1
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
2
|
Vaughan J, Wiggill T, Mia Z, Patel M. Tumour-associated macrophages in diffuse large B-cell lymphoma: the prognostic and therapeutic impact in a South African centre with high HIV seroprevalence. Immunol Res 2024:10.1007/s12026-024-09537-x. [PMID: 39259401 DOI: 10.1007/s12026-024-09537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common malignancy among people living with HIV. Macrophage enrichment of the tumour microenvironment (TME) is a prognostic factor in DLBCL among immunocompetent people, with some studies reporting that macrophage enrichment predicts a superior response to rituximab therapy. The macrophage phenotype is also important, with reportedly poorer outcomes with enrichment of anti-inflammatory (M2) macrophages. To date, the relationship between the type/number of tumour macrophages and outcomes in HIV-associated DLBCL (HIV-DLBCL) has been poorly explored. In this study, we assessed tumour macrophage numbers in a South African cohort of patients with DLBCL and a high HIV-seropositivity rate. Immunohistochemistry for CD68 and CD163 was performed on the diagnostic biopsies of 79 patients with DLBCL. Relevant information was documented from the clinical records, including disease stage, international-prognostic index score, HIV-related parameters, C-reactive protein, ferritin levels and immune cell numbers (monocytes, lymphocytes and neutrophils). Survival analysis was performed using Kaplan-Meier survival estimates, and the correlation between tumour macrophage numbers and a variety of immunological parameters was assessed using Spearman's rho. Of the 79 patients included, 87.2% were living with HIV, and rituximab therapy was used in 46.9%. Tumour macrophage numbers were not related to HIV status, but low pro-inflammatory (M1) macrophage numbers (CD68 + CD163 -) were significantly associated with poorer outcomes (HR 2.02, p = 0.03). M2 macrophage (CD68 + CD163 +) enrichment was not predictive of survival but was associated with improved response to rituximab therapy (HR 0.19; p = 0.002). Macrophage numbers were marginally correlated with ferritin levels, which showed modest performance as a peripheral blood biomarker of the TME macrophage status (AUC 0.6 at a level of 374 µg/L), and high ferritin levels were associated with a superior response to rituximab-therapy (HR 0.28, p = 0.034). Pro-inflammatory macrophages are important in tumour control in HIV-DLBCL, while M2 macrophage enrichment improves the response to rituximab therapy. Ferritin shows promise as a biomarker for identifying patients more likely to benefit from rituximab therapy.
Collapse
Affiliation(s)
- Jenifer Vaughan
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Services, Johannesburg, South Africa.
| | - Tracey Wiggill
- National Health Laboratory Services, Johannesburg, South Africa
- Immunology Unit, Division of Medical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zainab Mia
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Moosa Patel
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Zhao C, Liu H, Huang S, Guo Y, Xu L. Metal-Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules 2024; 29:2384. [PMID: 38792244 PMCID: PMC11124105 DOI: 10.3390/molecules29102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, nanomaterials have attracted extensive attention in cancer-targeting therapy and as drug delivery vehicles owing to their unique surface and size properties. Multifunctional combinations of nanomaterials have become a research hotspot as researchers aim to provide a full understanding of their nanomaterial characteristics. In this study, metal-organic framework-capped gold nanorod hybrids were synthesized. Our research explored their ability to kill tumor cells by locally increasing the temperature via photothermal conclusion. The specific peroxidase-like activity endows the hybrids with the ability to disrupt the oxidative balance in vitro. Simultaneously, chemotherapeutic drugs are administered and delivered by loading and transportation for effective combinatorial cancer treatment, thereby enhancing the curative effect and reducing the unpredictable toxicity and side effects of large doses of chemotherapeutic drugs. These studies can improve combinatorial cancer therapy and enhance cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| |
Collapse
|
4
|
Vaughan J, Patel M, Suchard M, Gededzha M, Ranchod H, Howard W, Snyman T, Wiggill T. Derangements of immunological proteins in HIV-associated diffuse large B-cell lymphoma: the frequency and prognostic impact. Front Cell Infect Microbiol 2024; 14:1340096. [PMID: 38633747 PMCID: PMC11021765 DOI: 10.3389/fcimb.2024.1340096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy of B-cells frequently encountered among people living with HIV. Immunological abnormalities are common in immunocompetent individuals with DLBCL, and are often associated with poorer outcomes. Currently, data on derangements of immunological proteins, such as cytokines and acute phase reactants, and their impact on outcomes in HIV-associated DLBCL (HIV-DLBCL) is lacking. This study assessed the levels and prognostic relevance of interleukin (IL)-6, IL-10 and Transforming Growth Factor Beta (TGFβ), the acute phase proteins C-reactive protein (CRP) and ferritin; serum free light chains (SFLC) (elevation of which reflects a prolonged pro-inflammatory state); and the activity of the immunosuppressive enzyme Indoleamine 2,3-dioxygenase (IDO)in South African patients with DLBCL. Methods Seventy-six patients with incident DLBCL were enrolled, and peripheral blood IL-6, IL-10, TGFβ, SFLC and IDO-activity measured in selected patients. Additional clinical and laboratory findings (including ferritin and CRP) were recorded from the hospital records. Results Sixty-one (80.3%) of the included patients were people living with HIV (median CD4-count = 148 cells/ul), and survival rates were poor (12-month survival rate 30.0%). The majority of the immunological proteins, except for TGFβ and ferritin, were significantly higher among the people living with HIV. Elevation of IL-6, SFLC and IDO-activity were not associated with survival in HIV-DLBCL, while raised IL-10, CRP, ferritin and TGFβ were. On multivariate analysis, immunological proteins associated with survival independently from the International Prognostic Index (IPI) included TGFβ, ferritin and IL-10. Conclusion Derangements of immunological proteins are common in HIV-DLBCL, and have a differential association with survival compared to that reported elsewhere. Elevation of TGFβ, IL-10 and ferritin were associated with survival independently from the IPI. In view of the poor survival rates in this cohort, investigation of the directed targeting of these cytokines would be of interest in our setting.
Collapse
Affiliation(s)
- Jenifer Vaughan
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Moosa Patel
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Haematology Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Melinda Suchard
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maemu Gededzha
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Immunology, University of the Witwatersrand, Johannesburg, South Africa
| | - Heena Ranchod
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, Centre for Vaccines and Immunology, Johannesburg, South Africa
| | - Wayne Howard
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, Centre for Vaccines and Immunology, Johannesburg, South Africa
| | - Tracy Snyman
- National Health Laboratory Services, Johannesburg, South Africa
| | - Tracey Wiggill
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
5
|
Fan M, Niu T, Lin B, Gao F, Tan B, Du X. Prognostic value of preoperative serum ferritin in hepatocellular carcinoma patients undergoing transarterial chemoembolization. Mol Clin Oncol 2024; 20:22. [PMID: 38357673 PMCID: PMC10865076 DOI: 10.3892/mco.2024.2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
The present study investigated the prognostic impact of preoperative serum ferritin (SF) levels on the survival of patients with hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE). Clinicopathological characteristics and laboratory biomarkers of 223 patients with HCC who underwent TACE were retrospectively reviewed. The Kaplan-Meier method was used to calculate the overall survival (OS), and the log-rank test was used to evaluate statistical significance. Univariate and multivariate analyses were performed using Cox proportional hazards regression to evaluate the prognostic impact of SF in these patients. The present findings identified extrahepatic metastases [hazard ratio (HR)=0.490,95%; confidence interval (CI)=0.282-0.843; P=0.010)] and vascular invasion (HR=0.373; 95% CI=0.225-0.619; P<0.0001) as independent prognostic factors for OS. However, preoperative SF levels could not independently predict OS when compared with other prognostic factors (HR=0.810; 95% CI=0.539-1.216; P=0.309). In conclusion, preoperative SF level is an unreliable biochemical predictor of survival in patients with HCC undergoing TACE.
