1
|
Kane MA. Retinoic acid homeostasis and disease. Curr Top Dev Biol 2024; 161:201-233. [PMID: 39870434 DOI: 10.1016/bs.ctdb.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences. Furthermore, the associations are discussed between ATRA dysregulation and several diseases, including various genetic disorders, cancer, endometriosis, and heart failure, underscoring the role of retinoid-binding proteins like RBP1 in these conditions. The potential for gene-environment interactions in retinoid metabolism is also examined, suggesting that dietary factors may exacerbate genetic predispositions to ATRA-related pathologies. Methodological advancements in quantifying ATRA and its metabolites are reviewed, alongside the challenges inherent in studying retinoid dynamics. Future research directions are proposed to further elucidate the role of ATRA in health and disease, with the aim of identifying therapeutic targets for conditions linked to retinoid signaling dysregulation.
Collapse
Affiliation(s)
- Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
2
|
Ning B, Chi J, Meng Q, Jia B. Accurate prediction of colorectal cancer diagnosis using machine learning based on immunohistochemistry pathological images. Sci Rep 2024; 14:29882. [PMID: 39622880 PMCID: PMC11612503 DOI: 10.1038/s41598-024-76083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent tumor and the second leading cause of mortality. Early and accurate diagnosis holds significant importance in enhancing patient treatment and prognosis. Machine learning technology and bioinformatics have provided novel approaches for cancer diagnosis. This study aims to develop a CRC diagnostic model based on immunohistochemical staining image features using machine learning methods. Initially, CRC disease-specific genes were identified through bioinformatics analysis, SVM-RFE and Random Forest algorithm utilizing RNA-seq data from both GEO and TCGA databases. Subsequently, verification of these genes was performed using proteomics data from CPTAC and HPA database, resulting in identification of target proteins (AKR1B10, CA2, DHRS9, and ZG16) for further investigation. SVM and CNN were then employed to analyze and integrate the characteristics of immunohistochemical images to construct a reliable CRC diagnostic model. During the training and validation process of this model, cross-validation along with external validation methods were implemented to ensure accuracy and reliability. The results demonstrate that the established diagnostic model exhibits excellent performance in distinguishing between CRC and normal controls (accuracy rate: 0.999), thereby presenting potential prospects for clinical application. These findings are expected to provide innovative perspectives as well as methodologies for personalized diagnosis of CRC while offering more precise references for promising treatment.
Collapse
Affiliation(s)
- Bobin Ning
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jimei Chi
- Key Laboratory of Green Printing, Institute of ChemistryBeijing Engineering Research Center of Nanomaterials for Green Printing TechnologyNational Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences (ICCAS), Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qingyu Meng
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Baoqing Jia
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China.
- Boqing Jia, Haidian District, No.28, Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
3
|
Yu T, Chen M, Wen J, Liu J, Li K, Jin L, Yue J, Yang Z, Xi J. The effects of all-trans retinoic acid on prednisolone-induced osteoporosis in zebrafish larvae. Bone 2024; 189:117261. [PMID: 39303930 DOI: 10.1016/j.bone.2024.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Glucocorticoids (GCs) are extensively used as anti-inflammatory and immunosuppressive medications in the long-term treatment of rheumatic disorders, respiratory diseases, renal diseases, and organ transplantation. Prolonged use of GCs can reduce bone mineral density, leading to osteoporosis (Glucocorticoid Induced Osteoporosis, GIOP) and fracture. All-trans retinoic acid (ATRA) is an active vitamin A metabolite that regulates embryonic development and adult organ function. ATRA has been found in studies to enhance osteogenesis. To examine the interventional effects of ATRA on GIOP and the mechanisms of ATRA activities, we first performed bioinformatic analysis to identify potential gene targets of ATRA. Zebrafish larvae were recruited as experimental animals, and the frequently used GC, prednisolone, was administered to larvae to construct a GIOP model. We evaluated the influence of exogenous ATRA on the activities of bone metabolic enzymes, the expression of genes linked to osteoblasts and osteoclasts, and the restoration of bone mineral density and bone mass in GIOP zebrafish larvae. Furthermore, we studied the influence of RBM14, a transcriptional coactivator and negative reciprocal factor of ATRA, on the regulation of osteoblastic gene expression during the anti-GIOP process of ATRA using the morpholino knockdown approach. The findings of bone metabolic enzyme activity (alkaline phosphatase, ALP and tartrate-resistant acid phosphatase, TRAP) and expression assays of osteoblastic marker genes (Runx2a, Runx2b, SP7, Csf1a, RANKL, and CTSK) indicated that ATRA had bidirectional effects on osteogenesis. However, in the GIOP model, ATRA reversed the GIOP-induced osteoporosis phenotype by inhibiting the GIOP-induced suppression of osteoblastic metabolic enzyme (ALP) activities and osteoblastic marker gene expression (Runx2a, Runx2b, and SP7), and this antagonism was concentration-dependent. We also observed that ATRA inhibited RBM14 expression in zebrafish larvae, while ATRA alone and RBM14 knockdown showed a consistent induction of osteoblast marker gene expression, implying that ATRA's inhibitory effect on RBM14 expression may underlie ATRA's osteogenic effects. Based on these data, we postulated that ATRA may ameliorate GIOP by decreasing RBM14 expression, thereby enhancing osteoblastic marker gene expression.
Collapse
Affiliation(s)
- Ting Yu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Manci Chen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jing Wen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Lei Jin
- Wuhan Wuchang Hospital, Wuhan, Hubei 430063, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Zheqiong Yang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China.
| | - Jinlei Xi
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Isoherranen N, Wen YW. The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations. Curr Top Dev Biol 2024; 161:167-200. [PMID: 39870433 DOI: 10.1016/bs.ctdb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells. As a consequence, free atRA concentrations in cells are expected to be exceedingly low. As such mechanisms must exist that allow sufficiently high atRA concentrations to occur for binding to retinoic acid receptor (RARs) and for RAR mediated signaling. Kinetic simulations suggest that cellular retinoic acid binding proteins (CRABPs) provide a cytosolic reservoir for atRA to allow high enough cytosolic concentrations that enable RAR signaling. Yet, the different CRABP family members CRABP1 and CRABP2 may serve different functions in this context. CRABP1 may reside in the cytosol as a member of a cytosolic signalosome and CRABP2 may bind atRA in the cytosol and localize to the nucleus. Both CRABPs appear to interact with the atRA-degrading cytochrome P450 (CYP) family 26 enzymes in the endoplasmic reticulum. These interactions, together with the expression levels of the CRABPs and CYP26s, likely modulate cellular atRA concentration gradients and tissue atRA concentrations in a tightly coordinated manner. This review provides a summary of the current knowledge of atRA distribution, metabolism and protein binding and how these characteristics may alter tissue atRA concentrations.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington.
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington
| |
Collapse
|
5
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
6
|
García-Padilla C, Lozano-Velasco E, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region. Int J Mol Sci 2024; 25:6608. [PMID: 38928314 PMCID: PMC11204236 DOI: 10.3390/ijms25126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
7
|
Lu Y, George J. Interaction between fatty acid oxidation and ethanol metabolism in liver. Am J Physiol Gastrointest Liver Physiol 2024; 326:G483-G494. [PMID: 38573193 DOI: 10.1152/ajpgi.00281.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, β-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards College of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
8
|
Zeng T, Lv J, Liang J, Xie B, Liu L, Tan Y, Zhu J, Jiang J, Xie H. Zebrafish cobll1a regulates lipid homeostasis via the RA signaling pathway. Front Cell Dev Biol 2024; 12:1381362. [PMID: 38699158 PMCID: PMC11063382 DOI: 10.3389/fcell.2024.1381362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Background The COBLL1 gene has been implicated in human central obesity, fasting insulin levels, type 2 diabetes, and blood lipid profiles. However, its molecular mechanisms remain largely unexplored. Methods In this study, we established cobll1a mutant lines using the CRISPR/Cas9-mediated gene knockout technique. To further dissect the molecular underpinnings of cobll1a during early development, transcriptome sequencing and bioinformatics analysis was employed. Results Our study showed that compared to the control, cobll1a -/- zebrafish embryos exhibited impaired development of digestive organs, including the liver, intestine, and pancreas, at 4 days post-fertilization (dpf). Transcriptome sequencing and bioinformatics analysis results showed that in cobll1a knockout group, the expression level of genes in the Retinoic Acid (RA) signaling pathway was affected, and the expression level of lipid metabolism-related genes (fasn, scd, elovl2, elovl6, dgat1a, srebf1 and srebf2) were significantly changed (p < 0.01), leading to increased lipid synthesis and decreased lipid catabolism. The expression level of apolipoprotein genes (apoa1a, apoa1b, apoa2, apoa4a, apoa4b, and apoea) genes were downregulated. Conclusion Our study suggest that the loss of cobll1a resulted in disrupted RA metabolism, reduced lipoprotein expression, and abnormal lipid transport, therefore contributing to lipid accumulation and deleterious effects on early liver development.
