1
|
Li J, Zhang W, Lu Q, Sun J, Cheng C, Huang S, Li S, Li Q, Zhang W, Zhou C, Liu B, Xiang F. GmDFB1, an ARM-repeat superfamily protein, regulates floral organ identity through repressing siRNA- and miRNA-mediated gene silencing in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1620-1638. [PMID: 38860597 DOI: 10.1111/jipb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.
Collapse
Affiliation(s)
- Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuang Cheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shiyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Zavallo D, Cara N, Leone M, Crescente JM, Marfil C, Masuelli R, Asurmendi S. Assessing small RNA profiles in potato diploid hybrid and its resynthesized allopolyploid reveals conserved abundance with distinct genomic distribution. PLANT CELL REPORTS 2024; 43:85. [PMID: 38453711 DOI: 10.1007/s00299-024-03170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
KEY MESSAGE The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.
Collapse
Affiliation(s)
- Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina
| | - Nicolas Cara
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Melisa Leone
- Universidad Nacional de Hurlingham, Instituto de Biotecnología, Av. Vergara 2222 (B1688GEZ), Villa Tesei, Buenos Aires, Argentina
| | - Juan Manuel Crescente
- Grupo Biotecnología y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 Km 3, 2580, Marcos Juárez, Argentina
| | - Carlos Marfil
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA), San Martín 3853, Luján de Cuyo, 5534, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina.
| |
Collapse
|
3
|
Liang C, Wang X, He H, Xu C, Cui J. Beyond Loading: Functions of Plant ARGONAUTE Proteins. Int J Mol Sci 2023; 24:16054. [PMID: 38003244 PMCID: PMC10671604 DOI: 10.3390/ijms242216054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
ARGONAUTE (AGO) proteins are key components of the RNA-induced silencing complex (RISC) that mediates gene silencing in eukaryotes. Small-RNA (sRNA) cargoes are selectively loaded into different members of the AGO protein family and then target complementary sequences to in-duce transcriptional repression, mRNA cleavage, or translation inhibition. Previous reviews have mainly focused on the traditional roles of AGOs in specific biological processes or on the molecular mechanisms of sRNA sorting. In this review, we summarize the biological significance of canonical sRNA loading, including the balance among distinct sRNA pathways, cross-regulation of different RISC activities during plant development and defense, and, especially, the emerging roles of AGOs in sRNA movement. We also discuss recent advances in novel non-canonical functions of plant AGOs. Perspectives for future functional studies of this evolutionarily conserved eukaryotic protein family will facilitate a more comprehensive understanding of the multi-faceted AGO proteins.
Collapse
Affiliation(s)
| | | | | | | | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (X.W.); (H.H.); (C.X.)
| |
Collapse
|
4
|
Kim YJ. Crosstalk between RNA silencing and RNA quality control in plants. BMB Rep 2023; 56:321-325. [PMID: 37156633 PMCID: PMC10315563 DOI: 10.5483/bmbrep.2023-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2024] Open
Abstract
RNAs are pivotal molecules acting as messengers of genetic information and regulatory molecules for cellular development and survival. From birth to death, RNAs face constant cellular decision for the precise control of cellular function and activity. Most eukaryotic cells employ conserved machineries for RNA decay including RNA silencing and RNA quality control (RQC). In plants, RQC monitors endogenous RNAs and degrades aberrant and dysfunctional species, whereas RNA silencing promotes RNA degradation to repress the expression of selected endogenous RNAs or exogenous RNA derived from transgenes and virus. Interestingly, emerging evidences have indicated that RQC and RNA silencing interact with each by sharing target RNAs and regulatory components. Such interaction should be tightly organized for proper cellular survival. However, it is still elusive that how each machinery specifically recognizes target RNAs. In this review, we summarize recent advances on RNA silencing and RQC pathway and discuss potential mechanisms underlying the interaction between the two machineries. [BMB Reports 2023; 56(6): 321-325].
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Zhou A, Kirkpatrick LD, Ornelas IJ, Washington LJ, Hummel NFC, Gee CW, Tang SN, Barnum CR, Scheller HV, Shih PM. A Suite of Constitutive Promoters for Tuning Gene Expression in Plants. ACS Synth Biol 2023; 12:1533-1545. [PMID: 37083366 DOI: 10.1021/acssynbio.3c00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The need for convenient tools to express transgenes over a large dynamic range is pervasive throughout plant synthetic biology; however, current efforts are largely limited by the heavy reliance on a small set of strong promoters, precluding more nuanced and refined engineering endeavors in planta. To address this technical gap, we characterize a suite of constitutive promoters that span a wide range of transcriptional levels and develop a GoldenGate-based plasmid toolkit named PCONS, optimized for versatile cloning and rapid testing of transgene expression at varying strengths. We demonstrate how easy access to a stepwise gradient of expression levels can be used for optimizing synthetic transcriptional systems and the production of small molecules in planta. We also systematically investigate the potential of using PCONS as an internal standard in plant biology experimental design, establishing the best practices for signal normalization in experiments. Although our library has primarily been developed for optimizing expression in N. benthamiana, we demonstrate the translatability of our promoters across distantly related species using a multiplexed reporter assay with barcoded transcripts. Our findings showcase the advantages of the PCONS library as an invaluable toolkit for plant synthetic biology.
Collapse
Affiliation(s)
- Andy Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Liam D Kirkpatrick
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Izaiah J Ornelas
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lorenzo J Washington
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Niklas F C Hummel
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Christopher W Gee
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Sophia N Tang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Collin R Barnum
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616, United States
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
- Innovative Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Molesini B, Pennisi F, Cressoni C, Vitulo N, Dusi V, Speghini A, Pandolfini T. Nanovector-mediated exogenous delivery of dsRNA induces silencing of target genes in very young tomato flower buds. NANOSCALE ADVANCES 2022; 4:4542-4553. [PMID: 36341284 PMCID: PMC9595187 DOI: 10.1039/d2na00478j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is a post-translational regulatory mechanism that controls gene expression in plants. This process can be artificially induced by double-stranded RNA (dsRNA) molecules with sequence homology to target mRNAs. Exogenously applied dsRNA on leaves has been shown to silence virulence genes of fungi and viruses, conferring protection to plants. Coupling dsRNA to nanoparticles has been demonstrated to prolong the silencing effect. The ability of exogenous dsRNA to silence endogenous genes in plants is currently under debate, mainly due to the difficulty in delivering dsRNA into plant tissues and organs. Our study aims to develop a method based on the exogenous application of dsRNA on tomato flowers for silencing endogenous genes controlling ovary growth. Two methods of dsRNA delivery into tomato flower buds (i.e., pedicel soaking and injection) were compared to test their efficacy in silencing the tomato Aux/IAA9 (SlIAA9) gene, which encodes for a known repressor of ovary growth. We examined the silencing effect of dsRNA alone and coupled to layered double hydroxide (LDHs) nanoparticles. We found that injection into the pedicel led to the silencing of SlIAA9 and the efficacy of the method was confirmed by choosing a different ovary growth repressor gene (SlAGAMOUS-like 6; SlAGL6). The coupling of dsRNA to LDHs increased the silencing effect in the case of SlIAA9. Silencing of the two repressors caused an increase in ovary size only when flower buds were treated with dsRNA coupled to LDHs. RNA-Seq of small RNAs showed that induction of RNAi was caused by the processing of injected dsRNA. In this work, we demonstrate for the first time that exogenous dsRNA coupled to LDHs can induce post-transcriptional gene silencing in the young tomato ovary by injection into the flower pedicel. This method represents a silencing tool for the study of the molecular changes occurring during the early stages of ovary/fruit growth as a consequence of downregulation of target genes, without the need to produce transgenic plants stably expressing RNAi constructs.
