1
|
Osawa S, Kato H, Kemmoku D, Yamaguchi S, Jiang L, Tsuchiya Y, Takakura H, Izawa T. Exercise training-driven exosomal miRNA-323-5p activity suppresses adipogenic conversion of 3T3-L1 cells via the DUSP3/ERK pathway. Biochem Biophys Res Commun 2024; 734:150447. [PMID: 39083976 DOI: 10.1016/j.bbrc.2024.150447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Adipose-derived stem cell (ASC)-released exosomes (ASCexos) have multiple biological activities. We examined the effect of ASCexos derived from the inguinal adipose tissue of exercise-trained rats (EX-ASCexos) on adipogenic conversion of 3T3-L1 cells and analyzed their microRNA (miRNA) expression profiles. Differentiation of 3T3-L1 cells into adipocytes was performed for 9 d with EX-ASCexos or ASCexos from sedentary control rats (SED-ASCexos), and the expression of proteins and miRNA involved in adipogenic differentiation were determined. EX-ASCexos but not SED-ASCexos attenuated 3T3-L1 adipocyte differentiation with increased phosph-Ser112PPARγ expression, the inactive form of PPARγ. These differentiated adipocytes were also accompanied by increased phosph-Thr202/Tyr204ERK and decreased dual-specificity phosphatase 3 (DUSP3) levels. The exosomal miRNAs miR-323-5p, miR-433-3p, and miR-874-3p were identified specifically in EX-ASCexos. Of these, miR-323-5p mimic replicated the EX-ASCexo-induced suppression of 3T3-L1 adipocyte differentiation and altered adipogenesis-related factor expression. In conclusion, exercise training-driven exosomal miR-323-5p suppressed 3T3-L1 adipogenesis by increasing phosph-Ser112PPARγ expression, while phosph-Thr202/Tyr204ERK accumulation inhibited DUSP3 expression.
Collapse
Affiliation(s)
- Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan; Japan Society for the Promotion of Sci., Tokyo, Japan
| | - Hisashi Kato
- Organization for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Daigo Kemmoku
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Sachiko Yamaguchi
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Lureien Jiang
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Yoshifumi Tsuchiya
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan.
| |
Collapse
|
2
|
Weeks O, Gao X, Basu S, Galdieri J, Chen K, Burns CG, Burns CE. Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovasc Res 2024; 120:1607-1621. [PMID: 38900908 PMCID: PMC11535724 DOI: 10.1093/cvr/cvae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
AIMS Fetal alcohol spectrum disorders (FASDs) impact up to 0.8% of the global population. However, cardiovascular health outcomes in adult patients, along with predictive biomarkers for cardiac risk stratification, remain unknown. Our aim was to utilize a longitudinal cohort study in an animal model to evaluate the impact of embryonic alcohol exposure (EAE) on cardiac structure, function, and transcriptional profile across the lifespan. METHODS AND RESULTS Using zebrafish, we characterized the aftereffects of EAE in adults binned by congenital heart defect (CHD) severity. Chamber sizes were quantified on dissected adult hearts to identify structural changes indicative of cardiomyopathy. Using echocardiography, we quantified systolic function based on ejection fraction and longitudinal strain, and diastolic function based on ventricular filling dynamics, ventricular wall movement, and estimated atrial pressures. Finally, we performed RNA-sequencing on EAE ventricles and assessed how differentially expressed genes (DEGs) correlated with cardiac function. Here, we demonstrate that EAE causes cardiomyopathy and diastolic dysfunction through persistent alterations to ventricular wall structure and gene expression. Following abnormal ventricular morphogenesis, >30% of all EAE adults developed increased atrial-to-ventricular size ratios, abnormal ventricular filling dynamics, and reduced myocardial wall relaxation during early diastole despite preserved systolic function. RNA-sequencing of the EAE ventricle revealed novel and heart failure-associated genes (slc25a33, ankrd9, dusp2, dusp4, spry4, eya4, and edn1) whose expression levels were altered across the animal's lifespan or correlated with the degree of diastolic dysfunction detected in adulthood. CONCLUSION Our study identifies EAE as a risk factor for adult-onset cardiomyopathy and diastolic dysfunction, regardless of CHD status, and suggests novel molecular indicators of adult EAE-induced heart disease.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Xinlei Gao
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sandeep Basu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jennifer Galdieri
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kaifu Chen
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Marasco M, Kumar D, Seale T, Borrego SG, Kaplun E, Aricescu I, Cole S, Qeriqi B, Qiu J, Chen X, Bahr A, Fidele D, Hofmann MH, Gerlach D, Savarese F, Merghoub T, Wolchok JD, Yao Z, de Stanchina E, Solit D, Misale S, Rosen N. Concurrent SOS1 and MEK suppression inhibits signaling and growth of NF1-null melanoma. Cell Rep Med 2024:101818. [PMID: 39488215 DOI: 10.1016/j.xcrm.2024.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Neurofibromin (NF1) is a negative regulator of RAS signaling, frequently mutated in cancer. NF1-mutant melanoma is a highly malignant tumor for which targeted therapies are lacking. Here, we use biochemical and pharmacological assays on patient-derived models and isogenic cell lines to identify potential pharmacologic targets, revealing that NF1-null melanomas are dependent on RAS activation and that MEK inhibition relieves ERK-dependent negative feedback, increasing RAS signaling. MEK inhibition with avutometinib abrogates the adaptive rebound in ERK signaling, but the antitumor effects are limited. However, concurrent inhibition of MEK and SOS1 abrogates ERK activation, induces cell death, and suppresses tumor growth. In contrast to the NF1-deficient setting, concurrent SOS1 and SOS2 depletion is required to completely inhibit RAS signaling in NF1 wild-type cells. In sum, our data provide a mechanistic rationale for enhancing the therapeutic efficacy of MEK inhibitors by exploiting the lower residual SOS activity in NF1-null tumor cells.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dinesh Kumar
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tessa Seale
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Santiago Garcia Borrego
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Kaplun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilinca Aricescu
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Soren Cole
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Qiu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoping Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah Fidele
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Jedd D Wolchok
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Zhan Yao
- Mechanistic Biology, Loxo Oncology at Lilly, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sandra Misale
- Department of Oncology, Cancer Genetics and Epigenetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Valcikova B, Vadovicova N, Smolkova K, Zacpalova M, Krejci P, Lee S, Rauch J, Kolch W, von Kriegsheim A, Dorotikova A, Andrysik Z, Vichova R, Vacek O, Soucek K, Uldrijan S. eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Proc Natl Acad Sci U S A 2024; 121:e2321305121. [PMID: 39436655 PMCID: PMC11536119 DOI: 10.1073/pnas.2321305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Collapse
Affiliation(s)
- Barbora Valcikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Natalia Vadovicova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Karolina Smolkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Laboratory of Cell Signaling, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno60200, Czech Republic
| | - Shannon Lee
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| | - Alexander von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XR, United Kingdom
| | - Anna Dorotikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
| | - Ondrej Vacek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| |
Collapse
|
5
|
Fan Z, Yan W, Li J, Yan M, Liu B, Yang Z, Yu B. PHF10 inhibits gastric epithelium differentiation and induces gastric cancer carcinogenesis. Cancer Gene Ther 2024; 31:1511-1524. [PMID: 39127832 PMCID: PMC11489120 DOI: 10.1038/s41417-024-00820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Gastric cancer (GC) is characterized with differentiation disorders, the precise mechanisms of which remain unknown. Our previous study showed that PHF10 exhibits oncogenic properties in GC, with its histological presentation indicating a potential role in the modulation of differentiation disorders in GC. This study reveals a significant upregulation of PHF10 in GC tissues, showing a negative correlation with differentiation level. PHF10 was found to impede the differentiation of GC cells while promoting their stemness properties. This was attributed to the formation of a positive feedback loop between PHF10 and E2F1, resulting in dysregulated expression levels in GC. Additionally, PHF10 was found to mediate the transcriptional repression of the target gene DUSP5 in GC cells through the assembly of the SWI/SNF complex, leading to an elevation in pERK1/2 levels. In GC tissues, a negative association was noted between the expression of E2F1 or PHF10 and DUSP5, whereas a positive correlation was observed between the expression of E2F1 or PHF10 and pERK1/2. Additional rescue experiments confirmed that the inhibitory effect on differentiation of GC cells by PHF10 is dependent on the DUSP5-pERK1/2 axis. The signaling cascade involving E2F1-PHF10-DUSP5-pERK1/2 was identified as an important player in regulating differentiation and stemness in GC cells. PHF10 emerges as a promising target for differentiation induction therapy in GC.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyin Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Marvin JC, Liu EJ, Chen HH, Shiovitz DA, Andarawis-Puri N. Proteins Derived From MRL/MpJ Tendon Provisional Extracellular Matrix and Secretome Promote Pro-Regenerative Tenocyte Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602500. [PMID: 39026846 PMCID: PMC11257490 DOI: 10.1101/2024.07.08.602500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype. We identified soluble factors enriched in the secretome of MRL/MpJ tenocytes using bioreactor systems and quantitative proteomics. We then demonstrated that the combined administration of structural and soluble constituents isolated from decellularized MRL/MpJ tendon provisional ECM (dPECM) and the secretome stimulate scar-mediated rodent tenocytes towards enhanced mechanosensitivity, proliferation, intercellular communication, and ECM deposition associated with MRL/MpJ cell behavior. Our findings highlight key biological mechanisms that drive MRL/MpJ tenocyte activity and their interspecies utility to be harnessed for therapeutic strategies that promote pro-regenerative healing outcomes. Teaser Proteins enriched in a super-healer mouse strain elicit interspecies utility in promoting pro-regenerative tenocyte behavior.