Collapse
Affiliation(s)
- Ting Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jinrui Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jiaxin Liang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Binling Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Ling Liu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Yuanyuan Tan
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Junwei Zhu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jifan Jiang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Huaping Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| |
Collapse
|
9
|
Ahn S, Hwang JE, Kim YJ, Eom K, Jung MH, Moon H, Ham D, Park JM, Oh SU, Park JY, Joung H. Examination of the utility of skin carotenoid status in estimating dietary intakes of carotenoids and fruits and vegetables: A randomized, parallel-group, controlled feeding trial. Nutrition 2024; 119:112304. [PMID: 38154397 DOI: 10.1016/j.nut.2023.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE Optical spectroscopy-measured skin carotenoid status (SCS) has been validated for estimating fruit and vegetable (F&V) intake; however, there is limited research addressing SCS kinetics in whole-diet interventions. The aim of this controlled feeding trial was to explore SCS's response to carotenoid intake changes via whole-diet intervention, evaluating its biomarker potential. METHODS Eighty participants ages 20 to 49 y, without underlying diseases, were randomly allocated to the high-carotenoid group (HG; n = 40) or control group (CG; n = 40). The HG consumed a high-carotenoid diet (21 mg total carotenoids/2000 kcal), whereas the CG consumed a control diet (13.6 mg total carotenoids/2000 kcal) for 6 wk. Subsequently, skin and blood carotenoid concentrations were tracked without intervention for 4 wk. SCS was measured weekly via resonance Raman spectroscopy, and serum carotenoid concentrations were analyzed biweekly using high-performance liquid chromatography. Baseline carotenoid and F&V intakes were assessed via a 3-d diet record. The kinetics of SCS and serum carotenoid concentrations were analyzed using a weighted generalized estimating equation. Pearson's correlation analyses were used to examine baseline correlations between SCS and dietary carotenoid and F&V intakes, as well as serum carotenoid concentrations. RESULTS During the intervention, the HG showed a faster and greater SCS increase than the CG (difference in slope per week = 8.87 AU, Pinteraction <0.001). Baseline SCS had positive correlations with total carotenoid intake (r = 0.45), total F&V intake (r = 0.49), and total serum carotenoid concentration (r = 0.79; P < 0.001 for all). CONCLUSION These results suggest that SCS is a valid biomarker for monitoring changes in carotenoid intake through whole diet, which supports using SCS for assessing carotenoid-rich F&V intake.
Collapse
Affiliation(s)
- Seoeun Ahn
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Eun Hwang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Yoon Jae Kim
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Kunsun Eom
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Myoung Hoon Jung
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - HyunSeok Moon
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Dongwoo Ham
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Park
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Se Uk Oh
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Park
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea.
| | - Hyojee Joung
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Sidell N, Rajakumar A. Retinoic Acid Action in Cumulus Cells: Implications for Oocyte Development and In Vitro Fertilization. Int J Mol Sci 2024; 25:1709. [PMID: 38338985 PMCID: PMC10855907 DOI: 10.3390/ijms25031709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In the field of human in vitro fertilization (IVF), selecting the best oocyte for freezing or embryo for transfer remains an important focus of clinical practice. Although several techniques are and have been used for this goal, results have generally not been favorable and/or are invasive such that damage to some embryos occurs, resulting in a reduced number of healthy births. Therefore, the search continues for non-invasive oocyte and embryo quality markers that signal the development of high-quality embryos. Multiple studies indicate the important positive effects of retinoic acid (RA) on oocyte maturation and function. We previously showed that a high follicular fluid (FF) RA concentration at the time of oocyte retrieval in IVF protocols was associated with oocytes, giving rise to the highest quality embryos, and that cumulus granulosa cells (CGCs) are the primary source of follicle RA synthesis. Data also demonstrated that connexin-43 (Cx43), the main connexin that forms gap junctions in CGCs, is regulated by RA and that RA induces a rapid increase in gap junction communication. Here, we hypothesize that CGC RA plays a causal role in oocyte competency through its action on Cx43 and, as such, may serve as a biomarker of oocyte competence. Multiple studies have demonstrated the requirement for Cx43 in CGCs for the normal progression of folliculogenesis, and that the increased expression of this connexin is linked to the improved developmental competence of the oocyte. The data have shown that RA can up-regulate gap junction intercellular communication (GJIC) in the cumulus-oocyte complex via a non-genomic mechanism that results in the dephosphorylation of Cx43 and enhanced GJIC. Recognizing the positive role played by gap junctions in CGCs in oocyte development and the regulation of Cx43 by RA, the findings have highlighted the possibility that CGC RA levels may serve as a non-invasive indicator for selecting high-quality oocytes for IVF procedures. In addition, the data suggest that the manipulation of Cx43 with retinoid compounds could provide new pharmacological approaches to improve IVF outcomes in cases of failed implantation, recurrent miscarriage, or in certain diseases that are characterized by reduced fecundity, such as endometriosis.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | | |
Collapse
|
11
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
12
|
Takahashi N. [Prevention and Treatment of Cancer with Vitamin A and Its Derivatives: Cell Differentiation and Proliferation]. YAKUGAKU ZASSHI 2024; 144:203-222. [PMID: 38296498 DOI: 10.1248/yakushi.23-00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Normal differentiation and proliferation of cells are essential for maintaining homeostasis. Following the successful completion of whole genome sequencing, protein modification has been attracted increasing attention in order to understand the roles of protein diversification in protein function and to elucidate molecular targets in mechanisms of signal transduction. Vitamin A is an essential nutrient for health maintenance. It is present as β-carotene in green and yellow vegetables and retinyl ester in animal products and absorbed into the body from the intestines. After ingestion, it is converted to retinol and oxidized in target cells to retinal, which plays critical roles in vision. It is then further oxidized to retinoic acid (RA), which exhibits a number of effects prior to being metabolized by cytochrome P450 and excreted from the body. Since RA exhibits cell differentiation-inducing actions, it is used as a therapeutic agent for patients with acute promyelocytic leukemia. The current paper describes: (1) HL60 cell differentiation and cell differentiation induction therapy by RA; (2) roles played by RA and retinal and their mechanisms of action; (3) retinoylation, post-translational protein-modified by RA, a novel non-genomic RA mechanism of action without RA receptor; (4) new actions of β-carotene and retinol in vivo and (5) potent anticancer effects of p-dodecylaminophenol (p-DDAP), a novel vitamin A derivative created from the RA derivative fenretinide. We propose that nutritional management of vitamin A can be effective at preventing and treating diseases, and that p-DDAP is a promising anticancer drug.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
13
|
Sakai N, Kamimura K, Terai S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics 2023; 15:2190. [PMID: 37765160 PMCID: PMC10536625 DOI: 10.3390/pharmaceutics15092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional drug discovery involves significant steps, time, and expenses; therefore, novel methods for drug discovery remain unmet, particularly for patients with intractable diseases. For this purpose, the drug repurposing method has been recently used to search for new therapeutic agents. Repurposed drugs are mostly previously approved drugs, which were carefully tested for their efficacy for other diseases and had their safety for the human body confirmed following careful pre-clinical trials, clinical trials, and post-marketing surveillance. Therefore, using these approved drugs for other diseases that cannot be treated using conventional therapeutic methods could save time and economic costs for testing their clinical applicability. In this review, we have summarized the methods for identifying repurposable drugs focusing on immunotherapy.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| |
Collapse
|
14
|
Chen G, Weiskirchen S, Weiskirchen R. Vitamin A: too good to be bad? Front Pharmacol 2023; 14:1186336. [PMID: 37284305 PMCID: PMC10239981 DOI: 10.3389/fphar.2023.1186336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Vitamin A is a micronutrient important for vision, cell growth, reproduction and immunity. Both deficiency and excess consuming of vitamin A cause severe health consequences. Although discovered as the first lipophilic vitamin already more than a century ago and the definition of precise biological roles of vitamin A in the setting of health and disease, there are still many unresolved issues related to that vitamin. Prototypically, the liver that plays a key role in the storage, metabolism and homeostasis of vitamin A critically responds to the vitamin A status. Acute and chronic excess vitamin A is associated with liver damage and fibrosis, while also hypovitaminosis A is associated with alterations in liver morphology and function. Hepatic stellate cells are the main storage site of vitamin A. These cells have multiple physiological roles from balancing retinol content of the body to mediating inflammatory responses in the liver. Strikingly, different animal disease models also respond to vitamin A statuses differently or even opposing. In this review, we discuss some of these controversial issues in understanding vitamin A biology. More studies of the interactions of vitamin A with animal genomes and epigenetic settings are anticipated in the future.