Collapse
Affiliation(s)
- B Molesini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - F Pennisi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - C Cressoni
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - N Vitulo
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - V Dusi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - A Speghini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - T Pandolfini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| |
Collapse
|
7
|
Yang Y, Shao Y, Chaffin TA, Lee JH, Poindexter MR, Ahkami AH, Blumwald E, Stewart CN. Performance of abiotic stress-inducible synthetic promoters in genetically engineered hybrid poplar ( Populus tremula × Populus alba). FRONTIERS IN PLANT SCIENCE 2022; 13:1011939. [PMID: 36330242 PMCID: PMC9623294 DOI: 10.3389/fpls.2022.1011939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Abiotic stresses can cause significant damage to plants. For sustainable bioenergy crop production, it is critical to generate resistant crops to such stress. Engineering promoters to control the precise expression of stress resistance genes is a very effective way to address the problem. Here we developed stably transformed Populus tremula × Populus alba hybrid poplar (INRA 717-1B4) containing one-of-six synthetic drought stress-inducible promoters (SDs; SD9-1, SD9-2, SD9-3, SD13-1, SD18-1, and SD18-3) identified previously by transient transformation assays. We screened green fluorescent protein (GFP) induction in poplar under osmotic stress conditions. Of six transgenic lines containing synthetic promoter, three lines (SD18-1, 9-2, and 9-3) had significant GFP expression in both salt and osmotic stress treatments. Each synthetic promoter employed heptamerized repeats of specific and short cis-regulatory elements (7 repeats of 7-8 bases). To verify whether the repeats of longer sequences can improve osmotic stress responsiveness, a transgenic poplar containing the synthetic promoter of the heptamerized entire SD9 motif (20 bases, containing all partial SD9 motifs) was generated and measured for GFP induction under osmotic stress. The heptamerized entire SD9 motif did not result in higher GFP expression than the shorter promoters consisting of heptamerized SD9-1, 9-2, and 9-3 (partial SD9) motifs. This result indicates that shorter synthetic promoters (~50 bp) can be used for versatile control of gene expression in transgenic poplar. These synthetic promoters will be useful tools to engineer stress-resilient bioenergy tree crops in the future.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Yuanhua Shao
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Timothy A. Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Jun Hyung Lee
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Magen R. Poindexter
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - C. Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
8
|
Tariq M, Tabassum B, Bakhsh A, Farooq AM, Qamar Z, Akram F, Naz F, Rao AQ, Malik K, Nasir IA. Heterologous expression of cry1Ia12 insecticidal gene in cotton encodes resistance against pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae); an alternate insecticidal gene for insect pest management. Mol Biol Rep 2022; 49:10557-10564. [PMID: 36169899 DOI: 10.1007/s11033-022-07824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cotton is continuously exposed to sucking and chewing insect pest pressure since emergence to harvesting. Pink bollworm (Pectinophora gossypiella) has become major chewing insect pest to reduce the cotton yield and results in bad lint quality even in transgenic crops. The efficiency of insecticidal genes has been compromised due to extensive utilization of transgenic crops. METHODS AND RESULTS The present study was conducted to evaluate the efficacy of an alternate cry1Ia12 insecticidal gene against pink bollworm (PBW) in cotton. Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA2300 expression vector containing cry1Ia12 gene under the control of 35S CaMV was used to transform a local cotton cultivar GS-01. The various molecular analyses revealed the transgene integration and expression in primary transformants. Among five selected transgenic plants, tcL-08 showed maximum (16.06-fold) mRNA expression of cry1Ia12 gene whereas tcL-03 showed minimum (2.33-fold) expression. Feeding bioassays of 2nd and 3rd instar pink bollworm (PBW) larvae on immature cotton bolls, flowers and cotton squares revealed up to 33.33% mortality on tcL-08 while lowest mortality (13.33%) was observed in tcL-03 and tcL-15. Furthermore, the average weight and size of survived larvae fed on transgenic plants was significantly lesser than the average weight of larvae survived on non-transgenic plants. CONCLUSIONS The present study suggests the cry1Ia12 gene as an alternate insecticidal gene for the resistance management of cotton bollworms, especially PBW.
Collapse
Affiliation(s)
- Muhammad Tariq
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan.
| | - Bushra Tabassum
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Allah Bakhsh
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Abdul Munim Farooq
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Zahida Qamar
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Faheem Akram
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Farah Naz
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Abdul Qayyum Rao
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Idrees Ahmad Nasir
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan.
| |
Collapse
|
9
|
Séré D, Cassan O, Bellegarde F, Fizames C, Boucherez J, Schivre G, Azevedo J, Lagrange T, Gojon A, Martin A. Loss of Polycomb proteins CLF and LHP1 leads to excessive RNA degradation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5400-5413. [PMID: 35595271 DOI: 10.1093/jxb/erac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Polycomb-group (PcG) proteins are major chromatin complexes that regulate gene expression, mainly described as repressors keeping genes in a transcriptionally silent state during development. Recent studies have nonetheless suggested that PcG proteins might have additional functions, including targeting active genes or acting independently of gene expression regulation. However, the reasons for the implication of PcG proteins and their associated chromatin marks on active genes are still largely unknown. Here, we report that combining mutations for CURLY LEAF (CLF) and LIKE HETEROCHROMATIN PROTEIN1 (LHP1), two Arabidopsis PcG proteins, results in deregulation of expression of active genes that are targeted by PcG proteins or enriched in associated chromatin marks. We show that this deregulation is associated with accumulation of small RNAs corresponding to massive degradation of active gene transcripts. We demonstrate that transcriptionally active genes and especially those targeted by PcG proteins are prone to RNA degradation, even though deregulation of RNA degradation following the loss of function of PcG proteins is not likely to be mediated by a PcG protein-mediated chromatin environment. Therefore, we conclude that PcG protein function is essential to maintain an accurate level of RNA degradation to ensure accurate gene expression.
Collapse
Affiliation(s)
- David Séré
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Océane Cassan
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fanny Bellegarde
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Cécile Fizames
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Jossia Boucherez
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geoffrey Schivre
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Jacinthe Azevedo
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Thierry Lagrange
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Alain Gojon
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Antoine Martin
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
10
|
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022; 13:874648. [PMID: 35518351 PMCID: PMC9061961 DOI: 10.3389/fgene.2022.874648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
11
|
Ghorbani A, Izadpanah K, Tahmasebi A, Afsharifar A, Moghadam A, Dietzgen RG. Characterization of maize miRNAs responsive to maize Iranian mosaic virus infection. 3 Biotech 2022; 12:69. [PMID: 35223355 PMCID: PMC8837769 DOI: 10.1007/s13205-022-03134-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) play key regulatory roles in the plant's response to biotic and abiotic stresses and have fundamental functions in plant-virus interactions. The study of changes in miRNAs in response to virus infection can provide molecular details for a better understanding of virus-host interactions. Maize Iranian mosaic virus (MIMV) infects maize and certain other poaceous plants but miRNA changes in response to MIMV infection are unknown. In the present study, we compared the miRNA profiles of MIMV-infected and uninfected maize and characterized their predicted roles in response to the virus. Small RNA sequencing of maize identified 257 conserved miRNAs of 26 conserved families in uninfected and MIMV-infected maize libraries. Among them, miR395, miR166 and miR156 family members were highly represented. Small RNA data were confirmed using RT-qPCR. In addition, 33 potential novel miRNAs were predicted. The data show that 13 miRNAs were up-regulated and 113 were down-regulated in response to MIMV infection. Several of those miRNAs are known to be important in the response to plant pathogens. To determine the potential roles of individual miRNAs in response to MIMV, miRNA targets, predicted interactions with circular RNAs and comparative transcriptome data were analyzed. The expression profiles of different miRNAs in response to MIMV provide novel insights into the roles of miRNAs in the interaction between MIMV and maize plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03134-1.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD Australia
| | | | - Ahmad Tahmasebi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD Australia
| |
Collapse
|
12
|
GC content of plant genes is linked to past gene duplications. PLoS One 2022; 17:e0261748. [PMID: 35025913 PMCID: PMC8758071 DOI: 10.1371/journal.pone.0261748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The frequency of G and C nucleotides in genomes varies from species to species, and sometimes even between different genes in the same genome. The monocot grasses have a bimodal distribution of genic GC content absent in dicots. We categorized plant genes from 5 dicots and 4 monocot grasses by synteny to related species and determined that syntenic genes have significantly higher GC content than non-syntenic genes at their 5`-end in the third position within codons for all 9 species. Lower GC content is correlated with gene duplication, as lack of synteny to distantly related genomes is associated with past interspersed gene duplications. Two mutation types can account for biased GC content, mutation of methylated C to T and gene conversion from A to G. Gene conversion involves non-reciprocal exchanges between homologous alleles and is not detectable when the alleles are identical or heterozygous for presence-absence variation, both likely situations for genes duplicated to new loci. Gene duplication can cause production of siRNA which can induce targeted methylation, elevating mC→T mutations. Recently duplicated plant genes are more frequently methylated and less likely to undergo gene conversion, each of these factors synergistically creating a mutational environment favoring AT nucleotides. The syntenic genes with high GC content in the grasses compose a subset that have undergone few duplications, or for which duplicate copies were purged by selection. We propose a “biased gene duplication / biased mutation” (BDBM) model that may explain the origin and trajectory of the observed link between duplication and genic GC bias. The BDBM model is supported by empirical data based on joint analyses of 9 angiosperm species with their genes categorized by duplication status, GC content, methylation levels and functional classes.
