1
|
Hashimi H, Gahura O, Pánek T. Bringing together but staying apart: decisive differences in animal and fungal mitochondrial inner membrane fusion. Biol Rev Camb Philos Soc 2024. [PMID: 39557625 DOI: 10.1111/brv.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Mitochondria are dynamic and plastic, undergoing continuous fission and fusion and rearrangement of their bioenergetic sub-compartments called cristae. These fascinating processes are best understood in animal and fungal models, which are taxonomically grouped together in the expansive Opisthokonta supergroup. In opisthokonts, crista remodelling and inner membrane fusion are linked by dynamin-related proteins (DRPs). Animal Opa1 (optical atrophy 1) and fungal Mgm1 (mitochondrial genome maintenance 1) are tacitly considered orthologs because their similar mitochondria-shaping roles are mediated by seemingly shared biochemical properties, and due to their presence in the two major opisthokontan subdivisions, Holozoa and Holomycota, respectively. However, molecular phylogenetics challenges this notion, suggesting that Opa1 and Mgm1 likely had separate, albeit convergent, evolutionary paths. Herein, we illuminate disparities in proteolytic processing, structure, and interaction network that may have bestowed on Opa1 and Mgm1 distinct mechanisms of membrane remodelling. A key disparity is that, unlike Mgm1, Opa1 directly recruits the mitochondrial phospholipid cardiolipin to remodel membranes. The differences outlined herein between the two DRPs could have broader impacts on mitochondrial morphogenesis. Outer and inner membrane fusion are autonomous in animals, which may have freed Opa1 to repurpose its intrinsic activity to remodel cristae, thereby regulating the formation of respiratory chain supercomplexes. More significantly, Opa1-mediated crista remodelling has emerged as an integral part of cytochrome c-regulated apoptosis in vertebrates, and perhaps in the cenancestor of animals. By contrast, outer and inner membrane fusion are coupled in budding yeast. Consequently, Mgm1 membrane-fusion activity is inextricable from its role in the biogenesis of fungal lamellar cristae. These disparate mitochondrial DRPs ultimately may have contributed to the different modes of multicellularity that have evolved within Opisthokonta.
Collapse
Affiliation(s)
- Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czechia
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czechia
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czechia
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czechia
| |
Collapse
|
2
|
Talarmin-Gas C, Smolyakov G, Parisi C, Scandola C, Andrianasolonirina V, Lecoq C, Houtart V, Lee SH, Adle-Biassette H, Thiébot B, Ganderton T, Manivet P. Validation of metaxin-2 deficient C. elegans as a model for MandibuloAcral Dysplasia associated to mtx-2 (MADaM) syndrome. Commun Biol 2024; 7:1398. [PMID: 39462037 PMCID: PMC11513083 DOI: 10.1038/s42003-024-06967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
MandibuloAcral Dysplasia associated to MTX2 gene (MADaM) is a recently described progeroid syndrome (accelerated aging disease) whose clinical manifestations include skin abnormalities, growth retardation, and cardiovascular diseases. We previously proposed that mtx-2-deficient C. elegans could be used as a model for MADaM and to support this, we present here our comprehensive phenotypic characterization of these worms using atomic force microscopy (AFM), transcriptomic, and oxygen consumption rate analyses. AFM analysis showed that young mtx-2-less worms had a significantly rougher, less elastic cuticle which becomes significantly rougher and less elastic as they age, and abnormal mitochondrial morphology. mtx-2 C. elegans displayed slightly delayed development, decreased pharyngeal pumping, significantly reduced mitochondrial respiratory capacities, and transcriptomic analysis identified perturbations in the aging, TOR, and WNT-signaling pathways. The phenotypic characteristics of mtx-2 worms shown here are analogous to many of the human clinical presentations of MADaM and we believe this validates their use as a model which will allow us to uncover the molecular details of the disease and develop new therapeutics and treatments.
Collapse
Affiliation(s)
- Chloé Talarmin-Gas
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
| | - Georges Smolyakov
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cleo Parisi
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Unit, 75015, Paris, France
| | - Valérie Andrianasolonirina
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cloé Lecoq
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Valentine Houtart
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | | | - Homa Adle-Biassette
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
- AP-HP, DMU DREAM, Service d'Anatomocytopathologie, Hôpital Lariboisière, Paris, France
| | - Bénédicte Thiébot
- CY Cergy Paris Université, Université d'Evry, Université Paris-Saclay, CNRS, LAMBE, F-95000, Cergy, France
| | - Timothy Ganderton
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Philippe Manivet
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
- CeleScreen SAS, Paris, France.
| |
Collapse
|
3
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Speijer D. How mitochondrial cristae illuminate the important role of oxygen during eukaryogenesis. Bioessays 2024; 46:e2300193. [PMID: 38449346 DOI: 10.1002/bies.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, Yin T, Kim J, Becker LB, Hayashida K. Organ-Specific Mitochondrial Alterations Following Ischemia-Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:477. [PMID: 38672748 PMCID: PMC11050834 DOI: 10.3390/life14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.