Collapse
Affiliation(s)
- Guoxun Chen
- College of Food Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
15
|
Yoo HS, Cockrum MA, Napoli JL. Cyp26a1 supports postnatal retinoic acid homeostasis and glucoregulatory control. J Biol Chem 2023; 299:104669. [PMID: 37011860 PMCID: PMC10176252 DOI: 10.1016/j.jbc.2023.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Considerable evidence confirms the importance of Cyp26a1 to all-trans-retinoic acid (RA) homeostasis during embryogenesis. In contrast, despite its presence in postnatal liver as a potential major RA catabolizing enzyme and its acute sensitivity to induction by RA, some data suggested that Cyp26a1 contributes only marginally to endogenous RA homeostasis postnatally. We report reevaluation of a conditional Cyp26a1 knockdown in the postnatal mouse. The current results show that Cyp26a1 mRNA in WT mouse liver increases 16-fold upon refeeding after a fast, accompanied by an increased rate of RA elimination and a 41% decrease in the RA concentration. In contrast, Cyp26a1 mRNA in the refed homozygotic knockdown reached only 2% of its extent in WT during refeeding, accompanied by a slower rate of RA catabolism and no decrease in liver RA, relative to fasting. Refed homozygous knockdown mice also had decreased Akt1 and 2 phosphorylation and pyruvate dehydrogenase kinase 4 (Pdk4) mRNA and increased glucokinase (Gck) mRNA, glycogen phosphorylase (Pygl) phosphorylation, and serum glucose, relative to WT. Fasted homozygous knockdown mice had increased glucagon/insulin relative to WT. These data indicate that Cyp26a1 participates prominently in moderating the postnatal liver concentration of endogenous RA and contributes essentially to glucoregulatory control.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, UC-Berkeley, Berkeley, California, USA
| | - Michael A Cockrum
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, UC-Berkeley, Berkeley, California, USA
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, UC-Berkeley, Berkeley, California, USA.
| |
Collapse
|
16
|
Bandara S, Moon J, Ramkumar S, von Lintig J. ASTER-B regulates mitochondrial carotenoid transport and homeostasis. J Lipid Res 2023; 64:100369. [PMID: 37030626 PMCID: PMC10193236 DOI: 10.1016/j.jlr.2023.100369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by β-carotene oxygenase-2. However, the role of these lipid transport proteins in carotenoid metabolism has not yet been established. Herein, we showed that the recombinant StART-like lipid-binding domain of ASTER-A and B preferentially binds oxygenated carotenoids such as zeaxanthin. We established a novel carotenoid uptake assay and demonstrated that ASTER-B expressing A549 cells transport zeaxanthin to mitochondria. In contrast, the pure hydrocarbon β-carotene is not transported to the organelles, consistent with its metabolic processing to vitamin A in the cytosol by β-carotene oxygenase-1. Depletion of the PM from cholesterol by methyl-β-cyclodextrin treatment enhanced zeaxanthin but not β-carotene transport to mitochondria. Loss-of-function assays by siRNA in A549 cells and the absence of zeaxanthin accumulation in mitochondria of ARPE19 cells confirmed the pivotal role of ASTER-B in this process. Together, our study in human cell lines established ASTER-B protein as key player in nonvesicular transport of zeaxanthin to mitochondria and elucidated the molecular basis of compartmentalization of the metabolism of nonprovitamin A and provitamin A carotenoids in mammalian cells.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Fedoseyeva VB, Novosadova EV, Nenasheva VV, Novosadova LV, Grivennikov IA, Tarantul VZ. Activation of Embryonic Gene Transcription in Neural Precursor Cells Derived from the Induced Pluripotent Stem Cells of the Patients with Parkinson's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:515-525. [PMID: 37080937 DOI: 10.1134/s0006297923040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis. Neural cell cultures derived from the induced pluripotent stem cells (IPSCs) provide a great potential for studying molecular events underlying the pathogenesis of PD. This paper presents the results of bioinformatic analysis of the data obtained using RNA-seq technology in the study of neural precursors (NP) derived from IPSCs of the healthy donors and patients with PD carrying various mutations that are commonly associated with familial PD. This analysis showed that the level of transcription of multiple genes actively expressed in the nervous system at the embryonic stage of development was significantly increased in the NP cells obtained from the patients with PD, unlike in the case of healthy donors. Bioinformatic data have been, in general, confirmed using real-time PCR. The obtained data suggest that one of the causes of PD may be the shift of the gene expression pattern in neuronal cells towards embryonic gene expression pattern (termed dematuration).
Collapse
Affiliation(s)
- Viya B Fedoseyeva
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | | | | | | | | | | |
Collapse
|
18
|
Kaplan L, Drexler C, Pfaller AM, Brenna S, Wunderlich KA, Dimitracopoulos A, Merl-Pham J, Perez MT, Schlötzer-Schrehardt U, Enzmann V, Samardzija M, Puig B, Fuchs P, Franze K, Hauck SM, Grosche A. Retinal regions shape human and murine Müller cell proteome profile and functionality. Glia 2023; 71:391-414. [PMID: 36334068 DOI: 10.1002/glia.24283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
Abstract
The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.
Collapse
Affiliation(s)
- Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna M Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maria-Theresa Perez
- Department of Clinical Sciences, Division of Ophthalmology, Lund University, Lund, Sweden
- NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden
| | | | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Marijana Samardzija
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
19
|
Sakai N, Kamimura K, Miyamoto H, Ko M, Nagoya T, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Soki H, Tokunaga A, Inamine T, Nakashima M, Enomoto H, Kousaka K, Tachiki H, Ohyama K, Terai S. Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression. J Gastroenterol 2023; 58:53-68. [PMID: 36301364 DOI: 10.1007/s00535-022-01929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-β, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan. .,Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata, 951-8510, Japan.
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroyuki Soki
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Ayako Tokunaga
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, 852-8588, Japan.,Organization for Research Promotion, University of the Ryukyus, Nishihara-Cho, Okinawa, 903-0213, Japan
| | - Mikiro Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Hatsune Enomoto
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kazuki Kousaka
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Hidehisa Tachiki
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan.,Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Nagasaki, 852-8501, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
20
|
Role of EZH2 in Uterine Gland Development. Int J Mol Sci 2022; 23:ijms232415665. [PMID: 36555314 PMCID: PMC9779349 DOI: 10.3390/ijms232415665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core component of polycomb repressive complex 2 that plays a vital role in transcriptional repression of gene expression. Conditional ablation of EZH2 using progesterone receptor (Pgr)-Cre in the mouse uterus has uncovered its roles in regulating uterine epithelial cell growth and stratification, suppressing decidual myofibroblast activation, and maintaining normal female fertility. However, it is unclear whether EZH2 plays a role in the development of uterine glands, which are required for pregnancy success. Herein, we created mice with conditional deletion of Ezh2 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase that is expressed in mesenchyme-derived cells of the female reproductive tract. Strikingly, these mice showed marked defects in uterine adenogenesis. Unlike Ezh2 Pgr-Cre conditional knockout mice, deletion of Ezh2 using Amhr2-Cre did not lead to the differentiation of basal-like cells in the uterus. The deficient uterine adenogenesis was accompanied by impaired uterine function and pregnancy loss. Transcriptomic profiling using next generation sequencing revealed dysregulation of genes associated with signaling pathways that play fundamental roles in development and disease. In summary, this study has identified an unrecognized role of EZH2 in uterine gland development, a postnatal event critical for pregnancy success and female fertility.