Collapse
|
8
|
Kesarwani M, Kincaid Z, Azhar M, Azam M. Enhanced MAPK signaling induced by CSF3R mutants confers dependence to DUSP1 for leukemic transformation. Blood Adv 2024; 8:2765-2776. [PMID: 38531054 PMCID: PMC11176961 DOI: 10.1182/bloodadvances.2023010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
ABSTRACT Elevated MAPK and the JAK-STAT signaling play pivotal roles in the pathogenesis of chronic neutrophilic leukemia and atypical chronic myeloid leukemia. Although inhibitors targeting these pathways effectively suppress the diseases, they fall short in providing enduring remission, largely attributed to the cytostatic nature of these drugs. Even combinations of these drugs are ineffective in achieving sustained remission. Enhanced MAPK signaling besides promoting proliferation and survival triggers a proapoptotic response. Consequently, malignancies reliant on elevated MAPK signaling use MAPK feedback regulators to intricately modulate the signaling output, prioritizing proliferation and survival while dampening the apoptotic stimuli. Herein, we demonstrate that enhanced MAPK signaling in granulocyte colony-stimulating factor 3 receptor (CSF3R)-driven leukemia upregulates the expression of dual specificity phosphatase 1 (DUSP1) to suppress the apoptotic stimuli crucial for leukemogenesis. Consequently, genetic deletion of Dusp1 in mice conferred synthetic lethality to CSF3R-induced leukemia. Mechanistically, DUSP1 depletion in leukemic context causes activation of JNK1/2 that results in induced expression of BIM and P53 while suppressing the expression of BCL2 that selectively triggers apoptotic response in leukemic cells. Pharmacological inhibition of DUSP1 by BCI (a DUSP1 inhibitor) alone lacked antileukemic activity due to ERK1/2 rebound caused by off-target inhibition of DUSP6. Consequently, a combination of BCI with a MEK inhibitor successfully cured CSF3R-induced leukemia in a preclinical mouse model. Our findings underscore the pivotal role of DUSP1 in leukemic transformation driven by enhanced MAPK signaling and advocate for the development of a selective DUSP1 inhibitor for curative treatment outcomes.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Zachary Kincaid
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Mohammad Azhar
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Mohammad Azam
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
9
|
Kruckow KL, Murray E, Shayhidin E, Rosenberg AF, Bowdish DME, Orihuela CJ. Chronic TNF exposure induces glucocorticoid-like immunosuppression in the alveolar macrophages of aged mice that enhances their susceptibility to pneumonia. Aging Cell 2024; 23:e14133. [PMID: 38459711 PMCID: PMC11296116 DOI: 10.1111/acel.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.
Collapse
Affiliation(s)
- Katherine L. Kruckow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Murray
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elnur Shayhidin
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Alexander F. Rosenberg
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn M. E. Bowdish
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Carlos J. Orihuela
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
10
|
Gil-Redondo JC, Queipo MJ, Trueba Y, Llorente-Sáez C, Serrano J, Ortega F, Gómez-Villafuertes R, Pérez-Sen R, Delicado EG. DUSP1/MKP-1 represents another piece in the P2X7R intracellular signaling puzzle in cerebellar cells: our last journey with Mª Teresa along the purinergic pathways of Eden. Purinergic Signal 2024; 20:127-144. [PMID: 37776398 PMCID: PMC10997573 DOI: 10.1007/s11302-023-09970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The P2X7 receptor (P2X7R) stands out within the purinergic family as it has exclusive pharmacological and regulatory features, and it fulfills distinct roles depending on the type of stimulation and cellular environment. Tonic activation of P2X7R promotes cell proliferation, whereas sustained activation is associated with cell death. Yet strikingly, prolonged P2X7R activation in rat cerebellar granule neurons and astrocytes does not affect cell survival. The intracellular pathways activated by P2X7Rs involve proteins like MAPKs, ERK1/2 and p38, and interactions with growth factor receptors could explain their behavior in populations of rat cerebellar cells. In this study, we set out to characterize the intracellular mechanisms through which P2X7Rs and Trk receptors, EGFR (epidermal growth factor receptor) and BDNFR (brain-derived neurotrophic factor receptor), regulate the dual-specificity phosphatase DUSP1. In cerebellar astrocytes, the regulation of DUSP1 expression by P2X7R depends on ERK and p38 activation. EGFR stimulation can also induce DUSP1 expression, albeit less strongly than P2X7R. Conversely, EGF was virtually ineffective in regulating DUSP1 in granule neurons, a cell type in which BDNF is the main regulator of DUSP1 expression and P2X7R only induces a mild response. Indeed, the regulation of DUSP1 elicited by BDNF reflects the balance between both transcriptional and post-transcriptional mechanisms. Importantly, when the regulation of DUSP1 expression is compromised, the viability of both astrocytes and neurons is impaired, suggesting this phosphatase is essential to maintain proper cell cytoarchitecture and functioning.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yaiza Trueba
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Celia Llorente-Sáez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julia Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Fortier SM, Walker NM, Penke LR, Baas JD, Shen Q, Speth JM, Huang SK, Zemans RL, Bennett AM, Peters-Golden M. MAPK phosphatase 1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution. J Clin Invest 2024; 134:e172826. [PMID: 38512415 PMCID: PMC11093610 DOI: 10.1172/jci172826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.