Collapse
Affiliation(s)
- Mi Fan
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, Sichuan 637000, P.R. China
| | - Tingting Niu
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, Sichuan 637000, P.R. China
| | - Binwei Lin
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, Sichuan 621000, P.R. China
| | - Feng Gao
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, Sichuan 621000, P.R. China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, Sichuan 637000, P.R. China
| | - Xiaobo Du
- Departmant of Oncology, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, Sichuan 637000, P.R. China
| |
Collapse
|
6
|
Zhao X, Zhou Y, Zhang Y, Zhang Y. Ferritin: Significance in viral infections. Rev Med Virol 2024; 34:e2531. [PMID: 38502012 DOI: 10.1002/rmv.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
As an indispensable trace element, iron is essential for many biological processes. Increasing evidence has shown that virus infection can perturb iron metabolism and play a role in the occurrence and development of viral infection-related diseases. Ferritin plays a crucial role in maintaining the body's iron homoeostasis. It is an important protein to stabilise the iron balance in cells. Ferritin is a 24-mer hollow iron storage protein composed of two subunits: ferritin heavy chain and ferritin light chain. It was reported that ferritin is not only an intra-cellular iron storage protein, but also a pathogenic mediator that enhances the inflammatory process and stimulates the further inflammatory pathway, which is a key member of the vicious pathogenic cycle to perpetuate. Ferritin exerts immuno-suppressive and pro-inflammatory functions during viral infection. In this review, we describe in detail the basic information of ferritin in the first section, including its structural features, the regulation of ferritin. In the second part, we focus on the role of ferritin in viral infection-related diseases and the molecular mechanisms by which viral infection regulates ferritin. The last section briefly outlines the potential of ferritin in antiviral therapy. Given the importance of iron and viral infection, understanding the role of ferritin during viral infection helps us understand the relationship between iron metabolic dysfunction and viral infection, which provides a new direction for the development of antiviral therapeutic drugs.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuntao Zhou
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yong Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| |
Collapse
|
7
|
Wang F, Deng G, Liang N, Hu P, Liu K, Liu T, Li Y, Yuan M, Liu L, Xie J, Qiao L, Liu F, Zhang J. Serum ferritin level is an effective prognostic factor for lung cancer immunotherapy. Cancer Biol Ther 2023; 24:2285367. [PMID: 38031846 PMCID: PMC10783829 DOI: 10.1080/15384047.2023.2285367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Immunotherapy of lung cancer has achieved promising clinical results. However, it is urgent to develop predictive biomarkers for effective immunotherapy. While ferroptosis plays a critical role in immunotherapy efficacy, ferritin is an important regulatory factor. We, therefore, hypothesize that basal serum ferritin levels before immunotherapy and their corresponding changes during immunotherapy can be useful predictors of immunotherapy response in patients with lung cancer. We measured serum ferritin levels in 107 patients with lung cancer before and during immune checkpoint blockade treatments and studied the correlation between ferritin levels, response rate, and survival. Moreover, the correlation between basal ferritin and PD-L1 expression, tumor stages and pathological types was also analyzed. Patients with lower basal serum ferritin levels before immunotherapy had longer progression-free survival (PFS) (median 7 vs 4 months, P = .023) and higher disease control rate (DCR) (X2 = 4.837, P = .028), those with downregulated serum ferritin levels during immunotherapy correlated with longer PFS (median 9.5 vs 4 months, P < .001) and higher DCR (X2 = 6.475, P = .011). However, the "integrated factor", which was calculated as the combination of lower basal serum ferritin levels before immunotherapy and downregulated serum ferritin levels during immunotherapy, correlated with prolonged PFS (P < .001). Multivariate analyses revealed that the basal serum ferritin levels before immunotherapy and the corresponding changes during immunotherapy were both strong independent prognostic factors (hazard ratio (HR) = 1.60, P = .041; HR = 2.65, P = .001). These findings suggest that serum ferritin levels can be used as a prognostic biomarker for lung cancer in predicting immunotherapy efficacy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, Zaozhuang Shizhong District People’s Hospital, Zaozhuang, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kuo Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Yuan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Weifang Medical University, Jinan, China
| | - Li Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
An F, Zhang J, Gao P, Xiao Z, Chang W, Song J, Wang Y, Ma H, Zhang R, Chen Z, Yan C. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol 2023; 11:1297024. [PMID: 38143922 PMCID: PMC10748422 DOI: 10.3389/fcell.2023.1297024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, is a form of iron-driven cell death. Mitophagy is a type of selective autophagy, where degradation of damaged mitochondria is the key mechanism for maintaining mitochondrial homeostasis. Additionally, Chaperone-mediated autophagy (CMA) is a biological process that transports individual cytoplasmic proteins to lysosomes for degradation through companion molecules such as heat shock proteins. Research has demonstrated the involvement of ferroptosis, mitophagy, and CMA in the pathological progression of Osteoarthritis (OA). Furthermore, research has indicated a significant correlation between alterations in the expression of reactive oxygen species (ROS), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factors (HIFs) and the occurrence of OA, particularly in relation to ferroptosis and mitophagy. In light of these findings, our study aims to assess the regulatory functions of ferroptosis and mitophagy/CMA in the pathogenesis of OA. Additionally, we propose a mechanism of crosstalk between ferroptosis and mitophagy, while also examining potential pharmacological interventions for targeted therapy in OA. Ultimately, our research endeavors to offer novel insights and directions for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haizhen Ma
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rui Zhang
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhendong Chen
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
9
|
Li Y, Gao H, Nepovimova E, Wu Q, Adam V, Kuca K. Recombinant ferritins for multimodal nanomedicine. J Enzyme Inhib Med Chem 2023; 38:2219868. [PMID: 37263586 DOI: 10.1080/14756366.2023.2219868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Firouzjaei AA, Aghaee-Bakhtiari SH, Tafti A, Sharifi K, Abadi MHJN, Rezaei S, Mohammadi-Yeganeh S. Impact of curcumin on ferroptosis-related genes in colorectal cancer: Insights from in-silico and in-vitro studies. Cell Biochem Funct 2023; 41:1488-1502. [PMID: 38014635 DOI: 10.1002/cbf.3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Colorectal cancer (CRC) is responsible for a significant number of cancer-related fatalities worldwide. Researchers are investigating the therapeutic potential of ferroptosis, a type of iron-dependent controlled cell death, in the context of CRC. Curcumin, a natural compound found in turmeric, exhibits anticancer properties. This study explores the effects of curcumin on genes related to ferroptosis (FRGs) in CRC. To gather CRC data, we used the Gene Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Omnibus (GEO) databases, while FRGs were obtained from the FerrDb database and PubMed. We identified 739 CRC differentially expressed genes (DEGs) in CRC and discovered 39 genes that were common genes between FRGs and CRC DEGs. The DEGs related to ferroptosis were enriched with various biological processes and molecular functions, including the regulation of signal transduction and glucose metabolism. Using the Drug Gene Interaction Database (DGIdb), we predicted drugs targeting CRC-DEGs and identified 17 potential drug targets. Additionally, we identified eight essential proteins related to ferroptosis in CRC, including MYC, IL1B, and SLC1A5. Survival analysis revealed that alterations in gene expression of CDC25A, DDR2, FABP4, IL1B, SNCA, and TFAM were associated with prognosis in CRC patients. In SW480 human CRC cells, treatment with curcumin decreased the expression of MYC, IL1B, and EZH2 mRNA, while simultaneously increasing the expression of SLCA5 and CAV1. The findings of this study suggest that curcumin could regulate FRGs in CRC and have the potential to be utilized as a therapeutic agent for treating CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Tafti
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hinokuma H, Kanamori Y, Ikeda K, Hao L, Maruno M, Yamane T, Maeda A, Nita A, Shimoda M, Niimura M, Takeshima Y, Li S, Suzuki M, Moroishi T. Distinct functions between ferrous and ferric iron in lung cancer cell growth. Cancer Sci 2023; 114:4355-4364. [PMID: 37688294 PMCID: PMC10637068 DOI: 10.1111/cas.15949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Accumulating evidence suggests an association between iron metabolism and lung cancer progression. In biological systems, iron is present in either reduced (Fe2+ ; ferrous) or oxidized (Fe3+ ; ferric) states. However, ferrous and ferric iron exhibit distinct chemical and biological properties, the role of ferrous and ferric iron in lung cancer cell growth has not been clearly distinguished. In this study, we manipulated the balance between cellular ferrous and ferric iron status by inducing gene mutations involving the FBXL5-IRP2 axis, a ubiquitin-dependent regulatory system for cellular iron homeostasis, and determined its effects on lung cancer cell growth. FBXL5 depletion (ferrous iron accumulation) was found to suppress lung cancer cell growth, whereas IRP2 depletion (ferric iron accumulation) did not suppress such growth, suggesting that ferrous iron but not ferric iron plays a suppressive role in cell growth. Mechanistically, the depletion of FBXL5 impaired the degradation of the cyclin-dependent kinase inhibitor, p27, resulting in a delay in the cell cycle at the G1/S phase. FBXL5 depletion in lung cancer cells also improved the survival of tumor-bearing mice. Overall, this study highlights the important function of ferrous iron in cell cycle progression and lung cancer cell growth.