Collapse
|
21
|
Zhao J, Wang Y, Wang Y, Gao J, Yang H, Wu X, Li H. Transcription Factor FXR Activates DHRS9 to Inhibit the Cell Oxidative Phosphorylation and Suppress Colon Cancer Progression. Anal Cell Pathol (Amst) 2022; 2022:8275574. [PMID: 36340269 PMCID: PMC9629925 DOI: 10.1155/2022/8275574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Colon cancer is a common gastrointestinal malignancy. It has been discovered that Farnesoid X receptor (FXR) plays an imperative regulatory role in multitype cancers in recent years. However, its regulatory mechanism in colon cancer has not been clearly explored. This study intended to explore the molecular regulatory mechanism of FXR and its downstream genes on the malignant progression of colon cancer. METHODS The mRNA and protein expression of FXR in colon cancer cells were measured by quantitative real-time polymerase chain reaction and Western blot. The effects of FXR on the biological function of colon cancer cells were measured by Cell Counting Kit-8, colony formation, and transwell assays. The downstream target gene of FXR was predicted by bioinformatics analysis and found to be associated with cellular oxidative phosphorylation. The binding relationship between FXR and its downstream gene dehydrogenase/reductase member 9 (DHRS9) was verified through luciferase reporter assay and chromatin immunoprecipitation assay. The changes of oxidative phosphorylation were detected by Western blot and oxygen consumption rate determination. The effect of FXR/DHRS9 axis on the malignant progression of colon cancer cells was further confirmed by rescue experiments. RESULTS FXR was underexpressed in colon cancer tissues and cells, and overexpressing FXR could repress the malignant behaviors of colon cancer cells. Besides, DHRS9 was a downstream gene of FXR, and FXR/DHRS9 inhibited the deterioration of colon cancer through inhibiting oxidative phosphorylation. Moreover, promoting FXR expression in colon cancer cells could partially reverse the biological function changes caused by silencing DHRS9 expression. CONCLUSION FXR inhibited the oxidative phosphorylation and inhibited the malignant progression of colon cancer cells via targeting DHRS9.
Collapse
Affiliation(s)
- Jinlai Zhao
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Yigang Wang
- Anus and intestine surgery, Tangshan Central Hospital, Tangshan, 063000 Hebei, China
| | - Yang Wang
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Jianchao Gao
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Haichao Yang
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Xiaotang Wu
- Hebei University of Economics and Business, Shijiazhuang, Hebei 050062, China
| | - Hua Li
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| |
Collapse
|
22
|
Yadav AS, Isoherranen N, Rubinow KB. Vitamin A homeostasis and cardiometabolic disease in humans: lost in translation? J Mol Endocrinol 2022; 69:R95-R108. [PMID: 35900842 PMCID: PMC9534526 DOI: 10.1530/jme-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Vitamin A (retinol) is an essential, fat-soluble vitamin that plays critical roles in embryonic development, vision, immunity, and reproduction. Severe vitamin A deficiency results in profound embryonic dysgenesis, blindness, and infertility. The roles of bioactive vitamin A metabolites in regulating cell proliferation, cellular differentiation, and immune cell function form the basis of their clinical use in the treatment of dermatologic conditions and hematologic malignancies. Increasingly, vitamin A also has been recognized to play important roles in cardiometabolic health, including the regulation of adipogenesis, energy partitioning, and lipoprotein metabolism. While these roles are strongly supported by animal and in vitro studies, they remain poorly understood in human physiology and disease. This review briefly introduces vitamin A biology and presents the key preclinical data that have generated interest in vitamin A as a mediator of cardiometabolic health. The review also summarizes clinical studies performed to date, highlighting the limitations of many of these studies and the ongoing controversies in the field. Finally, additional perspectives are suggested that may help position vitamin A metabolism within a broader biological context and thereby contribute to enhanced understanding of vitamin A's complex roles in clinical cardiometabolic disease.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katya B Rubinow
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Gomez RL, Woods LM, Ramachandran R, Abou Tayoun AN, Philpott A, Ali FR. Super-enhancer associated core regulatory circuits mediate susceptibility to retinoic acid in neuroblastoma cells. Front Cell Dev Biol 2022; 10:943924. [PMID: 36147741 PMCID: PMC9485839 DOI: 10.3389/fcell.2022.943924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma is a pediatric tumour that accounts for more than 15% of cancer-related deaths in children. High-risk tumours are often difficult to treat, and patients' survival chances are less than 50%. Retinoic acid treatment is part of the maintenance therapy given to neuroblastoma patients; however, not all tumours differentiate in response to retinoic acid. Within neuroblastoma tumors, two phenotypically distinct cell types have been identified based on their super-enhancer landscape and transcriptional core regulatory circuitries: adrenergic (ADRN) and mesenchymal (MES). We hypothesized that the distinct super-enhancers in these different tumour cells mediate differential response to retinoic acid. To this end, three different neuroblastoma cell lines, ADRN (MYCN amplified and non-amplified) and MES cells, were treated with retinoic acid, and changes in the super-enhancer landscape upon treatment and after subsequent removal of retinoic acid was studied. Using ChIP-seq for the active histone mark H3K27ac, paired with RNA-seq, we compared the super-enhancer landscape in cells that undergo neuronal differentiation in response to retinoic acid versus those that fail to differentiate and identified unique super-enhancers associated with neuronal differentiation. Among the ADRN cells that respond to treatment, MYCN-amplified cells remain differentiated upon removal of retinoic acid, whereas MYCN non-amplified cells revert to an undifferentiated state, allowing for the identification of super-enhancers responsible for maintaining differentiation. This study identifies key super-enhancers that are crucial for retinoic acid-mediated differentiation.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Laura M. Woods
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad N. Abou Tayoun
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Fahad R. Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
24
|
di Masi A, Sessa RL, Cerrato Y, Pastore G, Guantario B, Ambra R, Di Gioacchino M, Sodo A, Verri M, Crucitti P, Longo F, Naciu AM, Palermo A, Taffon C, Acconcia F, Bianchi F, Ascenzi P, Ricci MA, Crescenzi A. Unraveling the Effects of Carotenoids Accumulation in Human Papillary Thyroid Carcinoma. Antioxidants (Basel) 2022; 11:antiox11081463. [PMID: 36009182 PMCID: PMC9405418 DOI: 10.3390/antiox11081463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among the thyroid cancers, papillary thyroid cancer (PTC) accounts for 90% of the cases. In addition to the necessity to identify new targets for PTC treatment, early diagnosis and management are highly demanded. Previous data indicated that the multivariate statistical analysis of the Raman spectra allows the discrimination of healthy tissues from PTC ones; this is characterized by bands typical of carotenoids. Here, we dissected the molecular effects of carotenoid accumulation in PTC patients by analyzing whether they were required to provide increased retinoic acid (RA) synthesis and signaling and/or to sustain antioxidant functions. HPLC analysis revealed the lack of a significant difference in the overall content of carotenoids. For this reason, we wondered whether the carotenoid accumulation in PTC patients could be related to vitamin A derivative retinoic acid (RA) biosynthesis and, consequently, the RA-related pathway activation. The transcriptomic analysis performed using a dedicated PCR array revealed a significant downregulation of RA-related pathways in PTCs, suggesting that the carotenoid accumulation in PTC could be related to a lower metabolic conversion into RA compared to that of healthy tissues. In addition, the gene expression profile of 474 PTC cases previously published in the framework of the Cancer Genome Atlas (TGCA) project was examined by hierarchical clustering and heatmap analyses. This metanalysis study indicated that the RA-related pathways resulted in being significantly downregulated in PTCs and being associated with the follicular variant of PTC (FV-PTC). To assess whether the possible fate of the carotenoids accumulated in PTCs is associated with the oxidative stress response, the expression of enzymes involved in ROS scavenging was checked. An increased oxidative stress status and a reduced antioxidant defense response were observed in PTCs compared to matched healthy thyroids; this was possibly associated with the prooxidant effects of high levels of carotenoids. Finally, the DepMap datasets were used to profile the levels of 225 metabolites in 12 thyroid cancer cell lines. The results obtained suggested that the high carotenoid content in PTCs correlates with tryptophan metabolism. This pilot provided novel possible markers and possible therapeutic targets for PTC diagnosis and therapy. For the future, a larger study including a higher number of PTC patients will be necessary to further validate the molecular data reported here.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
- Correspondence: ; Tel.: +39-06-57336363
| | - Rosario Luigi Sessa
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Ylenia Cerrato
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Gianni Pastore
- CREA (Council for Agricultural Research and Economics), Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (B.G.); (R.A.)
| | - Barbara Guantario
- CREA (Council for Agricultural Research and Economics), Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (B.G.); (R.A.)
| | - Roberto Ambra
- CREA (Council for Agricultural Research and Economics), Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (B.G.); (R.A.)
| | - Michael Di Gioacchino
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Armida Sodo
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Martina Verri
- Pathology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (M.V.); (C.T.); (A.C.)
| | - Pierfilippo Crucitti
- Unit of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (P.C.); (F.L.)
| | - Filippo Longo
- Unit of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (P.C.); (F.L.)
| | - Anda Mihaela Naciu
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.N.); (A.P.)
