1
|
Park K, Shin KO, Kim YI, Nielsen-Scott AL, Mainzer C, Celli A, Bae Y, Chae S, Ann H, Choi Y, Park JH, Park SH, Hwang JT, Kang SG, Wakefield JS, Arron ST, Holleran WM, Mauro TM, Elias PM, Uchida Y. Sphingosine-1-phosphate-cathelicidin axis plays a pivotal role in the development of cutaneous squamous cell carcinoma. J Invest Dermatol 2024:S0022-202X(24)02069-4. [PMID: 39218144 DOI: 10.1016/j.jid.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer, caused by mutagenesis resulting from excess ultraviolet radiation or other types of oxidative stress. These stressors also upregulate production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), via endoplasmic reticulum (ER) stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. While CAMP has beneficial antimicrobial activities, it also can be pro-inflammatory and pro-carcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that: 1) CAMP expression is increased in cSCC cells and skin from cSCC patients; 2) S1P levels are elevated in cSCC cells, while inhibition of S1P production attenuates CAMP-stimulated cSCC growth; 3) exogenous CAMP stimulates cSCC, but not normal human keratinocyte growth; 4) blockade of formyl peptide receptor-like (FPRL) 1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; 5) Foxp3+ regulatory T cell (which decreases anti-tumor immunity) levels increase in cSCC skin; and 6) CAMP induces ER stress in cSCC cells. Together, the ER stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, i.e., cSCC growth and invasion impedes anti-cancer immunity.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA.
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; LaSS Inc., Chuncheon, Gangwon, Republic of Korea
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna L Nielsen-Scott
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Carine Mainzer
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoojin Bae
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Seungwoo Chae
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Hahyun Ann
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Yerim Choi
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; LaSS Inc., Chuncheon, Gangwon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Honam, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Honam, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Honam, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Hoseo, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Joan S Wakefield
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sarah T Arron
- Department of Dermatology, School of Medicine, University of California, San Francisco
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
2
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
3
|
Jacques C, Jamin EL, Noustens A, Lauze C, Jouanin I, Doat G, Debrauwer L, Bessou-Touya S, Stockfleth E, Duplan H. Multi-omics analysis to evaluate the effects of solar exposure and a broad-spectrum SPF50+ sunscreen on markers of skin barrier function in a skin ecosystem model. Photochem Photobiol 2024. [PMID: 39054579 DOI: 10.1111/php.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Sun exposure induces major skin alterations, but its effects on skin metabolites and lipids remain largely unknown. Using an original reconstructed human epidermis (RHE) model colonized with human microbiota and supplemented with human sebum, we previously showed that a single dose of simulated solar radiation (SSR) significantly impacted the skin metabolome and microbiota. In this article, we further analyzed SSR-induced changes on skin metabolites and lipids in the same RHE model. Among the significantly altered metabolites (log2-fold changes with p ≤ 0.05), we found several natural moisturizing factors (NMFs): amino acids, lactate, glycerol, urocanic acid, pyrrolidone carboxylic acid and derivatives. Analyses of the stratum corneum lipids also showed that SSR induced lower levels of free fatty acids and higher levels of ceramides, cholesterols and its derivatives. An imbalance in NMFs and ceramides combined to an increase of proinflammatory lipids may participate in skin permeability barrier impairment, dehydration and inflammatory reaction to the sun. Our skin model also allowed the evaluation of an innovative ultraviolet/blue light (UV/BL) broad-spectrum sunscreen with a high sun protection factor (SPF50+). We found that using this sunscreen prior to SSR exposure could in part prevent SSR-induced alterations in NMFs and lipids in the skin ecosystem RHE model.
Collapse
Affiliation(s)
- Carine Jacques
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anais Noustens
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Christophe Lauze
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Isabelle Jouanin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Gautier Doat
- Laboratoires Eau thermale Avène, Cauquillous, Lavaur, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
4
|
Shin KO, Kim B, Choi Y, Bae YJ, Park JH, Park SH, Hwang JT, Choi EH, Uchida Y, Park K. Barrier Abnormalities in Type 1 Diabetes Mellitus: The Roles of Inflammation and Ceramide Metabolism. J Invest Dermatol 2024; 144:802-810.e5. [PMID: 37952608 DOI: 10.1016/j.jid.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Xerosis is a common sign of both type 1 and type 2 diabetes mellitus (DM), and patients with DM and mouse models for DM show a compromised epidermal permeability barrier. Barrier defects then allow the entry of foreign substances into the skin, triggering inflammation, infection, and worsening skin symptoms. Characterizing how barrier abnormalities develop in DM could suggest treatments for xerosis and other skin disease traits. Because the proper ratio, as well as proper bulk amounts, of heterogeneous ceramide species are keys to forming a competent barrier, we investigated how ceramide metabolism is affected in type 1 DM using a mouse model (induced by streptozotocin). Chronic inflammation, evident in the skin of mice with DM, leads to (i) decreased de novo ceramide production through serine racemase activation-mediated attenuation of serine palmitoyl transferase activity by D-serine; (ii) changes in ceramide synthase activities and expression that modify the ratio of ceramide molecular species; and (iii) increased ceramide-1-phosphate, a proinflammatory lipid mediator, that stimulates inflammatory cytokine expression (TNFα and IFN-γ). Together, chronic inflammation affects ceramide metabolism, which attenuates epidermal permeability barrier formation, and ceramide-1-phosphate could amplify this inflammation. Alleviation of chronic inflammation is a credible approach for normalizing barrier function and ameliorating diverse skin abnormalities in DM.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Bokyung Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jin Bae
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
5
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
6
|
Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023; 12:2745. [PMID: 38067173 PMCID: PMC10706187 DOI: 10.3390/cells12232745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions.
Collapse
Affiliation(s)
- Paola Baker
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Christina Huang
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rakan Radi
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Samara B. Moll
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Emmanuela Jules
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Jack L. Arbiser
- Metroderm/United Derm Partners, 875 Johnson Ferry Road, Atlanta, GA 30342, USA
| |
Collapse
|
7
|
Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int J Mol Sci 2023; 24:ijms24055035. [PMID: 36902463 PMCID: PMC10003399 DOI: 10.3390/ijms24055035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.
Collapse
|
8
|
Rybova J, Kuchar L, Sikora J, McKillop WM, Medin JA. Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency. J Inherit Metab Dis 2022; 45:1175-1190. [PMID: 36083604 PMCID: PMC9826362 DOI: 10.1002/jimd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
Acid ceramidase catalyzes the degradation of ceramide into sphingosine and a free fatty acid. Acid ceramidase deficiency results in lipid accumulation in many tissues and leads to the development of Farber disease (FD). Typical manifestations of classical FD include formation of subcutaneous nodules and joint contractures as well as the development of a hoarse voice. Healthy skin depends on a unique lipid profile to form a barrier that confers protection from pathogens, prevents excessive water loss, and mediates cell-cell communication. Ceramides comprise ~50% of total epidermis lipids and regulate cutaneous homeostasis and inflammation. Abnormal skin development including visual skin lesions has been reported in FD patients, but a detailed study of FD skin has not been performed. We conducted a pathophysiological study of the skin in our mouse model of FD. We observed altered lipid composition in FD skin dominated by accumulation of all studied ceramide species and buildup of abnormal storage structures affecting mainly the dermis. A deficiency of acid ceramidase activity also led to the activation of inflammatory IL-6/JAK/signal transducer and activator of transcription 3 and noncanonical NF-κB signaling pathways. Last, we report reduced proliferation of FD mouse fibroblasts and adipose-derived stem/stromal cells (ASC) along with impaired differentiation of ASCs into mature adipocytes.