Collapse
Affiliation(s)
- Sean M. Fortier
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Natalie M. Walker
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jared D. Baas
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Qinxue Shen
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jennifer M. Speth
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven K. Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Bulle A, Liu P, Seehra K, Bansod S, Chen Y, Zahra K, Somani V, Khawar IA, Chen HP, Dodhiawala PB, Li L, Geng Y, Mo CK, Mahsl J, Ding L, Govindan R, Davies S, Mudd J, Hawkins WG, Fields RC, DeNardo DG, Knoerzer D, Held JM, Grierson PM, Wang-Gillam A, Ruzinova MB, Lim KH. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer. Nat Commun 2024; 15:2503. [PMID: 38509064 PMCID: PMC10954758 DOI: 10.1038/s41467-024-46811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peng Liu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kiran Zahra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vikas Somani
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Iftikhar Ali Khawar
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hung-Po Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yutong Geng
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chia-Kuei Mo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jay Mahsl
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Li Ding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sherri Davies
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline Mudd
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Hawkins
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jason M Held
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Franziscus CA, Ritz D, Kappel NC, Solinger JA, Schmidt A, Spang A. The protein tyrosine phosphatase PPH-7 is required for fertility and embryonic development in C. elegans at elevated temperatures. FEBS Open Bio 2024; 14:390-409. [PMID: 38320757 PMCID: PMC10909979 DOI: 10.1002/2211-5463.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Post-translational modifications are key in the regulation of activity, structure, localization, and stability of most proteins in eukaryotes. Phosphorylation is potentially the most studied post-translational modification, also due to its reversibility and thereby the regulatory role this modification often plays. While most research attention was focused on kinases in the past, phosphatases remain understudied, most probably because the addition and presence of the modification is more easily studied than its removal and absence. Here, we report the identification of an uncharacterized protein tyrosine phosphatase PPH-7 in C. elegans, a member of the evolutionary conserved PTPN family of phosphatases. Lack of PPH-7 function led to reduction of fertility and embryonic lethality at elevated temperatures. Proteomics revealed changes in the regulation of targets of the von Hippel-Lindau (VHL) E3 ligase, suggesting a potential role for PPH-7 in the regulation of VHL.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Spang
- BiozentrumUniversity of BaselSwitzerland
| |
Collapse
|
14
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
15
|
Wójcik M, Plata-Babula A, Głowaczewska A, Sirek T, Orczyk A, Małecka M, Grabarek BO. Expression profile of mRNAs and miRNAs related to mitogen-activated kinases in HaCaT cell culture treated with lipopolysaccharide a and adalimumab. Cell Cycle 2024; 23:385-404. [PMID: 38557266 PMCID: PMC11174132 DOI: 10.1080/15384101.2024.2335051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) exhibit activation and overexpression within psoriatic lesions. This study aimed to investigate alterations in the expression patterns of genes encoding MAPKs and microRNA (miRNA) molecules that potentially regulate their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes when exposed to bacterial lipopolysaccharide A (LPS) and adalimumab. HaCaT cells underwent treatment with 1 µg/mL LPS for 8 hours, followed by treatment with 8 µg/mL adalimumab for 2, 8, or 24 hours. Untreated cells served as controls. The molecular analysis involved microarray, quantitative real-time polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA) analyses. Changes in the expression profile of seven mRNAs: dual specificity phosphatase 1 (DUSP1), dual specificity phosphatase 3 (DUSP3), dual specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase 9 (MAPK9), mitogen-activated protein kinase kinase kinase 2 (MAP3K2), mitogen-activated protein kinase kinase 2 (MAP2K2), and MAP kinase-activated protein kinase 2 (MAPKAPK2, also known as MK2) in cell culture exposed to LPS or LPS and the drug compared to the control. It was noted that miR-34a may potentially regulate the activity of DUSP1, DUSP3, and DUSP4, while miR-1275 is implicated in regulating MAPK9 expression. Additionally, miR-382 and miR-3188 are potential regulators of DUSP4 levels, and miR-200-5p is involved in regulating MAPKAPK2 and MAP3K2 levels. Thus, the analysis showed that these mRNA molecules and the proteins and miRNAs they encode appear to be useful molecular markers for monitoring the efficacy of adalimumab therapy.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Aleksandra Plata-Babula
- Department of Nursing and Maternity, High School of Strategic Planning in Dabrowa Gornicza, Dabrowa Gornicza, Poland
| | - Amelia Głowaczewska
- Faculty of Health Sciences, University of Applied Sciences in Nysa, Nysa, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Aneta Orczyk
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Mariola Małecka
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
16
|
Bernstein DL, Lewandowski SI, Besada C, Place D, España RA, Mortensen OV. Inactivation of ERK1/2 Signaling in Dopaminergic Neurons by Map Kinase Phosphatase MKP3 Regulates Dopamine Signaling and Motivation for Cocaine. J Neurosci 2024; 44:e0727232023. [PMID: 38296649 PMCID: PMC10860627 DOI: 10.1523/jneurosci.0727-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
The mesolimbic dopamine system is a crucial component of reward and reinforcement processing, including the psychotropic effects of drugs of abuse such as cocaine. Drugs of abuse can activate intracellular signaling cascades that engender long-term molecular changes to brain reward circuitry, which can promote further drug use. However, gaps remain about how the activity of these signaling pathways, such as ERK1/2 signaling, can affect cocaine-induced neurochemical plasticity and cocaine-associated behaviors specifically within dopaminergic cells. To enable specific modulation of ERK1/2 signaling in dopaminergic neurons of the ventral tegmental area, we utilize a viral construct that Cre dependently expresses Map kinase phosphatase 3 (MKP3) to reduce the activity of ERK1/2, in combination with transgenic rats that express Cre in tyrosine hydroxylase (TH)-positive cells. Following viral transfection, we found an increase in the surface expression of the dopamine transporter (DAT), a protein associated with the regulation of dopamine signaling, dopamine transmission, and cocaine-associated behavior. We found that inactivation of ERK1/2 reduced post-translational phosphorylation of the DAT, attenuated the ability of cocaine to inhibit the DAT, and decreased motivation for cocaine without affecting associative learning as tested by conditioned place preference. Together, these results indicate that ERK1/2 signaling plays a critical role in shaping the dopamine response to cocaine and may provide additional insights into the function of dopaminergic neurons. Further, these findings lay important groundwork toward the assessment of how signaling pathways and their downstream effectors influence dopamine transmission and could ultimately provide therapeutic targets for treating cocaine use disorders.
Collapse
Affiliation(s)
- David L Bernstein
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Stacia I Lewandowski
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Christina Besada
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Delaney Place
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Rodrigo A España
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Ole V Mortensen
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
17
|
Hong L, Xu D, Li W, Wang Y, Cao N, Fu X, Tian Y, Li Y, Li B. Non-coding RNA regulation of Magang geese skeletal muscle maturation via the MAPK signaling pathway. Front Physiol 2024; 14:1331974. [PMID: 38314139 PMCID: PMC10834734 DOI: 10.3389/fphys.2023.1331974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle is a critical component of goose meat and a significant economic trait of geese. The regulatory roles of miRNAs and lncRNAs in the maturation stage of goose skeletal muscle are still unclear. Therefore, this study conducted experiments on the leg muscles of Magang geese at two stages: 3-day post-hatch (P3) and 3 months (M3). Morphological observations revealed that from P3 to M3, muscle fibers mainly underwent hypertrophy and maturation. The muscle fibers became thicker, nuclear density decreased, and nuclei moved towards the fiber edges. Additionally, this study analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs during the skeletal muscle fiber maturation stage, identifying 1,949 differentially expressed mRNAs (DEMs), 21 differentially expressed miRNAs (DEMIs), and 172 differentially expressed lncRNAs (DELs). Furthermore, we performed enrichment analyses on DEMs, cis-regulatory genes of DELs, and target DEMs of DEMIs, revealing significant enrichment of signaling pathways including MAPK, PPAR, and mTOR signaling pathways. Among these, the MAPK signaling pathway was the only pathway enriched across all three types of differentially expressed RNAs, indicating its potentially more significant role in skeletal muscle maturation. Finally, this study integrated the targeting relationships between DELs, DEMs, and DEMIs from these two stages to construct a ceRNA regulatory network. These findings unveil the potential functions and mechanisms of lncRNAs and miRNAs in the growth and development of goose skeletal muscle and provide valuable references for further exploration of the mechanism underlying the maturation of Magang geese leg muscle.