Collapse
Affiliation(s)
- Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
7
|
Mavuduru VA, Vadupu L, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial phospholipid transport: Role of contact sites and lipid transport proteins. Prog Lipid Res 2024; 94:101268. [PMID: 38195013 DOI: 10.1016/j.plipres.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
One of the major constituents of mitochondrial membranes is the phospholipids, which play a key role in maintaining the structure and the functions of the mitochondria. However, mitochondria do not synthesize most of the phospholipids in situ, necessitating the presence of phospholipid import pathways. Even for the phospholipids, which are synthesized within the inner mitochondrial membrane (IMM), the phospholipid precursors must be imported from outside the mitochondria. Therefore, the mitochondria heavily rely on the phospholipid transport pathways for its proper functioning. Since, mitochondria are not part of a vesicular trafficking network, the molecular mechanisms of how mitochondria receive its phospholipids remain a relevant question. One of the major ways that hydrophobic phospholipids can cross the aqueous barrier of inter or intraorganellar spaces is by apposing membranes, thereby decreasing the distance of transport, or by being sequestered by lipid transport proteins (LTPs). Therefore, with the discovery of LTPs and membrane contact sites (MCSs), we are beginning to understand the molecular mechanisms of phospholipid transport pathways in the mitochondria. In this review, we will present a brief overview of the recent findings on the molecular architecture and the importance of the MCSs, both the intraorganellar and interorganellar contact sites, in facilitating the mitochondrial phospholipid transport. In addition, we will also discuss the role of LTPs for trafficking phospholipids through the intermembrane space (IMS) of the mitochondria. Mechanistic insights into different phospholipid transport pathways of mitochondria could be exploited to vary the composition of membrane phospholipids and gain a better understanding of their precise role in membrane homeostasis and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Vijay Aditya Mavuduru
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Lavanya Vadupu
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore; Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, 59 Nanyang Drive, 636921, Singapore; Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17176, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore; Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, 59 Nanyang Drive, 636921, Singapore.
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India.
| |
Collapse
|
8
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
9
|
Shin G, Hyun S, Kim D, Choi Y, Kim KH, Kim D, Kwon S, Kim YS, Yang SH, Yu J. Cyclohexylalanine-Containing α-Helical Amphipathic Peptide Targets Cardiolipin, Rescuing Mitochondrial Dysfunction in Kidney Injury. J Med Chem 2024; 67:3385-3399. [PMID: 38112308 PMCID: PMC10945481 DOI: 10.1021/acs.jmedchem.3c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Mitochondrial dysfunction is linked to degenerative diseases, resulting from cardiolipin (CL)-induced disruption of cristae structure in the inner mitochondrial membrane (IMM); therefore, preserving cristae and preventing CL remodeling offer effective strategies to maintain mitochondrial function. To identify reactive oxygen species (ROS)-blocking agents against mitochondrial dysfunction, a library of cyclohexylamine-containing cell-penetrating α-helical amphipathic "bundle" peptides were screened. Among these, CMP3013 is selectively bound to abnormal mitochondria, preserving the cristae structure impaired by mitochondria-damaging agents. With a stronger affinity for CL compared with other IMM lipid components, CMP3013 exhibited high selectivity. Consequently, it protected cristae, reduced ROS production, and enhanced adenosine triphosphate (ATP) generation. In mouse models of acute kidney injury, a 1 mg/kg dose of CMP3013 demonstrated remarkable efficacy, highlighting its potential as a therapeutic agent for mitochondrial dysfunction-related disorders. Overall, CMP3013 represents a promising agent for mitigating mitochondrial dysfunction and associated diseases.
Collapse
Affiliation(s)
- Gwangsu Shin
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
| | - Soonsil Hyun
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
| | - Dongwoo Kim
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
| | | | - Kyu Hong Kim
- Department
of Biomedical Sciences, Seoul National University
Graduate School, Seoul 03080, Korea
| | - Dongmin Kim
- CAMP
Therapeutics Co., Ltd., Seoul 08826, Korea
| | - Soie Kwon
- Department
of Internal Medicine, Seoul National University
Hospital, Seoul 03080, Korea
| | - Yon Su Kim
- Department
of Internal Medicine, Seoul National University
Hospital, Seoul 03080, Korea
- Kidney
Research Institute, Seoul National University, Seoul 03080, Korea
- Biomedical
Research Institute, Seoul National University
Hospital, Seoul 03080, Republic of Korea
| | - Seung Hee Yang
- Kidney
Research Institute, Seoul National University, Seoul 03080, Korea
- Biomedical
Research Institute, Seoul National University
Hospital, Seoul 03080, Republic of Korea
| | - Jaehoon Yu
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
- CAMP
Therapeutics Co., Ltd., Seoul 08826, Korea
| |
Collapse
|
10
|
Caron C, Bertolin G. Cristae shaping and dynamics in mitochondrial function. J Cell Sci 2024; 137:jcs260986. [PMID: 38197774 DOI: 10.1242/jcs.260986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.
Collapse
Affiliation(s)
- Claire Caron
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | - Giulia Bertolin
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
11
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
12
|
Sun S, Zheng Z, Wang J, Li F, He A, Lai K, Zhang S, Lu JH, Tian R, Tan CSH. Improved in situ characterization of protein complex dynamics at scale with thermal proximity co-aggregation. Nat Commun 2023; 14:7697. [PMID: 38001062 PMCID: PMC10673876 DOI: 10.1038/s41467-023-43526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular activities are carried out vastly by protein complexes but large repertoire of protein complexes remains functionally uncharacterized which necessitate new strategies to delineate their roles in various cellular processes and diseases. Thermal proximity co-aggregation (TPCA) is readily deployable to characterize protein complex dynamics in situ and at scale. We develop a version termed Slim-TPCA that uses fewer temperatures increasing throughputs by over 3X, with new scoring metrics and statistical evaluation that result in minimal compromise in coverage and detect more relevant complexes. Less samples are needed, batch effects are minimized while statistical evaluation cost is reduced by two orders of magnitude. We applied Slim-TPCA to profile K562 cells under different duration of glucose deprivation. More protein complexes are found dissociated, in accordance with the expected downregulation of most cellular activities, that include 55S ribosome and respiratory complexes in mitochondria revealing the utility of TPCA to study protein complexes in organelles. Protein complexes in protein transport and degradation are found increasingly assembled unveiling their involvement in metabolic reprogramming during glucose deprivation. In summary, Slim-TPCA is an efficient strategy for characterization of protein complexes at scale across cellular conditions, and is available as Python package at https://pypi.org/project/Slim-TPCA/ .