Collapse
Affiliation(s)
- Jitka Rybova
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Ladislav Kuchar
- Rare Diseases Research Unit, Department of Pediatrics and Inherited Metabolic DisordersCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Inherited Metabolic DisordersCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
- Institute of PathologyCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - William M. McKillop
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey A. Medin
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
9
|
Shin KO, Mihara H, Ishida K, Uchida Y, Park K. Exogenous Ceramide Serves as a Precursor to Endogenous Ceramide Synthesis and as a Modulator of Keratinocyte Differentiation. Cells 2022; 11:cells11111742. [PMID: 35681438 PMCID: PMC9179460 DOI: 10.3390/cells11111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
Since ceramide is a key epidermal barrier constituent and its deficiency causes barrier-compromised skin, several molecular types of ceramides are formulated in commercial topical agents to improve barrier function. Topical ceramide localizes on the skin surface and in the stratum corneum, but certain amounts of ceramide penetrate the stratum granulosum, becoming precursors to endogenous ceramide synthesis following molecular modification. Moreover, exogenous ceramide as a lipid mediator could modulate keratinocyte proliferation/differentiation. We here investigated the biological roles of exogenous NP (non-hydroxy ceramide containing 4-hydroxy dihydrosphingosine) and NDS (non-hydroxy ceramide containing dihydrosphingosine), both widely used as topical ceramide agents, in differentiated-cultured human keratinocytes. NDS, but not NP, becomes a precursor for diverse ceramide species that are required for a vital permeability barrier. Loricrin (late differentiation marker) production is increased in keratinocytes treated with both NDS and NP vs. control, while bigger increases in involucrin (an early differentiation marker) synthesis were observed in keratinocytes treated with NDS vs. NP and control. NDS increases levels of a key antimicrobial peptide (an innate immune component), cathelicidin antimicrobial peptide (CAMP/LL-37), that is upregulated by a ceramide metabolite, sphingosine-1-phosphate. Our studies demonstrate that NDS could be a multi-potent ceramide species, forming heterogenous ceramide molecules and a lipid mediator to enhance differentiation and innate immunity.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- LaSS Lipid Institute (LLI), LaSS Inc., Chuncheon 31151, Korea
| | - Hisashi Mihara
- Takasago International Company, Hiratsuka 259-1207, Japan; (H.M.); (K.I.)
| | - Kenya Ishida
- Takasago International Company, Hiratsuka 259-1207, Japan; (H.M.); (K.I.)
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- Veterans Affairs Medical Center, Department of Dermatology, School of Medicine, Northern California Institute for Research and Education, University of California, San Francisco, CA 94158, USA
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| | - Kyungho Park
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| |
Collapse
|
10
|
Diesel Particulate Extract Accelerates Premature Skin Aging in Human Fibroblasts via Ceramide-1-Phosphate-Mediated Signaling Pathway. Int J Mol Sci 2022; 23:ijms23052691. [PMID: 35269833 PMCID: PMC8910364 DOI: 10.3390/ijms23052691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Both intrinsic (i.e., an individual’s body clock) and extrinsic factors (i.e., air pollutants and ultraviolet irradiation) accelerate premature aging. Epidemiological studies have shown a correlation between pollutant levels and aging skin symptoms. Diesel particle matter in particular leads to some diseases, including in the skin. Our recent study demonstrates that diesel particulate extract (DPE) increases apoptosis via increases in an anti-mitogenic/pro-apoptotic lipid mediator, ceramide in epidermal keratinocytes. Here, we investigated whether and how DPE accelerates premature skin aging using cultured normal human dermal fibroblasts (HDF). We first demonstrated that DPE increases cell senescence marker β-galactosidase activity in HDF. We then found increases in mRNA and protein levels, along with activity of matrix metalloprotease (MMP)-1 and MMP-3, which are associated with skin aging following DPE exposure. We confirmed increases in collagen degradation in HDF treated with DPE. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is activated by DPE and results in increased ceramide production by sphingomyelinase activation in HDF. We identified that ceramide-1-phosphate (C1P) (produced from ceramide by ceramide kinase activation) activates MMP-1 and MMP-3 through activation of arachidonate cascade, followed by STAT 1- and STAT 3-dependent transcriptional activation.
Collapse
|
11
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
12
|
Kezic S, McAleer MA, Jakasa I, Goorden SMI, Ghauharali-van der Vlugt K, Beers-Stet FS, Meijer J, Roelofsen J, Nieman MM, van Kuilenburg ABP, Irvine AD. Children with atopic dermatitis show increased activity of β- glucocerebrosidase and stratum corneum levels of glucosylcholesterol that are strongly related to local cytokine milieu. Br J Dermatol 2022; 186:988-996. [PMID: 34993951 PMCID: PMC9325351 DOI: 10.1111/bjd.20979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022]
Abstract
Background Atopic dermatitis (AD) is characterized by immune dysregulations and an impaired skin barrier, including abnormalities in lipid organization. In the stratum corneum (SC), β‐glucocerebrosidase (GBA) mediates transformation of glucosylceramide (GlcCER) into ceramide (CER) and cholesterol into glucosylcholesterol (GlcChol). Alteration in GBA activity might contribute to skin barrier defects in AD. Objectives To investigate GBA activity in the SC of children with AD before and after topical corticosteroid therapy and to compare it with healthy controls; to determine SC levels of GlcCER‐ and CER‐containing hydroxysphingosine base (GlcCER[H] and CER[H], respectively) and GlcChol; and to relate them to disease severity, skin barrier function and the local cytokine milieu. Methods Lipid markers and cytokines of innate, T helper 1 and T helper 2 immunity were determined in SC collected from healthy children and from clinically unaffected skin of children with AD, before and after 6 weeks of therapy with topical corticosteroids. AD severity was assessed by Scoring Atopic Dermatitis and skin barrier function by transepidermal water loss (TEWL). Results Baseline GBA activity and GlcChol levels were increased in children with AD but declined after therapy. CER[H] levels and the CER[H] to GlcCER[H] ratio were increased in AD. GBA activity and GlcChol correlated with TEWL and levels of multiple cytokines, especially interleukin‐1α and interleukin‐18. GlcChol was strongly associated with disease severity. Conclusions We show increased GBA activity and levels of GlcChol in AD. Our data suggest an important role of inflammation in disturbed lipid processing. GBA activity or GlcChol might be useful biomarkers in the monitoring of therapeutic responses in AD. What is already known about this topic?Patients with atopic dermatitis (AD) have a reduced skin barrier, mainly caused by altered lipid organization. The mechanisms underlying these lipid anomalies are not fully understood but likely reflect both genetic abnormalities in AD skin and the local cutaneous inflammatory environment.
What does this study add?We show increased activity of the ceramide‐generating enzyme β‐glucocerebrosidase in AD. Activity of this enzyme was correlated with the local cytokine milieu and declined after local corticosteroid therapy. We show that glucosylcholesterol levels in the stratum corneum are increased in AD. The function of glucosylcholesterol and the physiological consequences of increased levels are not clear yet; however, its levels were strongly correlated with skin barrier function: high transepidermal water loss strongly correlated with high levels of glucosylcholesterol.
What is the translational message?Correction of cutaneous inflammation largely restores alterations in lipid metabolism in the stratum corneum of infants with AD.
Collapse
Affiliation(s)
- Sanja Kezic
- Amsterdam UMC, University of Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Maeve A McAleer
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.,Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - Karen Ghauharali-van der Vlugt
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - Femke S Beers-Stet
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - Judith Meijer
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - Jeroen Roelofsen
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - Monique M Nieman
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry Amsterdam UMC, Amsterdam, The Netherlands
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.,Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| |
Collapse
|
13
|
Blaess M, Kaiser L, Sommerfeld O, Csuk R, Deigner HP. Drug triggered pruritus, rash, papules, and blisters - is AGEP a clash of an altered sphingolipid-metabolism and lysosomotropism of drugs accumulating in the skin? Lipids Health Dis 2021; 20:156. [PMID: 34743684 PMCID: PMC8573906 DOI: 10.1186/s12944-021-01552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Rash, photosensitivity, erythema multiforme, and the acute generalized exanthematous pustulosis (AGEP) are relatively uncommon adverse reactions of drugs. To date, the etiology is not well understood and individual susceptibility still remains unknown. Amiodarone, chlorpromazine, amitriptyline, and trimipramine are classified lysosomotropic as well as photosensitizing, however, they fail to trigger rash and pruritic papules in all individuals. Lysosomotropism is a common charcteristic of various drugs, but independent of individuals. There is evidence that the individual ability to respond to external oxidative stress is crosslinked with the elongation of long-chain fatty acids to very long-chain fatty acids by ELOVLs. ELOVL6 and ELOVL7 are sensitive to ROS induced depletion of cellular NADPH and insufficient regeneration via the pentose phosphate pathway and mitochondrial fatty acid oxidation. Deficiency of NADPH in presence of lysosomotropic drugs promotes the synthesis of C16-ceramide in lysosomes and may contribute to emerging pruritic papules of AGEP. However, independently from a lysosomomotropic drug, severe depletion of ATP and NAD(P)H, e.g., by UV radiation or a potent photosensitizer can trigger likewise the collapse of the lysosomal transmembrane proton gradient resulting in lysosomal C16-ceramide synthesis and pruritic papules. This kind of papules are equally present in polymorphous light eruption (PMLE/PLE) and acne aestivalis (Mallorca acne). The suggested model of a compartmentalized ceramide metabolism provides a more sophisticated explanation of cutaneous drug adverse effects and the individual sensitivity to UV radiation. Parameters such as pKa and ClogP of the triggering drug, cutaneous fatty acid profile, and ceramide profile enables new concepts in risk assessment and scoring of AGEP as well as prophylaxis outcome.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104, Freiburg, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747, Jena, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120, Halle (Saale), Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Schillingallee 68, D-18057, Leipzig, Rostock, Germany.
