOI: 10.3390/ijms231911064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Angelica glauca Edgew, which is an endangered medicinal and aromatic herb, is a rich source of numerous industrially important bioactive metabolites, including terpenoids, phenolics, and phthalides. Nevertheless, genomic interventions for the sustainable utilization and restoration of its genetic resources are greatly offset due to the scarcity of the genomic resources and key regulators of the underlying specialized metabolism. To unravel the global atlas of the specialized metabolism, the first spatial transcriptome sequencing of the leaf, stem, and root generated 109 million high-quality paired-end reads, assembled de novo into 81,162 unigenes, which exhibit a 61.53% significant homology with the six public protein databases. The organ-specific clustering grouped 1136 differentially expressed unigenes into four subclusters differentially enriched in the leaf, stem, and root tissues. The prediction of the transcriptional-interactome network by integrating enriched gene ontology (GO) and the KEGG metabolic pathways identified the key regulatory unigenes that correspond to terpenoid, flavonoid, and carotenoid biosynthesis in the leaf tissue, followed by the stem and root tissues. Furthermore, the stem and root-specific significant enrichments of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and caffeic acid 3-O-methyltransferase (COMT) indicate that phenylalanine mediated the ferulic acid biosynthesis in the stem and root. However, the root-specific expressions of NADPH-dependent alkenal/one oxidoreductase (NADPH-AOR), S-adenosyl-L-methionine-dependent methyltransferases (SDMs), polyketide cyclase (PKC), and CYP72A15 suggest the “root” as the primary site of phthalide biosynthesis. Additionally, the GC-MS and UPLC analyses corresponded to the organ-specific gene expressions, with higher contents of limonene and phthalide compounds in the roots, while there was a higher accumulation of ferulic acid in the stem, followed by in the root and leaf tissues. The first comprehensive genomic resource with an array of candidate genes of the key metabolic pathways can be potentially utilized for the targeted upscaling of aromatic and pharmaceutically important bioactive metabolites. This will also expedite genomic-assisted conservation and breeding strategies for the revival of the endangered A. glauca.
Collapse
Affiliation(s)
- Amna Devi
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Mamta Masand
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashlesha Holkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shikha Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Environmental Technology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: or
| |
Collapse
|
45
|
Chacon DS, Santos MDM, Bonilauri B, Vilasboa J, da Costa CT, da Silva IB, Torres TDM, de Araújo TF, Roque ADA, Pilon AC, Selegatto DM, Freire RT, Reginaldo FPS, Voigt EL, Zuanazzi JAS, Scortecci KC, Cavalheiro AJ, Lopes NP, Ferreira LDS, dos Santos LV, Fontes W, de Sousa MV, Carvalho PC, Fett-Neto AG, Giordani RB. Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. FRONTIERS IN PLANT SCIENCE 2022; 13:947558. [PMID: 36161018 PMCID: PMC9493460 DOI: 10.3389/fpls.2022.947558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.
Collapse
Affiliation(s)
- Daisy Sotero Chacon
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Bernardo Bonilauri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Taffarel de Melo Torres
- Bioinformatics, Biostatistics and Computer Biology Nucleus, Rural Federal University of the Semiarid, Mossoró, RN, Brazil
| | | | - Alan de Araújo Roque
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal, RN, Brazil
| | - Alan Cesar Pilon
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Denise Medeiros Selegatto
- Zimmermann Group, European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rafael Teixeira Freire
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Eduardo Luiz Voigt
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Kátia Castanho Scortecci
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Paulo Costa Carvalho
- Computational and Structural Proteomics Laboratory, Carlos Chagas Institute, Fiocruz, PR, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
46
|
Gao X, Su Q, Li J, Yang W, Yao B, Guo J, Li S, Liu C. RNA-Seq analysis reveals the important co-expressed genes associated with polyphyllin biosynthesis during the developmental stages of Paris polyphylla. BMC Genomics 2022; 23:559. [PMID: 35931959 PMCID: PMC9354290 DOI: 10.1186/s12864-022-08792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Plants synthesize metabolites to adapt to a continuously changing environment. Metabolite biosynthesis often occurs in response to the tissue-specific combinatorial developmental cues that are transcriptionally regulated. Polyphyllins are the major bioactive components in Paris species that demonstrate hemostatic, anti-inflammatory and antitumor effects and have considerable market demands. However, the mechanisms underlying polyphyllin biosynthesis and regulation during plant development have not been fully elucidated. Results Tissue samples of P. polyphylla var. yunnanensis during the four dominant developmental stages were collected and investigated using high-performance liquid chromatography and RNA sequencing. Polyphyllin concentrations in the different tissues were found to be highly dynamic across developmental stages. Specifically, decreasing trends in polyphyllin concentration were observed in the aerial vegetative tissues, whereas an increasing trend was observed in the rhizomes. Consistent with the aforementioned polyphyllin concentration trends, different patterns of spatiotemporal gene expression in the vegetative tissues were found to be closely related with polyphyllin biosynthesis. Additionally, molecular dissection of the pathway components revealed 137 candidate genes involved in the upstream pathway of polyphyllin backbone biosynthesis. Furthermore, gene co-expression network analysis revealed 74 transcription factor genes and one transporter gene associated with polyphyllin biosynthesis and allocation. Conclusions Our findings outline the framework for understanding the biosynthesis and accumulation of polyphyllins during plant development and contribute to future research in elucidating the molecular mechanism underlying polyphyllin regulation and accumulation in P. polyphylla. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08792-2.
Collapse
Affiliation(s)
- Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Qixuan Su
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jing Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Wenjing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Mengla, Yunnan, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
47
|
Morey KJ, Peebles CAM. Hairy roots: An untapped potential for production of plant products. FRONTIERS IN PLANT SCIENCE 2022; 13:937095. [PMID: 35991443 PMCID: PMC9389236 DOI: 10.3389/fpls.2022.937095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.