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhenxiang Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fengming Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kunjia Lai
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuang Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chris Soon Heng Tan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Anishkin A, Adepu KK, Bhandari D, Adams SH, Chintapalli SV. Computational Analysis Reveals Unique Binding Patterns of Oxygenated and Deoxygenated Myoglobin to the Outer Mitochondrial Membrane. Biomolecules 2023; 13:1138. [PMID: 37509174 PMCID: PMC10377724 DOI: 10.3390/biom13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Myoglobin (Mb) interaction with the outer mitochondrial membrane (OMM) promotes oxygen (O2) release. However, comprehensive molecular details on specific contact regions of the OMM with oxygenated (oxy-) and deoxygenated (deoxy-)Mb are missing. We used molecular dynamics (MD) simulations to explore the interaction of oxy- and deoxy-Mb with the membrane lipids of the OMM in two lipid compositions: (a) a typical whole membrane on average, and (b) specifically the cardiolipin-enriched cristae region (contact site). Unrestrained relaxations showed that on average, both the oxy- and deoxy-Mb established more stable contacts with the lipids typical of the cristae contact site, then with those of the average OMM. However, in steered detachment simulations, deoxy-Mb clung more tightly to the average OMM, and oxy-Mb strongly preferred the contact sites of the OMM. The MD simulation analysis further indicated that a non-specific binding, mediated by local electrostatic interactions, existed between charged or polar groups of Mb and the membrane, for stable interaction. To the best of our knowledge, this is the first computational study providing the molecular details of the direct Mb-mitochondria interaction that assisted in distinguishing the preferred localization of oxy- and deoxy-Mb on the OMM. Our findings support the existing experimental evidence on Mb-mitochondrial association and shed more insights on Mb-mediated O2 transport for cellular bioenergetics.
Collapse
Affiliation(s)
- Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kiran Kumar Adepu
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95616, USA
- Center for Alimentary and Metabolic Science, University of California Davis, Sacramento, CA 95616, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Miallot R, Millet V, Groult Y, Modelska A, Crescence L, Roulland S, Henri S, Malissen B, Brouilly N, Panicot-Dubois L, Vincentelli R, Sulzenbacher G, Finetti P, Dutour A, Blay JY, Bertucci F, Galland F, Naquet P. An OMA1 redox site controls mitochondrial homeostasis, sarcoma growth, and immunogenicity. Life Sci Alliance 2023; 6:e202201767. [PMID: 37024121 PMCID: PMC10078952 DOI: 10.26508/lsa.202201767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.
Collapse
Affiliation(s)
- Richard Miallot
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Virginie Millet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Yann Groult
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Angelika Modelska
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Sandrine Roulland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sandrine Henri
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Renaud Vincentelli
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Gerlind Sulzenbacher
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Aurélie Dutour
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
| | - Jean-Yves Blay
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
- Department of Medicine, Centre Léon Bérard, UNICANCER & University Lyon I, Lyon, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Franck Galland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Naquet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
15
|
Barad BA, Medina M, Fuentes D, Wiseman RL, Grotjahn DA. Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline. J Cell Biol 2023; 222:e202204093. [PMID: 36786771 PMCID: PMC9960335 DOI: 10.1083/jcb.202204093] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michaela Medina
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Fuentes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
16
|
Chua JJE. HEBP1 - An early trigger for neuronal cell death and circuit dysfunction in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:102-110. [PMID: 35842370 DOI: 10.1016/j.semcdb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that gradually impairs memory, cognition and the ability to perform simple daily tasks. It is the most prevalent form of dementia in the elderly and its incidence increases exponentially with age. Neuronal and synapse loss, key hallmarks of the disorder, are widely regarded to occur early during the onset of AD, and the extent of this loss closely correlates with the progression of cognitive decline and dysfunction of the underlying neuronal circuity. Nevertheless, the mechanisms driving neuronal and synapse loss during early AD remains poorly understood. This review focuses on Heme-binding protein 1 (HEBP1), a mitochondrial-associated protein that has recently emerged as an important mediator of neuronal cell death during early AD pathogenesis. Acting downstream of Aβ and heme, HEBP1-mediated apoptosis contributes to neuronal loss and neuronal circuit dysfunction. Deleting HEBP1 expression in neurons protects them from heme- and Aβ-induced apoptosis, both of which are mechanisms implicated in neurodegeneration. HEBP1 participates in heme metabolism and binds to heme to modulate mitochondrial dynamics vital to the maintenance of neural circuitry that is affected in AD. HEBP1 elevation is also associated with AGE/RAGE-related neuronal damage, further implicating its involvement in neuronal loss during early AD. Moreover, F2L, a cleavage product of HEBP1 modulates inflammation. Collectively, these findings highlight the importance of HEBP1 in the disruption of neural circuits during early AD.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore.
| |
Collapse
|
17
|
Muñoz-Gómez SA, Cadena LR, Gardiner AT, Leger MM, Sheikh S, Connell LB, Bilý T, Kopejtka K, Beatty JT, Koblížek M, Roger AJ, Slamovits CH, Lukeš J, Hashimi H. Intracytoplasmic-membrane development in alphaproteobacteria involves the homolog of the mitochondrial crista-developing protein Mic60. Curr Biol 2023; 33:1099-1111.e6. [PMID: 36921606 DOI: 10.1016/j.cub.2023.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Lawrence Rudy Cadena
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Alastair T Gardiner
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Michelle M Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003 Catalonia, Spain
| | - Shaghayegh Sheikh
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Louise B Connell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tomáš Bilý
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Karel Kopejtka
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Claudio H Slamovits
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
18
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
19
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 2022; 40:111364. [PMID: 36130504 DOI: 10.1016/j.celrep.2022.111364] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.