- Faculty of Science, Associated member of Tuebingen University, Auf der Morgenstelle 8, D- 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Abstract
Ceramides are a class of sphingolipid that is the backbone structure for all sphingolipids, such as glycosphingolipids and phosphosphingolipids. While being a minor constituent of cellular membranes, ceramides are the major lipid component (along with cholesterol, free fatty acid, and other minor components) of the intercellular spaces of stratum corneum that forms the epidermal permeability barrier. These stratum corneum ceramides consist of unique heterogenous molecular species that have only been identified in terrestrial mammals. Alterations of ceramide molecular profiles are characterized in skin diseases associated with compromised permeability barrier functions, such as atopic dermatitis, psoriasis and xerosis. In addition, hereditary abnormalities of some ichthyoses are associated with an epidermal unique ceramide species, omega-O-acylceramide. Ceramides also serve as lipid modulators to regulate cellular functions, including cell cycle arrest, differentiation, and apoptosis, and it has been demonstrated that changes in ceramide metabolism also cause certain diseases. In addition, ceramide metabolites, sphingoid bases, sphingoid base-1-phosphate and ceramide-1-phosphate are also lipid mediators that regulate cellular functions. In this review article, we describe diverse physiological and pathological roles of ceramides and their metabolites in epidermal permeability barrier function, epidermal cell proliferation and differentiation, immunity, and cutaneous diseases. Finally, we summarize the utilization of ceramides as therapy to treat cutaneous disease.
Collapse
|
15
|
Transcriptional Differences in Lipid-Metabolizing Enzymes in Murine Sebocytes Derived from Sebaceous Glands of the Skin and Preputial Glands. Int J Mol Sci 2021; 22:ijms222111631. [PMID: 34769061 PMCID: PMC8584257 DOI: 10.3390/ijms222111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resembling tissue structures are also found in male rodents in the form of preputial glands. Similar to sebaceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ culture models for skin sebaceous glands and the fact that preputial glands are much larger and easier to handle, previous studies used preputial glands as a model for skin sebaceous glands. Here, we compared both types of sebocytes, using a single-cell RNA sequencing approach, to unravel potential similarities and differences between the two sebocyte populations. In spite of common gene expression patterns due to general lipid-producing properties, we found significant differences in the expression levels of genes encoding enzymes involved in the biogenesis of specialized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squalene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphingomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major developmental, functional as well as biosynthetic differences between both glands. The use of preputial glands as a surrogate model to study skin sebaceous glands is therefore limited, and major differences between both glands need to be carefully considered before planning an experiment.
Collapse
|
16
|
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article. Front Med (Lausanne) 2021; 8:730855. [PMID: 34497816 PMCID: PMC8420999 DOI: 10.3389/fmed.2021.730855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs—regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Yatsuhashi H, Furuyashiki T, Vo PHT, Kamasaka H, Kuriki T. Effects of Glycogen on Ceramide Production in Cultured Human Keratinocytes via Acid Sphingomyelinase Activation. J Appl Glycosci (1999) 2021; 68:41-46. [PMID: 34429698 PMCID: PMC8367632 DOI: 10.5458/jag.jag.jag-2020_0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 11/07/2022] Open
Abstract
Glycogen is a highly branched storage polysaccharide found mainly in the liver and the muscles. Glycogen is also present in the skin, but its functional role is poorly understood. Recently, it has been reported that glycogen plays an important role in intracellular signal transduction. In the epidermis of the skin, keratinocytes are the predominant cells that produce ceramide. Ceramides are lipids composed of sphingosine, and prevent water loss, as well as protecting the skin against environmental stressors. In this study, we investigated the effects of glycogen on ceramide production in cultured keratinocytes. Thin-layer chromatography revealed that incubation of keratinocytes with 2 % glycogen enhanced the cellular amount of ceramide NS (ceramide 2) by 3.4-fold compared to the control. We also found that glycogen regulated the mRNA expression levels of signaling molecules of the sphingomyelin-ceramide pathway by quantitative real-time PCR. The activity of sphingomyelinase was also significantly enhanced by 2.5-fold in cultures with 1 % glycogen compared to the control. Moreover, glycogen increased the ATP production by 1.5-fold compared to the control, while glucose did not affect the production. Western blotting showed that phosphorylation of Akt, a cellular signaling molecule, was inhibited in the presence of glycogen in cultured keratinocytes. This study shows that glycogen upregulates the ceramide production pathway from sphingomyelin in epidermal keratinocytes, and provides new insights into the role of glycogen in cellular signal transduction.
Collapse
|
18
|
N-Palmitoyl Serinol Stimulates Ceramide Production through a CB1-Dependent Mechanism in In Vitro Model of Skin Inflammation. Int J Mol Sci 2021; 22:ijms22158302. [PMID: 34361066 PMCID: PMC8348051 DOI: 10.3390/ijms22158302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22–C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.
Collapse
|
19
|
Altawil L, Alshihry H, Alfaraidi H, Alhashem A, Alhumidi A, Alkuraya FS. Progressive symmetrical erythrokeratoderma manifesting as harlequin-like ichthyosis with severe thrombocytopenia secondary to a homozygous 3-ketodihydrosphingosine reductase mutation. JAAD Case Rep 2021; 14:55-58. [PMID: 34277909 PMCID: PMC8261470 DOI: 10.1016/j.jdcr.2021.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lama Altawil
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hind Alshihry
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Huda Alfaraidi
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Alhumidi
- Department of Pathology, King Saud University, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy. Cell Signal 2021; 85:110041. [PMID: 33991614 DOI: 10.1016/j.cellsig.2021.110041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Signaling by the bioactive sphingolipid, sphingosine 1-phosphate (S1P), and its precursors are emerging areas in pregnancy research. S1P and ceramide levels increase towards end of gestation, suggesting a physiological role in parturition. However, high levels of circulating S1P and ceramide are correlated with pregnancy disorders such as preeclampsia, gestational diabetes mellitus and intrauterine growth restriction. Expression of placental and decidual enzymes that metabolize S1P and S1P receptors are also dysregulated during pregnancy complications. In this review, we provide an in-depth examination of the signaling mechanism of S1P and ceramide in various reproductive tissues during gestation. These factors determine implantation and early pregnancy success by modulating corpus luteum function from progesterone production to luteolysis through to apoptosis. We also highlight the role of S1P through receptor signaling in inducing decidualization and angiogenesis in the decidua, as well as regulating extravillous trophoblast migration to anchor the placenta into the uterine wall. Recent advances on the role of the S1P:ceramide rheostat in controlling the fate of villous trophoblasts and the role of S1P as a negative regulator of trophoblast syncytialization to a multinucleated placental barrier are discussed. This review also explores the role of S1P in anti-inflammatory and pro-inflammatory signaling, its role as a vasoconstrictor, and the effects of S1P metabolizing enzymes and receptors in pregnancy.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - David N Brindley
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
21
|
Sakai S, Makino A, Nishi A, Ichikawa T, Yamashita T, Taniguchi M, Tokudome Y, Hirabayashi Y, Akiyama M, Crumrine D, Uchida Y, Elias PM, Tsuchida T, Hamanaka S. [Pathogenic and Compensatory Mechanisms in Epidermis of Sphingomyelin Synthase 2-Deficient Mice]. Skin Pharmacol Physiol 2021; 34:246-252. [PMID: 33915532 DOI: 10.1159/000515608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022]
Abstract
Sphingomyelin (SM) is a constituent of cellular membranes, while ceramides (Cer) produced from SM on plasma membranes serve as a lipid mediator that regulates cell proliferation, differentiation, and apoptosis. In the skin, SM also is a precursor of Cer, an important constituent of epidermal permeability barrier. We investigated the role of epidermal SM synthase (SMS)2, an isoform of SMS, which modulates SM and Cer levels on plasma membranes. Although SMS2-knockout (SMS2-KO) mice were not neonatal lethal, an ichthyotic phenotype with epidermal hyperplasia and hyperkeratosis was evident at birth, which persisted until 2 weeks of age. These mice showed abnormal lamellar body morphology and secretion, and abnormal extracellular lamellar membranes in the stratum corneum. These abnormalities were no longer evident by 4 weeks of age in SMS2-KO mice. Our study suggests that (1) exposure to a dry terrestrial environment initiates compensatory responses, thereby normalizing epidermal ichthyotic abnormalities and (2) that a nonlethal gene abnormality can cause an ichthyotic skin phenotype.