Collapse
Affiliation(s)
- Hironori Hinokuma
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yohei Kanamori
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Koei Ikeda
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Li Hao
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Masataka Maruno
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Taishi Yamane
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Ayato Maeda
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Mayuko Shimoda
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Mayumi Niimura
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Takeshima
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Shuran Li
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
12
|
Chittineedi P, Pandrangi SL, Neira Mosquera JA, Sánchez Llaguno SN, Mohiddin GJ. Aqueous Nyctanthes arbortristis and doxorubicin conjugated gold nanoparticles synergistically induced mTOR-dependent autophagy-mediated ferritinophagy in paclitaxel-resistant breast cancer stem cells. Front Pharmacol 2023; 14:1201319. [PMID: 37841922 PMCID: PMC10568009 DOI: 10.3389/fphar.2023.1201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
Aim: Nyctanthes arbortristis Linn is a potential anti-diabetic drug that reduces glucose levels by delaying carbohydrate digestion. The tumor microenvironment is characterized by elevated glucose levels that activate various genes, such as mTOR. mTOR plays a critical role in maintaining the hypoxic environment and inhibiting autophagy. Although natural compounds pose fewer side effects, their hydrophobic nature makes these compounds not suitable as therapeutics. Hence, we conjugated aqueous NAT into gold nanoparticles (AuNP) in the current study and evaluated the ability of the chosen drugs to induce cell death in breast cancer cells resistant to Paclitaxel. Materials and methods: Particle size analyzer, UV-Vis spectrophotometer, FTIR, and XRD were used in the present study to characterize NAT and Doxorubicin encapsulated AuNPs. To check the cytotoxic effect of AuNP-NAT and AuNP-doxorubicin on PacR/MCF-7 stem cells MTT assay was performed. RT-PCR was performed to check the altered expression of ferritinophagy-related genes. The proliferation and migration potential of the cells before and after treatment with the desired drug combinations was evaluated by clonogenic and scratch assays, respectively. Flow cytometry analysis was done to quantify apoptotic bodies and cell cycle arrest. Cellular ROS was determined using DCD-FA staining. Results and conclusion: NAT and doxorubicin loaded into AuNP showed enhanced stability and induced ferritinophagy in PacR/MCF-7 stem cells. The obtained results suggest that AuNP-NAT, combined with a low AuNP-Doxorubicin nanoconjugate dose, might be an effective anti-neoplastic drug targeting the necroptosis-autophagy axis, thereby reducing the adverse side-effects induced by the conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | | | | | - Gooty Jaffer Mohiddin
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, Santo Domingo, Ecuador, South America
| |
Collapse
|
13
|
Han H, Ni P, Zhang S, Ji X, Zhu M, Ma W, Ge H, Chu H. The association of body mass index and weight waist adjustment index with serum ferritin in a national study of US adults. Eur J Med Res 2023; 28:374. [PMID: 37749647 PMCID: PMC10521392 DOI: 10.1186/s40001-023-01343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Abnormal serum ferritin levels are associated with a variety of diseases. Meanwhile, abnormal serum ferritin is influenced by a variety of risk factors, but its correlation with obesity remains poorly described. OBJECTIVE This study aimed to investigate the association of body mass index (BMI) and weight waist adjustment index (WWI) with serum ferritin in US adults. METHODS Participants in this study took part in the National Health and Nutrition Examination Survey (NHANES) prior to the pandemic from 2017 to March 2020. Serum ferritin was used as the sole response variable and BMI and WWI were used as independent variables. Multiple linear regression was used to assess the relationship between serum ferritin and the independent variables, and smoothed curve fitting and threshold effects analysis were performed to assess the presence of non-linear relationships. To validate the sensitive individuals for the correlation between the independent and the dependent variables, a subgroup analysis was performed. RESULTS A final total of 7552 participants were included in this study. Both independent variables had a positive relationship with serum ferritin, with effect values of (β = 0.68, 95% CI: 0.17-1.19) when BMI was the independent variable and (β = 8.62, 95% CI: 3.53-13.72) when WWI was the independent variable in the fully adjusted model. This positive association between the two obesity-related indexes and serum ferritin became more significant as BMI and WWI increased (P for trend < 0.001). In subgroup analyses, the positive association between the independent variables and serum ferritin was more pronounced in participants who were male, 40-59 years old, white, and had diabetes and hypertension. In addition, smoothed curve fitting and threshold effects analysis demonstrated a linear positive association of BMI and WWI with serum ferritin. CONCLUSIONS In the US adult population, while there was a linear positive association of WWI and BMI with serum ferritin, the effect values between WWI and serum ferritin were more significant. Male, 40-59 years old, white, participants with diabetes and hypertension should be cautious that higher WWI might entail a risk of higher serum ferritin levels.
Collapse
Affiliation(s)
- Hao Han
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China
| | - Ping Ni
- Department of Hematology, Wuhu City Second People's Hospital, Wuhu, Anhui, People's Republic of China
| | - Siqi Zhang
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China
| | - Xiaojuan Ji
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China
| | - Mingli Zhu
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China
| | - Wanyu Ma
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China
| | - Hongfeng Ge
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China.
| | - Hailiang Chu
- Department of Hematology, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, Anhui, People's Republic of China.
| |
Collapse
|
14
|
Gelbach PE, Finley SD. Genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. iScience 2023; 26:107569. [PMID: 37664588 PMCID: PMC10474475 DOI: 10.1016/j.isci.2023.107569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment (TME), which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the TME. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Zhang Q, Xuan Q, Wang C, Shi C, Wang X, Ma T, Zhang W, Li H, Wang P, Chen C. Bioengineered "Molecular Glue"-Mediated Tumor-Specific Cascade Nanoreactors with Self-Destruction Ability for Enhanced Precise Starvation/Chemosynergistic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41271-41286. [PMID: 37622208 DOI: 10.1021/acsami.3c06871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The ordered and directed functionalization of targeting elements on the surface of nanomaterials for precise tumor therapy remains a challenge. To address the above problem, herein, we adopted a materials-based synthetic biotechnology strategy to fabricate a bioengineered fusion protein of materials-binding peptides and targeting elements, which can serve as a "molecular glue" to achieve a directional and organized assembly of targeting biological macromolecules on the surface of nanocarriers. The hypoxia microenvironment of solid tumors inspired the rapid development of starvation/chemosynergistic therapy; however, the unsatisfied spatiotemporal specific performance hindered its further development in precise tumor therapy. As a proof of concept, a bioengineered fusion protein containing a dendritic mesoporous silicon (DMSN)-binding peptide, and a tumor-targeted and acidity-decomposable ferritin heavy chain 1 (FTH1), was constructed by fusion expression and further assembled on the surface of DMSN companying with the insertion of hypoxia-activated prodrug tirapazamine (TPZ) and glucose oxidase (GOX) to establish a nanoreactor for precise starvation/chemosynergistic tumor therapy. In this context, the as-prepared therapeutic nanoreactors revealed obvious tumor-specific accumulation and an endocytosis effect. Next, the acidic tumor microenvironment triggered the structural collapse of FTH1 and the subsequent release of GOX and TPZ, in which GOX-mediated catalysis cut off the nutrition supply to realize starvation therapy based on the consumption of endogenous glucose and further provided an exacerbated hypoxia environment for TPZ in situ activation to initiate tumor chemotherapy. More significantly, the presence of "molecular glue" elevated the tumor-targeting capacity of nanoreactors and further enhanced the starvation/chemosynergistic therapeutic effect remarkably, suggesting that such a strategy provided a solution for the functionality of nanomaterials and facilitated the design of novel targeting nanomedicines. Overall, this study highlights materials-binding peptides as a new type of "molecular glue" and opens new avenues for designing and exploring active biological materials for biological functions and applications.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qize Xuan
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
16
|
Kinoshita N, Gessho M, Torii T, Ashida Y, Akamatsu M, Guo AK, Lee S, Katsuno T, Nakajima W, Budirahardja Y, Miyoshi D, Todokoro T, Ishida H, Nishikata T, Kawauchi K. The iron chelator deferriferrichrysin induces paraptosis via extracellular signal-related kinase activation in cancer cells. Genes Cells 2023; 28:653-662. [PMID: 37264202 DOI: 10.1111/gtc.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.
Collapse
Affiliation(s)
- Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Masaya Gessho
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Yukako Ashida
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Minori Akamatsu
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sunmin Lee
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yemima Budirahardja
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | | | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd, Kyoto, Japan
| | - Takahito Nishikata
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| |
Collapse
|
17
|
Lee J, Roh JL. Altered iron metabolism as a target for ferroptosis induction in head and neck cancer. Cell Oncol (Dordr) 2023; 46:801-810. [PMID: 36811720 DOI: 10.1007/s13402-023-00784-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Iron is a mineral micronutrient essential for survival and vital functions in many biological processes in living organisms. Iron plays a crucial role as a cofactor of iron-sulfur clusters in energy metabolism and biosynthesis by binding with enzymes and transferring electrons to targets. Iron can also impair cellular functions by damaging organelles and nucleic acids by producing free radicals from redox cycling. Iron-catalyzed reaction products can induce active-site mutations in tumorigenesis and cancer progression. However, the boosted pro-oxidant iron form may contribute to cytotoxicity by increasing soluble radicals and highly reactive oxygen species via the Fenton reaction. An increased redox-active labile iron pool is required for tumor growth and metastasis, but the increased cytotoxic lipid radicals also lead to regulated cell death, such as ferroptosis. Therefore, this may be a major target for selectively killing cancer cells. This review intends to understand altered iron metabolism in cancers and discuss iron-related molecular regulators highly associated with iron-induced cytotoxic radical production and ferroptosis induction, focusing on head and neck cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
18
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
19
|
Kwantwi LB. Exosome-mediated crosstalk between tumor cells and innate immune cells: implications for cancer progression and therapeutic strategies. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04833-9. [PMID: 37154928 DOI: 10.1007/s00432-023-04833-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
The increasing number of cancer-associated deaths despite the substantial improvement in diagnosis and treatment has sparked discussions on the need for novel biomarkers and therapeutic strategies for cancer. Exosomes have become crucial players in tumor development and progression, largely due to the diverse nature of their cargo content released to recipient cells. Importantly, exosome-mediated crosstalk between tumor and stromal cells is essential in reprogramming the tumor microenvironment to facilitate tumor progression. As a result, exosomes have gradually become a marker for the early diagnosis of many diseases and an important tool in drug delivery systems. However, the precise mechanisms by which exosomes participate in tumor progression remain elusive, multifaceted, and a double-edged sword, thus requiring further clarification. The available evidence suggests that exosomes can facilitate communication between innate immune cells and tumor cells to either support or inhibit tumor progression. Herein, this review focused on exosome-mediated intercellular communication between tumor cells and macrophages, neutrophils, mast cells, monocytes, dendritic cells, and natural killer cells. Specifically, how such intercellular communication affects tumor progression has been described. It has also been discussed that, depending on their cargo, exosomes can suppress or promote tumor cell progression. In addition, the potential application of exosomes and strategies to target exosomes in cancer treatment has been comprehensively discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
20
|
Yang Y, Wang Q, Gao L, Liu S, Zhao J, Liu G, Zhang S. Promising applications of red cell distribution width in diagnosis and prognosis of diseases with or without disordered iron metabolism. Cell Biol Int 2023. [PMID: 37092585 DOI: 10.1002/cbin.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Many indicators, including red cell distribution width (RDW) and iron metabolism, are sensitive to a variety of risk factors, and are associated with the pathological alterations and disease onset. RDW reflects the degree of heterogeneous volumes of peripheral red blood cells (RBCs). It has been well-known that increased RDW indicates iron deficiency anemia, hemolytic anemia, ineffective erythropoiesis, and shorten lifespan of RBCs. Increased RDW is also prevalent in various non-anemic pathological conditions and diseases. We here review the factors affecting RDW, particularly disordered iron metabolism, chronic inflammation, and oxidative stress, and recapitulate the interplays among these factors. Furthermore, we review the application of increased RDW together with disordered iron homeostasis and the deregulations of hepcidin expression and ferritin levels in the diagnoses and prognosis of anemic and nonanemic diseases. RDW is inexpensive and readily available and may be valuable in adding to the diagnosis and monitoring of many pathological conditions. RDW combined with other indicators, for example, hepcidin and ferritin levels, should be utilized more frequently in clinical practice.