Collapse
Affiliation(s)
- Longsheng Hong
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yifeng Wang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
18
|
Lu J, Ma Y, Lv H, Li C, Ru L, Zhao J, Wang D. The Different Therapeutic Effects of Traditional Chinese Medicine Shensong Yangxin Capsule and Salubrinal in High-intensity Exercise-induced Heart Failure in Rats with Acute Myocardial Infarction. Comb Chem High Throughput Screen 2024; 27:1592-1601. [PMID: 38305401 DOI: 10.2174/0113862073272407231201071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Currently, endoplasmic reticulum stress is studied utilizing a dephosphorylation inhibitor (Sal). The traditional Chinese patent medicine and simple formulation Shensong Yangxin Capsule is a commonly used medication for the treatment of arrhythmia. However, the efficacy and underlying mechanism of the capsule in treating post-ischemic heart failure in myocardial tissue have not yet been investigated. OBJECTIVE The therapeutic effects and the underlying mechanism of the Shensong Yangxin Capsule (SSYX) and the dephosphorylation inhibitor Salubrinal (Sal) on heart failure (HF) induced by high-intensity exercise in rats with acute myocardial infarction (AMI) were investigated. METHODS Male infants of 8 weeks Spragge-Dawley (SD) rats were randomly assigned to one of four groups: sham surgery group, AMI+placebo group, AMI+Shensong Yangxin Capsule group (AMI+SSYX), and AMI+Sal administration group. Rats' myocardial infarction was induced by left coronary artery ligation. Rats were subjected to a 3-week high-intensity exercise program to simulate heart failure after 7 days of postoperative rest. After the fourth postoperative week, echocardiography was applied to determine the left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and left ventricular systolic volume (LVESV) in each group. HE and TUNEL labeling were employed to examine the morphology of cardiac cells and measure the percentage of apoptosis in each group; Western blotting was applied to detect the cardiomyocyte apoptosis-related proteins p-JNK, p-P38, and NOX2, while ELISA was used to detect glutathione(GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) in serum. RESULTS Following a 4-week drug intervention:(1)LVFS and LVEF in the AMI+placebo group were statistically significantly reduced, while LVESV were significantly higher, compared to those in the sham surgery group (P<0.05); The AMI+SSYX group performed statistically significantly better than the AMI+placebo group(P<0.05). (2) The myocardial cells in the AMI+placebo group exhibited significant swelling and inflammatory cell infiltration; the myocardial cells in the AMI+SSYX group and AMI+Sal group displayed mild swelling and minimal inflammatory cell infiltration; the AMI+SSYX group's myocardial cell morphology was superior to that of the AMI+Sal group; (3) The apoptosis rate of the AMI+placebo group was around 95%, greater than that of the sham surgery group (2.55%). The apoptosis rate of the AMI+SSYX group is approximately 21%, while the apoptosis rate of the AMI+Sal group is about 43%. (4) In the AMI+placebo group, p-JNK, p-P38, and NOX2 protein expression dramatically increased compared to the sham surgery group. The expression of p-P38, NOX2, and p-JNK/t-JNK was considerably reduced in the AMI+Shensong group and AMI+Sal group, compared to the AMI+placebo group. (P<0.01)The AMI+SSYX group's result is superior to that of the AMI+Sal group. (5) Compared to the sham surgery group, the serum levels of SOD and GSH were significantly lower, and MDA was significantly higher in the AMI+placebo group. Compared to the AMI+placebo group, the serum levels of SOD and GSH were significantly higher, and MDA was significantly lower in the AMI+SSYX group and the AMI+Sal group. (P<0.05) Conclusion: In rats with acute myocardial infarction in high-intensity exercise-induced heart failure, Shensong Yangxin Capsule dramatically reduces myocardial cell death and cardiac dysfunction. SSYX has a shorter course of treatment and a better therapeutic effect than Sal.
Collapse
Affiliation(s)
- Junli Lu
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanzhuo Ma
- Internal Medicine Teaching and Research Section, Hebei Medical University; No.361 Zhongshan Road, Shijiazhuang, 050017, China
| | - Hongzhi Lv
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Congxin Li
- Department of Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang, 050001, China
| | - Leisheng Ru
- Internal Medicine Teaching and Research Section, Hebei Medical University; No.361 Zhongshan Road, Shijiazhuang, 050017, China
| | - Jian Zhao
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Dongmei Wang
- Internal Medicine Teaching and Research Section, Hebei Medical University; No.361 Zhongshan Road, Shijiazhuang, 050017, China
- Department of Cardiology, 980 Hospital of PLA Joint Logistic Support Forces, Shijiazhuang, 050000, China
| |
Collapse
|
19
|
Zhu L, Liu D, Xu M, Wang W, Xiong X, Zhou Q, Shi R. Yantiao Formula Intervention in Rats with Sepsis: Network Pharmacology and Experimental Analysis. Comb Chem High Throughput Screen 2024; 27:1071-1080. [PMID: 37817514 DOI: 10.2174/0113862073262718230921113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 10/12/2023]
Abstract
AIM AND OBJECTIVE Traditional Chinese Medicine prescribes Yantiao Formula (YTF; peach kernel, mirabilite, Angelica sinensis, Radix Scrophulariae, raw rhubarb, Radix Paeoniae, Flos Lonicerae, Forsythia and Ophiopogon japonicus) to treat sepsis. Clinically, it reduced the inflammatory response of sepsis. It also reduced lung damage by decreasing the level of TNF-α in septic rats' serum. Using network pharmacology analysis, we investigated the efficacy network and mechanism of YTF in treating sepsis. MATERIALS AND METHODS We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine (BATMAN-TCM) combined with literature to collect the main components in YTF and their targets. DisGeNET and GENECARDS databases were used for sepsis-related targets. Cytoscape 3.7.1 software was used to construct the herbcomponent- target and ingredient-target-disease interaction protein-protein interaction networks of YTF. The jvenn was used to perform the intersection of YTF targets and sepsis targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. We also created a sepsis rat model using cecal ligation and perforation and stimulated alveolar macrophages (NR8383) with endotoxin to investigate the mechanisms of YTF. RESULTS GO, and KEGG enrichment analysis revealed that these targets involved mineralocorticoid secretion, aldosterone secretion, active regulation of chronic inflammatory response, the exogenous coagulation pathway, and other pathophysiology. It was linked to various inflammatory factors and the MAPK pathway. YTF inhibits the p38MAPK pathway and decreases TNF- α, IL-6, and CXCL8 levels. CONCLUSION YTF has a multi-component, multi-target, and multi-channel role in treating sepsis. The primary mechanisms may involve inhibiting the p38MAPK pathway to reduce the inflammatory response.
Collapse
Affiliation(s)
- Leilei Zhu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Menghan Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenqing Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xudong Xiong
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianmei Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
21
|
Jiang C, Saiki Y, Hirota S, Iwata K, Wang X, Ito Y, Murakami K, Imura T, Inoue J, Masamune A, Hirayama A, Goto M, Furukawa T. Ablation of Dual-Specificity Phosphatase 6 Protects against Nonalcoholic Fatty Liver Disease via Cytochrome P450 4A and Mitogen-Activated Protein Kinase. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1988-2000. [PMID: 37741451 DOI: 10.1016/j.ajpath.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Dual-specificity phosphatase 6 (DUSP6) is a specific phosphatase for mitogen-activated protein kinase (MAPK). This study used a high-fat diet (HFD)-induced murine nonalcoholic fatty liver disease model to investigate the role of DUSP6 in this disease. Wild-type (WT) and Dusp6-haploinsufficiency mice developed severe obesity and liver pathology consistent with nonalcoholic fatty liver disease when exposed to HFD. In contrast, Dusp6-knockout (KO) mice completely eliminated these phenotypes. Furthermore, primary hepatocytes isolated from WT mice exposed to palmitic and oleic acids exhibited abundant intracellular lipid accumulation, whereas hepatocytes from Dusp6-KO mice showed minimal lipid accumulation. Transcriptome analysis revealed significant down-regulation of genes encoding cytochrome P450 4A (CYP4A), known to promote ω-hydroxylation of fatty acids and hepatic steatosis, in Dusp6-KO hepatocytes compared with that in WT hepatocytes. Diminished CYP4A expression was observed in the liver of Dusp6-KO mice compared with WT and Dusp6-haploinsufficiency mice. Knockdown of DUSP6 in HepG2, a human liver-lineage cell line, also promoted a reduction of lipid accumulation, down-regulation of CYP4A, and up-regulation of phosphorylated/activated MAPK. Furthermore, inhibition of MAPK activity promoted lipid accumulation in DUSP6-knockdown HepG2 cells without affecting CYP4A expression, indicating that CYP4A expression is independent of MAPK activation. These findings highlight the significant role of DUSP6 in HFD-induced steatohepatitis through two distinct pathways involving CYP4A and MAPK.