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.N.); (A.P.)
| | - Chiara Taffon
- Pathology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (M.V.); (C.T.); (A.C.)
| | - Filippo Acconcia
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Maria Antonietta Ricci
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (R.L.S.); (Y.C.); (M.D.G.); (A.S.); (F.A.); (P.A.); (M.A.R.)
| | - Anna Crescenzi
- Pathology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (M.V.); (C.T.); (A.C.)
| |
Collapse
|
25
|
Yoo HS, Rodriguez A, You D, Lee RA, Cockrum MA, Grimes JA, Wang JC, Kang S, Napoli JL. The glucocorticoid receptor represses, whereas C/EBPβ can enhance or repress CYP26A1 transcription. iScience 2022; 25:104564. [PMID: 35789854 PMCID: PMC9249609 DOI: 10.1016/j.isci.2022.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid (RA) counters insulin's metabolic actions. Insulin reduces liver RA biosynthesis by exporting FoxO1 from nuclei. RA induces its catabolism, catalyzed by CYP26A1. A CYP26A1 contribution to RA homeostasis with changes in energy status had not been investigated. We found that glucagon, cortisol, and dexamethasone decrease RA-induced CYP26A1 transcription, thereby reducing RA oxidation during fasting. Interaction between the glucocorticoid receptor and the RAR/RXR coactivation complex suppresses CYP26A1 expression, increasing RA's elimination half-life. Interaction between CCAAT-enhancer-binding protein beta (C/EBPβ) and the major allele of SNP rs2068888 enhances CYP26A1 expression; the minor allele restricts the C/EBPβ effect on CYP26A1. The major and minor alleles associate with impaired human health or reduction in blood triglycerides, respectively. Thus, regulating CYP26A1 transcription contributes to adapting RA to coordinate energy availability with metabolism. These results enhance insight into CYP26A1 effects on RA during changes in energy status and glucocorticoid receptor modification of RAR-regulated gene expression.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Adrienne Rodriguez
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Dongjoo You
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Rebecca A. Lee
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Michael A. Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jack A. Grimes
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Baker NC, Pierro JD, Taylor LW, Knudsen TB. Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity. ALTEX 2022; 40:217–236. [PMID: 35796328 PMCID: PMC10765368 DOI: 10.14573/altex.2202231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound’s developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.
Collapse
Affiliation(s)
| | - Jocylin D. Pierro
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Laura W. Taylor
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
Rubinow KB, Zhong G, Czuba LC, Chen JY, Williams E, Parr Z, Khandelwal S, Kim D, LaFrance J, Isoherranen N. Evidence of depot-specific regulation of all-trans-retinoic acid biosynthesis in human adipose tissue. Clin Transl Sci 2022; 15:1460-1471. [PMID: 35213790 PMCID: PMC9199890 DOI: 10.1111/cts.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
The prevalence of obesity continues to rise, underscoring the need to better understand the pathways mediating adipose tissue (AT) expansion. All-trans-retinoic acid (atRA), a bioactive vitamin A metabolite, regulates adipogenesis and energy metabolism, and, in rodent studies, aberrant vitamin A metabolism appears a key facet of metabolic dysregulation. The relevance of these findings to human disease is unknown, as are the specific enzymes implicated in vitamin A metabolism within human AT. We hypothesized that in human AT, family 1A aldehyde dehydrogenase (ALDH1A) enzymes contribute to atRA biosynthesis in a depot-specific manner. To test this hypothesis, parallel samples of subcutaneous and omental AT from participants (n = 15) were collected during elective abdominal surgeries to quantify atRA biosynthesis and key atRA synthesizing enzymes. ALDH1A1 was the most abundant ALDH1A isoform in both AT depots with expression approximately twofold higher in omental than subcutaneous AT. ALDH1A2 was detected only in omental AT. Formation velocity of atRA was approximately threefold higher (p = 0.0001) in omental AT (9.8 [7.6, 11.2]) pmol/min/mg) than subcutaneous AT (3.2 [2.1, 4.0] pmol/min/mg) and correlated with ALDH1A2 expression in omental AT (β-coefficient = 3.07, p = 0.0007) and with ALDH1A1 expression in subcutaneous AT (β-coefficient = 0.13, p = 0.003). Despite a positive correlation between body mass index (BMI) and omental ALDH1A1 protein expression (Spearman r = 0.65, p = 0.01), BMI did not correlate with atRA formation. Our findings suggest that ALDH1A2 is the primary mediator of atRA formation in omental AT, whereas ALDH1A1 is the principal atRA-synthesizing enzyme in subcutaneous AT. These data highlight AT depot as a critical variable for defining the roles of retinoids in human AT biology.
Collapse
Affiliation(s)
- Katya B. Rubinow
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
- Division of Metabolism, Endocrinology and NutritionDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Guo Zhong
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Lindsay C. Czuba
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Judy Y. Chen
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Estell Williams
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Zoe Parr
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Saurabh Khandelwal
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Daniel Kim
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Jeffrey LaFrance
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
28
|
Lyschik S, Lauer AA, Roth T, Janitschke D, Hollander M, Will T, Hartmann T, Kopito RR, Helms V, Grimm MOW, Schrul B. PEX19 Coordinates Neutral Lipid Storage in Cells in a Peroxisome-Independent Fashion. Front Cell Dev Biol 2022; 10:859052. [PMID: 35557938 PMCID: PMC9086359 DOI: 10.3389/fcell.2022.859052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular lipid metabolism is tightly regulated and requires a sophisticated interplay of multiple subcellular organelles to adapt to changing nutrient supply. PEX19 was originally described as an essential peroxisome biogenesis factor that selectively targets membrane proteins to peroxisomes. Metabolic aberrations that were associated with compromised PEX19 functions, were solely attributed to the absence of peroxisomes, which is also considered the underlying cause for Zellweger Spectrum Disorders. More recently, however, it was shown that PEX19 also mediates the targeting of the VCP/P97-recuitment factor UBXD8 to the ER from where it partitions to lipid droplets (LDs) but the physiological consequences remained elusive. Here, we addressed the intriguing possibility that PEX19 coordinates the functions of the major cellular sites of lipid metabolism. We exploited the farnesylation of PEX19 and deciphered the organelle-specific functions of PEX19 using systems level approaches. Non-farnesylated PEX19 is sufficient to fully restore the metabolic activity of peroxisomes, while farnesylated PEX19 controls lipid metabolism by a peroxisome-independent mechanism that can be attributed to sorting a specific protein subset to LDs. In the absence of this PEX19-dependent LD proteome, cells accumulate excess triacylglycerols and fail to fully deplete their neutral lipid stores under catabolic conditions, highlighting a hitherto unrecognized function of PEX19 in controlling neutral lipid storage and LD dynamics.