Collapse
|
21
|
Purohit G, Viana MP, Khalimonchuk O. Protocol for engineering and validating a synthetic mitochondrial intermembrane bridge in mammalian cells. STAR Protoc 2022; 3:101454. [PMID: 35719722 PMCID: PMC9204730 DOI: 10.1016/j.xpro.2022.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane contact sites are recognized as critical means of intercompartmental communication. Here, we describe a protocol for engineering and validating a synthetic bridge between the inner and outer mitochondrial membranes to support functioning of the endogenous mitochondrial contact site and cristae organizing system (MICOS). A chimeric protein, MitoT, is stably expressed in cultured mammalian cells to bridge the mitochondrial membranes. This approach can be a valuable tool to study the function of the MICOS complex and associated proteins. For complete details on the use and execution of this protocol, please refer to Viana et al. (2021).
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA,Corresponding author
| | | | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA,Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68503, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA,Corresponding author
| |
Collapse
|
22
|
Warnsmann V, Marschall LM, Meeßen AC, Wolters M, Schürmanns L, Basoglu M, Eimer S, Osiewacz HD. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina. J Cell Biochem 2022; 123:1306-1326. [PMID: 35616269 DOI: 10.1002/jcb.30278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lisa-Marie Marschall
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Anja C Meeßen
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Maike Wolters
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lea Schürmanns
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Marion Basoglu
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Stefan Eimer
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| |
Collapse
|
23
|
CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology. Cells 2022; 11:cells11071175. [PMID: 35406738 PMCID: PMC8997538 DOI: 10.3390/cells11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
CARD19 is a mitochondrial protein of unknown function. While CARD19 was originally reported to regulate TCR-dependent NF-κB activation via interaction with BCL10, this function is not recapitulated ex vivo in primary murine CD8+ T cells. Here, we employ a combination of SIM, TEM, and confocal microscopy, along with proteinase K protection assays and proteomics approaches, to identify interacting partners of CARD19 in macrophages. Our data show that CARD19 is specifically localized to the outer mitochondrial membrane. Through deletion of functional domains, we demonstrate that both the distal C-terminus and transmembrane domain are required for mitochondrial targeting, whereas the CARD is not. Importantly, mass spectrometry analysis of 3×Myc-CARD19 immunoprecipitates reveals that CARD19 interacts with the components of the mitochondrial intermembrane bridge (MIB), consisting of mitochondrial contact site and cristae organizing system (MICOS) components MIC19, MIC25, and MIC60, and MICOS-interacting proteins SAMM50 and MTX2. These CARD19 interactions are in part dependent on a properly folded CARD. Consistent with previously reported phenotypes upon siRNA silencing of MICOS subunits, absence of CARD19 correlates with irregular cristae morphology. Based on these data, we propose that CARD19 is a previously unknown interacting partner of the MIB and the MIC19–MIC25–MIC60 MICOS subcomplex that regulates cristae morphology.
Collapse
|
24
|
Mechanistic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship. Metabolites 2022; 12:metabo12030233. [PMID: 35323676 PMCID: PMC8951432 DOI: 10.3390/metabo12030233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of the upper and lower motor neurons. Despite the increasing effort in understanding the etiopathology of ALS, it still remains an obscure disease, and no therapies are currently available to halt its progression. Following the discovery of the first gene associated with familial forms of ALS, Cu–Zn superoxide dismutase, it appeared evident that mitochondria were key elements in the onset of the pathology. However, as more and more ALS-related genes were discovered, the attention shifted from mitochondria impairment to other biological functions such as protein aggregation and RNA metabolism. In recent years, mitochondria have again earned central, mechanistic roles in the pathology, due to accumulating evidence of their derangement in ALS animal models and patients, often resulting in the dysregulation of the energetic metabolism. In this review, we first provide an update of the last lustrum on the molecular mechanisms by which the most well-known ALS-related proteins affect mitochondrial functions and cellular bioenergetics. Next, we focus on evidence gathered from human specimens and advance the concept of a cellular-specific mitochondrial “metabolic threshold”, which may appear pivotal in ALS pathogenesis.