Collapse
Affiliation(s)
- Can Jiang
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shuto Hirota
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kosei Iwata
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xinyue Wang
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Ito
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keigo Murakami
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
22
|
Klemm S, Evert K, Utpatel K, Muggli A, Simile MM, Chen X, Evert M, Calvisi DF, Scheiter A. Identification of DUSP4/6 overexpression as a potential rheostat to NRAS-induced hepatocarcinogenesis. BMC Cancer 2023; 23:1086. [PMID: 37946160 PMCID: PMC10636894 DOI: 10.1186/s12885-023-11577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. METHODS NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. RESULTS HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. CONCLUSIONS Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically.
Collapse
Affiliation(s)
- Sophie Klemm
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Alexandra Muggli
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Sassari, Italy
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
23
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
24
|
Baumer Y, Singh K, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Bleck CK, Mitchell VM, Collins BS, Pirooznia M, Dagur PK, Allan DS, Muallem-Schwartz D, Childs RW, Powell-Wiley TM. Social Determinants modulate NK cell activity via obesity, LDL, and DUSP1 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556825. [PMID: 37745366 PMCID: PMC10515802 DOI: 10.1101/2023.09.12.556825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josette A. Yeboah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nat Commun 2023; 14:5405. [PMID: 37669951 PMCID: PMC10480499 DOI: 10.1038/s41467-023-41145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
Affiliation(s)
- Bin Qiu
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Ahmed Lawan
- University of Alabama, Department of Biological Sciences, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Chrysovalantou E Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jae-Sung Yi
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Marie Robert
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Lei Zhang
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Hospital, Melbourne, Victoria, 3004, Australia
| | - Carlos Fernández-Hernando
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyong Yang
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anton M Bennett
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Kesarwani M, Kincaid Z, Azhar M, Menke J, Schwieterman J, Ansari S, Reaves A, Deininger ME, Levine R, Grimes HL, Azam M. MAPK-negative feedback regulation confers dependence to JAK2 V617F signaling. Leukemia 2023; 37:1686-1697. [PMID: 37430058 PMCID: PMC10976185 DOI: 10.1038/s41375-023-01959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Despite significant advances in developing selective JAK2 inhibitors, JAK2 kinase inhibitor (TKI) therapy is ineffective in suppressing the disease. Reactivation of compensatory MEK-ERK and PI3K survival pathways sustained by inflammatory cytokine signaling causes treatment failure. Concomitant inhibition of MAPK pathway and JAK2 signaling showed improved in vivo efficacy compared to JAK2 inhibition alone but lacked clonal selectivity. We hypothesized that cytokine signaling in JAK2V617F induced MPNs increases the apoptotic threshold that causes TKI persistence or refractoriness. Here, we show that JAK2V617F and cytokine signaling converge to induce MAPK negative regulator, DUSP1. Enhanced DUSP1 expression blocks p38 mediated p53 stabilization. Deletion of Dusp1 increases p53 levels in the context of JAK2V617F signaling that causes synthetic lethality to Jak2V617F expressing cells. However, inhibition of Dusp1 by a small molecule inhibitor (BCI) failed to impart Jak2V617F clonal selectivity due to pErk1/2 rebound caused by off-target inhibition of Dusp6. Ectopic expression of Dusp6 and BCI treatment restored clonal selectively and eradicated the Jak2V617F cells. Our study shows that inflammatory cytokines and JAK2V617F signaling converge to induce DUSP1, which downregulates p53 and establishes a higher apoptotic threshold. These data suggest that selectively targeting DUSP1 may provide a curative response in JAK2V617F-driven MPN.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Zachary Kincaid
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mohammad Azhar
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jacob Menke
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | | - Sekhu Ansari
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Angela Reaves
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Michael E Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross Levine
- Center for Hematologic Malignancies, and Molecular Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mohammad Azam
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Rojas-Cruz AF, Martín-Jiménez CA, González J, González-Giraldo Y, Pinzón AM, Barreto GE, Aristizábal-Pachón AF. Palmitic Acid Upregulates Type I Interferon-Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes. Mol Neurobiol 2023; 60:4842-4854. [PMID: 37184765 PMCID: PMC10293381 DOI: 10.1007/s12035-023-03366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | | | - Janneth González
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Andrés Mauricio Pinzón
- Laboratorio de Bioinformática Y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, 110231, Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX, Limerick, Ireland
| | | |
Collapse
|
28
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548263. [PMID: 37502892 PMCID: PMC10369865 DOI: 10.1101/2023.07.10.548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
|
29
|
Güler S, Yalçın A. Expression of dual-specificity phosphatases in TGFß1-induced EMT in SKOV3 cells. Turk J Med Sci 2023; 53:640-646. [PMID: 37476896 PMCID: PMC10387886 DOI: 10.55730/1300-0144.5626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/21/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The study aims to profile the dual-specificity phosphatases (DUSP) expression in response to Transforming growth factor β1 (TGFβ1)-induced epithelial- mesenchymal transition (EMT) in ovarian adenocarcinoma cells. METHODS The ovarian adenocarcinoma cell line SKOV3 was used as a TGFβ1-induced EMT model. Cells were incubated with 5 ng/mL TGFβ1 to induce EMT. EMT was confirmed with real-time qPCR, western blot, and immunofluorescence analyses of various EMT markers. Western blot was used to analyze phospho- and total MAPK protein levels. Typical and atypical DUSPs mRNA expression profile was determined by real-time qPCR. RESULTS The epithelial marker E-cadherin expressions were decreased and mesenchymal EMT markers Snail and Slug expression levelswere increased after TGFβ1 induction. Phosphorylation of ERK1/2 and p38 MAPK were enhanced in response to TGFβ1 treatment. The expression of DUSP2, DUSP6, DUSP8, DUSP10, and DUSP13 were decreased while DUSP7, DUSP16, DUSP18, DUSP21, and DUSP27 were increased by TGFβ1. DISCUSSION TGFβ1 induced EMT which was accompanied by increased activity of MAPKs, and led to marked changes in expressions of several DUSPs in SKOV3 cells.