Collapse
Affiliation(s)
- Yashuang Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Quanshu Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuping Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
21
|
Chen H, Tang Y. Iron-loaded extracellular vesicles: angel or demon? Free Radic Res 2023; 57:61-68. [PMID: 36927327 DOI: 10.1080/10715762.2023.2191813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Extracellular vesicles (EVs) are identified as a non-classical way to mediate iron efflux except ferroportin. Interestingly, recent studies indicated that EVs pathway is a novel way involved in iron efflux. Mitochondria-derived vesicles (MDVs) are the potential mediator to load mitochondrial iron into EVs. Additionally, iron-replete cells resist excess iron-induced damage by secreting iron-loaded EVs, and the uptake of these EVs induces oxidative damage in the recipient cell. Importantly, iron-loaded EVs play a key role in aberrant iron distribution, which drives the progress of diseases like nonalcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. Herein, we summarize extant research on intracellular iron export with an emphasis on EVs and put our eyes on the relationship between iron-loaded EVs with both parent and target cells. Iron-loaded EVs will be an important avenue for later research on their vital role in iron redistribution.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Lavriša Ž, Hristov H, Hribar M, Koroušić Seljak B, Gregorič M, Blaznik U, Zaletel K, Oblak A, Osredkar J, Kušar A, Žmitek K, Lainščak M, Pravst I. Dietary Iron Intake and Biomarkers of Iron Status in Slovenian Population: Results of SI.Menu/Nutrihealth Study. Nutrients 2022; 14:nu14235144. [PMID: 36501175 PMCID: PMC9741255 DOI: 10.3390/nu14235144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Inadequate iron intake and iron deficiency are recognised as a public health problem in the population at large, and particularly in specific subpopulations. Dietary iron intake was analysed using data of the national Slovenian food consumption study, SI.Menu (n = 1248 subjects; 10−74 years), while iron status was evaluated with laboratory analyses of blood haemoglobin, serum ferritin, and iron concentration in samples, collected in the Nutrihealth study (n = 280, adults). The estimated daily usual population-weighted mean iron intakes ranged from 16.0 mg in adults and the elderly to 16.7 in adolescents, and were lower in females for all three age groups. The main dietary iron sources in all the age groups were bread and bakery products, meat (products), fruit, and vegetables. The highest prevalence of haemoglobin anaemia was observed in females aged 51−64 years (6.7%). Critically depleted iron stores (ferritin concentration < 15 µg/L) were particularly found in premenopausal females (10.1%). Factors influencing low haemoglobin, ferritin, and iron intake were also investigated. We observed significant correlations between iron status with meat and fish intake, and with iron intake from meat and fish, but not with total iron intake. We can conclude that particularly premenopausal females are the most fragile population in terms of inadequate iron intake and iron deficiency, which should be considered in future research and public health strategies.
Collapse
Affiliation(s)
- Živa Lavriša
- Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
| | - Hristo Hristov
- Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
| | - Maša Hribar
- Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Barbara Koroušić Seljak
- Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matej Gregorič
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| | - Urška Blaznik
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| | - Katja Zaletel
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia
| | - Adrijana Oblak
- University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia
| | - Joško Osredkar
- University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anita Kušar
- Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
| | - Katja Žmitek
- Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
- VIST–Faculty of Applied Sciences, Gerbičeva cesta 51A, SI-1000 Ljubljana, Slovenia
| | - Mitja Lainščak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Department of Internal Medicine, General Hospital Murska Sobota, Ulica dr. Vrbnjaka 6, SI-9000 Murska Sobota, Slovenia
| | - Igor Pravst
- Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
- VIST–Faculty of Applied Sciences, Gerbičeva cesta 51A, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-590-68871; Fax: +386-310-07981
| |
Collapse
|
23
|
Cui Z, Li W, Wang Y, Zhao M, Liu K, Yang Y, Teng S, Zhang N, Min L, Li P, Zhang S, Xu J, Wu J. M2 Macrophage-Derived Exosomal Ferritin Heavy Chain Promotes Colon Cancer Cell Proliferation. Biol Trace Elem Res 2022:10.1007/s12011-022-03488-w. [PMID: 36418633 DOI: 10.1007/s12011-022-03488-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Colon cancer is a widespread life-threatening malignancy with complex and multifactorial etiology. Both epidemiological cohort studies and basic research support the substantial role of iron metabolism in colon cancer. Thus, understanding the mechanisms of how essential iron metabolic proteins are dysregulated may provide new treatment strategies for colon cancer. Ferritin is the main iron storage protein that occupies a vital position in iron metabolism. Studies reported that ferritin is differentially highly expressed in tissues from multiple malignancies. However, the source and function of highly expressed ferritin in colon cancer have not been explored. In this study, we found that the protein level but not RNA level of ferritin heavy chain (FTH1) was upregulated in colon cancer using paired clinical samples. Co-culture system was used to mimic the in vivo circumstance and study the cell-cell communication of macrophages and colon cancer cells. Results showed that M2 macrophages could substantially increase the FTH1 levels in colon cancer cells. This effect could be blocked by the exosome biogenesis/ secretion inhibitor GW4869, implying the vital role of exosomes in this biological process. Besides, we found that purified exosomes from M2 macrophages could deliver FTH1 into colon cancer cells and promote cell proliferation. Furtherly, EdU assay and live cell imaging system were performed in FTH1-OE (overexpression) colon cancer cell lines and confirmed the cell proliferation promoting effect of FTH1. Our results unveil the source and function of highly expressed FTH1 in colon cancer and provide a new potential therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Zilu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Wenkun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Yadan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Mengran Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Kuiliang Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shuo Teng
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
24
|
Evaluation of Auranofin Loading within Ferritin Nanocages. Int J Mol Sci 2022; 23:ijms232214162. [PMID: 36430642 PMCID: PMC9695178 DOI: 10.3390/ijms232214162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.
Collapse
|
25
|
Abulseoud OA, Yehia A, Egol CJ, Nettey VN, Aly M, Qu Y, Skolnik AB, Grill MF, Sen A, Schneekloth TD. Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions. Front Psychiatry 2022; 13:1035986. [PMID: 36440432 PMCID: PMC9681793 DOI: 10.3389/fpsyt.2022.1035986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
We examined the effects of psychiatric comorbidity, sex, and ICU admission on serum ferritin concentration in 628 elderly patients (79.7 ± 8.5 years) with positive SARS-CoV-2 PCR test. Hospitalization was required in 96% of patients and 17% required ICU admission. Patients with COVID-19 and psychiatric comorbidities (n = 212) compared to patients without psychiatric comorbidities (n = 416) had significantly lower ferritin concentration (570.4 ± 900.1 vs. 744.1 ± 965, P = 0.029), a greater incidence of delirium (22.6 vs. 14.4%, P = 0.013) and higher mortality (35.3 vs. 27.6%, P = 0.015). Furthermore, we found significant effects for sex (P = 0.002) and ICU admission (P = 0.007). Among patients without comorbid psychiatric conditions, males had significantly higher ferritin compared to females (1,098.3 ± 78.4 vs. 651.5 ± 94.4, P < 0.001). ICU patients without comorbid psychiatric conditions had significantly higher serum ferritin compared to ICU patients with comorbid psychiatric conditions: (1,126.6 ± 110.7 vs. 668.6 ± 156.5, P < 0.001). Our results suggest that the presence of comorbid psychiatric conditions in elderly patients with COVID-19 is associated with higher rates of delirium and mortality and lower ferritin levels during severe illness. Whether high serum ferritin is protective during severe infection requires further investigation.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Collaborative Research Building (CRB), Scottsdale, AZ, United States
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claudine J. Egol
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Victor N. Nettey
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Mohamed Aly
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Yihuai Qu
- Alix School of Medicine at Mayo Clinic, Phoenix, AZ, United States
| | - Aaron B. Skolnik
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Marie F. Grill
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ayan Sen
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Terry D. Schneekloth
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
26
|
Rotty L, Padang M, Hendratta C, Haroen H, Lasut P. Interleukin 6, Ferritin Levels, and Glasgow Prognostic Score in Solid Cancer. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Several pro-inflammatory cytokines have been shown to regulate cancer cell growth and contribute to cancer promotion and progression. Interleukin 6 (IL-6) regulates almost all the hallmarks of cancer such as inhibition of apoptosis, proliferation, angiogenesis, and invasiveness and is also known to regulate cell metabolism. The associated increase in serum ferritin is most likely induced by the inflammatory state. In several studies, IL-6 and ferritin have a significant role in the development and clinical outcome in solid cancer and the Glasgow Prognostic Score (GPS) is widely used as a prognostic score in solid cancer. It is currently unclear whether levels of IL-6 and ferritin correlate with GPS in solid cancer patients.