Collapse
Affiliation(s)
- Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asami Makino
- Lipid Biology Laboratory, Advanced Science Institute, RIKEN Laboratory of Biochemistry, Asaka, Japan
| | - Akihito Nishi
- Laboratory of Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Takeshi Ichikawa
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Yoshihiro Tokudome
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Yoshio Hirabayashi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Debra Crumrine
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA.,Northern California Institute for Research and Education, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA.,Northern California Institute for Research and Education, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA.,Northern California Institute for Research and Education, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Tetsuya Tsuchida
- Department of Dermatology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Sumiko Hamanaka
- Department of Dermatology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| |
Collapse
|
22
|
Effects of Natural Antioxidants on Phospholipid and Ceramide Profiles of 3D-Cultured Skin Fibroblasts Exposed to UVA or UVB Radiation. Antioxidants (Basel) 2021; 10:antiox10040578. [PMID: 33918064 PMCID: PMC8068794 DOI: 10.3390/antiox10040578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
Ultraviolet (UV) radiation is one of the primary factors responsible for disturbances in human skin cells phospholipid metabolism. Natural compounds that are commonly used to protect skin, due to their lipophilic or hydrophilic nature, show only a narrow range of cytoprotective activity, which prompts research on their combined application. Therefore, the aim of this study was to examine the effect of ascorbic acid and rutin on the phospholipid and ceramide profiles in UV-irradiated fibroblasts cultured in a three-dimensional system that approximates the culture conditions to the dermis. An ultra-high-performance liquid chromatograph coupled with a quadrupole time-of-flight mass spectrometer was used for phospholipid and ceramide profiling. As a result of UVA and UVB cells irradiation, upregulation of phosphatidylcholines, ceramides, and downregulation of sphingomyelins were observed, while treatment with ascorbic acid and rutin of UVA/UVB-irradiated fibroblast promoted these changes to provide cells a stronger response to stress. Moreover, an upregulation of phosphatidylserines in cells exposed to UVB and treated with both antioxidants suggests the stimulation of UV-damaged cells apoptosis. Our findings provide new insight into action of rutin and ascorbic acid on regulation of phospholipid metabolism, which improves dermis fibroblast membrane properties.
Collapse
|
23
|
Mikami D, Sakai S, Nishimukai M, Yuyama K, Mukai K, Igarashi Y. Structure-dependent absorption of atypical sphingoid long-chain bases from digestive tract into lymph. Lipids Health Dis 2021; 20:24. [PMID: 33648494 PMCID: PMC7919070 DOI: 10.1186/s12944-021-01448-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary sphingolipids have various biofunctions, including skin barrier improvement and anti-inflammatory and anti-carcinoma properties. Long-chain bases (LCBs), the essential backbones of sphingolipids, are expected to be important for these bioactivities, and they vary structurally between species. Given these findings, however, the absorption dynamics of each LCB remain unclear. METHODS In this study, five structurally different LCBs were prepared from glucosylceramides (GlcCers) with LCB 18:2(4E,8Z);2OH and LCB 18:2(4E,8E);2OH moieties derived from konjac tuber (Amorphophallus konjac), from GlcCers with an LCB 18(9Me):2(4E,8E);2OH moiety derived from Tamogi mushroom (Pleurotus cornucopiae var. citrinopileatus), and from ceramide 2-aminoethyphosphonate with LCB 18:3(4E,8E,10E);2OH moiety and LCB 18(9Me):3(4E,8E,10E);2OH moiety derived from giant scallop (Mizuhopecten yessoensis), and their absorption percentages and metabolite levels were analyzed using a lymph-duct-cannulated rat model via liquid chromatography tandem mass spectrometry (LC/MS/MS) with a multistage fragmentation method. RESULTS The five orally administered LCBs were absorbed and detected in chyle (lipid-containing lymph) as LCBs and several metabolites including ceramides, hexosylceramides, and sphingomyelins. The absorption percentages of LCBs were 0.10-1.17%, depending on their structure. The absorption percentage of LCB 18:2(4E,8Z);2OH was the highest (1.17%), whereas that of LCB 18:3(4E,8E,10E);2OH was the lowest (0.10%). The amount of sphingomyelin with an LCB 18:2(4E,8Z);2OH moiety in chyle was particularly higher than sphingomyelins with other LCB moieties. CONCLUSIONS Structural differences among LCBs, particularly geometric isomerism at the C8-C9 position, significantly affected the absorption percentages and ratio of metabolites. This is the first report to elucidate that the absorption and metabolism of sphingolipids are dependent on their LCB structure. These results could be used to develop functional foods that are more readily absorbed.
Collapse
Affiliation(s)
- Daisuke Mikami
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Shota Sakai
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Kohei Yuyama
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Katsuyuki Mukai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.,R & D Headquarters, Daicel Corporation, 2-18-1, Konan, Minato-ku, Tokyo, 108-8230, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
24
|
Kisrieva YS, Samenkova NF, Larina OB, Zgoda VG, Karuzina II, Rusanov AL, Luzgina NG, Petushkova NA. [Comparative study of the human keratinocytes proteome of the HaCaT line: identification of proteins encoded by genes of 18 chromosomes under the influence of detergents]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:469-476. [PMID: 33372905 DOI: 10.18097/pbmc20206606469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using electrospray ionization tandem mass spectrometry, a comparative analysis of the HaCaT keratinocyte proteins encoded by the 18th chromosome was performed before and after exposure to sodium dodecyl sulfate (25 mg/ml) and to Triton X-100 (12.5 mg/ml) in a subtoxic dose for 48 hours. Proteins were identified using the SearchGUI platform (X!Tandem and MS-GF+ search engines). In total, 1284 proteins were found in immortalized human HaCaT keratinocytes and about 75% of them were identified by two or more peptides. Were identified, that 26 proteins were encoded by genes of chromosome 18. Among these proteins, 17 were common for control cells and HaCaT cells treated with SDS. Proteins MARE2 and CTIF were identified only in control keratinocytes. Seven identified proteins encoded by genes of chromosome 18 were found only in detergent-treated keratinocytes: LMAN1, NDUV2, SPB3, VPS4B, KDSR, ROCK1 and RHG28.
Collapse
Affiliation(s)
- Y S Kisrieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - O B Larina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - N G Luzgina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
25
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors’ therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Vietri Rudan M, Mishra A, Klose C, Eggert US, Watt FM. Human epidermal stem cell differentiation is modulated by specific lipid subspecies. Proc Natl Acad Sci U S A 2020; 117:22173-22182. [PMID: 32843345 PMCID: PMC7486749 DOI: 10.1073/pnas.2011310117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the lipids of the outer layers of mammalian epidermis and their contribution to barrier formation have been extensively described, the role of individual lipid species in the onset of keratinocyte differentiation remains unknown. A lipidomic analysis of primary human keratinocytes revealed accumulation of numerous lipid species during suspension-induced differentiation. A small interfering RNA screen of 258 lipid-modifying enzymes identified two genes that on knockdown induced epidermal differentiation: ELOVL1, encoding elongation of very long-chain fatty acids protein 1, and SLC27A1, encoding fatty acid transport protein 1. By intersecting lipidomic datasets from suspension-induced differentiation and knockdown keratinocytes, we pinpointed candidate bioactive lipid subspecies as differentiation regulators. Several of these-ceramides and glucosylceramides-induced differentiation when added to primary keratinocytes in culture. Our results reveal the potential of lipid subspecies to regulate exit from the epidermal stem cell compartment.