Collapse
Affiliation(s)
- Sabire Güler
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Abdullah Yalçın
- Department of Biochemistry, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
30
|
Ariano C, Costanza F, Akman M, Riganti C, Corà D, Casanova E, Astanina E, Comunanza V, Bussolino F, Doronzo G. TFEB inhibition induces melanoma shut-down by blocking the cell cycle and rewiring metabolism. Cell Death Dis 2023; 14:314. [PMID: 37160873 PMCID: PMC10170071 DOI: 10.1038/s41419-023-05828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Melanomas are characterised by accelerated cell proliferation and metabolic reprogramming resulting from the contemporary dysregulation of the MAPK pathway, glycolysis and the tricarboxylic acid (TCA) cycle. Here, we suggest that the oncogenic transcription factor EB (TFEB), a key regulator of lysosomal biogenesis and function, controls melanoma tumour growth through a transcriptional programme targeting ERK1/2 activity and glucose, glutamine and cholesterol metabolism. Mechanistically, TFEB binds and negatively regulates the promoter of DUSP-1, which dephosphorylates ERK1/2. In melanoma cells, TFEB silencing correlates with ERK1/2 dephosphorylation at the activation-related p-Thr185 and p-Tyr187 residues. The decreased ERK1/2 activity synergises with TFEB control of CDK4 expression, resulting in cell proliferation blockade. Simultaneously, TFEB rewires metabolism, influencing glycolysis, glucose and glutamine uptake, and cholesterol synthesis. In TFEB-silenced melanoma cells, cholesterol synthesis is impaired, and the uptake of glucose and glutamine is inhibited, leading to a reduction in glycolysis, glutaminolysis and oxidative phosphorylation. Moreover, the reduction in TFEB level induces reverses TCA cycle, leading to fatty acid production. A syngeneic BRAFV600E melanoma model recapitulated the in vitro study results, showing that TFEB silencing sustains the reduction in tumour growth, increase in DUSP-1 level and inhibition of ERK1/2 action, suggesting a pivotal role for TFEB in maintaining proliferative melanoma cell behaviour and the operational metabolic pathways necessary for meeting the high energy demands of melanoma cells.
Collapse
Affiliation(s)
- C Ariano
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - F Costanza
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - M Akman
- Department of Oncology, University of Torino, Torino, Italy
| | - C Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - D Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases - CAAD, Novara, Italy
| | - E Casanova
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - E Astanina
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - V Comunanza
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - F Bussolino
- Department of Oncology, University of Torino, Torino, Italy.
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy.
| | - G Doronzo
- Department of Oncology, University of Torino, Torino, Italy.
- Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
31
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
33
|
Abstract
Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.
Collapse
Affiliation(s)
- Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
35
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
36
|
Cirstea IC, Moll HP, Tuckermann J. Glucocorticoid receptor and RAS: an unexpected couple in cancer. Trends Cell Biol 2022:S0962-8924(22)00253-7. [DOI: 10.1016/j.tcb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
|
37
|
Elfiky AMI, Hageman IL, Becker MAJ, Verhoeff J, Li Yim AYF, Joustra VW, Mulders L, Fung I, Rioja I, Prinjha RK, Smithers NN, Furze RC, Mander PK, Bell MJ, Buskens CJ, D’Haens GR, Wildenberg ME, de Jonge WJ. A BET Protein Inhibitor Targeting Mononuclear Myeloid Cells Affects Specific Inflammatory Mediators and Pathways in Crohn’s Disease. Cells 2022; 11:cells11182846. [PMID: 36139421 PMCID: PMC9497176 DOI: 10.3390/cells11182846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Myeloid cells are critical determinants of the sustained inflammation in Crohn’s Disease (CD). Targeting such cells may be an effective therapeutic approach for refractory CD patients. Bromodomain and extra-terminal domain protein inhibitors (iBET) are potent anti-inflammatory agents; however, they also possess wide-ranging toxicities. In the current study, we make use of a BET inhibitor containing an esterase sensitive motif (ESM-iBET), which is cleaved by carboxylesterase-1 (CES1), a highly expressed esterase in mononuclear myeloid cells. Methods: We profiled CES1 protein expression in the intestinal biopsies, peripheral blood, and CD fistula tract (fCD) cells of CD patients using mass cytometry. The anti-inflammatory effect of ESM-iBET or its control (iBET) were evaluated in healthy donor CD14+ monocytes and fCD cells, using cytometric beads assay or RNA-sequencing. Results: CES1 was specifically expressed in monocyte, macrophage, and dendritic cell populations in the intestinal tissue, peripheral blood, and fCD cells of CD patients. ESM-iBET inhibited IL1β, IL6, and TNFα secretion from healthy donor CD14+ monocytes and fCD immune cells, with 10- to 26-fold more potency over iBET in isolated CD14+ monocytes. Transcriptomic analysis revealed that ESM-iBET inhibited multiple inflammatory pathways, including TNF, JAK-STAT, NF-kB, NOD2, and AKT signaling, with superior potency over iBET. Conclusions: We demonstrate specific CES1 expression in mononuclear myeloid cell subsets in peripheral blood and inflamed tissues of CD patients. We report that low dose ESM-iBET accumulates in CES1-expressing cells and exerts robust anti-inflammatory effects, which could be beneficial in refractory CD patients.
Collapse
Affiliation(s)
- Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Ishtu L. Hageman
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marte A. J. Becker
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Jan Verhoeff
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Andrew Y. F. Li Yim
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent W. Joustra
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lieven Mulders
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ivan Fung
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Inmaculada Rioja
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Rab K. Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | | | - Rebecca C. Furze
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Palwinder K. Mander
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Matthew J. Bell
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +31205668163 or +31625387973
| |
Collapse
|
38
|
Identification of Important Genes of Keratoconus and Construction of the Diagnostic Model. Genet Res (Camb) 2022; 2022:5878460. [PMID: 36160033 PMCID: PMC9484959 DOI: 10.1155/2022/5878460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. The aim of the study is to investigate the potential role of keratoconus (KC) in the diagnosis of keratoconus (KC). Methods. GSE151631 and GSE77938 were downloaded from the comprehensive gene expression database (GEO). By using the random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM), important immune-related genes were identified as biomarkers for KC diagnosis. Results. Through the LASSO, RFE, and RF algorithms and comparing the three sets of DEGs, a total of 8 overlapping DEGs were obtained. We took 8 DEGs as the final optimal combination of DEGs: AREG, BBC3, DUSP2, map3k8, Smad7, CDKN1A, JUN, and LIF. Conclusion. Abnormal cell proliferation, apoptosis, and autophagy defects are related to KC, which may be the etiology and potential target of KC.
Collapse
|
39
|
Huang W, Lao L, Deng Y, Li Z, Liao W, Duan S, Xiao S, Cao Y, Miao J. Preparation, characterization, and osteogenic activity mechanism of casein phosphopeptide-calcium chelate. Front Nutr 2022; 9:960228. [PMID: 35983483 PMCID: PMC9378869 DOI: 10.3389/fnut.2022.960228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal calcium absorption, but there are few studies on the osteogenic activity of CPPs. In this study, the preparation of casein phosphopeptide calcium chelate (CPP-Ca) was optimized on the basis of previous studies, and its peptide-calcium chelating activity was characterized. Subsequently, the effects of CPP-Ca on the proliferation, differentiation, and mineralization of MC3T3-E1 cells were studied, and the differentiation mechanism of CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing (RNA-seq). The results showed that the calcium chelation rate of CPPs was 23.37%, and the calcium content of CPP-Ca reached 2.64 × 105 mg/kg. The test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and amino nitrogen atoms of CPPs might be chelated with calcium during the chelation. Compared with the control group, the proliferation of MC3T3-E1 cells treated with 250 μg/mL of CPP-Ca increased by 21.65%, 26.43%, and 28.43% at 24, 48, and 72 h, respectively, and the alkaline phosphatase (ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were notably increased by 55% and 72%. RNA-seq results showed that 321 differentially expressed genes (DEGs) were found in MC3T3-E1 cells treated with CPP-Ca, including 121 upregulated and 200 downregulated genes. Gene ontology (GO) revealed that the DEGs mainly played important roles in the regulation of cellular components. The enrichment of the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in the differentiation of MC3T3-E1 cells. The results of a quantitative real-time PCR (qRT-PCR) showed that compared with the blank control group, the mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0 and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were consistent both in GO functional and KEGG enrichment pathway analysis. This study provided a theoretical basis for CPP-Ca as a nutritional additive in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linhui Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuliang Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China.,Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
40
|
A positive feedback loop of ARF6 activates ERK1/2 signaling pathway via DUSP6 silencing to promote pancreatic cancer progression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1431-1440. [PMID: 36017891 PMCID: PMC9827993 DOI: 10.3724/abbs.2022111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ERK1/2 are essential proteins mediating mitogen-activated protein kinase signaling downstream of RAS in pancreatic adenocarcinoma (PDAC). Our previous study reveals that ARF6 plays a positive regulatory role in ERK1/2 pathway in a feedback loop manner. A significant part of the literature on ARF6 has emphasized its oncogenic effect as an essential downstream molecule of ERK1/2, and no research has been done on the regulation mechanisms of the feedback loop between ARF6 and the ERK1/2 signaling pathway. In the present study, we explore the gene network downstream of ARF6 and find that DUSP6 may be the critical signal molecule in the positive feedback loop between ARF6 and ERK1/2. Specifically, to elucidate the negative correlations between ARF6 and DUSP6 in pancreatic cancer, we examine their expressions in pancreatic cancer tissues by immunohistochemical staining. Then the impact of DUSP6 on the proliferation and apoptosis of PDAC cells are investigated by gain-of-function and loss-of-function approaches. Mechanism explorations uncover that ARF6 suppresses the expression of DUSP6, which is responsible for the dephosphorylation of ERK1/2. Altogether, these results indicate that DUSP6 plays a tumor-suppressive role and acts as an intermediate molecule between ARF6 and ERK1/2 in PDAC cells, thereby forming a positive feedback loop.