AIM: The aim of this study is to determine the correlation between IL-6 and ferritin levels with the GPS in solid cancer patients.
METHODS: This study was an analytical observational study with a cross-sectional study approach to examine the relationship between IL-6 and ferritin levels with GPS in solid cancer patients. The sampling method was carried out by consecutive sampling. The total number of samples used in the study was 32 solid cancer subjects who had just been diagnosed. IL-6 was examined by kit enzyme-linked immunosorbent assay and ferritin using immunochemiluminescent method at certified laboratory in Manado city, Indonesia. The GPS is based on the results of the patient’s C-reactive protein and albumin levels were also examined at certified laboratory in Manado city, Indonesia. Data analysis was done using SPSS version 22.
RESULTS: There were 32 patients with solid cancer who are newly diagnosed and have not undergone chemotherapy. Out of 32 patients, 17 are men (53.13%) and 15 are women (46.87%). The median age of the subject was 52.5 (33–69) years. There was a significant relationship between IL-6 levels and GPS (p = 0.011; OR 16.67 95% CI 1.617–171.783). There was no significant relationship between ferritin levels and GPS (p = 0.148; OR 5.429 95% CI 0.807–36.506). There was a statistically significant relationship between IL-6 levels and ferritin (r = 0.554; p = 0.001).
CONCLUSION: There was a significant correlation between IL-6 and GPS and there was a significant correlation between IL-6 and ferritin in solid cancer patients. IL-6 levels can be used to assess the risk of prognosis in solid cancer patients and help provide an idea of what kind of treatment will be given to patients, and can help to determine the plan treatment at the end of the life of cancer patients.
Collapse
|
27
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
28
|
Hu Y, Lin J, Wang Y, Wu S, Wu J, Lv H, Ji X, Muyldermans S, Zhang Y, Wang S. Identification of Serum Ferritin-Specific Nanobodies and Development towards a Diagnostic Immunoassay. Biomolecules 2022; 12:biom12081080. [PMID: 36008974 PMCID: PMC9406126 DOI: 10.3390/biom12081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Serum ferritin (SF) is an iron-rich protein tightly connected with iron homeostasis, and the variations are frequently observed in diseased states, including iron-deficiency anemia, inflammation, liver disease, and tumors, which renders SF level an indicator of potential malignancies in clinical practice. Nanobodies (Nbs) have been widely explored and developed into theranostic reagents. Surprisingly, no reports stated the identification of anti-SF Nbs, nor the potential of such Nbs as a diagnostic tool. In this study, we generated SF-specific Nbs and provided novel clinical diagnostic approaches to develop an immunoassay. An immune library was constructed after immunizing an alpaca with SF, and five Nbs specifically targeting human SF were retrieved. The obtained Nbs exhibited robust properties including high stability, affinity, and specificity. Then, an ELISA-based test using a heterologous Nb-pair was developed. The calibration curve demonstrated a linear range of SF between 9.0 to 1100 ng/mL, and a limit of detection (LOD) of 1.01 ng/mL. The detecting recovery and coefficient variation (CV) were determined by spiking different concentrations of SF into the serum sample, to verify the successful application of our selected Nbs for SF monitoring. In general, this study generated SF-specific Nbs and demonstrated their potential as diagnostic immunoassay tools.
Collapse
Affiliation(s)
- Yaozhong Hu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Yan Zhang
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence: (Y.Z.); (S.W.); Tel.: +86-22-8535-8445 (S.W.)
| | - Shuo Wang
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence: (Y.Z.); (S.W.); Tel.: +86-22-8535-8445 (S.W.)
| |
Collapse
|
29
|
Kumar SB, Arnipalli SR, Mehta P, Carrau S, Ziouzenkova O. Iron Deficiency Anemia: Efficacy and Limitations of Nutritional and Comprehensive Mitigation Strategies. Nutrients 2022; 14:nu14142976. [PMID: 35889932 PMCID: PMC9315959 DOI: 10.3390/nu14142976] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
Iron deficiency anemia (IDA) has reached epidemic proportions in developing countries and has become a major global public health problem, affecting mainly 0–5-year-old children and young women of childbearing age, especially during pregnancy. Iron deficiency can lead to life-threatening loss of red blood cells, muscle function, and energy production. Therefore, the pathogenic features associated with IDA are weakness and impaired growth, motor, and cognitive performance. IDA affects the well-being of the young generation and the economic advancement of developing countries, such as India. The imbalance between iron intake/absorption/storage and iron utilization/loss culminates into IDA. However, numerous strategic programs aimed to increase iron intake have shown that improvement of iron intake alone has not been sufficient to mitigate IDA. Emerging critical risk factors for IDA include a composition of cultural diets, infections, genetics, inflammatory conditions, metabolic diseases, dysbiosis, and socioeconomic parameters. In this review, we discuss numerous IDA mitigation programs in India and their limitations. The new multifactorial mechanism of IDA pathogenesis opens perspectives for the improvement of mitigation programs and relief of IDA in India and worldwide.
Collapse
|
30
|
Islam S, Hoque N, Nasrin N, Hossain M, Rizwan F, Biswas K, Asaduzzaman M, Rahman S, Hoskin DW, Sultana S, Lehmann C. Iron Overload and Breast Cancer: Iron Chelation as a Potential Therapeutic Approach. Life (Basel) 2022; 12:963. [PMID: 35888054 PMCID: PMC9317809 DOI: 10.3390/life12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer has historically been one of the leading causes of death for women worldwide. As of 2020, breast cancer was reported to have overtaken lung cancer as the most common type of cancer globally, representing an estimated 11.3% of all cancer diagnoses. A multidisciplinary approach is taken for the diagnosis and treatment of breast cancer that includes conventional and targeted treatments. However, current therapeutic approaches to treating breast cancer have limitations, necessitating the search for new treatment options. Cancer cells require adequate iron for their continuous and rapid proliferation. Excess iron saturates the iron-binding capacity of transferrin, resulting in non-transferrin-bound iron (NTBI) that can catalyze free-radical reactions and may lead to oxidant-mediated breast carcinogenesis. Moreover, excess iron and the disruption of iron metabolism by local estrogen in the breast leads to the generation of reactive oxygen species (ROS). Therefore, iron concentration reduction using an iron chelator can be a novel therapeutic strategy for countering breast cancer development and progression. This review focuses on the use of iron chelators to deplete iron levels in tumor cells, specifically in the breast, thereby preventing the generation of free radicals. The inhibition of DNA synthesis and promotion of cancer cell apoptosis are the targets of breast cancer treatment, which can be achieved by restricting the iron environment in the body. We hypothesize that the usage of iron chelators has the therapeutic potential to control intracellular iron levels and inhibit the breast tumor growth. In clinical settings, iron chelators can be used to reduce cancer cell growth and thus reduce the morbidity and mortality in breast cancer patients.
Collapse
Affiliation(s)
- Sufia Islam
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Nazia Hoque
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Nishat Nasrin
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Mehnaz Hossain
- Department of Political Science and Global Governance, Balsillie School of International Affairs, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Farhana Rizwan
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Kushal Biswas
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Muhammad Asaduzzaman
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Sabera Rahman
- Department of Pharmacy, City University, Dhaka 1215, Bangladesh;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Saki Sultana
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (S.S.); (C.L.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (S.S.); (C.L.)
| |
Collapse
|
31
|
Iron Regulatory Protein 1 Inhibits Ferritin Translation Responding to OsHV-1 Infection in Ark Clams, Scapharca Broughtonii. Cells 2022; 11:cells11060982. [PMID: 35326435 PMCID: PMC8947174 DOI: 10.3390/cells11060982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Elemental iron is an indispensable prosthetic group of DNA replication relative enzymes. The upregulation of ferritin translation by iron regulatory proteins (IRP1) in host cells is a nutritional immune strategy to sequester available iron to pathogens. The efficient replication of Ostreid herpesvirus 1 (OsHV-1), a lethal dsDNA virus among bivalves, depends on available iron. OsHV-1 infection was found to trigger iron limitation in ark clams; however, it is still an enigma how OsHV-1 successfully conducted rapid replication, escaping host iron limitations. In this study, we identified the IRP1 protein (designated as SbIRP-1) in the ark clam (Scapharca broughtonii) and found it could bind to the iron-responsive element (IRE) of ferritin (SbFn) mRNA based on electrophoretic mobility shift assay (EMSA). Knockdown of SbIRP-1 expression (0.24 ± 1.82-fold of that in NC group, p < 0.01) by RNA interference resulted in the accumulation of SbFn in hemocytes (1.79 ± 0.01-fold, p < 0.01) post-24 h of enhanced RNA interference injection. During OsHV-1 infection, SbFn mRNA was significantly upregulated in hemocytes from 24 h to 60 h, while its protein level was significantly reduced from 24 h to 48 h, with the lowest value at 36 h post-infection (0.11 ± 0.01-fold, p < 0.01). Further analysis by RNA immunoprecipitation assays showed that OsHV-1 could enhance the binding of SbIRP-1 with the SbFn IRE, which was significantly increased (2.17 ± 0.25-fold, p < 0.01) at 36 h post-infection. Consistently, SbIRP-1 protein expression was significantly increased in hemocytes from 12 h to 48 h post OsHV-1 infection (p < 0.01). In conclusion, the results suggest that OsHV-1 infection could suppress post-transcriptional translation of SbFn through the regulation of SbIRP-1, which likely contributes to OsHV-1 evasion of SbFn-mediating host iron limitation.