Collapse
|
13
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
14
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
15
|
Abstract
With the increasing understanding of fundamentals of gene silencing pathways in plants, various tools and techniques for downregulating the expression of a target gene have been developed across multiple plant species. This chapter provides an insight into the molecular mechanisms of gene silencing and highlights the advancements in various gene silencing approaches. The prominent aspects of different gene silencing methods, their advantages and disadvantages have been discussed. A succinct discussion on the newly emerged microRNA-based technologies like microRNA-induced gene silencing (MIGS) and microRNA-mediated virus-induced gene silencing (MIR-VIGS) are also presented. We have also discussed the gene-editing system like CRISPR-Cas. The prominent bottlenecks in gene silencing methods are the off-target effects and lack of universal applicability. However, the tremendous growth in understanding of this field reflects the potentials for improvements in the currently available approaches and the development of new widely applicable methods for easy, fast, and efficient functional characterization of plant genes.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, USA
| | | |
Collapse
|
16
|
Investigation of P1/HC-Pro-Mediated ABA/Calcium Signaling Responses via Gene Silencing through High- and Low-Throughput RNA-seq Approaches. Viruses 2021; 13:v13122349. [PMID: 34960618 PMCID: PMC8708664 DOI: 10.3390/v13122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses.
Collapse
|
17
|
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res 2021; 49:10431-10447. [PMID: 34551439 PMCID: PMC8501995 DOI: 10.1093/nar/gkab828] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.
Collapse
Affiliation(s)
- David Roquis
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Marta Robertson
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Liang Yu
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Michael Thieme
- Institute for Plant and Microbial Biology, University of Zurich, Switzerland
| | | | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| |
Collapse
|
18
|
The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants. Essays Biochem 2021; 64:919-930. [PMID: 32885814 DOI: 10.1042/ebc20200006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
In plants, post-transcriptional gene silencing (PTGS) tightly regulates development, maintains genome stability and protects plant against foreign genes. PTGS can be triggered by virus infection, transgene, and endogenous transcript, thus commonly serves as an RNA-based immune mechanism. Accordingly, based on the initiating factors, PTGS can be divided into viral-PTGS, transgene-PTGS, and endo-gene-PTGS. Unlike the intensely expressed invading transgenes and viral genes that frequently undergo PTGS, most endogenous genes do not trigger PTGS, except for a few that can produce endogenous small RNAs (sRNAs), including microRNA (miRNA) and small interfering RNA (siRNA). Different lengths of miRNA and siRNA, mainly 21-, 22- or 24-nucleotides (nt) exert diverse functions, ranging from target mRNA degradation, translational inhibition, or DNA methylation and chromatin modifications. The abundant 21-nt miRNA or siRNA, processed by RNase-III enzyme DICER-LIKE 1 (DCL1) and DCL4, respectively, have been well studied in the PTGS pathways. By contrast, the scarceness of endogenous 22-nt sRNAs that are primarily processed by DCL2 limits their research, although a few encouraging studies have been reported recently. Therefore, we review here our current understanding of diverse PTGS pathways triggered by a variety of sRNAs and summarize the distinct features of the 22-nt sRNA mediated PTGS.
Collapse
|
19
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
20
|
Butel N, Yu A, Le Masson I, Borges F, Elmayan T, Taochy C, Gursanscky NR, Cao J, Bi S, Sawyer A, Carroll BJ, Vaucheret H. Contrasting epigenetic control of transgenes and endogenous genes promotes post-transcriptional transgene silencing in Arabidopsis. Nat Commun 2021; 12:2787. [PMID: 33986281 PMCID: PMC8119426 DOI: 10.1038/s41467-021-22995-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
Transgenes that are stably expressed in plant genomes over many generations could be assumed to behave epigenetically the same as endogenous genes. Here, we report that whereas the histone H3K9me2 demethylase IBM1, but not the histone H3K4me3 demethylase JMJ14, counteracts DNA methylation of Arabidopsis endogenous genes, JMJ14, but not IBM1, counteracts DNA methylation of expressed transgenes. Additionally, JMJ14-mediated specific attenuation of transgene DNA methylation enhances the production of aberrant RNAs that readily induce systemic post-transcriptional transgene silencing (PTGS). Thus, the JMJ14 chromatin modifying complex maintains expressed transgenes in a probationary state of susceptibility to PTGS, suggesting that the host plant genome does not immediately accept expressed transgenes as being epigenetically the same as endogenous genes. Accumulating evidences point to a discrepancy in the epigenetic behaviour of transgenes and endogenous genes. Here, via characterization of mutants impaired in histone demethylases JMJ14 and IBM1, the authors show that transgenes and endogenous genes are regulated by different epigenetic mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Nicolas Butel
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Ivan Le Masson
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jiangling Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shengnan Bi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
21
|
Morán-Diez ME, Martínez de Alba ÁE, Rubio MB, Hermosa R, Monte E. Trichoderma and the Plant Heritable Priming Responses. J Fungi (Basel) 2021; 7:jof7040318. [PMID: 33921806 PMCID: PMC8072925 DOI: 10.3390/jof7040318] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
There is no doubt that Trichoderma is an inhabitant of the rhizosphere that plays an important role in how plants interact with the environment. Beyond the production of cell wall degrading enzymes and metabolites, Trichoderma spp. can protect plants by inducing faster and stronger immune responses, a mechanism known as priming, which involves enhanced accumulation of dormant cellular proteins that function in intracellular signal amplification. One example of these proteins is the mitogen-activated protein kinases (MAPK) that are triggered by the rise of cytosolic calcium levels and cellular redox changes following a stressful challenge. Transcription factors such as WRKYs, MYBs, and MYCs, play important roles in priming as they act as regulatory nodes in the transcriptional network of systemic defence after stress recognition. In terms of long-lasting priming, Trichoderma spp. may be involved in plants epigenetic regulation through histone modifications and replacements, DNA (hypo)methylation, and RNA-directed DNA methylation (RdDM). Inheritance of these epigenetic marks for enhanced resistance and growth promotion, without compromising the level of resistance of the plant’s offspring to abiotic or biotic stresses, seems to be an interesting path to be fully explored.