Collapse
|
41
|
Thompson EM, Patel V, Rajeeve V, Cutillas PR, Stoker AW. The cytotoxic action of BCI is not dependent on its stated DUSP1 or DUSP6 targets in neuroblastoma cells. FEBS Open Bio 2022; 12:1388-1405. [PMID: 35478300 PMCID: PMC9249316 DOI: 10.1002/2211-5463.13418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous cancer of the sympathetic nervous system, which accounts for 7-10% of paediatric malignancies worldwide. Due to the lack of targetable molecular aberrations in NB, most treatment options remain relatively nonspecific. Here, we investigated the therapeutic potential of BCI, an inhibitor of DUSP1 and DUSP6, in cultured NB cells. BCI was cytotoxic in a range of NB cell lines and induced a short-lived activation of the AKT and stress-inducible MAP kinases, although ERK phosphorylation was unaffected. Furthermore, a phosphoproteomic screen identified significant upregulation of JNK signalling components and suppression in mTOR and R6K signalling. To assess the specificity of BCI, CRISPR-Cas9 was employed to introduce insertions and deletions in the DUSP1 and DUSP6 genes. Surprisingly, BCI remained fully cytotoxic in NB cells with complete loss of DUSP6 and partial depletion of DUSP1, suggesting that BCI exerts cytotoxicity in NB cells through a complex mechanism that is unrelated to these phosphatases. Overall, these data highlight the risk of using an inhibitor such as BCI as supposedly specific DUSP1/6, without understanding its full range of targets in cancer cells.
Collapse
Affiliation(s)
- Elliott M. Thompson
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Vruti Patel
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Present address:
Current Address: Discovery Research MRL UKMSDThe London Bioscience Innovation Centre (LBIC)LondonUK
| | - Vinothini Rajeeve
- Mass Spectrometry LaboratoryBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R Cutillas
- Mass Spectrometry LaboratoryBarts Cancer InstituteQueen Mary University of LondonUK
| | - Andrew W. Stoker
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
42
|
Metabolic Impact of MKP-2 Upregulation in Obesity Promotes Insulin Resistance and Fatty Liver Disease. Nutrients 2022; 14:nu14122475. [PMID: 35745205 PMCID: PMC9228271 DOI: 10.3390/nu14122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The mechanisms connecting obesity with type 2 diabetes, insulin resistance, nonalcoholic fatty liver disease, and cardiovascular diseases remain incompletely understood. The function of MAPK phosphatase-2 (MKP-2), a type 1 dual-specific phosphatase (DUSP) in whole-body metabolism, and how this contributes to the development of diet-induced obesity, type 2 diabetes (T2D), and insulin resistance is largely unknown. We investigated the physiological contribution of MKP-2 in whole-body metabolism and whether MKP-2 is altered in obesity and human fatty liver disease using MKP-2 knockout mice models and human liver tissue derived from fatty liver disease patients. We demonstrate that, for the first time, MKP-2 expression was upregulated in liver tissue in humans with obesity and fatty liver disease and in insulin-responsive tissues in mice with obesity. MKP-2-deficient mice have enhanced p38 MAPK, JNK, and ERK activities in insulin-responsive tissues compared with wild-type mice. MKP-2 deficiency in mice protects against diet-induced obesity and hepatic steatosis and was accompanied by improved glucose homeostasis and insulin sensitivity. Mkp-2−/− mice are resistant to diet-induced obesity owing to reduced food intake and associated lower respiratory exchange ratio. This was associated with enhanced circulating insulin-like growth factor-1 (IGF-1) and stromal cell-derived factor 1 (SDF-1) levels in Mkp-2−/− mice. PTEN, a negative regulator of Akt, was downregulated in livers of Mkp-2−/− mice, resulting in enhanced Akt activity consistent with increased insulin sensitivity. These studies identify a novel role for MKP-2 in the regulation of systemic metabolism and pathophysiology of obesity-induced insulin resistance and fatty liver disease.
Collapse
|
43
|
Wu L, Sun S, Qu F, Liu X, Sun M, Pan Y, Zheng Y, Su G. ASCL2 Affects the Efficacy of Immunotherapy in Colon Adenocarcinoma Based on Single-Cell RNA Sequencing Analysis. Front Immunol 2022; 13:829640. [PMID: 35774798 PMCID: PMC9237783 DOI: 10.3389/fimmu.2022.829640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the leading causes of cancer-associated deaths worldwide. Patients with microsatellite instability-high (MSI-H) tumors were shown to highly benefit from immune checkpoint inhibitors (ICIs) than patients with microsatellite stable (MSS) tumors. Furthermore, the infiltration of immune cells and the expression of cancer stem cells (CSCs) in COAD were associated with the anti-tumor immune response. However, the potential mechanisms showing the relationship between microsatellite instability and CSCs or tumor-infiltrating immune cells (TIICs) have not been elucidated. Accumulating evidence reveals that achaete-scute family bHLH transcription factor 2 (ASCL2) plays a crucial role in the initiation and progression of COAD and drug resistance. However, the specific biological functions of ASCL2 in COAD remain unknown. In this study, we performed weighted gene co-expression network analysis (WGCNA) between MSS and MSI-H subsets of COAD. The results revealed that ASCL2 was a potential key candidate in COAD. Subsequently, the single-cell RNA-seq revealed that ASCL2 was positively associated with CSCs. Further, ASCL2 was shown to indirectly affect tumor immune cell infiltration by negatively regulating the expression of DUSP4. Finally, we inferred that the immunotherapy-sensitive role of ASCL2/DUSP4 axis on COAD is partly attributed to the activation of WNT/β-catenin pathway. In conclusion, this study revealed that ASCL2 was positively correlated to CSCs and tumor immune infiltration in COAD. Therefore, ASCL2 is a promising predictor of clinical responsiveness to anti-PD-1/PD-L1 therapy in COAD.
Collapse
Affiliation(s)
- Lei Wu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Zhuhai, China
| | - Shengnan Sun
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Fei Qu
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuxiu Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Zhuhai, China
| | - Ying Pan
- Department of Oncology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Yan Zheng, ; Guohai Su,
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Yan Zheng, ; Guohai Su,
| |
Collapse
|
44
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
45
|
Pan X, Pei J, Wang A, Shuai W, Feng L, Bu F, Zhu Y, Zhang L, Wang G, Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm Sin B 2022; 12:2171-2192. [PMID: 35646548 PMCID: PMC9136582 DOI: 10.1016/j.apsb.2021.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Kidger AM, Saville MK, Rushworth LK, Davidson J, Stellzig J, Ono M, Kuebelsbeck LA, Janssen KP, Holzmann B, Morton JP, Sansom OJ, Caunt CJ, Keyse SM. Suppression of mutant Kirsten-RAS (KRAS G12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene 2022; 41:2811-2823. [PMID: 35418690 PMCID: PMC9106580 DOI: 10.1038/s41388-022-02302-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6-/- mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5-/- animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis.