Collapse
|
32
|
Ren P, Wang K, Ma J, Cao X, Zhao J, Zhao C, Guo Y, Ye H. Autoantibody Against Ferritin Light Chain is a Serum Biomarker for the Detection of Liver Cirrhosis but Not Liver Cancer. J Hepatocell Carcinoma 2022; 9:221-232. [PMID: 35378780 PMCID: PMC8976487 DOI: 10.2147/jhc.s352057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Ferritin is a protein that plays an important role in iron metabolism, it consists of two subunits: heavy chain (FTH) and light chain (FTL). Elevated expression of FTL is observed in multiple malignancies. Recent studies have found that the frequency of circulating autoantibody against FTL (anti-FTL) increased significantly in hepatocellular carcinoma (HCC). The aim of this study is to verify circulating anti-FTL as a biomarker for the early detection of HCC. Patients and Methods A total of 1565 participants were enrolled and assigned to two independent validation cohorts, including 393 HCC patients, 379 liver cirrhosis (LC) patients, 400 chronic hepatitis (CH) patients, and 393 healthy subjects. The concentration of serum anti-FTL was measured by indirect Enzyme-Linked Immunosorbent Assay (ELISA). Kruskal–Wallis test was used to compare anti-FTL concentrations between HCC group and three control groups. Percentile 95 of anti-FTL absorbance value of healthy group was selected as the cut-off value to calculate the positive rate in each group. The area under receiver operating characteristic curve (AUC) was used to quantitatively describe its diagnostic value. Results The median concentration of anti-FTL in HCC patients was higher than that in CH patients and healthy subjects, but there was no difference between HCC patients and LC patients. Further analysis showed that there was no difference between early stage LC, advanced stage LC, Child-Pugh A HCC, Child-Pugh B HCC and Child-Pugh C HCC. The positive rate of anti-FTL was 12.2% (48/393) in HCC, 13.5% (51/379) in LC, 6.3% (25/400) in CH and 5.1% (20/393) in healthy subjects, respectively. The AUC of anti-FTL to distinguish LC from CH or healthy subjects were 0.654 (95% CI: 0.615–0.692) and 0.642 (95% CI: 0.602–0.681), respectively. Conclusion Anti-FTL is not a biomarker for the early diagnosis of HCC due to specificity deficiency, but may be helpful for the early detection of LC.
Collapse
Affiliation(s)
- Pengfei Ren
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Keyan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Xiaoqin Cao
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Jiuzhou Zhao
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Chengzhi Zhao
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
- Correspondence: Yongjun Guo, Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, People’s Republic of China, Fax +86 371 65587506 Email
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, People’s Republic of China
- Hua Ye, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, People’s Republic of China, Fax +86 371 67781248, Email
| |
Collapse
|
33
|
Mitre AO, Florian AI, Buruiana A, Boer A, Moldovan I, Soritau O, Florian SI, Susman S. Ferroptosis Involvement in Glioblastoma Treatment. Medicina (B Aires) 2022; 58:medicina58020319. [PMID: 35208642 PMCID: PMC8876121 DOI: 10.3390/medicina58020319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors. Current standard therapy includes tumor resection surgery followed by radiotherapy and chemotherapy. Due to the tumors invasive nature, recurrences are almost a certainty, giving the patients after diagnosis only a 12–15 months average survival time. Therefore, there is a dire need of finding new therapies that could potentially improve patient outcomes. Ferroptosis is a newly described form of cell death with several implications in cancer, among which GBM. Agents that target different molecules involved in ferroptosis and that stimulate this process have been described as potentially adjuvant anti-cancer treatment options. In GBM, ferroptosis stimulation inhibits tumor growth, improves patient survival, and increases the efficacy of radiation and chemotherapy. This review provides an overview of the current knowledge regarding ferroptosis modulation in GBM.
Collapse
Affiliation(s)
- Andrei-Otto Mitre
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Alexandru Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Andrei Buruiana
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Armand Boer
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Ioana Moldovan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Olga Soritau
- Research Department, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Stefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Shen Z, Zhang S, Zhang M, Hu L, Sun Q, He C, Yan D, Ye J, Zhang H, Wang L, Gu W, Miao Y, Liu Q, Ouyang C, Zhu J, Wang C, Zhu T, Huang S, Sang W. The Addition of Ferritin Enhanced the Prognostic Value of International Prognostic Index in Diffuse Large B‐Cell Lymphoma. Front Oncol 2022; 11:823079. [PMID: 35127536 PMCID: PMC8807645 DOI: 10.3389/fonc.2021.823079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous non-Hodgkin lymphoma, and the prognosis of DLBCL patients is widely affected by multivariables. Clinical-factors-based prognostic systems stratify the prognosis of DLBCL with certain limitations, and the value of ferritin on the prognosis of DLBCL is unclear. In this study, 225 cases were retrieved from 4 centers of Huaihai Lymphoma Working Group (HHLWG) as the derivation cohort, and 66 cases were from the other 6 centers of HHLWG as external validation cohort. X-Tile program divided ferritin into three groups when applying 175.00 and 391.90 μg/L as the optimal cutoff points. Based on multivariable analysis, ferritin appeared to be a stronger predictor. A total of three variables (ferritin, age, and lactate dehydrogenase) were included for the development of the nomogram. The C-indexes were 0.73 and 0.70 in the derivation and validation cohort, and the calibration curve showed the consistency between the nomogram prediction and the actual observation. In conclusion, Ferritin-based nomogram enhanced the prognostic value of IPI in DLBCL.
Collapse
Affiliation(s)
- Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuo Zhang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lingling Hu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Sun
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenlu He
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Dongmei Yan
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Zhang
- Department of Hematology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Ling Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Weiying Gu
- Department of Hematology, The First People’s Hospital of Changzhou, Changzhou, China
| | - Yuqing Miao
- Department of Hematology, Yancheng First People’s Hospital, Yancheng, China
| | - Qinhua Liu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changli Ouyang
- Department of Nuclear Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junfeng Zhu
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chunling Wang
- Department of Hematology, Huai’an First People’s Hospital, Huaian, China
| | - Taigang Zhu
- Department of Hematology, The General Hospital of Wanbei Coal-Electric Group, Suzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Sang,
| |
Collapse
|
35
|
Zhuge X, Zhou H, Chen L, Chen H, Chen X, Guo C. The association between serum ferritin levels and malignant intraductal papillary mucinous neoplasms. BMC Cancer 2021; 21:1253. [PMID: 34800987 PMCID: PMC8606075 DOI: 10.1186/s12885-021-08986-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Serum ferritin levels are elevated in many malignancies. In this study, we showed the performance of serum ferritin in identifying malignant intraductal papillary mucinous neoplasms (IPMNs). METHODS A total of 151 patients with pathologically confirmed IPMNs were enrolled. Serum tumor biomarker (carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA)) levels and serum ferritin levels were recorded. Lesion location, tumor size, diameter of the main pancreatic duct (MPD), mural nodule, and IPMN type, were collected from imaging examinations. IPMNs with high grade dysplasia and associated invasive carcinoma were considered malignant IPMNs. RESULTS Serum ferritin levels in patients with malignant IPMNs were higher than those in patients with nonmalignant IPMNs (p < 0.05). Serum ferritin was an independent factor for the occurrence of malignant IPMNs (odds ratio (OR) = 1.18, 95% confidence interval (CI):1.01-1.39). A similar trend was found between high serum ferritin (> 149 ng/ml) and malignant IPMNs (OR = 5.64, 95% CI:1.78-17.92). The area under the curve (AUC) of serum ferritin was higher than that of CEA and CA19-9 in identifying malignant IPMNs (AUC = 0.67 vs. AUC = 0.58, 0.65). The combination of serum ferritin with IPMN type showed a similar performance to MPD diameter and the combination of serum CA19-9 with IPMN types in identifying malignant IPMNs (AUC = 0.78 vs. AUC = 0.79, 0.77) and invasive carcinoma (AUC = 0.77 vs. AUC = 0.79, 0.79). CONCLUSIONS Elevated serum ferritin is a factor associated with malignant IPMNs. Serum ferritin may be a useful marker for identifying malignancy in IPMNs.