Collapse
Affiliation(s)
- Matteo Vietri Rudan
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
- European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | | | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom;
| |
Collapse
|
27
|
Bocheńska K, Gabig-Cimińska M. Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules 2020; 25:E1130. [PMID: 32138315 PMCID: PMC7179243 DOI: 10.3390/molecules25051130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs), which have structural and biological responsibilities in the human epidermis, are importantly involved in the maintenance of the skin barrier and regulate cellular processes, such as the proliferation, differentiation and apoptosis of keratinocytes (KCs). As many dermatologic diseases, including psoriasis (PsO), intricately characterized by perturbations in these cellular processes, are associated with altered composition and unbalanced metabolism of epidermal SLs, more education to precisely determine the role of SLs, especially in the pathogenesis of skin disorders, is needed. PsO is caused by a complex interplay between skin barrier disruption, immune dysregulation, host genetics and environmental triggers. The contribution of particular cellular compartments and organelles in SL metabolism, a process related to dysfunction of lysosomes in PsO, seems to have a significant impact on lysosomal signalling linked to a modulation of the immune-mediated inflammation accompanying this dermatosis and is not fully understood. It is also worth noting that a prominent skin disorder, such as PsO, has diminished levels of the main epidermal SL ceramide (Cer), reflecting altered SL metabolism, that may contribute not only to pathogenesis but also to disease severity and/or progression. This review provides a brief synopsis of the implications of SLs in PsO, aims to elucidate the roles of these molecules in complex cellular processes deregulated in diseased skin tissue and highlights the need for increased research in the field. The significance of SLs as structural and signalling molecules and their actions in inflammation, in which these components are factors responsible for vascular endothelium abnormalities in the development of PsO, are discussed.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80–822 Gdańsk, Poland
| |
Collapse
|
28
|
Boer DEC, van Smeden J, Al-Khakany H, Melnik E, van Dijk R, Absalah S, Vreeken RJ, Haenen CCP, Lavrijsen APM, Overkleeft HS, Aerts JMFG, Bouwstra JA. Skin of atopic dermatitis patients shows disturbed β-glucocerebrosidase and acid sphingomyelinase activity that relates to changes in stratum corneum lipid composition. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158673. [PMID: 32092464 DOI: 10.1016/j.bbalip.2020.158673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 01/22/2023]
Abstract
Patients with Atopic Dermatitis (AD) suffer from inflamed skin and skin barrier defects. Proper formation of the outermost part of the skin, the stratum corneum (SC), is crucial for the skin barrier function. In this study we analyzed the localization and activity of lipid enzymes β-glucocerebrosidase (GBA) and acid sphingomyelinase (ASM) in the skin of AD patients and controls. Localization of both the expression and activity of GBA and ASM in the epidermis of AD patients was altered, particularly at lesional skin sites. These changes aligned with the altered SC lipid composition. More specifically, abnormal localization of GBA and ASM related to an increase in specific ceramide subclasses [AS] and [NS]. Moreover we related the localization of the enzymes to the amounts of SC ceramide subclasses and free fatty acids (FFAs). We report a correlation between altered localization of active GBA and ASM and a disturbed SC lipid composition. Localization of antimicrobial peptide beta-defensin-3 (HBD-3) and AD biomarker Thymus and Activation Regulated Chemokine (TARC) also appeared to be diverging in AD skin compared to control. This research highlights the relation between correct localization of expressed and active lipid enzymes and a normal SC lipid composition for a proper skin barrier.
Collapse
Affiliation(s)
- Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands
| | - Hanin Al-Khakany
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | | | - Rianne van Dijk
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Samira Absalah
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Rob J Vreeken
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands; M4I Institute, Maastricht University, Maastricht, the Netherlands
| | - Caroline C P Haenen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Adriana P M Lavrijsen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands.
| |
Collapse
|
29
|
Lee HS, Park HY, Kwon SP, Kim B, Lee Y, Kim S, Shin KO, Park K. NADPH Oxidase-Mediated Activation of Neutral Sphingomyelinase Is Responsible for Diesel Particulate Extract-Induced Keratinocyte Apoptosis. Int J Mol Sci 2020; 21:ijms21031001. [PMID: 32028642 PMCID: PMC7037446 DOI: 10.3390/ijms21031001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Human epidermis is positioned at the interface with the external environment, protecting our bodies against external challenges, including air pollutants. Emerging evidence suggests that diesel particulate extract (DPE), a major component of air pollution, leads to impairment of diverse cellular functions in keratinocytes (KC). In this study, we investigated the cellular mechanism underlying DPE-induced KC apoptosis. We first addressed cell death occurring in KC exposed to DPE, paralleled by increased activation of NADPH oxidases (NOXs) and subsequent ROS generation. Blockade of NOX activation with a specific inhibitor attenuated the expected DPE-induced KC apoptosis. In contrast, pre-treatment with a specific inhibitor of reactive oxygen species (ROS) generation did not reverse DPE/NOX-mediated increase in KC apoptosis. We next noted that NOX-mediated KC apoptosis is mainly attributable to neutral sphingomyelinase (SMase)-mediated stimulation of ceramides, which is a well-known pro-apoptotic lipid. Moreover, we found that inhibition of NOX activation significantly attenuated DPE-mediated increase in the ratio of ceramide to its key metabolite sphingosine-1-phosphate (S1P), an important determinant of cell fate. Together, these results suggest that activation of neutral SMase serves as a key downstream signal for the DPE/NOX activation-mediated alteration in ceramide and S1P productions, and subsequent KC apoptosis.
Collapse
Affiliation(s)
- Hyun-Seok Lee
- Research & Development Center, Chungdam CDC JNPharm LLC., Chuncheon 24232, Korea
| | - Hye Yoon Park
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Sung Pil Kwon
- Research & Development Center, Chungdam CDC JNPharm LLC., Chuncheon 24232, Korea
| | - Bogyeong Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Yerin Lee
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Seongeun Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- Correspondences: (K.-O.S.); (K.P.); Tel.: +82-33-248-2141 (K.-O.S.); +82-33-248-2131 (K.P.)
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- Correspondences: (K.-O.S.); (K.P.); Tel.: +82-33-248-2141 (K.-O.S.); +82-33-248-2131 (K.P.)
| |
Collapse
|
30
|
Huber M, Chiticariu E, Bachmann D, Flatz L, Hohl D. Palmoplantar Keratoderma with Leukokeratosis Anogenitalis Caused by KDSR Mutations. J Invest Dermatol 2020; 140:1662-1665.e1. [PMID: 31987885 DOI: 10.1016/j.jid.2019.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Marcel Huber
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elena Chiticariu
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Bachmann
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lukas Flatz
- Institute for Immune Biology, St. Gallen Cantonal Hospital, St. Gallen, Switzerland
| | - Daniel Hohl
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Mass Spectrometry Imaging of Lipids in Human Skin Disease Model Hidradenitis Suppurativa by Laser Desorption Ionization from Silicon Nanopost Arrays. Sci Rep 2019; 9:17508. [PMID: 31767918 PMCID: PMC6877612 DOI: 10.1038/s41598-019-53938-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs). To help overcome this obstacle, we have utilized silicon nanopost arrays (NAPA), a matrix-free laser desorption ionization (LDI) platform. Hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory skin disease of the apocrine sweat glands. The ability of NAPA to efficiently ionize lipids is exploited in the analysis of human skin samples from sufferers of HS. Ionization by LDI from NAPA allows for the detection and imaging of a number of neutral lipid species, including TGs comprised of shorter, odd-chain fatty acids, which strongly suggests an increased bacterial load within the host tissue, as well as hexosylceramides (HexCers) and galabiosyl-/lactosylceramides that appear to be correlated with the presence of HS. Our results demonstrate that NAPA-LDI-MSI is capable of imaging and potentially differentiating healthy and diseased human skin tissues based on changes in detected neutral lipid composition.
Collapse
|
32
|
Alrbyawi H, Poudel I, Dash RP, Srinivas NR, Tiwari AK, Arnold RD, Babu RJ. Role of Ceramides in Drug Delivery. AAPS PharmSciTech 2019; 20:287. [PMID: 31410612 DOI: 10.1208/s12249-019-1497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Ceramides belong to the sphingolipid group of lipids, which serve as both intracellular and intercellular messengers and as regulatory molecules that play essential roles in signal transduction, inflammation, angiogenesis, and metabolic disorders such as diabetes, neurodegenerative diseases, and cancer cell degeneration. Ceramides also play an important structural role in cell membranes by increasing their rigidity, creating micro-domains (rafts and caveolae), and altering membrane permeability; all these events are involved in the cell signaling. Ceramides constitute approximately half of the lipid composition in the human skin contributing to barrier function as well as epidermal signaling as they affect both proliferation and apoptosis of keratinocytes. Incorporation of ceramides in topical preparations as functional lipids appears to alter skin barrier functions. Ceramides also appear to enhance the bioavailability of drugs by acting as lipid delivery systems. They appear to regulate the ocular inflammation signaling, and external ceramides have shown relief in the anterior and posterior eye disorders. Ceramides play a structural role in liposome formulations and enhance the cellular uptake of amphiphilic drugs, such as chemotherapies. This review presents an overview of the various biological functions of ceramides, and their utility in topical, oral, ocular, and chemotherapeutic drug delivery.