Collapse
Affiliation(s)
- Andrew M Kidger
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Mark K Saville
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Linda K Rushworth
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Jane Davidson
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Julia Stellzig
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Motoharu Ono
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Ludwig A Kuebelsbeck
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jennifer P Morton
- Institute of Cancer Sciences, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
47
|
Shi Y, Men J, Sun H, Tan J. The Identification and Analysis of MicroRNAs Combined Biomarkers for Hepatocellular Carcinoma Diagnosis. Med Chem 2022; 18:1073-1085. [PMID: 35379158 DOI: 10.2174/1573406418666220404084532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor with high morbidity and mortality globally. Compared with traditional diagnostic methods, microRNAs (miRNAs) were novel biomarkers with higher accuracy. OBJECTIVE We aimed to identify combinatorial biomarkers of miRNAs to construct a classification model for the diagnosis of HCC. METHOD The mature miRNAs expression profile data of six cancers (liver, lung, gastric, breast, prostate and colon) were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database with accession number GSE36915, GSE29250, GSE99417, GSE41970, GSE64333 and GSE35982. The messenger RNA (mRNA) expression profile data of these six cancers were obtained from TCGA. Three R software packages, student's t-test and a normalized fold-change method were utilized to identify HCC-specific differentially expressed miRNAs (DEMs). Using all combinations of obtained HCC- specific DEMs as input features, we construct a classification model by support vector machine searching for the optimal combination. Furthermore, target genes prediction was conducted on the miRWalk 2.0 website to obtain differentially expressed mRNAs (DEmRNAs), and KEGG pathway enrichment was analyzed on the DAVID website. RESULTS The optimal combination consisted of four miRNAs (hsa-miR-130a-3p, hsa-miR-450b-5p, hsa-miR-136-5p and hsa-miR-24-1-5p), of which the last one has not been currently reported to be relevant to HCC. The target genes of hsa-miR-24-1-5p (CDC7, ACACA, CTNNA1, and NF2) were involved in the cell cycle, AMPK signaling pathway, Hippo signaling pathway and insulin signaling pathway, which affect the proliferation, metastasis, and apoptosis of cancer cells. Moreover, the area under the receiver operating characteristic curves of the four miRNAs were all higher than 0.85. CONCLUSION These results suggest that the miRNAs combined biomarkers were reliable for the diagnosis of HCC. Hsa-miR-24-1-5p was a novel biomarker for HCC diagnosis identified in this study.
Collapse
Affiliation(s)
- Yi Shi
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingrui Men
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongliang Sun
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
48
|
Crosstalk between p38 MAPK and GR Signaling. Int J Mol Sci 2022; 23:ijms23063322. [PMID: 35328742 PMCID: PMC8953609 DOI: 10.3390/ijms23063322] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
The p38 MAPK is a signaling pathway important for cells to respond to environmental and intracellular stress. Upon activation, the p38 kinase phosphorylates downstream effectors, which control the inflammatory response and coordinate fundamental cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of this signaling pathway has been linked to inflammatory diseases and cancer. Secretion of glucocorticoids (GCs) is a classical endocrine response to stress. The glucocorticoid receptor (GR) is the primary effector of GCs and plays an important role in the regulation of cell metabolism and immune response by influencing gene expression in response to hormone-dependent activation. Its ligands, the GCs or steroids, in natural or synthetic variation, are used as standard therapy for anti-inflammatory treatment, severe asthma, autoimmune diseases, and several types of cancer. Several years ago, the GR was identified as one of the downstream targets of p38, and, at the same time, it was shown that glucocorticoids could influence p38 signaling. In this review, we discuss the role of the crosstalk between the p38 and GR in the regulation of gene expression in response to steroids and comprehend the importance and potential of this interplay in future clinical applications.
Collapse
|
49
|
Qian W, Yu H, Zhang C, Zhang H, Fu S, Xia C. Plasma Proteomics Characteristics of Subclinical Vitamin E Deficiency of Dairy Cows During Early Lactation. Front Vet Sci 2021; 8:723898. [PMID: 34957273 PMCID: PMC8703030 DOI: 10.3389/fvets.2021.723898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Vitamin E (VE) is an essential fat-soluble nutrient for dairy cows. Vitamin E deficiency leads to immune suppression and oxidative stress and increases the susceptibility of cows to reproductive disorders in the early post-partum period. However, studies on plasma proteomics of VE deficiency have not been reported so far. Therefore, the purpose of this study was to understand the changes of blood protein profile in cows with subclinical VE deficiency in the early post-partum period. In this study, plasma protein levels of 14 healthy cows (>4 μg/ml α-tocopherol) and 13 subclinical VE-deficient cows (2–3 μg/ml α-tocopherol) were analyzed by tandem mass tag (TMT). The results showed that there were 26 differentially expressed proteins (DEPs) in the plasma of cows with subclinical VE deficiency compared with healthy controls. Twenty-one kinds of proteins were downregulated, and five kinds were upregulated, among which eight proteins in protein–protein interactions (PPI) network had direct interaction. These proteins are mainly involved in the MAPK signaling pathway, pantothenic acid and coenzyme A (CoA) biosynthesis, PPAR signaling pathway, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. The top four DEPs in PPI (APOC3, APOC4, SAA4, PHLD) and one important protein (VNN1) by literature review were further verified by ELISA and Western blot. The expression levels of APOC3, VNN1, and SAA4 were significantly lower than those of healthy controls by ELISA. VNN1 was significantly lower than those of healthy controls by Western blot. VNN1 is closely related to dairy cow subclinical VE deficiency and can be a potential biomarker. It lays a foundation for further research on the lack of pathological mechanism and antioxidative stress of VE.
Collapse
Affiliation(s)
- Weidong Qian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongyi Yu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cuiyu Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongyou Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shixin Fu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng Xia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
50
|
Fox E, Jones R, Samanta R, Summers C. Characterising the transcriptome of hypersegmented human neutrophils. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.17440.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Mature human neutrophils are characterised by their multilobed nuclear morphology. Neutrophil hypersegmentation, a pathologic nuclear phenotype, has been described in the alveolar compartment of patients with acute respiratory distress syndrome and in several other contexts. This study aimed to characterise the transcriptional changes associated with neutrophil hypersegmentation. Methods: A model of hypersegmentation was established by exposing healthy peripheral blood neutrophils to the angiotensin converting enzyme inhibitor (ACEi) captopril. Laser capture microdissection (LCM) was then adapted to isolate a population of hypersegmented neutrophils. Transcriptomic analysis of microdissected hypersegmented neutrophils was undertaken using ribonucleic acid (RNA) sequencing. Differential gene expression (DEG) and enrichment pathway analysis were conducted to investigate the mechanisms underlying hypersegmentation. Results: RNA-Seq analysis revealed the transcriptomic signature of hypersegmented neutrophils, with five genes differentially expressed. VCAN, PADI4 and DUSP4 were downregulated, while LTF and PSMC4 were upregulated. Modulated pathways included histone modification, protein-DNA complex assembly and antimicrobial humoral response. The role of PADI4 was further validated using the small molecule inhibitor, Cl-amidine. Conclusions: Hypersegmented neutrophils display a marked transcriptomic signature, characterised by the differential expression of five genes. This study provides insights into the mechanisms underlying neutrophil hypersegmentation and describes a novel method to isolate and sequence neutrophils based on their morphologic subtype.
Collapse
|