Collapse
Affiliation(s)
- Sven Lyschik
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
| | - Anna A. Lauer
- Experimental Neurology, Saarland University, Homburg, Germany
| | - Tanja Roth
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
| | | | - Markus Hollander
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Thorsten Will
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Germany
- Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Marcus O. W. Grimm
- Experimental Neurology, Saarland University, Homburg, Germany
- Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
- *Correspondence: Bianca Schrul,
| |
Collapse
|
29
|
Yabut KCB, Isoherranen N. CRABPs Alter all-trans-Retinoic Acid Metabolism by CYP26A1 via Protein-Protein Interactions. Nutrients 2022; 14:1784. [PMID: 35565751 PMCID: PMC9105409 DOI: 10.3390/nu14091784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular retinoic acid binding proteins (CRABP1 and CRABP2) bind all-trans-retinoic acid (atRA), the active metabolite of vitamin A, with high affinity. CRABP1 and CRABP2 have been shown to interact with the atRA-clearing cytochrome P450 enzymes CYP26B1 and CYP26C1 and with nuclear retinoic acid receptors (RARs). We hypothesized that CRABP1 and CRABP2 also alter atRA metabolism and clearance by CYP26A1, the third key atRA-metabolizing enzyme in the CYP26 family. Based on stopped-flow experiments, atRA bound CRABP1 and CRABP2 with Kd values of 4.7 nM and 7.6 nM, respectively. The unbound atRA Km values for 4-OH-atRA formation by CYP26A1 were 4.7 ± 0.8 nM with atRA, 6.8 ± 1.7 nM with holo-CRABP1 and 6.1 ± 2.7 nM with holo-CRABP2 as a substrate. In comparison, the apparent kcat value was about 30% lower (0.71 ± 0.07 min-1 for holo-CRABP1 and 0.75 ± 0.09 min-1 for holo-CRABP2) in the presence of CRABPs than with free atRA (1.07 ± 0.08 min-1). In addition, increasing concentrations in apo-CRABPs decreased the 4-OH-atRA formation rates by CYP26A1. Kinetic analyses suggest that apo-CRABP1 and apo-CRABP2 inhibit CYP26A1 (Ki = 0.39 nM and 0.53 nM, respectively) and holo-CRABPs channel atRA for metabolism by CYP26A1. These data suggest that CRABPs play a critical role in modulating atRA metabolism and cellular atRA concentrations.
Collapse
Affiliation(s)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
30
|
Wan S, Li Q, Yu H, Liu S, Kong L. Transcriptome analysis based on dietary beta-carotene supplement reveals genes potentially involved in carotenoid metabolism in Crassostrea gigas. Gene 2022; 818:146226. [PMID: 35063572 DOI: 10.1016/j.gene.2022.146226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Carotenoids are essential micronutrients for animals, and they can only be obtained from the diet for mollusk as well as other animals. In the body, carotenoids undergo processes including absorption, transport, deposition, and metabolic conversion; however, knowledge of the involved genes is still limited. To elucidate the molecular mechanisms of carotenoid processing and identify the related genes in Pacific oyster (Crassostrea gigas), we performed a comparative transcriptome analysis using digestive gland tissues of oysters on a beta-carotene supplemented diet or a normal diet. A total of 718 differentially expressed genes were obtained, including 505 upregulated and 213 downregulated genes in the beta-carotene supplemented group. Function Annotation and enrichment analyses revealed enrichment in genes possibly involved in carotenoid transport and storage (e.g., LOC105342035), carotenoid cleavage (e.g., LOC105341121), retinoid homeostasis (e.g., LOC105339597) and PPAR signaling pathway (e.g., LOC105323212). Notably, down-regulation of mRNA expressions of two apolipoprotein genes (LOC105342035 and LOC105342186) by RNA interference significantly decreased the carotenoid level in the digestive gland, supporting their role in carotenoid transport and storage. Based on these differentially expressed genes, we propose that there may be a negative feedback mechanism regulated by nuclear receptor transcription factors controlling carotenoid oxygenases. Our findings provide useful hints for elucidating the molecular basis of carotenoid metabolism and functions of carotenoid-related genes in the oyster.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
31
|
Kim DH, Ahn J, Suh Y, Ziouzenkova O, Lee JW, Lee K. Retinol Binding Protein 7 Promotes Adipogenesis in vitro and Regulates Expression of Genes Involved in Retinol Metabolism. Front Cell Dev Biol 2022; 10:876031. [PMID: 35493071 PMCID: PMC9047791 DOI: 10.3389/fcell.2022.876031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Retinol is an essential nutrient in animals. Its metabolites, specifically retinoic acid (RA), are crucial for cell differentiation, including adipogenesis. Retinol binding protein 7 (Rbp7) is under the control of PPARγ, the master regulator of adipogenesis. However, the role of RBP7 in adipogenesis is unclear. Our study showed that Rbp7 was abundantly expressed in white and brown mouse adipose tissues and had a higher expression in adipocytes than in stromal vascular fraction. Rbp7 overexpression promoted 3T3-L1 preadipocyte differentiation with increased triglyceride accumulation and up-regulation of Pparγ, Fabp4, C/ebpα, and AdipoQ. Rbp7 deficient adipocytes had opposite effects of the overexpression, which were rescued by RA supplementation. Indirect assessment of relative nuclear RA levels using RAR response element (RARE)-Luc reporter assay demonstrated that Rbp7 overexpression significantly increased RARE-Luc reporter activity. Rbp7 overexpression significantly increased expression of Raldh1, responsible for RA production, and up-regulation of Lrat and Cyp26a1, involved in retinol storage and RA catabolism, respectively, in 3T3-L1 adipocytes. Rbp7 deficient adipocytes had opposite effects of the overexpression of those genes involved in retinol metabolism. These data suggest that RBP7 increases transcriptional activity of RARE that may induce negative feedback responses via regulation of the gene expression for retinol homeostasis. Our data indicate critical RBP7 functions in adipocytes: regulation of transcriptional activity of RARE and adipocytes differentiation, potentially providing a new target for obesity therapy.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jeong-Woong Lee, ; Kichoon Lee,
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Jeong-Woong Lee, ; Kichoon Lee,
| |
Collapse
|
32
|
Transcriptional Profiling of the Small Intestine and the Colon Reveals Modulation of Gut Infection with Citrobacter rodentium According to the Vitamin A Status. Nutrients 2022; 14:nu14081563. [PMID: 35458125 PMCID: PMC9026425 DOI: 10.3390/nu14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal integrity. Using Citrobacter rodentium-infected mice as a model for diarrheal diseases in humans, previous studies showed that VA-deficient (VAD) mice failed to clear C. rodentium as compared to their VA-sufficient (VAS) counterparts. However, the distinct intestinal gene responses that are dependent on the host’s VA status still need to be discovered. The mRNAs extracted from the small intestine (SI) and the colon were sequenced and analyzed on three levels: differential gene expression, enrichment, and co-expression. C. rodentium infection interacted differentially with VA status to alter colon gene expression. Novel functional categories downregulated by this pathogen were identified, highlighted by genes related to the metabolism of VA, vitamin D, and ion transport, including improper upregulation of Cl− secretion and disrupted HCO3− metabolism. Our results suggest that derangement of micronutrient metabolism and ion transport, together with the compromised immune responses in VAD hosts, may be responsible for the higher mortality to C. rodentium under conditions of inadequate VA.