Collapse
|
33
|
Chao HC, Lee TH, Chiang CS, Yang SY, Kuo CH, Tang SC. Sphingolipidomics Investigation of the Temporal Dynamics after Ischemic Brain Injury. J Proteome Res 2019; 18:3470-3478. [PMID: 31310127 DOI: 10.1021/acs.jproteome.9b00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingolipids (SPLs) have been proposed as potential therapeutic targets for strokes, but no reports have ever profiled the changes of the entire range of SPLs after a stroke. This study applied sphingolipidomic methods to investigate the temporal and individual changes in the sphingolipidome including the effect of atorvastatin after ischemic brain injury. We conducted sphingolipidomic profiling of mouse brain tissue by liquid chromatography-electrospray ionization tandem mass spectrometry at 3 h and 24 h after 1 h of middle cerebral artery occlusion (MCAO), and SPL levels were compared with those of the Sham control group. At 3 h post-MCAO, ceramides (Cers) exhibited an increase in levels of long-chain Cers but a decrease in very-long-chain Cers. Moreover, sphingosine, the precursor of sphingosine-1-phosphate (S1P), decreased and S1P increased at 3 h after MCAO. In contrast to 3 h, both long-chain and very-long-chain Cers showed an increased trend at 24 h post-MCAO. Most important, the administration of atorvastatin improved the neurological function of the mice and significantly reversed the SPL changes resulting from the ischemic injury. Furthermore, we used plasma samples from nonstroke control and stroke patients at time points of 72 h after a stroke, and found a similar trend of Cers as in the MCAO model. This study successfully elucidated the overall effect of ischemic injury on SPL metabolism with and without atorvastatin treatment. The network of SPL components that change upon ischemic damage may provide novel therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Tsung-Heng Lee
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Chien-Sung Chiang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Sin-Yu Yang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan.,Department of Pharmacy , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| |
Collapse
|
34
|
Kilic A, Masur C, Reich H, Knie U, Dähnhardt D, Dähnhardt-Pfeiffer S, Abels C. Skin acidification with a water-in-oil emulsion (pH 4) restores disrupted epidermal barrier and improves structure of lipid lamellae in the elderly. J Dermatol 2019; 46:457-465. [PMID: 31106905 PMCID: PMC6593431 DOI: 10.1111/1346-8138.14891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The pH of the skin surface increases with age and thus reduces epidermal barrier function. Aged skin needs appropriate skin care to counterbalance age‐related pH increase and improve barrier function. This confirmatory randomized study investigated the efficacy of water‐in‐oil (w/o) emulsions with either pH 4 or pH 5.8 in 20 elderly subjects after 4 weeks of treatment. After the treatment, the skin was challenged with a sodium dodecyl sulphate (SDS) solution in order to analyze barrier protection properties of both formulations. The pH 4 w/o emulsion resulted in a significantly lower skin pH compared with the pH 5.8 w/o emulsion and an improved skin hydration after 4‐week treatment. Further, the pH 4 emulsion led to more pronounced improvements in length of intercellular lipid lamellae, lamellar organization as well as lipid levels than the pH 5.8 emulsion. Following SDS‐induced barrier damage to the skin, the pH of all test areas increased, but the area treated with the pH 4 emulsion showed the lowest increase compared with baseline. In addition, even after the SDS challenge the skin area treated with the pH 4 emulsion still maintained a significantly increased length of intercellular lipid lamellae compared with the beginning of the study. This study provides evidence that topical application of a w/o emulsion with pH 4 reacidifies the skin in elderly and has beneficial effects on skin moisturization, regeneration of lipid lamellae and lipid content. Application of a pH 4 emulsion can improve the epidermal barrier as well as the stratum corneum organization in aged skin.
Collapse
Affiliation(s)
- Ana Kilic
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Clarissa Masur
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Hubert Reich
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Ulrich Knie
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | | | | | - Christoph Abels
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| |
Collapse
|
35
|
Oh JH, Jeong KH, Kim JE, Kang H. Synthesized Ceramide Induces Growth of Dermal Papilla Cells with Potential Contribution to Hair Growth. Ann Dermatol 2019; 31:164-174. [PMID: 33911565 PMCID: PMC7992683 DOI: 10.5021/ad.2019.31.2.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Background The ceramide is known to play an important role in the formation of intracellular lipids, and play a crucial role as a barrier for skin and hair cuticle. Recent study has revealed that ceramide has potential effect on hair growth in a mouse model. However, the role of ceramide in human dermal papilla cells (hDPCs) known to play an important role in hair growth is not well understood yet. Objective The goal of this study was to investigate the effect of synthetic ceramides (oleyl and stearyl ceramides) on hair growth using hDPCs. Methods hDPCs were treated with synthesized ceramides. hDPCs viability was evaluated by MTT assay. The expression of hair growth related factors were investigated by western blot, real-time polymerase chain reaction and growth factor array. The expression of β-catenin was confirmed by immunofluorescence. Results Treatment with ceramides increased the expression of proteins affecting cell proliferation such as Bcl-2, BAX, phosphorylated-ERK and Cyclin D1. Also, ceramides treatment were increased the expression of several growth factors, including epidermal growth factor family, and promote the expression of Wnt/β-catenin and BMP2/4 signaling. Conclusion Our data suggest that synthetic ceramides stimulates hair growth by induction proliferation of hDPCs via modulation of Wnt/β-catenin and BMP2/4 signaling.
Collapse
Affiliation(s)
- Jee Hye Oh
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwan Ho Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
36
|
Kim M, Jeong H, Lee B, Cho Y, Yoon WK, Cho A, Kwon G, Nam KT, Ha H, Lim KM. Enrichment of Short-Chain Ceramides and Free Fatty Acids in the Skin Epidermis, Liver, and Kidneys of db/db Mice, a Type 2 Diabetes Mellitus Model. Biomol Ther (Seoul) 2019; 27:457-465. [PMID: 30739427 PMCID: PMC6720538 DOI: 10.4062/biomolther.2018.214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Patients with diabetes mellitus (DM) often suffer from diverse skin disorders, which might be attributable to skin barrier dysfunction. To explore the role of lipid alterations in the epidermis in DM skin disorders, we quantitated 49 lipids (34 ceramides, 14 free fatty acids (FFAs), and cholesterol) in the skin epidermis, liver, and kidneys of db/db mice, a Type 2 DM model, using UPLC-MS/MS. The expression of genes involved in lipid synthesis was also evaluated. With the full establishment of hyperglycemia at the age of 20 weeks, remarkable lipid enrichment was noted in the skin of the db/db mice, especially at the epidermis and subcutaneous fat bed. Prominent increases in the ceramides and FFAs (>3 fold) with short or medium chains (<C26) occurred in the skin epidermis (16NS, 18NS, 24NS, 16NDS, 18NDS, 20NDS, 22NDS, 24NDS, C16:1FA, C18:2FA, and C18:1FA) and the liver (16NS, 18NS, 20NS, 24:1NS, 18NDS, 20NDS, 22NDS, C16:1FA, C18:2FA, C18:1FA), whereas those with very long chains were not affected. In the kidney, only slight increases (<3 fold) were observed for 16NS, 18NS, 20NS, 26NDS, C26FA, and C22:1FA. Consistently, LXRα/β and PPARγ, nuclear receptors promoting lipid synthesis, lipid synthesis enzymes such as elongases 1, 4, and 6, and fatty acid synthase and stearoyl-CoA desaturase were highly expressed in the skin and livers of the db/db mice. Collectively, our study demonstrates an extensive alteration in the skin and systemic lipid profiles of db/db mice, which could contribute to the development of skin disorders in DM.
Collapse
Affiliation(s)
- Minjeong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Ahreum Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Guideock Kwon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Min Lim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
37
|
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019; 20:ijms20030479. [PMID: 30678043 PMCID: PMC6387241 DOI: 10.3390/ijms20030479] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin-resistance is a characteristic feature of type 2 diabetes (T2D) and plays a major role in the pathogenesis of this disease. Skeletal muscles are quantitatively the biggest glucose users in response to insulin and are considered as main targets in development of insulin-resistance. It is now clear that circulating fatty acids (FA), which are highly increased in T2D, play a major role in the development of muscle insulin-resistance. In healthy individuals, excess FA are stored as lipid droplets in adipocytes. In situations like obesity and T2D, FA from lipolysis and food are in excess and eventually accumulate in peripheral tissues. High plasma concentrations of FA are generally associated with increased risk of developing diabetes. Indeed, ectopic fat accumulation is associated with insulin-resistance; this is called lipotoxicity. However, FA themselves are not involved in insulin-resistance, but rather some of their metabolic derivatives, such as ceramides. Ceramides, which are synthetized de novo from saturated FA like palmitate, have been demonstrated to play a critical role in the deterioration of insulin sensitivity in muscle cells. This review describes the latest progress involving ceramides as major players in the development of muscle insulin-resistance through the targeting of selective actors of the insulin signaling pathway.