Collapse
|
25
|
Xu P, Wang L, Peng H, Liu H, Liu H, Yuan Q, Lin Y, Xu J, Pang X, Wu H, Yang T. Disruption of Hars2 in Cochlear Hair Cells Causes Progressive Mitochondrial Dysfunction and Hearing Loss in Mice. Front Cell Neurosci 2022; 15:804345. [PMID: 34975414 PMCID: PMC8715924 DOI: 10.3389/fncel.2021.804345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qingyue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiuhong Pang
- Department of Otolaryngology-Head and Neck Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
26
|
Rampelt H, Wollweber F, Licheva M, de Boer R, Perschil I, Steidle L, Becker T, Bohnert M, van der Klei I, Kraft C, van der Laan M, Pfanner N. Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Rep 2022; 38:110290. [PMID: 35081352 PMCID: PMC8810396 DOI: 10.1016/j.celrep.2021.110290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth. Dual role of Mic10 of mitochondrial contact site and cristae organizing system (MICOS) Mic10 binds to mitochondrial ATP synthase and stabilizes higher order assemblies Oligomerization of Mic10 is required for its function in MICOS, not at ATP synthase Mic10 binding to ATP synthase supports metabolic adaptation and respiratory growth
Collapse
Affiliation(s)
- Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Florian Wollweber
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 Groningen, the Netherlands
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Liesa Steidle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, Cells in Motion Interfaculty Centre (CiM), University of Münster, 48149 Münster, Germany
| | - Ida van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 Groningen, the Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany.
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
27
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
28
|
Iovine JC, Claypool SM, Alder NN. Mitochondrial compartmentalization: emerging themes in structure and function. Trends Biochem Sci 2021; 46:902-917. [PMID: 34244035 PMCID: PMC11008732 DOI: 10.1016/j.tibs.2021.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.
Collapse
Affiliation(s)
- Joseph C Iovine
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
29
|
Wang JL, Zhang L, Gao LX, Chen JL, Zhou T, Liu Y, Jiang FL. A bright, red-emitting water-soluble BODIPY fluorophore as an alternative to the commercial Mito Tracker Red for high-resolution mitochondrial imaging. J Mater Chem B 2021; 9:8639-8645. [PMID: 34585188 DOI: 10.1039/d1tb01585k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the emergence and rapid development of super-resolution fluorescence microscopy, monitoring of mitochondrial morphological changes has aroused great interest for exploring the role of mitochondria in the process of cell metabolism. However, in the absence of water-soluble, photostable and low-toxicity fluorescent dyes, ultra-high-resolution mitochondrial imaging is still challenging. Herein, we designed two fluorescent BODIPY dyes, namely Mito-BDP 630 and Mito-BDP 760, for mitochondrial imaging. The results proved that Mito-BDP 760 underwent aggregation-caused quenching (ACQ) in the aqueous matrix owing to its hydrophobicity and was inaccessible to the cells, which restricted its applications in mitochondrial imaging. In stark contrast, water-soluble Mito-BDP 630 readily penetrated cellular and mitochondrial membranes for mitochondrial imaging with high dye densities under wash-free conditions as driven by membrane potential. As a comparison, Mito Tracker Red presented high photobleaching (the fluorescence intensity dropped by nearly 50%) and high phototoxicity after irradiation by a laser for 30 min. However, Mito-BDP 630 possessed excellent biocompatibility, photostability and chemical stability. Furthermore, clear and bright mitochondria distribution in living HeLa cells after incubation with Mito-BDP 630 could be observed by CLSM. Convincingly, the morphology and cristae of mitochondria could be visualized using an ultra-high-resolution microscope. In short, Mito-BDP 630 provided a powerful and convenient tool for monitoring mitochondrial morphologies in living cells. Given the facile synthesis, photobleaching resistance and low phototoxicity of Mito-BDP 630, it is an alternative to the commercial Mito Tracker Red.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Lu Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Lian-Xun Gao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Lei Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Te Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
30
|
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol 2021; 30:R575-R588. [PMID: 32428499 DOI: 10.1016/j.cub.2020.02.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cristae are infoldings of the mitochondrial inner membrane jutting into the organelle's innermost compartment from narrow stems at their base called crista junctions. They are emblematic of aerobic mitochondria, being the fabric for the molecular machinery driving cellular respiration. Electron microscopy revealed that diverse eukaryotes possess cristae of different shapes. Yet, crista diversity has not been systematically examined in light of our current knowledge about eukaryotic evolution. Since crista form and function are intricately linked, we take a holistic view of factors that may underlie both crista diversity and the adherence of cristae to a recognizable form. Based on electron micrographs of 226 species from all major lineages, we propose a rational crista classification system that postulates cristae as variations of two general morphotypes: flat and tubulo-vesicular. The latter is most prevalent and likely ancestral, but both morphotypes are found interspersed throughout the eukaryotic tree. In contrast, crista junctions are remarkably conserved, supporting their proposed role as diffusion barriers that sequester cristae contents. Since cardiolipin, ATP synthase dimers, the MICOS complex, and dynamin-like Opa1/Mgm1 are known to be involved in shaping cristae, we examined their variation in the context of crista diversity. Moreover, we have identified both commonalities and differences that may collectively be manifested as diverse variations of crista form and function.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
31
|
Chaudhuri M, Tripathi A, Gonzalez FS. Diverse Functions of Tim50, a Component of the Mitochondrial Inner Membrane Protein Translocase. Int J Mol Sci 2021; 22:7779. [PMID: 34360547 PMCID: PMC8346121 DOI: 10.3390/ijms22157779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are essential in eukaryotes. Besides producing 80% of total cellular ATP, mitochondria are involved in various cellular functions such as apoptosis, inflammation, innate immunity, stress tolerance, and Ca2+ homeostasis. Mitochondria are also the site for many critical metabolic pathways and are integrated into the signaling network to maintain cellular homeostasis under stress. Mitochondria require hundreds of proteins to perform all these functions. Since the mitochondrial genome only encodes a handful of proteins, most mitochondrial proteins are imported from the cytosol via receptor/translocase complexes on the mitochondrial outer and inner membranes known as TOMs and TIMs. Many of the subunits of these protein complexes are essential for cell survival in model yeast and other unicellular eukaryotes. Defects in the mitochondrial import machineries are also associated with various metabolic, developmental, and neurodegenerative disorders in multicellular organisms. In addition to their canonical functions, these protein translocases also help maintain mitochondrial structure and dynamics, lipid metabolism, and stress response. This review focuses on the role of Tim50, the receptor component of one of the TIM complexes, in different cellular functions, with an emphasis on the Tim50 homologue in parasitic protozoan Trypanosoma brucei.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (A.T.); (F.S.G.)