Collapse
|
22
|
Flores R, Navarro B, Delgado S, Serra P, Di Serio F. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol Rev 2021; 44:386-398. [PMID: 32379313 DOI: 10.1093/femsre/fuaa011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The initial molecular lesions through which viroids, satellite RNAs and viruses trigger signal cascades resulting in plant diseases are hotly debated. Since viroids are circular non-protein-coding RNAs of ∼250-430 nucleotides, they appear very convenient to address this issue. Viroids are targeted by their host RNA silencing defense, generating viroid-derived small RNAs (vd-sRNAs) that are presumed to direct Argonaute (AGO) proteins to inactivate messenger RNAs, thus initiating disease. Here, we review the existing evidence. Viroid-induced symptoms reveal a distinction. Those attributed to vd-sRNAs from potato spindle tuber viroid and members of the family Pospiviroidae (replicating in the nucleus) are late, non-specific and systemic. In contrast, those attributed to vd-sRNAs from peach latent mosaic viroid (PLMVd) and other members of the family Avsunviroidae (replicating in plastids) are early, specific and local. Remarkably, leaf sectors expressing different PLMVd-induced chloroses accumulate viroid variants with specific pathogenic determinants. Some vd-sRNAs containing such determinant guide AGO1-mediated cleavage of mRNAs that code for proteins regulating chloroplast biogenesis/development. Therefore, the initial lesions and the expected phenotypes are connected by short signal cascades, hence supporting a cause-effect relationship. Intriguingly, one virus satellite RNA initiates disease through a similar mechanism, whereas in the Pospiviroidae and in plant viruses the situation remains uncertain.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
23
|
Leonetti P, Ghasemzadeh A, Consiglio A, Gursinsky T, Behrens S, Pantaleo V. Endogenous activated small interfering RNAs in virus-infected Brassicaceae crops show a common host gene-silencing pattern affecting photosynthesis and stress response. THE NEW PHYTOLOGIST 2021; 229:1650-1664. [PMID: 32945560 PMCID: PMC7821159 DOI: 10.1111/nph.16932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
Viral infections are accompanied by a massive production of small interfering RNAs (siRNAs) of plant origin, such as virus-activated (va)siRNAs, which drive the widespread silencing of host gene expression, and whose effects in plant pathogen interactions remain unknown. By combining phenotyping and molecular analyses, we characterized vasiRNAs that are associated with typical mosaic symptoms of cauliflower mosaic virus infection in two crops, turnip (Brassica rapa) and oilseed rape (Brassica napus), and the reference plant Arabidopsis thaliana. We identified 15 loci in the three infected plant species, whose transcripts originate vasiRNAs. These loci appear to be generally affected by virus infections in Brassicaceae and encode factors that are centrally involved in photosynthesis and stress response, such as Rubisco activase (RCA), senescence-associated protein, heat shock protein HSP70, light harvesting complex, and membrane-related protein CP5. During infection, the expression of these factors is significantly downregulated, suggesting that their silencing is a central component of the plant's response to virus infections. Further findings indicate an important role for 22 nt long vasiRNAs in the plant's endogenous RNA silencing response. Our study considerably enhances knowledge about the new class of vasiRNAs that are triggered in virus-infected plants and will help to advance strategies for the engineering of gene clusters involved in the development of crop diseases.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food SciencesInstitute for Sustainable Plant ProtectionBari UnitCNRBari70126Italy
| | - Aysan Ghasemzadeh
- Department of Biology, Agricultural and Food SciencesInstitute for Sustainable Plant ProtectionBari UnitCNRBari70126Italy
- Department of Plant PathologyFaculty of AgricultureTarbiat Modares UniversityTehran14115‐111Iran
- Institute of Biochemistry and Biotechnology (NFI)Section Microbial BiotechnologyMartin Luther University Halle‐WittenbergHalle/SaaleD‐06120Germany
| | - Arianna Consiglio
- Department of Biomedical SciencesInstitute for Biomedical TechnologiesBari UnitCNRBari70126Italy
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology (NFI)Section Microbial BiotechnologyMartin Luther University Halle‐WittenbergHalle/SaaleD‐06120Germany
| | - Sven‐Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI)Section Microbial BiotechnologyMartin Luther University Halle‐WittenbergHalle/SaaleD‐06120Germany
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food SciencesInstitute for Sustainable Plant ProtectionBari UnitCNRBari70126Italy
| |
Collapse
|
24
|
Sanan-Mishra N, Abdul Kader Jailani A, Mandal B, Mukherjee SK. Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology. FRONTIERS IN PLANT SCIENCE 2021; 12:610283. [PMID: 33737942 PMCID: PMC7960677 DOI: 10.3389/fpls.2021.610283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The major components of RNA silencing include both transitive and systemic small RNAs, which are technically called secondary sRNAs. Double-stranded RNAs trigger systemic silencing pathways to negatively regulate gene expression. The secondary siRNAs generated as a result of transitive silencing also play a substantial role in gene silencing especially in antiviral defense. In this review, we first describe the discovery and pathways of transitivity with emphasis on RNA-dependent RNA polymerases followed by description on the short range and systemic spread of silencing. We also provide an in-depth view on the various size classes of secondary siRNAs and their different roles in RNA silencing including their categorization based on their biogenesis. The other regulatory roles of secondary siRNAs in transgene silencing, virus-induced gene silencing, transitivity, and trans-species transfer have also been detailed. The possible implications and applications of systemic silencing and the different gene silencing tools developed are also described. The details on mobility and roles of secondary siRNAs derived from viral genome in plant defense against the respective viruses are presented. This entails the description of other compatible plant-virus interactions and the corresponding small RNAs that determine recovery from disease symptoms, exclusion of viruses from shoot meristems, and natural resistance. The last section presents an overview on the usefulness of RNA silencing for management of viral infections in crop plants.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - A. Abdul Kader Jailani
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Mukherjee
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sunil K. Mukherjee,
| |
Collapse
|
25
|
Cai YM, Kallam K, Tidd H, Gendarini G, Salzman A, Patron NJ. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res 2020; 48:11845-11856. [PMID: 32856047 DOI: 10.1101/2020.05.14.095406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 05/20/2023] Open
Abstract
Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.
Collapse
Affiliation(s)
- Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Henry Tidd
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Giovanni Gendarini
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Amanda Salzman
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| |
Collapse
|
26
|
Cai YM, Kallam K, Tidd H, Gendarini G, Salzman A, Patron N. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res 2020; 48:11845-11856. [PMID: 32856047 PMCID: PMC7708054 DOI: 10.1093/nar/gkaa682] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.
Collapse
Affiliation(s)
- Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Henry Tidd
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Giovanni Gendarini
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Amanda Salzman
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| |
Collapse
|
27
|
|
28
|
Freire MÁ. Viral silencing suppressors and cellular proteins partner with plant RRP6-like exoribonucleases. Virus Genes 2020; 56:621-631. [PMID: 32519287 DOI: 10.1007/s11262-020-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
RNA silencing and RNA decay are functionally interlaced, regulate gene expression and play a pivotal role in antiviral responses. As a counter-defensive strategy, many plant and mammalian viruses encode suppressors which interfere with both mechanisms. However, the protein interactions that connect these pathways remain elusive. Previous work reported that RNA silencing suppressors from different potyviruses, together with translation initiation factors EIF(iso)4E, interacted with the C-terminal region of the tobacco exoribonuclease RRP6-like 2, a component of the RNA decay exosome complex. Here, we investigate whether other viral silencing suppressors and cellular proteins might also bind RRP6-like exoribonucleases. A candidate search approach based on yeast two-hybrid protein interaction assays showed that three other unrelated viral suppressors, two from plant viruses and one from a mammalian virus, bound the C-terminus of the tobacco RRP6-like 2, the full-length of the Arabidopsis RRP6L1 protein and its C-terminal region. In addition, RRP6-like proteins were found to interact with members of the cellular double-stranded RNA-binding protein (DRB) family involved in RNA silencing. The C-terminal regions of RRP6L proteins are engaged in homotypic and heterotypic interactions and were predicted to be disordered. Collectively, these results suggest a protein interaction network that connects components of RNA decay and RNA silencing that is targeted by viral silencing suppressors.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
29
|
Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S. Recent Advances of In Vitro Culture for the Application of New Breeding Techniques in Citrus. PLANTS (BASEL, SWITZERLAND) 2020; 9:E938. [PMID: 32722179 PMCID: PMC7465985 DOI: 10.3390/plants9080938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Citrus is one of the most important fruit crops in the world. This review will discuss the recent findings related to citrus transformation and regeneration protocols of juvenile and adult explants. Despite the many advances that have been made in the last years (including the use of inducible promoters and site-specific recombination systems), transformation efficiency, and regeneration potential still represent a bottleneck in the application of the new breeding techniques in commercial citrus varieties. The influence of genotype, explant type, and other factors affecting the regeneration and transformation of the most used citrus varieties will be described, as well as some examples of how these processes can be applied to improve fruit quality and resistance to various pathogens and pests, including the potential of using genome editing in citrus. The availability of efficient regeneration and transformation protocols, together with the availability of the source of resistance, is made even more important in light of the fast diffusion of emerging diseases, such as Huanglongbing (HLB), which is seriously challenging citriculture worldwide.