Collapse
Affiliation(s)
- Xiaoling Zhuge
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun road, Hangzhou, 310003, China
| | - Hao Zhou
- Department of Radiology, the Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Liming Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun road, Hangzhou, 310003, China
| | - Hui Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun road, Hangzhou, 310003, China
| | - Xiao Chen
- Department of Radiology, the Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China.
| | - Chuangen Guo
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun road, Hangzhou, 310003, China.
| |
Collapse
|
36
|
Park JM, Mau CZ, Chen YC, Su YH, Chen HA, Huang SY, Chang JS, Chiu CF. A case-control study in Taiwanese cohort and meta-analysis of serum ferritin in pancreatic cancer. Sci Rep 2021; 11:21242. [PMID: 34711879 PMCID: PMC8553768 DOI: 10.1038/s41598-021-00650-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal diseases which lack an early diagnostic marker. We investigated whether serum ferritin (SF) reflects risk for pancreatic cancer and potential genes that may contribute ferritin and pancreatic cancer risks. We performed a meta-analysis of relevant studies on SF and pancreatic cancer risk by searching articles in PUBMED and EMBASE published up to 1 March 2020. We also collected serum samples from Taipei Medical University Joint Biobank and compared SF levels in 34 healthy controls and 34 pancreatic cancer patients. An Oncomine database was applied as a platform to explore a series of genes that exhibited strong associations between ferritin and pancreatic cancer. Herein, we show that high levels of SF can indicate risk of pancreatic cancer, suggesting SF as the new tumor marker that may be used to help pancreatic cancer diagnosis. We also found that expressions of iron homeostasis genes (MYC, FXN) and ferroptosis genes (ALOX15, CBS, FDFT1, LPCAT3, RPL8, TP53, TTC35) are significantly altered with pancreatic tumor grades, which may contribute to differential expression of ferritin related to pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Ji Min Park
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chen-Zou Mau
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yang-Ching Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
37
|
Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 Is a Potential Modulator for Orchestrating Iron Homeostasis and Redox Balance in Cancer Cells. Front Cell Dev Biol 2021; 9:728172. [PMID: 34589492 PMCID: PMC8473703 DOI: 10.3389/fcell.2021.728172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential trace mineral element in almost all living cells and organisms. However, cellular iron metabolism pathways are disturbed in most cancer cell types. Cancer cells have a high demand of iron. To maintain rapid growth and proliferation, cancer cells absorb large amounts of iron by altering expression of iron metabolism related proteins. However, iron can catalyze the production of reactive oxygen species (ROS) through Fenton reaction. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important player in the resistance to oxidative damage by inducing the transcription of antioxidant genes. Aberrant activation of Nrf2 is observed in most cancer cell types. It has been revealed that the over-activation of Nrf2 promotes cell proliferation, suppresses cell apoptosis, enhances the self-renewal capability of cancer stem cells, and even increases the chemoresistance and radioresistance of cancer cells. Recently, several genes involving cellular iron homeostasis are identified under the control of Nrf2. Since cancer cells require amounts of iron and Nrf2 plays pivotal roles in oxidative defense and iron metabolism, it is highly probable that Nrf2 is a potential modulator orchestrating iron homeostasis and redox balance in cancer cells. In this hypothesis, we summarize the recent findings of the role of iron and Nrf2 in cancer cells and demonstrate how Nrf2 balances the oxidative stress induced by iron through regulating antioxidant enzymes and iron metabolism. This hypothesis provides new insights into the role of Nrf2 in cancer progression. Since ferroptosis is dependent on lipid peroxide and iron accumulation, Nrf2 inhibition may dramatically increase sensitivity to ferroptosis. The combination of Nrf2 inhibitors with ferroptosis inducers may exert greater efficacy on cancer therapy.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
38
|
Carlsen L, Schorl C, Huntington K, Hernandez-Borrero L, Jhaveri A, Zhang S, Zhou L, El-Deiry WS. Pan-drug and drug-specific mechanisms of 5-FU, irinotecan (CPT-11), oxaliplatin, and cisplatin identified by comparison of transcriptomic and cytokine responses of colorectal cancer cells. Oncotarget 2021; 12:2006-2021. [PMID: 34611476 PMCID: PMC8487728 DOI: 10.18632/oncotarget.28075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) caused over 900,000 deaths worldwide in 2020. A majority of late-stage CRC patients are treated with 5-fluorouracil (5-FU) combined with either irinotecan (CPT-11), oxaliplatin, or both. Despite their widespread use, the mechanisms of efficacy and toxicity of these drugs remain incompletely understood. While previous work has investigated cellular responses to these agents individually, we directly compare the transcriptomic and cytokine profiles of HCT116 wild-type and p53-/- colorectal cancer cells treated with these drugs and report pan-drug, drug-specific, drug class-specific, p53-independent, and p53-dependent signatures. We observed downregulation of histone genes by 5-FU (that significantly correlates with improved survival in CRC patients) and upregulation of FOS and ATF3 by oxaliplatin (which may contribute to peripheral neuropathy). BTG2 was identified as a top gene upregulated by all four drugs, suggesting its critical role in the cellular response to chemotherapy in CRC. Soluble TRAILR2 (death receptor 5; DR5) is a decoy receptor for TRAIL, an apoptosis-inducing cytokine. TRAILR2 was down-regulated by oxaliplatin and 5-FU, was not affected by CPT-11, and was increased by cisplatin. There was an increase in IL-8 by oxaliplatin and increase in ferritin by cisplatin which may contribute to cancer cell survival. Novel drug-specific mechanisms of efficacy or toxicity identified in these signatures may be targeted with combination therapies or development of new targeted therapies. Together, the findings here contribute to our understanding of the molecular bases of efficacy and toxicity of chemotherapeutic agents often used for treatment of GI cancer such as CRC.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Christoph Schorl
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Genomics Core Facility, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Kelsey Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Liz Hernandez-Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aakash Jhaveri
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
39
|
Ali A, Shafarin J, Abu Jabal R, Aljabi N, Hamad M, Sualeh Muhammad J, Unnikannan H, Hamad M. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio 2021; 11:3101-3114. [PMID: 34551213 PMCID: PMC8564339 DOI: 10.1002/2211-5463.13303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Overexpression of ferritin heavy chain (FTH1) often associates with good prognosis in breast cancer (BCa), particularly in the triple‐negative subtype (triple‐negative breast cancer). However, the mechanism by which FTH1 exerts its possible tumor suppressor effects in BCa is not known. Here, we examined the bearing of FTH1 silencing or overexpression on several aspects of BCa cell growth in vitro. FTH1 silencing promoted cell growth and mammosphere formation, increased c‐MYC expression, and reduced cell sensitivity to chemotherapy. In contrast, FTH1 overexpression inhibited cell growth, decreased c‐MYC expression, and sensitized cancer cells to chemotherapy; silencing of c‐MYC recapitulated the effects of FTH1 overexpression. These findings show for the first time that FTH1 suppresses tumor growth by inhibiting the expression of key oncogenes, such as c‐MYC.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jasmin Shafarin
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Nour Aljabi
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Mawieh Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| |
Collapse
|
40
|
Wang K, Chen X, Zuyi W, Chen L, Fu W. Lysosome Fe 2+ release is responsible for etoposide- and cisplatin-induced stemness of small cell lung cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1654-1663. [PMID: 33969609 DOI: 10.1002/tox.23161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/27/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Iron metabolism has been shown to hand over cancer stem cell, which is regarded as the root of tumor progression, recurrence and chemoresistance. This study aims to explore whether iron metabolism is involved in etoposide- and cisplatin-induced stemness in small cell lung cancer (SCLC) cells. Here, analysis on tumor-sphere formation and stemness marker expression is performed to determine whether etoposide and cisplatin can induce SCLC cell stemness. Online dataset analysis is constructed to determine the correlation between iron transportation and the survival of lung cancer patients. Chromatin immunoprecipitation combined with rescuing experiments are carried out to reveal the underlying mechanisms. Additionally, the non-lethal doses of etoposide and cisplatin can induce SCLC cell stemness in a concentration-dependent manner and reduce the lysosome iron concentration dependent on Ferritin expression, which is positively regulated by HIF-1α/β. Moreover, HIF-1α/β can directly bind to Ferritin promoter region. This HIF/Ferritin axis is responsible for etoposide- and cisplatin-induced iron reduction in lysosomes and stemness of SCLC cells. This work demonstrates that iron in lysosomes is essential for etoposide and cisplatin-induced stemness of SCLC cells, which is regulated by the HIF/Ferritin axis.
Collapse
Affiliation(s)
- Kangwu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao Chen
- Department of Geriatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wang Zuyi
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Liucheng Chen
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Fu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
41
|
Sun X, Hong Y, Gong Y, Zheng S, Xie D. Bioengineered Ferritin Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:7023. [PMID: 34209892 PMCID: PMC8268655 DOI: 10.3390/ijms22137023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ferritin naturally exists in most organisms and can specifically recognize the transferrin 1 receptor (TfR1), which is generally highly expressed on various types of tumor cells. The pH dependent reversible assembling and disassembling property of ferritin renders it as a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties. Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects the enclosed particles from the external environment without provoking any toxic or immunogenic responses. Recent studies, further establish ferritin as a multifunctional nanocarrier for targeted cancer chemotherapy and phototherapy. In this review, we introduce the favorable characteristics of ferritin drug carriers, the specific targeted surface modification and a multifunctional nanocarriers combined chemotherapy with phototherapy for tumor treatment. Taken together, ferritin is a potential ideal base of engineered nanoparticles for tumor therapy and still needs to explore more on its way.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (Y.G.); (S.Z.); (D.X.)
| | | | | | | | | |
Collapse
|
42
|
Abdulrahman MS, El-Yassin HD, Alwan NAS. Electrolytes and Nutritional Element Assessment among Iraqi Cancer Patients Receiving Chemotherapy. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Cancer may lead to abnormalities in electrolyte levels and acid-base disturbances in affected patients that could be induced by the tumor itself or by chemotherapy treatment. Thus, early detection is vital to improve short-term outcome and quality of life.
AIM: This study aims to assess the electrolyte and protein changes in cancer patients on chemotherapy.