| | | | | |
Collapse
|
32
|
Nahacka Z, Zobalova R, Dubisova M, Rohlena J, Neuzil J. Miro proteins connect mitochondrial function and intercellular transport. Crit Rev Biochem Mol Biol 2021; 56:401-425. [PMID: 34139898 DOI: 10.1080/10409238.2021.1925216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are organelles present in most eukaryotic cells, where they play major and multifaceted roles. The classical notion of the main mitochondrial function as the powerhouse of the cell per se has been complemented by recent discoveries pointing to mitochondria as organelles affecting a number of other auxiliary processes. They go beyond the classical energy provision via acting as a relay point of many catabolic and anabolic processes, to signaling pathways critically affecting cell growth by their implication in de novo pyrimidine synthesis. These additional roles further underscore the importance of mitochondrial homeostasis in various tissues, where its deregulation promotes a number of pathologies. While it has long been known that mitochondria can move within a cell to sites where they are needed, recent research has uncovered that mitochondria can also move between cells. While this intriguing field of research is only emerging, it is clear that mobilization of mitochondria requires a complex apparatus that critically involves mitochondrial proteins of the Miro family, whose role goes beyond the mitochondrial transfer, as will be covered in this review.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Australia
| |
Collapse
|
33
|
Cadena LR, Gahura O, Panicucci B, Zíková A, Hashimi H. Mitochondrial Contact Site and Cristae Organization System and F 1F O-ATP Synthase Crosstalk Is a Fundamental Property of Mitochondrial Cristae. mSphere 2021; 6:e0032721. [PMID: 34133204 PMCID: PMC8265648 DOI: 10.1128/msphere.00327-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
34
|
Rossi A, Rigotto G, Valente G, Giorgio V, Basso E, Filadi R, Pizzo P. Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Rep 2021; 30:2332-2348.e10. [PMID: 32075767 DOI: 10.1016/j.celrep.2020.01.060] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/04/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are key organelles for brain health. Mitochondrial alterations have been reported in several neurodegenerative disorders, including Alzheimer's disease (AD), and the comprehension of the underlying mechanisms appears crucial to understand their relationship with the pathology. Using multiple genetic, pharmacological, imaging, and biochemical approaches, we demonstrate that, in different familial AD cell models, mitochondrial ATP synthesis is affected. The defect depends on reduced mitochondrial pyruvate oxidation, due to both lower Ca2+-mediated stimulation of the Krebs cycle and dampened mitochondrial pyruvate uptake. Importantly, this latter event is linked to glycogen-synthase-kinase-3β (GSK-3β) hyper-activation, leading, in turn, to impaired recruitment of hexokinase 1 (HK1) to mitochondria, destabilization of mitochondrial-pyruvate-carrier (MPC) complexes, and decreased MPC2 protein levels. Remarkably, pharmacological GSK-3β inhibition in AD cells rescues MPC2 expression and improves mitochondrial ATP synthesis and respiration. The defective mitochondrial bioenergetics influences glutamate-induced neuronal excitotoxicity, thus representing a possible target for future therapeutic interventions.
Collapse
Affiliation(s)
- Alice Rossi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Giulia Rigotto
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Giulia Valente
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy.
| |
Collapse
|
35
|
Viana MP, Levytskyy RM, Anand R, Reichert AS, Khalimonchuk O. Protease OMA1 modulates mitochondrial bioenergetics and ultrastructure through dynamic association with MICOS complex. iScience 2021; 24:102119. [PMID: 33644718 PMCID: PMC7892988 DOI: 10.1016/j.isci.2021.102119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
Collapse
Affiliation(s)
| | - Roman M. Levytskyy
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE 68588, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
36
|
Povea-Cabello S, Villanueva-Paz M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Front Genet 2021; 11:610764. [PMID: 33510772 PMCID: PMC7835939 DOI: 10.3389/fgene.2020.610764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with several maternally inherited genetic diseases, with mitochondrial dysfunction as a main pathological feature. These diseases, although frequently multisystemic, mainly affect organs that require large amounts of energy such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining neuronal and muscle cell models, the development of induced pluripotent stem cells (iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a challenge to obtain an appropriate cellular model in order to find new therapeutic options for people suffering from these diseases. In this review, we deepen the knowledge in the current models for the most studied mt-tRNA mutation-caused mitochondrial diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their therapeutic management. In particular, we will discuss the development of a novel model for mitochondrial disease research that consists of induced neurons (iNs) generated by direct reprogramming of fibroblasts derived from patients suffering from MERRF syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling, since they could mimic patient’s neuron pathophysiology and give us the opportunity to correct the alterations in one of the most affected cellular types in these disorders.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga, Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
37
|
Sun S, Erchova I, Sengpiel F, Votruba M. Opa1 Deficiency Leads to Diminished Mitochondrial Bioenergetics With Compensatory Increased Mitochondrial Motility. Invest Ophthalmol Vis Sci 2021; 61:42. [PMID: 32561926 PMCID: PMC7415319 DOI: 10.1167/iovs.61.6.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Retinal ganglion cells (RGCs) are susceptible to mitochondrial deficits and also the major cell type affected in patients with mutations in the OPA1 gene in autosomal dominant optic atrophy (ADOA). Here, we characterized mitochondria in RGCs in vitro from a heterozygous B6; C3-Opa1Q285STOP (Opa1+/−) mouse model to investigate mitochondrial changes underlying the pathology in ADOA. Methods Mouse RGCs were purified from wild-type and Opa1+/− mouse retina by two-step immunopanning. The mitochondria in neurites of RGCs were labeled with MitoTracker Red for structure and motility measurement by time-lapse imaging. Mitochondrial bioenergetics were determined by the real-time measurement of oxygen consumption rate using a Seahorse XFe 96 Extracellular Flux Analyzer. Results We observed a significant decrease in mitochondrial length in Opa1+/− RGCs with a remarkably higher proportion and density of motile mitochondria along the neurites. We also observed an increased transport velocity with a higher number of contacts between mitochondria in Opa1+/− RGC neurites. The oxygen consumption assays showed a severe impairment in basal respiration, Adenosine triphosphate-linked (ATP-linked) oxygen consumption, as well as reserve respiratory capacity, in RGCs from Opa1+/− mouse retina. Conclusions Opa1 deficiency leads to significant fragmentation of mitochondrial morphology, activation of mitochondrial motility and impaired respiratory function in RGCs from the B6; C3-Opa1Q285STOP mouse model. This highlights the significant alterations in the intricate interplay between mitochondrial morphology, motility, and energy production in RGCs with Opa1 deficiency long before the onset of clinical symptoms of the pathology.