Collapse
Affiliation(s)
- Lara Poles
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Concetta Licciardello
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Gaetano Distefano
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| | - Elisabetta Nicolosi
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| | - Alessandra Gentile
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, China
| | - Stefano La Malfa
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| |
Collapse
|
30
|
Gallego-Bartolomé J. DNA methylation in plants: mechanisms and tools for targeted manipulation. THE NEW PHYTOLOGIST 2020; 227:38-44. [PMID: 32159848 DOI: 10.1111/nph.16529] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 05/23/2023]
Abstract
DNA methylation is an epigenetic mark that regulates multiple processes, such as gene expression and genome stability. Mutants and pharmacological treatments have been instrumental in the study of this mark in plants, although their genome-wide effect complicates the direct association between changes in methylation and a particular phenotype. A variety of tools that allow locus-specific manipulation of DNA methylation can be used to assess its direct role in specific processes, as well as to create novel epialleles. Recently, new tools that recruit the methylation machinery directly to target loci through programmable DNA-binding proteins have expanded the tool kit available to researchers. This review provides an overview of DNA methylation in plants and discusses the tools that have recently been developed for its manipulation.
Collapse
Affiliation(s)
- Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, 46011, Valencia, Spain
| |
Collapse
|
31
|
Uslu VV, Wassenegger M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA. Curr Opin Virol 2020; 42:18-24. [PMID: 32371359 DOI: 10.1016/j.coviro.2020.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 01/16/2023]
Abstract
In almost all eukaryotes, RNA interference (RNAi) is a natural defence mechanism against foreign nucleic acids, including transposons and viruses. It is generally triggered by long double stranded RNA molecules (dsRNA, >50bp) that are processed into small interfering RNAs (siRNAs). RNAi can be artificially activated by the expression of RNAi triggers through viruses (virus-induced gene silencing, VIGS) and transgenes. Moreover, for almost 10 years, exogenous RNA application methods are developed as tools to induce RNAi in plants. In this review, exogenous RNA application techniques having the potential to activate RNAi with a focus on RNAi-mediated virus resistance will be discussed. Limitations of exogenous RNA applications, targeting of virus vectors and open questions related to mechanistic details that still require further investigation will be pointed out.
Collapse
Affiliation(s)
- Veli V Uslu
- RLP AgroScience, AlPlanta - Institute for Plant Research, 67435 Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience, AlPlanta - Institute for Plant Research, 67435 Neustadt, Germany; Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Wei J, Dong Z, Ow DW. Spontaneous reactivation of a site-specifically placed transgene independent of copy number or DNA methylation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1574-1584. [PMID: 31740977 DOI: 10.1093/jxb/erz514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
As millions of seeds are produced from a breeding line, the long-term stability of transgene expression is vital for commercial-scale production of seeds with transgenic traits. Transgenes can be silenced by epigenetic mechanisms, but reactivation of expression can occur as a result of treatment with chromatin modification inhibitors such as 5-azacytidine, from stress such as heat or UV-B, or in mutants that have acquired a defect in gene silencing. Previously, we targeted a gfp reporter gene into the tobacco (Nicotiana tabacum) genome by site-specific recombination but still found some silenced lines among independent integration events. One such line also had a second random copy and both copies showed DNA hypermethylation. To test whether removing the second copy would reactivate gfp expression, two T1 plants were backcrossed to the wild type. Whereas the silenced status was maintained in the progenies from one backcross, spontaneous partial reactivation of gfp expression was found among progenies from a second backcross. However, this reactivation did not correlate with loss of the second random copy or with a significant change in the pattern or amount of DNA hypermethylation. This finding supports the suggestion that gene reactivation does not necessarily involve loss of DNA homology or methylation.
Collapse
Affiliation(s)
- Junjie Wei
- Plant Gene Engineering Center; Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Key Laboratory of Applied Botany. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhicheng Dong
- Plant Gene Engineering Center; Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Key Laboratory of Applied Botany. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David W Ow
- Plant Gene Engineering Center; Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Key Laboratory of Applied Botany. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Argonaute proteins play a central role in the evolutionarily conserved mechanisms of RNA silencing. Programmed by a variety of small RNAs, including miRNAs, they recognize their target nucleic acids and modulate gene expression by various means. Argonaute proteins are large complex molecules. Therefore, to better understand the mechanisms they use to regulate gene expression, it is necessary to identify regions of them bearing functional importance (protein-protein interaction surfaces, acceptor sites of posttranslational modifications, etc.). Identification of these regions can be performed using a variety of mutant screens. Here we describe a transient reporter assay system, which is suitable to carry out rapid functional assessment of mutant Argonaute molecules before proceeding to their more detailed biochemical characterization.
Collapse
Affiliation(s)
- Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary.
| |
Collapse
|
34
|
Kim MH, Jeon J, Lee S, Lee JH, Gao L, Lee BH, Park JM, Kim YJ, Kwak JM. Proteasome subunit RPT2a promotes PTGS through repressing RNA quality control in Arabidopsis. NATURE PLANTS 2019; 5:1273-1282. [PMID: 31740770 DOI: 10.1038/s41477-019-0546-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/09/2019] [Indexed: 05/12/2023]
Abstract
RNA quality control (RQC) and post-transcriptional gene silencing (PTGS) target and degrade aberrant endogenous RNAs and foreign RNAs, contributing to homeostasis of cellular RNAs. In plants, RQC and PTGS compete for foreign and selected endogenous RNAs; however, little is known about the mechanism interconnecting the two pathways. Using a reporter system designed for monitoring PTGS, we revealed that the 26S proteasome subunit RPT2a enhances transgene PTGS by promoting the accumulation of transgene-derived short interfering RNAs without affecting their biogenesis. RPT2a physically associated with a subset of RQC components and downregulated the protein level. Overexpression of the RQC components interfered with transgene silencing, and impairment of the RQC machinery reinforced transgene PTGS attenuated by rpt2a. Overall, we demonstrate that the 26S proteasome subunit RPT2a promotes PTGS by repressing the RQC machinery to control foreign RNAs.
Collapse
Affiliation(s)
- Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Jieun Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Seulbee Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Jae Ho Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Byung-Hoon Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea.