Collapse
|
33
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
34
|
Gutierrez MW, van Tilburg Bernardes E, Changirwa D, McDonald B, Arrieta MC. "Molding" immunity-modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunol 2022; 15:573-583. [PMID: 35474360 DOI: 10.1038/s41385-022-00515-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Fungi are important yet understudied contributors to the microbial communities of the gastrointestinal tract. Starting at birth, the intestinal mycobiome undergoes a period of dynamic maturation under the influence of microbial, host, and extrinsic influences, with profound functional implications for immune development in early life, and regulation of immune homeostasis throughout life. Candida albicans serves as a model organism for understanding the cross-talk between fungal colonization dynamics and immunity, and exemplifies unique mechanisms of fungal-immune interactions, including fungal dimorphism, though our understanding of other intestinal fungi is growing. Given the prominent role of the gut mycobiome in promoting immune homeostasis, emerging evidence points to fungal dysbiosis as an influential contributor to immune dysregulation in a variety of inflammatory and infectious diseases. Here we review current knowledge on the factors that govern host-fungi interactions in the intestinal tract and immunological outcomes in both mucosal and systemic compartments.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Erik van Tilburg Bernardes
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Diana Changirwa
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
35
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
36
|
Zalesak-Kravec S, Huang W, Jones JW, Yu J, Alloush J, Defnet AE, Moise AR, Kane MA. Role of cellular retinol-binding protein, type 1 and retinoid homeostasis in the adult mouse heart: A multi-omic approach. FASEB J 2022; 36:e22242. [PMID: 35253263 DOI: 10.1096/fj.202100901rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jenna Alloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amy E Defnet
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Melis M, Tang XH, Attarwala N, Chen Q, Prishker C, Qin L, Gross SS, Gudas LJ, Trasino SE. A retinoic acid receptor β2 agonist protects against alcohol liver disease and modulates hepatic expression of canonical retinoid metabolism genes. Biofactors 2022; 48:469-480. [PMID: 34687254 PMCID: PMC9344329 DOI: 10.1002/biof.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Alcohol abuse reduces hepatic vitamin A (retinoids), reductions that are associated with progression of alcohol liver disease (ALD). Restoring hepatic retinoids through diet is contraindicated in ALD due to the negative effects of alcohol on retinoid metabolism. There are currently no drugs that can both mitigate alcohol-driven hepatic retinoid losses and progression of ALD. Using a mouse model of alcohol intake, we examined if an agonist for the retinoic acid (RA) receptor β2 (RARβ2), AC261066 (AC261) could prevent alcohol-driven hepatic retinoid losses and protect against ALD. Our results show that mice co-treated with AC261 and alcohol displayed mitigation of ALD, including reduced macro, and microvesicular steatosis, and liver damage. Alcohol intake led to increases in hepatic centrilobular levels of ALDH1A1, a rate-limiting enzyme in RA synthesis, and co-localization of ALDH1A1 with the alcohol-metabolizing enzyme CYP2E1, and 4-HNE, a marker of oxidative stress; expression of these targets was abrogated in mice co-treated with AC261 and alcohol. By RNA sequencing technology, we found that AC261 treatments opposed alcohol modulation of 68 transcripts involved in canonical retinoid metabolism. Alcohol modulation of these transcripts, including CES1D, CES1G, RBP1, RDH10, and CYP26A1, collectively favor hepatic retinoid hydrolysis and catabolism. However, despite this, co-administration of AC261 with alcohol did not mitigate alcohol-mediated depletions of hepatic retinoids, but did reduce alcohol-driven increases in serum retinol. Our data show that AC261 protected mice against ALD, even though AC261 did not prevent alcohol-mediated reductions in hepatic retinoids. These data warrant further studies of the anti-ALD properties of AC261.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Carlos Prishker
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Lihui Qin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | | | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
38
|
Yu J, Perri M, Jones JW, Pierzchalski K, Ceaicovscaia N, Cione E, Kane MA. Altered RBP1 Gene Expression Impacts Epithelial Cell Retinoic Acid, Proliferation, and Microenvironment. Cells 2022; 11:792. [PMID: 35269414 PMCID: PMC8909206 DOI: 10.3390/cells11050792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin A is an essential diet-derived nutrient that has biological activity affected through an active metabolite, all-trans retinoic acid (atRA). Retinol-binding protein type 1 (RBP1) is an intracellular chaperone that binds retinol and retinal with high affinity, protects retinoids from non-specific oxidation, and delivers retinoids to specific enzymes to facilitate biosynthesis of RA. RBP1 expression is reduced in many of the most prevalent cancers, including breast cancer. Here, we sought to understand the relationship between RBP1 expression and atRA biosynthesis in mammary epithelial cells, as well as RBP1 expression and atRA levels in human mammary tissue. We additionally aimed to investigate the impact of RBP1 expression and atRA on the microenvironment as well as the potential for therapeutic restoration of RBP1 expression and endogenous atRA production. Using human mammary ductal carcinoma samples and a series of mammary epithelial cell lines representing different stages of tumorigenesis, we investigated the relationship between RBP1 expression as determined by QPCR and atRA via direct liquid chromatography-multistage-tandem mass spectrometry-based quantification. The functional effect of RBP1 expression and atRA in epithelial cells was investigated via the expression of direct atRA targets using QPCR, proliferation using Ki-67 staining, and collagen deposition via picrosirius red staining. We also investigated the atRA content of stromal cells co-cultured with normal and tumorigenic epithelial cells. Results show that RBP1 and atRA are reduced in mammary tumor tissue and tumorigenic epithelial cell lines. Knock down of RBP1 expression using shRNA or overexpression of RBP1 supported a direct relationship between RBP1 expression with atRA. Increases in cellular atRA were able to activate atRA direct targets, inhibit proliferation and inhibit collagen deposition in epithelial cell lines. Conditions encountered in tumor microenvironments, including low glucose and hypoxia, were able to reduce RBP1 expression and atRA. Treatment with either RARα agonist AM580 or demethylating agent Decitabine were able to increase RBP1 expression and atRA. Cellular content of neighboring fibroblasts correlated with the RA producing capacity of epithelial cells in co-culture. This work establishes a direct relationship between RBP1 expression and atRA, which is maintained when RBP1 expression is restored therapeutically. The results demonstrate diseases with reduced RBP1 could potentially benefit from therapeutics that restore RBP1 expression and endogenous atRA.
Collapse
Affiliation(s)
- Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Mariarita Perri
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy;
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Natalia Ceaicovscaia
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy;
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| |
Collapse
|
39
|
Wang Q, Zhang Q, Li Y, Zhao X, Zhang Y. RBP4 regulates androgen receptor expression and steroid synthesis in Sertoli cells from Bactrian camels. Reprod Domest Anim 2022; 57:429-437. [PMID: 35014100 DOI: 10.1111/rda.14081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Retinol-binding protein (RBP4) plays an important role in the transport and metabolism of retinol. In addition, RBP4 contributes to testicular homeostasis, including maintenance of spermatogenesis and synthesis of androgens that mediate their physiological functions through the androgen receptor. RBP4 in Sertoli cells regulates testosterone and dihydrotestosterone synthesis and secretion, although the mechanisms have yet to be revealed. In this study, we examined the expression and function of RBP4 in Sertoli cells isolated from Bactrian camels. qRT-PCR analysis of various Bactrian camel tissues revealed high expression of RBP4 in the testis and epididymis. To examine RBP4 function, Sertoli cells isolated from testes were transfected with an RBP4 overexpression plasmid or RBP4-targeting siRNA. RBP4 overexpression resulted in significant inhibition of transcription and translation of the steroidogenic enzymes 3βHSD and SRD5A1 concomitant with a significant decrease in androgen receptor expression and dihydrotestosterone secretion. Conversely, RBP4 knockdown significantly increased the expression of 3βHSD, SRD5A1, and androgen receptor and enhanced the secretion of dihydrotestosterone and testosterone. These data reveal a novel role for RBP4 in regulating steroid synthesis in Sertoli cells from Bactrian camels.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, 730070, China
| |
Collapse
|
40
|
Grace VMB, Wilson DD, Guruvayoorappan C, Danisha JP, Bonati L. Liposome nano-formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH-responsive carrier for molecular therapeutic drug (all-trans retinoic acid) delivery to lung cancer cells. IET Nanobiotechnol 2021; 15:380-390. [PMID: 34694713 PMCID: PMC8675848 DOI: 10.1049/nbt2.12028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/27/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular targeted drug ATRA demands a suitable carrier that delivers to the cancer site due to its poor bioavailability and drug resistance. ATRA, being a lipid with carboxylic acid, has been nano‐formulated as a cationic lipo‐ATRA with DOTAP:cholesterol:ATRA (5:4:1) and its pH‐responsive release, intracellular drug accumulation, and anticancer effect on human lung cancer (A549) cell line analysed. The analysis of the physicochemical characteristics of the developed lipo‐ATRA (0.8 µmol) revealed that the size of 231 ± 2.35 d.nm had a zeta potential of 6.4 ± 1.19 and an encapsulation efficiency of 93.7 ± 3.6%. The ATRA release from lipo‐ATRA in vitro was significantly (p ≤ 0.05) higher at acidic pH 6 compared to pH 7.5. The intracellular uptake of ATRA into lipo‐ATRA‐treated A549 cells was seven‐fold higher (0.007 ± 0.001 mg/ml) while only three‐fold uptake was observed in free ATRA treatment (0.003 ± 0.002 mg/ml). The lipo‐ATRA treatment caused a highly significant (p ≤ 0.001) decrease in percent cell viability at 48 h when compared with the free ATRA treatment. Overall, the results proved that the developed lipo‐ATRA has suitable physicochemical properties with enhanced ATRA release at acidic pH, while maintaining stability at physiologic pH and temperature. This resulted in an increased ATRA uptake by lung cancer cells with enhanced treatment efficiency. Hence, it is concluded that DOTAP lipo‐ATRA is a suitable carrier for ATRA delivery to solid cancer cells.