Collapse
|
38
|
Qiu L, Chen L, Yang X, Ye A, Jiang W, Sun W. S1P mediates human amniotic cells proliferation induced by a 50-Hz magnetic field exposure via ERK1/2 signaling pathway. J Cell Physiol 2019; 234:7734-7741. [PMID: 30624774 DOI: 10.1002/jcp.28102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022]
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) is a kind of physical stimulus in public and occupational environment. Numerous studies have indicated that exposure of cells to ELF-EMF could promote cell proliferation. But the detailed mechanisms implicated in these proliferative processes remain unclear. In the present experiment, the possible roles of sphingosine-1-phosphate (S1P) in 50-Hz magnetic field (MF)-induced cell proliferation were investigated. Results showed that exposure of human amniotic (FL) cells to a 50-Hz MF with an intensity of 0.4 mT significantly enhanced ceramide metabolism, increased S1P production, activated extracellular signal regulated kinase 1/2 (ERK1/2), and promoted cell proliferation. All of these effects induced by MF exposure could be inhibited by SKI II, an inhibitor of sphingosine kinase (SphK). In addition, both the cell proliferative response and the ERK1/2 activation induced by MF exposure were blocked completely by U0126, a specific inhibitor of MEK (ERK kinases 1 and 2). Taken together, the findings in present study suggested that S1P mediated 50-Hz MF-induced cell proliferation via triggering ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Liping Qiu
- Department of Preventive Health Care, Jinhua Hospital of Zhejiang University, Jinhua, China.,Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangjing Chen
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yang
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Jiang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Kim KH, Son ED, Kim HJ, Lee SH, Bae IH, Lee TR. EGR3 Is a Late Epidermal Differentiation Regulator that Establishes the Skin-Specific Gene Network. J Invest Dermatol 2018; 139:615-625. [PMID: 30342896 DOI: 10.1016/j.jid.2018.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Late epidermal differentiation is a key step of skin barrier formation; however, the specific genetic factors that distinguish late differentiation from early differentiation remain unknown. Here, we demonstrated that EGR3 is highly expressed in the stratum granulosum, and that it contributes to late epidermal differentiation. However, its expression is lost under poorly differentiated conditions, such as parakeratosis-lesional skin. EGR3 mediated the regulation of genes located in the epidermal differentiation complex through activation of enhancers and induction of enhancer RNAs. We further identified 20 targets of EGR3 specific for late differentiation. Additionally, we discovered that EGR3- and EGR3-related genes exhibited high tissue specificity on the skin. Through weighted gene co-expression analysis, EGR3 was found to be related to the keratinocyte differentiation-related module as an important part of the skin-specific genetic network. These findings shed light on the transcriptional regulation of late epidermal differentiation, highlighting candidate targets for diseases related to disrupted differentiation.
Collapse
Affiliation(s)
- Kyu-Han Kim
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea.
| | - Eui Dong Son
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Hyoung-June Kim
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Sung Hoon Lee
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Il-Hong Bae
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Tae Ryong Lee
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea.
| |
Collapse
|
40
|
Nagahara Y, Kawakami K, Sikandan A, Yagi D, Nishikawa R, Shinomiya T. Sphingoid Base-Upregulated Caspase-14 Expression Involves MAPK. Biol Pharm Bull 2018; 41:743-748. [PMID: 29709911 DOI: 10.1248/bpb.b17-00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingolipids are putative intracellular signal mediators in cell differentiation, growth inhibition, and apoptosis. Especially, sphingoid base-backbones of sphingolipids (sphingosine, sphinganine, and phytosphingosine) and their metabolites N-acyl-sphingoid bases (ceramides) are highly bioactive. In skin, one of the caspases, caspase-14, is expressed predominantly in cornifying epithelia, and caspase-14 plays an important role in keratinocyte differentiation. As ceramides were surrounding lipids in the keratinocytes and ceramides stimulate keratinocyte differentiation, we therefore examined the upregulation of caspase-14 by various sphingoid bases and ceramide. Sphingosine, sphinganine, phytosphingosine, and C2-ceramide treatment at the doses not damaging cells significantly increased caspase-14 mRNA and protein expression in dose-dependent manner on human keratinocyte HaCaT cells. These results indicated that sphingoid bases and ceramide upregulated caspase-14 mRNA to increase intracellular caspase-14 protein level. We next examined the caspase-14 upregulation mechanism by sphingoid bases. We used the most effective sphingoid base, phytosphingosine, and revealed that specific inhibitors of the mitogen-activated protein kinase, p38 and c-jun N-terminal protein kinase (JNK), blocked caspase-14 expression. This indicates that phytosphingosine upregulation of caspase-14 is involved of p38 and JNK activation. Moreover, phytosphingosine induced caspase-14 upregulation in vivo, suggesting that sphingoid bases were involved in keratinocyte differentiation by affecting caspase-14.
Collapse
Affiliation(s)
- Yukitoshi Nagahara
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Kei Kawakami
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Abudubari Sikandan
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Daiki Yagi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Ryo Nishikawa
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Takahisa Shinomiya
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| |
Collapse
|
41
|
Abstract
The ichthyoses are a heterogeneous group of skin diseases characterized by localized or generalized scaling or both. Other common manifestations include palmoplantar keratoderma, erythroderma, recurrent infections, and hypohidrosis. Abnormal barrier function is a cardinal feature of the ichthyoses, which results in compensatory hyperproliferation and transepidermal water loss. Barrier function is maintained primarily by the stratum corneum, which is composed of cornified cells surrounded by a corneocyte lipid envelope and intercellular lipid layers. The lipid components are composed primarily of ceramides. Human genetics has advanced our understanding of the role of the epidermal lipid barrier, and a series of discoveries in animals and humans revealed mutations in novel genes causing disorders of keratinization. Recently, next-generation sequencing has further expanded our knowledge, identifying novel mutations that disrupt the ceramide pathway and result in disorders of keratinization. This review focuses on new findings in ichthyoses caused by mutations involving lipid synthesis or function or both.
Collapse
Affiliation(s)
- Theodore Zaki
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Keith Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Middleton RC, Rogers RG, De Couto G, Tseliou E, Luther K, Holewinski R, Soetkamp D, Van Eyk JE, Antes TJ, Marbán E. Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes. J Extracell Vesicles 2018; 7:1456888. [PMID: 29696078 PMCID: PMC5912190 DOI: 10.1080/20013078.2018.1456888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 03/17/2018] [Indexed: 01/18/2023] Open
Abstract
Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100–150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey De Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eleni Tseliou
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristin Luther
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ronald Holewinski
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Travis J Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
43
|
Le Pogam P, Doué M, Le Page Y, Habauzit D, Zhadobov M, Sauleau R, Le Dréan Y, Rondeau D. Untargeted Metabolomics Reveal Lipid Alterations upon 2-Deoxyglucose Treatment in Human HaCaT Keratinocytes. J Proteome Res 2018; 17:1146-1157. [PMID: 29430917 DOI: 10.1021/acs.jproteome.7b00805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.
Collapse
Affiliation(s)
- Pierre Le Pogam
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Mickael Doué
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yann Le Page
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - Denis Habauzit
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - Maxim Zhadobov
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Ronan Sauleau
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yves Le Dréan
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - David Rondeau
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France.,Département de Chimie, Université de Bretagne Occidentale , 6 avenue Victor Le Gorgeu, 29238 Brest Cedex, France
| |
Collapse
|
44
|
Cheng SS, Chang YL, Fei WM, Zhai WF, Cheng H, Yang S, Zhang XJ. Noninvasive quantitative analysis of ceramide in skin of healthy Chinese population. Skin Res Technol 2018; 24:479-484. [PMID: 29427391 DOI: 10.1111/srt.12457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The objective of this study was to make noninvasive quantitative analysis of ceramide (CER) in skin of healthy Chinese population by high performance liquid chromatography tandem mass spectrometry. METHODS Seven healthy subjects were selected and the stratified skin samples were available using cyanoacrylate adhesion method. High performance liquid chromatography tandem mass spectrometry, use ceramide Subclass Standard C42H85NO3 Quantification of the 12 corresponding ceramide subclass in the epidermis on the 7 skin samples, which cannot get all the standard of ceramides subclass since the stratum corneum ceramide is complex and diverse. Data were collected and analyzed using full-flow lipid analysis software (LipidSearch). RESULTS All the seven skin samples contained 12 subclasses of ceramide and the samples were quantitated with ceramide C42H85NO3 standard. The average contents were 33.63, 27.59, 108.57, 220.75, 149.20, 43.06, and 22.78 μg/mL, respectively. CONCLUSION Ceramide is an important lipid in the epidermis and is closely related to the skin barrier function. There are 12 subtypes of ceramide detected in the skin of Chinese healthy people, and there is a difference in the concentration between individuals. The difference may be associated with the skin barrier condition, and may also be related to the unavoidable error in the process of sampling, treatment, and detection.