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
35
|
Ochoa J, Valli A, Martín-Trillo M, Simón-Mateo C, García JA, Rodamilans B. Sterol isomerase HYDRA1 interacts with RNA silencing suppressor P1b and restricts potyviral infection. PLANT, CELL & ENVIRONMENT 2019; 42:3015-3026. [PMID: 31286514 DOI: 10.1111/pce.13610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Plants use RNA silencing as a strong defensive barrier against virus challenges, and viruses counteract this defence by using RNA silencing suppressors (RSSs). With the objective of identifying host factors helping either the plant or the virus in this interaction, we have performed a yeast two-hybrid screen using P1b, the RSS protein of the ipomovirus Cucumber vein yellowing virus (CVYV, family Potyviridae), as a bait. The C-8 sterol isomerase HYDRA1 (HYD1), an enzyme involved in isoprenoid biosynthesis and cell membrane biology, and required for RNA silencing, was isolated in this screen. The interaction between CVYV P1b and HYD1 was confirmed in planta by Bimolecular Fluorescence Complementation assays. We demonstrated that HYD1 negatively impacts the accumulation of CVYV P1b in an agroinfiltration assay. Moreover, expression of HYD1 inhibited the infection of the potyvirus Plum pox virus, especially when antiviral RNA silencing was boosted by high temperature or by coexpression of homologous sequences. Our results reinforce previous evidence highlighting the relevance of particular composition and structure of cellular membranes for RNA silencing and viral infection. We report a new interaction of an RSS protein from the Potyviridae family with a member of the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Jon Ochoa
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián Valli
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Martín-Trillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Simón-Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Bernardo Rodamilans
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Taochy C, Yu A, Bouché N, Bouteiller N, Elmayan T, Dressel U, Carroll BJ, Vaucheret H. Post-transcriptional gene silencing triggers dispensable DNA methylation in gene body in Arabidopsis. Nucleic Acids Res 2019; 47:9104-9114. [PMID: 31372641 PMCID: PMC6753489 DOI: 10.1093/nar/gkz636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 11/14/2022] Open
Abstract
Spontaneous post-transcriptional silencing of sense transgenes (S-PTGS) is established in each generation and is accompanied by DNA methylation, but the pathway of PTGS-dependent DNA methylation is unknown and so is its role. Here we show that CHH and CHG methylation coincides spatially and temporally with RDR6-dependent products derived from the central and 3' regions of the coding sequence, and requires the components of the RNA-directed DNA methylation (RdDM) pathway NRPE1, DRD1 and DRM2, but not CLSY1, NRPD1, RDR2 or DCL3, suggesting that RDR6-dependent products, namely long dsRNAs and/or siRNAs, trigger PTGS-dependent DNA methylation. Nevertheless, none of these RdDM components are required to establish S-PTGS or produce a systemic silencing signal. Moreover, preventing de novo DNA methylation in non-silenced transgenic tissues grafted onto homologous silenced tissues does not inhibit the triggering of PTGS. Overall, these data indicate that gene body DNA methylation is a consequence, not a cause, of PTGS, and rule out the hypothesis that a PTGS-associated DNA methylation signal is transmitted independent of a PTGS signal.
Collapse
Affiliation(s)
- Christelle Taochy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Uwe Dressel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
37
|
Martinez Palacios P, Jacquemot MP, Tapie M, Rousselet A, Diop M, Remoué C, Falque M, Lloyd A, Jenczewski E, Lassalle G, Chévre AM, Lelandais C, Crespi M, Brabant P, Joets J, Alix K. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Mol Biol Evol 2019; 36:709-726. [PMID: 30657939 PMCID: PMC6445299 DOI: 10.1093/molbev/msz007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Allopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neoallopolyploids to form and adapt. Nevertheless, how neoallopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small noncoding RNAs (sRNAs) in mediating the transcriptional response of neoallopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate posttranscriptional gene silencing by mRNA cleavage, whereas 24-nt sRNAs repress transcription (transcriptional gene silencing) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized Brassica napus allotetraploids originating from crosses between diploid Brassica oleracea and Brassica rapa accessions, surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target noncoding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a posttranscriptional gene silencing to transcriptional gene silencing shift at the first stages of the neoallopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various noncoding elements and stress-related genes, thus ensuring genome stability during the first steps of neoallopolyploid formation.
Collapse
Affiliation(s)
- Paulina Martinez Palacios
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Pierre Jacquemot
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marion Tapie
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Agnès Rousselet
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mamoudou Diop
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Remoué
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Falque
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Gilles Lassalle
- IGEPP, INRA, Agrocampus Ouest, Univ. Rennes I, Le Rheu, France.,ESE, INRA, Agrocampus Ouest, Rennes, France
| | | | - Christine Lelandais
- IPS2, Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Universités Paris Diderot, Paris Sud and Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Crespi
- IPS2, Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Universités Paris Diderot, Paris Sud and Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Brabant
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johann Joets
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Alix
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Suzuki T, Ikeda S, Kasai A, Taneda A, Fujibayashi M, Sugawara K, Okuta M, Maeda H, Sano T. RNAi-Mediated Down-Regulation of Dicer-Like 2 and 4 Changes the Response of 'Moneymaker' Tomato to Potato Spindle Tuber Viroid Infection from Tolerance to Lethal Systemic Necrosis, Accompanied by Up-Regulation of miR398, 398a-3p and Production of Excessive Amount of Reactive Oxygen Species. Viruses 2019; 11:v11040344. [PMID: 31013904 PMCID: PMC6521110 DOI: 10.3390/v11040344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
To examine the role of RNA silencing in plant defenses against viroids, a Dicer-like 2 and 4 (DCL2&4)–double knockdown transgenic tomato plant line, 72E, was created. The expression of endogenous SlDCL2s and SlDCL4 in line 72E decreased to about a half that of the empty cassette line, EC. When challenged with potato spindle tuber viroid (PSTVd), line 72E showed significantly higher levels of PSTVd accumulation early in the course of the infection and lethal systemic necrosis late in the infection. The size distribution of PSTVd-derived small RNAs was significantly different with the number of RNAs of 21 and 22 nucleotides (nt) in line 72E, at approximately 66.7% and 5% of those in line EC, respectively. Conversely, the numbers of 24 nt species increased by 1100%. Furthermore, expression of the stress-responsive microRNA species miR398 and miR398a-3p increased 770% and 868% in the PSTVd-infected line 72E compared with the PSTVd-infected EC. At the same time, the expression of cytosolic and chloroplast-localized Cu/Zn-superoxide dismutase 1 and 2 (SOD1 and SOD2) and the copper chaperon for SOD (CCS1) mRNAs, potential targets of miR398 or 398a-3p, decreased significantly in the PSTVd-infected line 72E leaves, showing necrosis. In concert with miR398 and 398a-3p, SODs control the detoxification of reactive oxygen species (ROS) generated in cells. Since high levels of ROS production were observed in PSTVd-infected line 72E plants, it is likely that the lack of full dicer-likes (DCL) activity in these plants made them unable to control excessive ROS production after PSTVd infection, as disruption in the ability of miR398 and miR398a-3p to regulate SODs resulted in the development of lethal systemic necrosis.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
- Union Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Sho Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Maki Okuta
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| |
Collapse
|
39
|
Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K. DCL-suppressed Nicotiana benthamiana plants: valuable tools in research and biotechnology. MOLECULAR PLANT PATHOLOGY 2019; 20:432-446. [PMID: 30343523 PMCID: PMC6637889 DOI: 10.1111/mpp.12761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA silencing is a universal mechanism involved in development, epigenetic modifications and responses to biotic and abiotic stresses. The major components of this mechanism are Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins. Understanding the role of each component is of great scientific and agronomic importance. Plants, including Nicotiana benthamiana, an important plant model, usually possess four DCL proteins, each of which has a specific role, namely being responsible for the production of an exclusive small RNA population. Here, we used RNA interference (RNAi) technology to target DCL proteins and produced single and combinatorial mutants for DCL. We analysed the phenotype for each DCL knockdown plant, together with the small RNA profile, by next-generation sequencing (NGS). We also investigated transgene expression, as well as viral infections, and were able to show that DCL suppression results in distinct developmental defects, changes in small RNA populations, increases in transgene expression and, finally, higher susceptibility in certain RNA viruses. Therefore, these plants are excellent tools for the following: (i) to study the role of DCL enzymes; (ii) to overexpress proteins of interest; and (iii) to understand the complex relationship between the plant silencing mechanism and biotic or abiotic stresses.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Eleni Mitta
- Department of BiologyUniversity of CreteHeraklionGreece
| | | | - Anastasis Oulas
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Present address:
Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Elena Dadami
- Department of BiologyUniversity of CreteHeraklionGreece
- Present address:
RLP AgroScience, AlPlantaNeustadtGermany
| | - Kriton Kalantidis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
| |
Collapse
|
40
|
Sabbadini S, Capriotti L, Limera C, Navacchi O, Tempesta G, Mezzetti B. A plant regeneration platform to apply new breeding techniques for improving disease resistance in grapevine rootstocks and cultivars. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191201019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Worldwide grapevine cultivation is based on the use of elite cultivars, in many cases strictly linked to local important wine brands. Most of Vitis viniferacultivars have high susceptibility to fungal and viral diseases therefore, new breeding techniques (e.g. Cisgenesis, RNAi and gene editing) offer the possibility to introduce new clones of the main cultivars with increased diseases resistance, in order to reduce environmental impact and improve quality in the intensive wine grape industry. This study is finalized to develop efficient in vitro regeneration and transformation protocols to extend the application of these technologies in wine grape cultivars and rootstocks. With this aim, in vitro regeneration protocols based on the production of meristematic bulks (Mezzetti et al., 2002) were optimized for different grapevine cultivars (Glera, Vermentino, Sangiovese, Thompson Seedless) and rootstocks (1103 Paulsen, and 110 Richter). The meristematic bulks were then used as explants for Agrobacteriummediated genetic transformation protocols, by comparing the use of NPTII and e-GFP as marker genes. Results confirmed the efficiency of meristematic bulks as the regenerating tissue to produce new modified plants in almost all the above genotypes. The highest regeneration efficiency in some genotypes allowed the selection of stable modified lines/calli with only the use of e-GFP marker gene. This protocol can be applied in the use of MYB marker gene for the production of cisgenic lines. Genotypes having the highest regeneration and transformation efficiency were also used for transformation experiments using a hairpin gene construct designed to silence the RNA-dependent RNA polymerase (RpRd) of the GFLV and GLRaV3, which would induce multiple virus resistances, and the Dicer-like protein 1 (Bc-DCL1) and Bc-DCL2 to control B. cinerea infection.