Collapse
Affiliation(s)
| | - Devarajan David Wilson
- School of Science, Arts, Media and Management, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram, Kerala, India
| | - Jesubatham Perinba Danisha
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Lucia Bonati
- IAESTE Intern at Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
41
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. Multi-omic Analysis of Non-human Primate Heart after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:352-371. [PMID: 34546217 PMCID: PMC8554778 DOI: 10.1097/hp.0000000000001478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
43
|
Yu J, Huang W, Liu T, Defnet AE, Zalesak-Kravec S, Farese AM, MacVittie TJ, Kane MA. Effect of Radiation on the Essential Nutrient Homeostasis and Signaling of Retinoids in a Non-human Primate Model with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:406-418. [PMID: 34546221 PMCID: PMC8549574 DOI: 10.1097/hp.0000000000001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.
Collapse
Affiliation(s)
- Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| |
Collapse
|
44
|
Everts HB, Silva KA, Schmidt AN, Opalenik S, Duncan FJ, King LE, Sundberg JP, Ong DE. Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin. Nutr Res 2021; 94:10-24. [PMID: 34571215 PMCID: PMC8845065 DOI: 10.1016/j.nutres.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA; Department of Nutrition, The Ohio State University, Columbus, OH, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Adriana N Schmidt
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan Opalenik
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - F Jason Duncan
- Department of Nutrition, The Ohio State University, Columbus, OH, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Ong
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Retinoic acid exerts sexually dimorphic effects on muscle energy metabolism and function. J Biol Chem 2021; 297:101101. [PMID: 34419449 PMCID: PMC8441203 DOI: 10.1016/j.jbc.2021.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.
Collapse
|
46
|
Differential Retinoic Acid Signaling in the Hippocampus of Aged Rats with and without Memory Impairment. eNeuro 2021; 8:ENEURO.0120-21.2021. [PMID: 34417282 PMCID: PMC8442538 DOI: 10.1523/eneuro.0120-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA), a metabolite of vitamin A, has many physiological functions, and mounting evidence points to important roles in cognition. In vitro experiments indicate that RA is involved in homeostatic synaptic scaling in the hippocampus, which supports overall network stability during learning. It has been previously determined that disrupted RA signaling in the hippocampus causes deterioration of memory, that RA signaling declines with age in brain, and that application of RA reverses this decline. Here, we explore whether RA signaling is altered in an animal model of neurocognitive aging. We used a Morris water maze protocol to study cognitive decline in aged rats, which assesses hippocampus-dependent spatial memory and reveals substantial interindividual differences in aged animals. Aged unimpaired (AU) rats perform on par with young (Y), while aged impaired (AI) animals exhibit spatial memory deficits. We show that the major substrate for RA, retinol binding protein 4 (RBP4), is decreased in AU rats, and retinol cell surface receptor declines with chronological age. Other affected components of RA signaling include selective increases in AI animals in hippocampal synthesis (RALDH1) and catabolism of RA (CYP26B1), RA receptor α, the RA regulated ionotropic glutamate receptor (GluR1), as well as fragile X mental retardation protein (FMRP). The results support the conclusion that, surprisingly, increased RA signaling in the aged hippocampus is associated with poor cognitive outcome.
Collapse
|
47
|
Chen G. The Interactions of Insulin and Vitamin A Signaling Systems for the Regulation of Hepatic Glucose and Lipid Metabolism. Cells 2021; 10:2160. [PMID: 34440929 PMCID: PMC8393264 DOI: 10.3390/cells10082160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The pandemics of obesity and type 2 diabetes have become a concern of public health. Nutrition plays a key role in these concerns. Insulin as an anabolic hormonal was discovered exactly 100 years ago due to its activity in controlling blood glucose level. Vitamin A (VA), a lipophilic micronutrient, has been shown to regulate glucose and fat metabolism. VA's physiological roles are mainly mediated by its metabolite, retinoic acid (RA), which activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are two transcription factors. The VA status and activations of RARs and RXRs by RA and synthetic agonists have shown to affect the glucose and lipid metabolism in animal models. Both insulin and RA signaling systems regulate the expression levels of genes involved in the regulation of hepatic glucose and lipid metabolism. Interactions of insulin and RA signaling systems have been observed. This review is aimed at summarizing the history of diabetes, insulin and VA signaling systems; the effects of VA status and activation of RARs and RXRs on metabolism and RAR and RXR phosphorylation; and possible interactions of insulin and RA in the regulation of hepatic genes for glucose and lipid metabolism. In addition, some future research perspectives for understanding of nutrient and hormone interactions are provided.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
48
|
Retinoic acid attenuates nuclear factor kappaB mediated induction of NLRP3 inflammasome. Pharmacol Rep 2021; 74:189-203. [PMID: 34415562 DOI: 10.1007/s43440-021-00321-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Acetylcholine (ACh), a neurotransmitter and a part of the cholinergic system, can modify immune responses. Expression of acetylcholine receptors (AChR) in immune cells, including macrophages, leads to modulation of their function. Inflammasomes are part of the innate immune system and have been linked to a variety of inflammatory diseases. The NLRP3/ASC/caspase-1/IL-1 axis has emerged as a critical signaling pathway in inflammation process initiation. The role of ACh in modulating inflammasomes in macrophages remains relatively under-explored. METHODS The effect of AChR agonist carbachol on inflammasome expression was investigated using murine and human macrophages. Cell lysates were assessed by western blot for protein analysis. Immunofluorescence studies were used to study the translocation of p65. The experiments were conducted in the presence of NF-ĸB inhibitor, AChR antagonists, and retinoic acid (RA) to study the role of NF-ĸB, ACh receptors, and RA, respectively. RESULTS We found that carbachol increased the expression of NLRP3 inflammasome (NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18). The treated cells also showed an increase in NF-ĸB activation. The effect of carbachol was diminished by NF-ĸB inhibitor and atropine, a mAChR antagonist. The addition of RA also significantly reduced the effect of carbachol on NLRP3 inflammasomes. CONCLUSIONS Our current study suggests that carbachol induces NLRP3 inflammasome activation through mAChR and NF-ĸB, and that RA abolishes the inflammatory response. It reveals the potentials of co-administration of RA with cholinergic drugs to prevent inflammatory responses during cholinergic medications.
Collapse
|
49
|
Takahashi N, Saito D, Hasegawa S, Yamasaki M, Imai M. Vitamin A in health care: Suppression of growth and induction of differentiation in cancer cells by vitamin A and its derivatives and their mechanisms of action. Pharmacol Ther 2021; 230:107942. [PMID: 34175370 DOI: 10.1016/j.pharmthera.2021.107942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Vitamin A is an important micro-essential nutrient, whose primary dietary source is retinyl esters. In addition, β-carotene (pro-vitamin A) is a precursor of vitamin A contained in green and yellow vegetables that is converted to retinol in the body after ingestion. Retinol is oxidized to produce visual retinal, which is further oxidized to retinoic acid (RA), which is used as a therapeutic agent for patients with promyelocytic leukemia. Thus, the effects of retinal and RA are well known. In this paper, we will introduce (1) vitamin A circulation in the body, (2) the actions and mechanisms of retinal and RA, (3) retinoylation: another RA mechanism not depending on RA receptors, (4) the relationship between cancer and actions of retinol or β-carotene, whose roles in vivo are still unknown, and (5) anti-cancer actions of vitamin A derivatives derived from fenretinide (4-HPR). We propose that vitamin A nutritional management is effective in the prevention of cancer.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
| | - Daisuke Saito
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Shinya Hasegawa
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiro Yamasaki
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiko Imai
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
50
|
Yang N, Parker LE, Yu J, Jones JW, Liu T, Papanicolaou KN, Talbot CC, Margulies KB, O’Rourke B, Kane MA, Foster DB. Cardiac retinoic acid levels decline in heart failure. JCI Insight 2021; 6:137593. [PMID: 33724958 PMCID: PMC8119182 DOI: 10.1172/jci.insight.137593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.
Collapse
Affiliation(s)
- Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren E. Parker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianshi Yu
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W. Jones
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|