Collapse
|
48
|
Shukla N, Singh D, Tripathi A, Kumari P, Gupta RK, Singh S, Shanker K, Singh A. Synergism of endophytic Bacillus subtilis and Klebsiella aerogenes modulates plant growth and bacoside biosynthesis in Bacopa monnieri. FRONTIERS IN PLANT SCIENCE 2022; 13:896856. [PMID: 35991388 PMCID: PMC9386127 DOI: 10.3389/fpls.2022.896856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bacopa monnieri is the main source of pharmaceutically important bacosides; however, the low content of these molecules in planta remains a limiting factor for fulfilling the industrial requirement. The accumulation of secondary metabolites can be enhanced in plants upon inoculation with endophytes. In this study, we isolated and analyzed the culturable endophytes associated with different plant parts. By analyzing their impact on plant growth parameters (in vitro and in vivo) and Bacoside A content, we found few candidates which increased bacoside accumulation significantly. Finally, two promising endophytes namely Bacillus subtilis (OK070745) and Klebsiella aerogenes (OK070774) were co-cultivated with B. monnieri cuttings singly and in combination mode to clarify their effect on bacoside biosynthesis and their accumulation in B. monnieri shoot. Consortium-inoculated plants significantly enhanced the plant biomass and Bacoside A content with respect to single inoculation. The results of real-time quantitative (RT-PCR) revealed significant accumulation of bacoside biosynthetic pathway transcripts (HMGCR, PMVK, FDPS, SQS, and β-AS) in the case of plants inoculated with microbial combination, while the single inoculation of B. subtilis diverted the plant's machinery toward the synthesis of phenylpropanoid genes like CCR, CAD, CHS, and HST. In addition, higher expression of MYB 2 and WRKY 1 transcription factors in combinational treatment points out their probable role in better physiological and developmental processes. Altogether, this is the first study on B. monnieri-endophyte interaction showing improvement in the accumulation of bacoside A by modulating various genes of metabolic pathway and thus suggests an effective "green approach" for augmenting in planta production of pharmaceutically important bacosides.
Collapse
Affiliation(s)
- Namita Shukla
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepti Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rahul Kumar Gupta
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shiwangi Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Karuna Shanker
- Division of Phytochemistry, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
49
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. AcMYB1 Interacts With AcbHLH1 to Regulate Anthocyanin Biosynthesis in Aglaonema commutatum. FRONTIERS IN PLANT SCIENCE 2022; 13:886313. [PMID: 35928704 PMCID: PMC9344012 DOI: 10.3389/fpls.2022.886313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Aglaonema commutatum is one of the most popular foliage plants with abundant leaf phenotypes; therefore, anthocyanin coloration is a vital economic trait in A. commutatum. However, the molecular mechanisms underlying anthocyanin biosynthesis and its regulation remain unclear. In this study, AcMYB1 and AcbHLH1, transcription factor genes related to an R2R3-myeloblast (MYB) and a basic helix-loop-helix (bHLH), respectively, were isolated from A. commutatum "Red Valentine" and functionally characterized. AcMYB1 and AcbHLH1 were found to interact by Y2H and BiFC assay. AcMYB1 was grouped into the AN2 subgroup and shared high homology with the known regulators of anthocyanin biosynthesis. Gene expression analysis showed that both AcMYB1 and AcbHLH1 have similar expression patterns to anthocyanin structural genes and correlate with anthocyanin distribution in different tissues of A. commutatum. Light strongly promoted anthocyanin accumulation by upregulating the expression of anthocyanin-related genes in A. commutatum leaves. Ectopic expression of AcMYB1 in tobacco remarkably increased anthocyanin accumulation in both vegetative and reproductive tissues at various developmental stages. These results provide insights into the regulation of anthocyanin biosynthesis in A. commutatum and are useful for breeding new A. commutatum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
50
|
Qin L, Du F, Yang N, Zhang C, Wang Z, Zheng X, Tang J, Yang L, Dong C. Transcriptome Analyses Revealed the Key Metabolic Genes and Transcription Factors Involved in Terpenoid Biosynthesis in Sacred Lotus. Molecules 2022; 27:4599. [PMID: 35889471 PMCID: PMC9320166 DOI: 10.3390/molecules27144599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
As the largest group of structurally diverse metabolites, terpenoids are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. However, few terpenoid compounds have been identified in plant parts of sacred lotus (Nelumbo nucifera Gaertn.). To elucidate the molecular genetic basis of the terpene biosynthetic pathway, terpenes from different parts of the plant, including seeds (S), young leaves (YL), mature leaves (ML), white flowers (WF), yellow flowers (YF), and red flowers (RF), were identified by LC-MS/MS and the relative contents of the same terpenes in different parts were compared. The results indicate that all plant parts primarily consist of triterpenes, with only minor quantities of sesquiterpenes and diterpenes, and there were differences in the terpene content detected in different plant parts. To illustrate the biosynthesis of various terpenoids, RNA sequencing was performed to profile the transcriptomes of various plant parts, which generated a total of 126.95 GB clean data and assembled into 29,630 unigenes. Among these unigenes, 105 candidate unigenes are involved in the mevalonate (MVA) pathway, methyl-erythritol phosphate (MEP) pathway, terpenoid backbone biosynthesis pathway, and terpenoid synthases pathway. Moreover, the co-expression network between terpene synthase (TPS) and WRKY transcription factors provides new information for the terpene biosynthesis pathway.
Collapse
Affiliation(s)
- Lili Qin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Fei Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Ningning Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Chen Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Zhiwen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Xingwen Zheng
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Jiawei Tang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Liangbo Yang
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| |
Collapse
|