Collapse
|
41
|
Schulz MA, Tian W, Mao Y, Van Coillie J, Sun L, Larsen JS, Chen YH, Kristensen C, Vakhrushev SY, Clausen H, Yang Z. Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology 2018; 28:542-549. [PMID: 29596681 DOI: 10.1093/glycob/cwy022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Precise gene editing technologies are providing new opportunities to stably engineer host cells for recombinant production of therapeutic glycoproteins with different glycan structures. The glycosylation of recombinant therapeutics has long been a focus for both quality and consistency of products and for optimizing and improving pharmacokinetic properties as well as bioactivity. Structures of glycans on therapeutic glycoproteins are important for circulation, biodistribution and bioactivity. In particular, the latter has been demonstrated for therapeutic IgG1 antibodies where the core α1,6Fucose on the conserved N-glycan at Asn297 have remarkable dampening effects on antibody effector functions. We previously explored precise gene engineering and design options for N-glycosylation in CHO cells, and here we focus on engineering options possible for N-glycans on human IgG1. We demonstrate stable precise gene engineering of rather homogenous biantennary N-glycans with and without galactose (G0F, G2F) as well as the α2,6-linked monosialylated (G2FS1) glycoform. We were unable to introduce substantial disialylated glycoforms. Instead we engineered a novel monoantennary homogeneous N-glycan design with complete α2,6-linked sialic acid capping. All N-glycoforms may be engineered with and without core α1,6Fucose. The stably engineered design options enable production of human IgG antibodies with an array of distinct glycoforms for testing and selection of optimal design for different therapeutic applications.
Collapse
Affiliation(s)
- Morten A Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yang Mao
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Joachim S Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Claus Kristensen
- GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.,GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| |
Collapse
|
42
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
43
|
Cardoso TCDS, Alves TC, Caneschi CM, Santana DDRG, Fernandes-Brum CN, Reis GLD, Daude MM, Ribeiro THC, Gómez MMD, Lima AA, Gomes LAA, Gomes MDS, Gandolfi PE, Amaral LRD, Chalfun-Júnior A, Maluf WR, de Souza Gomes M. New insights into tomato microRNAs. Sci Rep 2018; 8:16069. [PMID: 30375421 PMCID: PMC6207730 DOI: 10.1038/s41598-018-34202-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.
Collapse
Affiliation(s)
- Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Tamires Caixeta Alves
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Carolina Milagres Caneschi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Douglas Dos Reis Gomes Santana
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | | | - Gabriel Lasmar Dos Reis
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus Martins Daude
- Laboratory of Molecular Analysis, Federal University of Tocantins (UFT), Gurupi, 77402-970, Brazil
| | | | - Miguel Maurício Díaz Gómez
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - André Almeida Lima
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | | | - Marcos de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Peterson Elizandro Gandolfi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Antonio Chalfun-Júnior
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | - Wilson Roberto Maluf
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil.
| |
Collapse
|
44
|
Zuber H, Scheer H, Joly AC, Gagliardi D. Respective Contributions of URT1 and HESO1 to the Uridylation of 5' Fragments Produced From RISC-Cleaved mRNAs. FRONTIERS IN PLANT SCIENCE 2018; 9:1438. [PMID: 30364210 PMCID: PMC6191825 DOI: 10.3389/fpls.2018.01438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 05/24/2023]
Abstract
In plants, post-transcriptional gene silencing (PTGS) represses gene expression by translation inhibition and cleavage of target mRNAs. The slicing activity is provided by argonaute 1 (AGO1), and the cleavage site is determined by sequence complementarity between the target mRNA and the microRNA (miRNA) or short interfering RNA (siRNA) loaded onto AGO1, to form the core of the RNA induced silencing complex (RISC). Following cleavage, the resulting 5' fragment is modified at its 3' end by the untemplated addition of uridines. Uridylation is proposed to facilitate RISC recycling and the degradation of the RISC 5'-cleavage fragment. Here, we detail a 3' RACE-seq method to analyze the 3' ends of 5' fragments produced from RISC-cleaved transcripts. The protocol is based on the ligation of a primer at the 3' end of RNA, followed by cDNA synthesis and the subsequent targeted amplification by PCR to generate amplicon libraries suitable for Illumina sequencing. A detailed data processing pipeline is provided to analyze nibbling and tailing at high resolution. Using this method, we compared the tailing and nibbling patterns of RISC-cleaved MYB33 and SPL13 transcripts between wild-type plants and mutant plants depleted for the terminal uridylyltransferases (TUTases) HESO1 and URT1. Our data reveal the respective contributions of HESO and URT1 in the uridylation of RISC-cleaved MYB33 and SPL13 transcripts, with HESO1 being the major TUTase involved in uridylating these fragments. Because of its depth, the 3' RACE-seq method shows at high resolution that these RISC-generated 5' RNA fragments are nibbled by a few nucleotides close to the cleavage site in the absence of uridylation. 3' RACE-seq is a suitable approach for a reliable comparison of uridylation and nibbling patterns between mutants, a prerequisite to the identification of all factors involved in the clearance of RISC-generated 5' mRNA fragments.
Collapse
Affiliation(s)
- Hélène Zuber
- *Correspondence: Hélène Zuber, Dominique Gagliardi,
| | | | | | | |
Collapse
|
45
|
Vinutha T, Kumar G, Garg V, Canto T, Palukaitis P, Ramesh SV, Praveen S. Tomato geminivirus encoded RNAi suppressor protein, AC4 interacts with host AGO4 and precludes viral DNA methylation. Gene 2018; 678:184-195. [PMID: 30081188 DOI: 10.1016/j.gene.2018.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/12/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022]
Abstract
Plant RNA silencing systems are organized as a network, regulating plant developmental pathways and restraining invading viruses, by sharing cellular components with overlapping functions. Host regulatory networks operate either at the transcriptional level via RNA-directed DNA methylation, or at the post-transcriptional stage interfering with mRNA to restrict viral infection. However, viral-derived proteins, including suppressors of RNA silencing, favour virus establishment, and also affect plant developmental processes. In this investigation, we report that Tomato leaf curl New Delhi virus-derived AC4 protein suppresses RNA silencing activity and mutational analysis of AC4 showed that Asn-50 in the SKNT-51 motif, in the C-terminal region, is a critical determinant of its RNA silencing suppressor activity. AC4 showed interaction with host AGO4 but not with AGO1, aggregated around the nucleus, and influenced cytosine methylation of the viral genome. The possible molecular mechanism by which AC4 interferes in the RNA silencing network, helps virus establishment, and affects plant development is discussed.