Collapse
Affiliation(s)
- S-S Cheng
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Y-L Chang
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - W-M Fei
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - W-F Zhai
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - H Cheng
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - S Yang
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - X-J Zhang
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
45
|
Fatty acids and related lipid mediators in the regulation of cutaneous inflammation. Biochem Soc Trans 2018; 46:119-129. [PMID: 29330355 DOI: 10.1042/bst20160469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and N-acyl ethanolamines. Cross-communication between these families of bioactive lipids suggests that their cutaneous activities should be considered as part of a wider metabolic network that can be targeted to maintain skin health, control inflammation and improve skin pathologies.
Collapse
|
46
|
Jia Y, Gan Y, He C, Chen Z, Zhou C. The mechanism of skin lipids influencing skin status. J Dermatol Sci 2017; 89:112-119. [PMID: 29174114 DOI: 10.1016/j.jdermsci.2017.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
Skin lipids, compose of sebocyte-, keratinocyte-, and microbe- derived lipids, dramatically influence skin status by different mechanisms. (I) Physical chemistry function: They are "mortar" to establish the physico-chemical barrier function of skin; (II) Biochemistry function: They function as signals in the complex signaling network originating at the epidermal level; (III) Microecology function: Sebocyte- and keratinocyte-derived lipids vary the composition of microbial skin flora, and microorganisms metabolize them to produce lipids as signal starting signaling transduction. Importantly, further research needs lipidiomics, more powerful analytical ability and high-throughput manner, to identify skin lipid components into individual species. The validation of lipid structure and function to research the process that lipid species involved in. Additional, the integration of lipidomics data with other omics strategies can develop the power to study the mechanism of skin lipids influencing skin status.
Collapse
Affiliation(s)
- Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China.
| | - Yao Gan
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Zhou Chen
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Cheng Zhou
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
47
|
The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18081814. [PMID: 28829355 PMCID: PMC5578200 DOI: 10.3390/ijms18081814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.
Collapse
|
48
|
Doroudgar M, Lafleur M. Ceramide-C16 Is a Versatile Modulator of Phosphatidylethanolamine Polymorphism. Biophys J 2017; 112:2357-2366. [PMID: 28591608 DOI: 10.1016/j.bpj.2017.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022] Open
Abstract
Ceramide-C16 (CerC16) is a sphingolipid associated with several diseases like diabetes, obesity, Parkinson disease, and certain types of cancers. As a consequence, research efforts are devoted to identify the impact of CerC16 on the behavior of membranes, and to understand how it is involved in these diseases. In this work, we investigated the impacts of CerC16 (up to 20 mol %) on the lipid polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), using differential scanning calorimetry, and sequential 2H and 31P solid-state nuclear magnetic resonance spectroscopy. A partial phase diagram is proposed. The results indicate that the presence of CerC16 leads to an upshift of the temperature of the gel-to-liquid crystalline (Lβ - Lα) phase transition, leading to a large Lβ/Lα phase coexistence region where gel-phase domains contain ∼35 mol % CerC16. It also leads to a downshift of the temperature of the lamellar-to-inverted hexagonal (L - HII) phase transition of POPE. The opposite influence on the two-phase transitions of POPE brings a three-phase coexistence line when the two transitions overlap. The resulting HII phase can be ceramide enriched, coexisting with a Lα phase, or ceramide depleted, coexisting with a Lβ phase, depending on the CerC16 proportions. The uncommon capability of CerC16 to modulate the membrane fluidity, its curvature propensity, and the membrane interface properties highlights its potential as a versatile messenger in cell membrane events.
Collapse
Affiliation(s)
- Mahmoudreza Doroudgar
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada.
| |
Collapse
|
49
|
Takeichi T, Torrelo A, Lee JYW, Ohno Y, Lozano ML, Kihara A, Liu L, Yasuda Y, Ishikawa J, Murase T, Rodrigo AB, Fernández-Crehuet P, Toi Y, Mellerio J, Rivera J, Vicente V, Kelsell DP, Nishimura Y, Okuno Y, Kojima D, Ogawa Y, Sugiura K, Simpson MA, McLean WHI, Akiyama M, McGrath JA. Biallelic Mutations in KDSR Disrupt Ceramide Synthesis and Result in a Spectrum of Keratinization Disorders Associated with Thrombocytopenia. J Invest Dermatol 2017; 137:2344-2353. [PMID: 28774589 PMCID: PMC5646945 DOI: 10.1016/j.jid.2017.06.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Mutations in ceramide biosynthesis pathways have been implicated in a few Mendelian disorders of keratinization, although ceramides are known to have key roles in several biological processes in skin and other tissues. Using whole-exome sequencing in four probands with undiagnosed skin hyperkeratosis/ichthyosis, we identified compound heterozygosity for mutations in KDSR, encoding an enzyme in the de novo synthesis pathway of ceramides. Two individuals had hyperkeratosis confined to palms, soles, and anogenital skin, whereas the other two had more severe, generalized harlequin ichthyosis-like skin. Thrombocytopenia was present in all patients. The mutations in KDSR were associated with reduced ceramide levels in skin and impaired platelet function. KDSR enzymatic activity was variably reduced in all patients, resulting in defective acylceramide synthesis. Mutations in KDSR have recently been reported in inherited recessive forms of progressive symmetric erythrokeratoderma, but our study shows that biallelic mutations in KDSR are implicated in an extended spectrum of disorders of keratinization in which thrombocytopenia is also part of the phenotype. Mutations in KDSR cause defective ceramide biosynthesis, underscoring the importance of ceramide and sphingosine synthesis pathways in skin and platelet biology.
Collapse
Affiliation(s)
- Takuya Takeichi
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK; Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil del Niño Jesús, Madrid, Spain
| | - John Y W Lee
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - María Luisa Lozano
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Lu Liu
- Viapath, St. Thomas' Hospital, London, UK
| | - Yuka Yasuda
- Analytical Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Junko Ishikawa
- Biological Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Takatoshi Murase
- Biological Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Ana Belén Rodrigo
- Department of Dermatology, Hospital Sierra de Segura, Puente de Génave, Jaén, Spain
| | | | - Yoichiro Toi
- Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Jemima Mellerio
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK; Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - José Rivera
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Vicente
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - David P Kelsell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts, London, UK; London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Yutaka Nishimura
- Department of General Perinatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiei Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasushi Ogawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, School of Medicine, Guy's Hospital, London, UK
| | - W H Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee, UK
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK; Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
50
|
Boyden LM, Vincent NG, Zhou J, Hu R, Craiglow BG, Bayliss SJ, Rosman IS, Lucky AW, Diaz LA, Goldsmith LA, Paller AS, Lifton RP, Baserga SJ, Choate KA. Mutations in KDSR Cause Recessive Progressive Symmetric Erythrokeratoderma. Am J Hum Genet 2017; 100:978-984. [PMID: 28575652 DOI: 10.1016/j.ajhg.2017.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/08/2017] [Indexed: 11/18/2022] Open
Abstract
The discovery of new genetic determinants of inherited skin disorders has been instrumental to the understanding of epidermal function, differentiation, and renewal. Here, we show that mutations in KDSR (3-ketodihydrosphingosine reductase), encoding an enzyme in the ceramide synthesis pathway, lead to a previously undescribed recessive Mendelian disorder in the progressive symmetric erythrokeratoderma spectrum. This disorder is characterized by severe lesions of thick scaly skin on the face and genitals and thickened, red, and scaly skin on the hands and feet. Although exome sequencing revealed several of the KDSR mutations, we employed genome sequencing to discover a pathogenic 346 kb inversion in multiple probands, and cDNA sequencing and a splicing assay established that two mutations, including a recurrent silent third base change, cause exon skipping. Immunohistochemistry and yeast complementation studies demonstrated that the mutations cause defects in KDSR function. Systemic isotretinoin therapy has achieved nearly complete resolution in the two probands in whom it has been applied, consistent with the effects of retinoic acid on alternative pathways for ceramide generation.
Collapse
Affiliation(s)
- Lynn M Boyden
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicholas G Vincent
- Department of Microbiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jing Zhou
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ronghua Hu
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brittany G Craiglow
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan J Bayliss
- Division of Dermatology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ilana S Rosman
- Division of Dermatology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anne W Lucky
- Dermatologists of Southwest Ohio, Cincinnatti, OH 45247, USA
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina School of Medicine, Chapel Hill, NC 27516, USA
| | - Lowell A Goldsmith
- Department of Dermatology, University of North Carolina School of Medicine, Chapel Hill, NC 27516, USA
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Keith A Choate
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|