Collapse
|
38
|
Wang LJ, Hsu T, Lin HL, Fu CY. Drosophila MICOS knockdown impairs mitochondrial structure and function and promotes mitophagy in muscle tissue. Biol Open 2020; 9:bio054262. [PMID: 33268479 PMCID: PMC7725604 DOI: 10.1242/bio.054262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial contact site and cristae organizing system (MICOS) is a multi-protein interaction hub that helps define mitochondrial ultrastructure. While the functional importance of MICOS is mostly characterized in yeast and mammalian cells in culture, the contributions of MICOS to tissue homeostasis in vivo remain further elucidation. In this study, we examined how knocking down expression of Drosophila MICOS genes affects mitochondrial function and muscle tissue homeostasis. We found that CG5903/MIC26-MIC27 colocalizes and functions with Mitofilin/MIC60 and QIL1/MIC13 as a Drosophila MICOS component; knocking down expression of any of these three genes predictably altered mitochondrial morphology, causing loss of cristae junctions, and disruption of cristae packing. Furthermore, the knockdown flies exhibited low mitochondrial membrane potential, fusion/fission imbalances, increased mitophagy, and limited cell death. Reductions in climbing ability indicated deficits in muscle function. Knocking down MICOS genes also caused reduced mtDNA content and fragmented mitochondrial nucleoid structure in Drosophila Together, our data demonstrate an essential role of Drosophila MICOS in maintaining proper homeostasis of mitochondrial structure and function to promote the function of muscle tissue.
Collapse
Affiliation(s)
- Li-Jie Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Tian Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Ling Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Yu Fu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
39
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Hesgrove C, Boothby TC. The biology of tardigrade disordered proteins in extreme stress tolerance. Cell Commun Signal 2020; 18:178. [PMID: 33148259 PMCID: PMC7640644 DOI: 10.1186/s12964-020-00670-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Disordered proteins have long been known to help mediate tolerance to different abiotic stresses including freezing, osmotic stress, high temperatures, and desiccation in a diverse set of organisms. Recently, three novel families of intrinsically disordered proteins were identified in tardigrades, microscopic animals capable of surviving a battery of environmental extremes. These three families include the Cytoplasmic-, Secreted-, and Mitochondrial- Abundant Heat Soluble (CAHS, SAHS, and MAHS) proteins, which are collectively termed Tardigrade Disordered Proteins (TDPs). At the level of sequence conservation TDPs are unique to tardigrades, and beyond their high degree of disorder the CAHS, SAHS, and MAHS families do not resemble one another. All three families are either highly expressed constitutively, or significantly enriched in response to desiccation. In vivo, ex vivo, and in vitro experiments indicate functional roles for members of each TDP family in mitigating cellular perturbations induced by various abiotic stresses. What is currently lacking is a comprehensive and holistic understanding of the fundamental mechanisms by which TDPs function, and the properties of TDPs that allow them to function via those mechanisms. A quantitative and systematic approach is needed to identify precisely what cellular damage TDPs work to prevent, what sequence features are important for these functions, and how those sequence features contribute to the underlying mechanisms of protection. Such an approach will inform us not only about these fascinating proteins, but will also provide insights into how the sequence of a disordered protein can dictate its functional, structural, and dynamic properties. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Cherie Hesgrove
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
41
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
42
|
Lobo MJ, Reverte-Salisa L, Chao YC, Koschinski A, Gesellchen F, Subramaniam G, Jiang H, Pace S, Larcom N, Paolocci E, Pfeifer A, Zanivan S, Zaccolo M. Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Commun Biol 2020; 3:596. [PMID: 33087821 PMCID: PMC7578833 DOI: 10.1038/s42003-020-01311-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.