MATERIALS AND METHODS: A cohort study was carried out on 100 newly diagnosed patients with cancer in Al-Amal National Radiation Oncology Hospital in Baghdad, Iraq, during the period from January 2019 to July 2019. An assessment of the studied samples was conducted as a baseline measure before receiving chemotherapy and after the third cycle of that treatment. Quantitative parameters included measurements of serum magnesium, calcium, sodium, chloride, potassium, zinc, Hb1Ac, total protein, and ferritin. Data analysis was carried out using Student’s t-test for variable levels. Level of significance of ≤0.05 was considered as significant.
RESULTS: The studied sample comprised 77 females (77%) and 23 males (23%). There were significant decreases in the levels of magnesium and zinc while no significant changes were noted in the levels of other electrolytes. On the other hand, there was a significant decrease in the level of proteins and a significant rise in HBA1c and ferritin.
CONCLUSION: Cancer patients on chemotherapy regimens suffer from major changes in the levels of vitamins, elements, and neurotransmitter that affect their lifestyle, survival, and prognosis. Frequent regular monitoring of such changes is required to harvest a positive impact on the lifestyle of cancer patients lifestyle and their outcome.
Collapse
|
43
|
Lin S, Fang Y, Lin Y, Mo Z, Hong X, Jian Z, Ji C. Meta-analysis of the prognostic value of pretreatment serum ferritin in hepatobiliary and pancreas (HBP) cancers. BMJ Open 2021; 11:e040801. [PMID: 34049899 PMCID: PMC8166605 DOI: 10.1136/bmjopen-2020-040801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Studies have shown that serum ferritin (SF) has unfavourable prognostic value in hepatobiliary and pancreas (HBP) cancers. This meta-analysis aimed to comprehensively assess the prognostic role of pretreatment SF in patients with HBP cancers. METHODS Eligible studies published before January 2020 were obtained through a comprehensive search in the PubMed, Web of Science, Cochrane Library and EMBASE databases. Pooled HRs and 95% CIs were then employed as effect sizes. RESULTS Seven studies comprising 1244 patients were pooled. Elevated pretreatment SF was associated with worse overall survival (OS) (HR 1.60, 95% CI 1.36 to 1.88, p<0.001) and recurrence-free survival/progression-free survival/time to recurrence (HR 1.70, 95% CI 1.15 to 2.52, p=0.008). Significant prognostic value of elevated pretreatment SF on OS was detected in the subgroups regardless of the cancer type, race, SF cut-off value, tumour-node-metastasis stage and Newcastle-Ottawa Scale score. CONCLUSION Elevated pretreatment SF was associated with worse survival outcome of patients with HBP cancers. As such, it may serve as a novel prognostic biomarker for HBP cancers.
Collapse
Affiliation(s)
- Shuwen Lin
- General Surgery, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Yinghua Fang
- Pain, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Ye Lin
- General Surgery, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zhikang Mo
- General Surgery, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Xiaocheng Hong
- General Surgery, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Zhixiang Jian
- General Surgery, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chenggang Ji
- General Surgery, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
44
|
Chan A, Karpel H, Spartz E, Willett T, Farhadian B, Jeng M, Thienemann M, Frankovich J. Hypoferritinemia and iron deficiency in youth with pediatric acute-onset neuropsychiatric syndrome. Pediatr Res 2021; 89:1477-1484. [PMID: 32746449 DOI: 10.1038/s41390-020-1103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pediatric acute-onset neuropsychiatric syndrome (PANS) is an abrupt debilitating psychiatric illness. We anecdotally observed hypoferritinemia and iron deficiency in a subset of patients with PANS, prompting this study. METHODS In this IRB-approved prospective cohort study, we included patients seen at the Stanford PANS Clinic who met study criteria. The prevalence of hypoferritinemia (using cut-offs of 7 ng/ml in children ≤ 15 years and 18 ng/ml in adolescents > 15 years) and iron deficiency was estimated. Differences in patients with and without hypoferritinemia during PANS flare were explored. RESULTS Seventy-nine subjects (mean age of PANS onset of 8.7 years) met study criteria. Hypoferritinemia was observed in 27% and three quarters occurred during a PANS flare. Compared to patients without hypoferritinemia during PANS flare, patients with hypoferritinemia had worse global impairment, more comorbid inflammatory diseases, and exhibited a chronic course of PANS illness. The estimated prevalence of iron deficiency was 3-8% in the PANS cohort, 1.4-2.0-fold higher than in the age- and sex-matched U.S. POPULATION More stringent ferritin level cut-offs than the comparison CDC dataset were used. CONCLUSION Hypoferritinemia and iron deficiency appear to be more common in PANS patients. More research is needed to confirm and understand this association. IMPACT Our study suggests hypoferritinemia and iron deficiency are more common in patients with pediatric acute-onset neuropsychiatric syndrome (PANS) than in the sex- and age-matched US population. Hypoferritinemia was commonly observed during a disease flare but not associated with dietary or demographic factors. In patients with PANS and iron deficiency, clinicians should consider possibility of inflammation as the cause especially if iron deficiency cannot be explained by diet and blood loss. Future research should include larger cohorts to corroborate our study findings and consider examining the iron dynamics on MRI brain imaging in order to better understand the pathophysiology of PANS.
Collapse
Affiliation(s)
- Avis Chan
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Hannah Karpel
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.,New York University School of Medicine, New York City, NY, USA
| | - Ellen Spartz
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Theresa Willett
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Bahare Farhadian
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Michael Jeng
- Division of Hematology & Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Margo Thienemann
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.,Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jennifer Frankovich
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA. .,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.
| |
Collapse
|
45
|
Veroniaina H, Pan X, Wu Z, Qi X. Apoferritin: a potential nanocarrier for cancer imaging and drug delivery. Expert Rev Anticancer Ther 2021; 21:901-913. [PMID: 33844625 DOI: 10.1080/14737140.2021.1910027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: As a protein-based biomaterial for potential cancer targeting delivery, apoferritin has recently attracted interest.Areas covered: In this review, we discuss the development of this cage-like protein as an endogenous nanocarrier that can hold molecules in its cavity. We present the specific characterizations and formulations of apoferritin nanocarriers, and outline the recent progress of the protein as an appropriate tumor-delivery vehicle in different therapeutic strategies to treat solid tumors. Finally, we propose how the application for cancer drug repurposing delivery within apoferritin could expand cancer treatment in the future.Expert opinion: Being a ubiquitous iron storage protein that exists in many living organisms, apoferritin is promising as a cancer tumor-targeting nanocarrier. By exploiting its versatility, apoferritin could be used for cancer repurposed drug delivery and could reduce the high cost of new drug discovery development and shorten the formulation process.
Collapse
Affiliation(s)
| | - Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
46
|
Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, Calvet JP, Wallace DP, Sharma M. Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight 2021; 6:141299. [PMID: 33784251 PMCID: PMC8119220 DOI: 10.1172/jci.insight.141299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.
Collapse
Affiliation(s)
| | | | - Rajni V. Puri
- Department of Internal Medicine
- Jared Grantham Kidney Institute
| | | | | | - Brenda Magenheimer
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pamela V. Tran
- Jared Grantham Kidney Institute
- Department of Anatomy and Cell Biology, and
| | - Hao Zhu
- Jared Grantham Kidney Institute
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhashini Bolisetty
- Department of Internal Medicine, School of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - James P. Calvet
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
47
|
Wu YH, Lin PY, Yang JH, Kuo YS, Wu YC, Chiang CP. Significantly higher serum tumor marker levels in patients with oral submucous fibrosis. J Dent Sci 2021; 16:846-853. [PMID: 34141098 PMCID: PMC8189891 DOI: 10.1016/j.jds.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background/purpose Our previous study showed that carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC-Ag), and ferritin are significantly higher in patients with oral potentially malignant disorders (OPMDs including oral leukoplakia, oral erythroleukoplakia, and oral verrucous hyperplasia) than in healthy controls (HCs). Oral submucous fibrosis (OSF) is also recognized as an OPMD. This study evaluated whether these three serum tumor marker levels were also significantly higher in OSF patients than in HCs. Materials and methods The serum CEA, SCC-Ag, and ferritin levels in 41 OSF patients and 164 HCs were measured and compared. Patients with serum CEA level ≥3 ng/mL, SCC-Ag level ≥2 ng/mL, and ferritin level ≥250 ng/mL were scored as serum positive for CEA, SCC-Ag, and ferritin, respectively. Results We found significantly higher mean serum CEA, SCC-Ag, and ferritin levels in 41 OSF patients than in 164 HCs (all P-values < 0.05). Moreover, 41 OSF patients had significantly higher serum positive rates of CEA (39.0%), SCC-Ag (19.5%), and ferritin (53.7%) than 164 HCs (all P-values < 0.05). Of the 41 OSF patients, 26 (63.4%), 7 (17.1%), and 2 (4.9%) had serum positivities of one, two, or three tumor markers including CEA, SCC-Ag, and ferritin, respectively. Conclusion There are significantly higher mean serum CEA, SCC-Ag, and ferritin levels and significantly higher serum positive rates of CEA, SCC-Ag, and ferritin in OSF patients than in HCs. The serum CEA, SCC-Ag, and ferritin levels may be served as tumor markers for evaluation of malignant potential of OSF lesions.
Collapse
Affiliation(s)
- Yu-Hsueh Wu
- Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Oral Medicine, School of Dentistry, National Cheng Kung University, Tainan, Taiwan.,Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ping-Yi Lin
- Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ju-Hsuan Yang
- Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ying-Shiung Kuo
- Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yang-Che Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
48
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
49
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|