Collapse
Affiliation(s)
- T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
| | - Gaurav Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
| | - Varsha Garg
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
| | - Tomas Canto
- Centro de Investigaciones Biológicas, CIB, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Seoul 01797, Republic of Korea
| | - S V Ramesh
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala 671 124, India.
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India.
| |
Collapse
|
46
|
Pérez-González A, Caro E. Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Res Notes 2018; 11:511. [PMID: 30055650 PMCID: PMC6064074 DOI: 10.1186/s13104-018-3649-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Obtaining high and stable transgene expression is of vital importance for plant genetic engineering. A lot is known about the relationship between terminator efficiency and gene expression, but no studies have addressed the relationship between terminator usage and transgene expression stability or heritable gene silencing. In this paper, we aim to analyze if terminators are a determining factor in the establishment of promoter DNA methylation of plant transgenes. Results Our experiments comparing plants with a LUC reporter under the 35S CaMV promoter and good efficiency terminators (Thsp, T35S) show that the use of efficient terminator sequences does not avoid the accumulation of promoter DNA methylation and transgene silencing. However, Thsp lead to a higher reporter gene expression and lower promoter DNA methylation levels than T35S, supporting that terminator usage is indeed involved in the establishment of TGS by methylation of transgenes’ promoters. In the case of a terminatorless construct, the PTGS initiated by the improperly terminated mRNAs is not followed by the establishment of heritable silencing in the form of strong promoter DNA methylation, like in the case of TAS genes and reactivated TEs (for the transgene DNA methylation levels remained below the 20%). Electronic supplementary material The online version of this article (10.1186/s13104-018-3649-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Pérez-González
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Elena Caro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
47
|
Taller D, Bálint J, Gyula P, Nagy T, Barta E, Baksa I, Szittya G, Taller J, Havelda Z. Expansion of Capsicum annuum fruit is linked to dynamic tissue-specific differential expression of miRNA and siRNA profiles. PLoS One 2018; 13:e0200207. [PMID: 30044813 PMCID: PMC6059424 DOI: 10.1371/journal.pone.0200207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Small regulatory RNAs, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have emerged as important transcriptional and post-transcriptional regulators controlling a wide variety of physiological processes including fruit development. Data are, however, limited for their potential roles in developmental processes determining economically important traits of crops. The current study aimed to discover and characterize differentially expressed miRNAs and siRNAs in sweet pepper (Capsicum annuum) during fruit expansion. High-throughput sequencing was employed to determine the small regulatory RNA expression profiles in various fruit tissues, such as placenta, seed, and flesh at 28 and 40 days after anthesis. Comparative differential expression analyses of conserved, already described and our newly predicted pepper-specific miRNAs revealed that fruit expansion is accompanied by an increasing level of miRNA-mediated regulation of gene expression. Accordingly, ARGONAUTE1 protein, the primary executor of miRNA-mediated regulation, continuously accumulated to an extremely high level in the flesh. We also identified numerous pepper-specific, heterochromatin-associated 24-nt siRNAs (hetsiRNAs) which were extremely abundant in the seeds, as well as 21-nt and 24-nt phased siRNAs (phasiRNAs) that were expressed mainly in the placenta and the seeds. This work provides comprehensive tissue-specific miRNA and siRNA expression landscape for a developing pepper fruit. We identified several novel, abundantly expressing tissue- and pepper-specific small regulatory RNA species. Our data show that fruit expansion is associated with extensive changes in sRNA abundance, raising the possibility that manipulation of sRNA pathways may be employed to improve the quality and quantity of the pepper fruit.
Collapse
Affiliation(s)
- Dénes Taller
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Jeannette Bálint
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Péter Gyula
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Tibor Nagy
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Endre Barta
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Ivett Baksa
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - György Szittya
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - János Taller
- Department of Plant Science and Biotechnology, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Zoltán Havelda
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
48
|
Wang Z, Xia Y, Lin S, Wang Y, Guo B, Song X, Ding S, Zheng L, Feng R, Chen S, Bao Y, Sheng C, Zhang X, Wu J, Niu D, Jin H, Zhao H. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:584-597. [PMID: 29775494 DOI: 10.1111/tpj.13972] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 05/11/2023]
Abstract
Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Siyuan Lin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanru Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Baohuan Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xiaoning Song
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Shaochen Ding
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Liyu Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ruiying Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Shulin Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yalin Bao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xin Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Jianguo Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
49
|
Zheng X, Yang L, Li Q, Ji L, Tang A, Zang L, Deng K, Zhou J, Zhang Y. MIGS as a Simple and Efficient Method for Gene Silencing in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:662. [PMID: 29868104 PMCID: PMC5964998 DOI: 10.3389/fpls.2018.00662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/30/2018] [Indexed: 05/27/2023]
Abstract
MiRNA-induced gene silencing (MIGS) technology is a special kind of RNA interference technology that uses miR173 to mediate the production of trans-acting siRNA (ta-siRNA) to achieve target gene silencing. This technique has successfully mediated the silencing of interested genes in plants such as Arabidopsis, tobacco, petunia, etc. In order to establish the MIGS technology system in monocots such as rice, we constructed the MIGS backbone vectors pZHY930, pZHY931, pZHY932, and pZHY933 with different with promoters to regulate the expression of miR173 and miR173_ts. The rice OsPDS reporter gene was selected to compare the efficiency of four MIGS backbone vectors by the ratio of albino plants. The results showed that all the four backbone vectors could effectively mediate the target gene silencing, and pZHY932 showed highest efficiency up to 90%. Through MIGS silencing of endogenous OsROC5 and OsLZAY1 in rice, we successfully obtained rice mutant plants with rice leaf roll and tillering angles increasing, and further confirmed that MIGS backbone vector can efficiently mediate target gene silencing in rice. On the other hand, in order to verify the efficiency of MIGS-mediated multi-gene silencing in rice, we constructed two double-gene silencing vectors OsPDS and OsROC5, OsPDS and OsLZAY1, based on pZHY932 backbone vector. Double mutant rice plants with increased leaf and albino tiller angles. And we successfully obtained bladed leaf albino seedling and increased tillering angle albino seedling double-silencing mutations. We further constructed a MIGS-OsGBSS gene silencing vector and obtained rice materials with significantly reduced amylose content. This result indicated that MIGS could be an efficient method in monocots gene silencing and gene function analysis.
Collapse
|
50
|
Baldrich P, Beric A, Meyers BC. Despacito: the slow evolutionary changes in plant microRNAs. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:16-22. [PMID: 29448158 DOI: 10.1016/j.pbi.2018.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression. A handful of miRNAs are broadly conserved in land plants, while the majority are lineage specific; this review describes the processes by which new miRNAs are hypothesized to have emerged. Two major models describe miRNA origins, firstly, de novo emergence via inverted duplication of target gene fragments, and secondly, the expansion and neofunctionalization of existing miRNA families. The occasional acquisition of target sites by previously un-targeted genes adds further dynamism to the process by which miRNAs may shift roles during evolution. Additional factors guiding miRNA evolution include functional constraints on their length and the importance of precursor conservation that is observed in regions above or below the mature miRNA duplex; these regions represent recognition sites for components of biogenesis machinery and direct precursor processing. Insights into the mechanisms of miRNA emergence and divergence are important for understanding plant genome evolution and the impact of miRNA regulatory networks.
Collapse
Affiliation(s)
- Patricia Baldrich
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Aleksandra Beric
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA.
| |
Collapse
|