Collapse
Affiliation(s)
- Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Frank Gesellchen
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - He Jiang
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Samuel Pace
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Natasha Larcom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ester Paolocci
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology University of Bonn, Bonn, Germany
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Kondadi AK, Anand R, Reichert AS. Cristae Membrane Dynamics - A Paradigm Change. Trends Cell Biol 2020; 30:923-936. [PMID: 32978040 DOI: 10.1016/j.tcb.2020.08.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
Mitochondria are dynamic organelles that have essential metabolic and regulatory functions. Earlier studies using electron microscopy (EM) revealed an immense diversity in the architecture of cristae - infoldings of the mitochondrial inner membrane (IM) - in different cells, tissues, bioenergetic and metabolic conditions, and during apoptosis. However, cristae were considered to be largely static entities. Recently, advanced super-resolution techniques have revealed that cristae are independent bioenergetic units that are highly dynamic and remodel on a timescale of seconds. These advances, coupled with mechanistic and structural studies on key molecular players, such as the MICOS (mitochondrial contact site and cristae organizing system) complex and the dynamin-like GTPase OPA1, have changed our view on mitochondria in a fundamental way. We summarize these recent findings and discuss their functional implications.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
44
|
Li S, Wu Z, Li Y, Tantray I, De Stefani D, Mattarei A, Krishnan G, Gao FB, Vogel H, Lu B. Altered MICOS Morphology and Mitochondrial Ion Homeostasis Contribute to Poly(GR) Toxicity Associated with C9-ALS/FTD. Cell Rep 2020; 32:107989. [PMID: 32755582 PMCID: PMC7433775 DOI: 10.1016/j.celrep.2020.107989] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) manifests pathological changes in motor neurons and various other cell types. Compared to motor neurons, the contribution of the other cell types to the ALS phenotypes is understudied. G4C2 repeat expansion in C9ORF72 is the most common genetic cause of ALS along with frontotemporal dementia (C9-ALS/FTD), with increasing evidence supporting repeat-encoded poly(GR) in disease pathogenesis. Here, we show in Drosophila muscle that poly(GR) enters mitochondria and interacts with components of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), altering MICOS dynamics and intra-subunit interactions. This impairs mitochondrial inner membrane structure, ion homeostasis, mitochondrial metabolism, and muscle integrity. Similar mitochondrial defects are observed in patient fibroblasts. Genetic manipulation of MICOS components or pharmacological restoration of ion homeostasis with nigericin effectively rescue the mitochondrial pathology and disease phenotypes in both systems. These results implicate MICOS-regulated ion homeostasis in C9-ALS pathogenesis and suggest potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally,Present address: Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas TX 75275, USA
| | - Yu Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Gopinath Krishnan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Lead Contact,Correspondence:
| |
Collapse
|
45
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
Affiliation(s)
- Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Maija Dambrova
- Latvian Institute for Organic Synthesis Riga Latvia, Norwich, UK
| | - Fatiha Moukdar
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Hetal D Patel
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Grahame K Kidd
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
- Renovo Neural Inc, Cleveland, OH, USA
| | | | - Tristan B Raisch
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
- Virginia Tech Metabolism Core Virginia Tech, Blacksburg, VA, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Horten P, Colina-Tenorio L, Rampelt H. Biogenesis of Mitochondrial Metabolite Carriers. Biomolecules 2020; 10:E1008. [PMID: 32645990 PMCID: PMC7408425 DOI: 10.3390/biom10071008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022] Open
Abstract
: Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase.
Collapse
Affiliation(s)
- Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Lee JW. Protonic Capacitor: Elucidating the biological significance of mitochondrial cristae formation. Sci Rep 2020; 10:10304. [PMID: 32601276 PMCID: PMC7324581 DOI: 10.1038/s41598-020-66203-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/17/2020] [Indexed: 11/12/2022] Open
Abstract
For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for transmembrane-electrostatically localized proton energy storage; and 2) The geometric effect of a mitochondrial crista enhances the transmembrane-electrostatically localized proton density to the crista tip where the ATP synthase can readily utilize the localized proton density to drive ATP synthesis.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
49
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Nakamura S, Matsui A, Akabane S, Tamura Y, Hatano A, Miyano Y, Omote H, Kajikawa M, Maenaka K, Moriyama Y, Endo T, Oka T. The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Commun Biol 2020; 3:99. [PMID: 32139798 PMCID: PMC7058069 DOI: 10.1038/s42003-020-0832-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
LETM1 is a mitochondrial inner membrane protein that is required for maintaining the mitochondrial morphology and cristae structures, and regulates mitochondrial ion homeostasis. Here we report a role of LETM1 in the organization of cristae structures. We identified four amino acid residues of human LETM1 that are crucial for complementation of the growth deficiency caused by gene deletion of a yeast LETM1 orthologue. Substituting amino acid residues with alanine disrupts the correct assembly of a protein complex containing LETM1 and prevents changes in the mitochondrial morphology induced by exogenous LETM1 expression. Moreover, the LETM1 protein changes the shapes of the membranes of in vitro-reconstituted proteoliposomes, leading to the formation of invaginated membrane structures on artificial liposomes. LETM1 mutant proteins with alanine substitutions fail to facilitate the formation of invaginated membrane structures, suggesting that LETM1 plays a fundamental role in the organization of mitochondrial membrane morphology. Nakamura et al find that the mitochondrial protein LETM1 can directly modulate membrane structure in vitro and identify a conserved domain involved in modulating mitochondrial membrane morphology. This study enhances our understanding of how mitochondrial cristae are organised.
Collapse
Affiliation(s)
- Seiko Nakamura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Aiko Matsui
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Azumi Hatano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yuriko Miyano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Mizuho Kajikawa
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Kanagawa, 230-0045, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
| |
Collapse
|