1
|
Hatori S, Matsui F, Zhou Z, Norimoto H. Microglia mediate the increase in slow-wave sleep associated with high ambient temperature. J Physiol Sci 2024; 74:37. [PMID: 39020291 PMCID: PMC11253348 DOI: 10.1186/s12576-024-00929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
An increase in ambient temperature leads to an increase in sleep. However, the mechanisms behind this phenomenon remain unknown. This study aimed to investigate the role of microglia in the increase of sleep caused by high ambient temperature. We confirmed that at 35 °C, slow-wave sleep was significantly increased relative to those observed at 25 °C. Notably, this effect was abolished upon treatment with PLX3397, a CSF1R inhibitor that can deplete microglia, while sleep amount at 25 °C was unaffected. These observations suggest that microglia play a pivotal role in modulating the homeostatic regulation of sleep in response to the fluctuations in ambient temperature.
Collapse
Affiliation(s)
- Sena Hatori
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Futaba Matsui
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Zhiwen Zhou
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Hiroaki Norimoto
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| |
Collapse
|
2
|
Zou YX, Xiang TN, Xu LR, Zhang H, Ma YH, Zhang L, Zhou CX, Wu X, Huang QL, Lei B, Mu JW, Qin XY, Jiang X, Zheng YJ. Dehydrozaluzanin C- derivative protects septic mice by alleviating over-activated inflammatory response and promoting the phagocytosis of macrophages. Int Immunopharmacol 2024; 132:111889. [PMID: 38531202 DOI: 10.1016/j.intimp.2024.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Ying-Xiang Zou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Nan Xiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434020, China
| | - Li-Rong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-He Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chun-Xian Zhou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi-Lin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Biao Lei
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Wen Mu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiang-Yang Qin
- Department of Chemistry, school of pharmacy, Fourth Military University, Xi'an, Shaanxi 710032, China.
| | - Xin Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Yin B, Fang W, Liu L, Guo Y, Ma X, Di Q. Effect of extreme high temperature on cognitive function at different time scales: A national difference-in-differences analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116238. [PMID: 38518609 DOI: 10.1016/j.ecoenv.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Mounting evidence has demonstrated that high temperature was associated with adverse health outcomes, especially morbidity and mortality. Nonetheless, the impact of extreme high temperature on cognitive performance, which is the fundamental capacity for interpreting one's surroundings, decision-making, and acquiring new abilities, has not been thoroughly investigated. METHODS We aimed to assess associations between extreme high temperature at different time scales and poor cognitive function. We used longitudinal survey data from the three waves of data from China Family Panel Study, providing an 8-year follow-up of 53,008 participants from China. We assessed temperature and extreme high temperature exposure for each participant based on the residential area and date of cognitive test. We defined the proportion of days/hours above 32 °C as the metric of the exposure to extreme high temperature. Then we used generalized additive model and difference-in-differences approach to explore the associations between extreme high temperature and cognitive function. RESULTS Our results demonstrated that either acute exposure or long-term exposure to extreme high temperature was associated with cognitive decline. At hourly level, 0-1 hour acute exposure to extreme high temperature would induce -0.93 % (95 % CI: -1.46 %, -0.39 %) cognitive change. At annual level, 10 percentage point increase in the hours proportion exceeding 32 °C in the past two years induced -9.87 % (95 % CI: -13.99 %, -5.75 %) cognitive change. Furthermore, subgroup analyses indicated adaptation effect: for the same 10 percentage increase in hours proportion exceeding 32 °C, people in warmer areas had cognitive change of -6.41 % (-11.22 %, -1.61 %), compared with -15.30 % (-21.07 %, -9.53 %) for people in cool areas. CONCLUSION Our results demonstrated that extreme high temperature was associated with reduced cognitive function at hourly, daily and annual levels, warning that people should take better measures to protect the cognitive function in the context of climate change.
Collapse
Affiliation(s)
- Bo Yin
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wen Fang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
| | - Linfeng Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Alarcon PC, Damen MSMA, Ulanowicz CJ, Sawada K, Oates JR, Toth A, Wayland JL, Chung H, Stankiewicz TE, Moreno-Fernandez ME, Szabo S, Zacharias WJ, Divanovic S. Obesity amplifies influenza virus-driven disease severity in male and female mice. Mucosal Immunol 2023; 16:843-858. [PMID: 37730122 PMCID: PMC10842771 DOI: 10.1016/j.mucimm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Influenza virus-induced respiratory pneumonia remains a major public health concern. Obesity, metabolic diseases, and female sex are viewed as independent risk factors for worsened influenza virus-induced lung disease severity. However, lack of experimental models of severe obesity in female mice limits discovery-based studies. Here, via utility of thermoneutral housing (30 °C) and high-fat diet (HFD) feeding, we induced severe obesity and metabolic disease in female C57BL/6 mice and compared their responses to severely obese male C57BL/6 counterparts during influenza virus infection. We show that lean male and female mice have similar lung edema, inflammation, and immune cell infiltration during influenza virus infection. At standard housing conditions, HFD-fed male, but not female, mice exhibit severe obesity, metabolic disease, and exacerbated influenza disease severity. However, combining thermoneutral housing and HFD feeding in female mice induces severe obesity and metabolic disease, which is sufficient to amplify influenza virus-driven disease severity to a level comparable to severely obese male counterparts. Lastly, increased total body weights of male and female mice at time of infection correlated with worsened influenza virus-driven disease severity metrics. Together, our findings confirm the impact of obesity and metabolic disease as key risk factors to influenza disease severity and present a novel mouse experimental model suitable for future mechanistic interrogation of sex, obesity, and metabolic disease traits in influenza virus-driven disease severity.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassidy J Ulanowicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrea Toth
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer L Wayland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Gastroenterology, Hepatology and Nutrition Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William J Zacharias
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
5
|
Ingiosi AM, Hayworth CR, Frank MG. Activation of Basal Forebrain Astrocytes Induces Wakefulness without Compensatory Changes in Sleep Drive. J Neurosci 2023; 43:5792-5809. [PMID: 37487739 PMCID: PMC10423050 DOI: 10.1523/jneurosci.0163-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
Mammalian sleep is regulated by a homeostatic process that increases sleep drive and intensity as a function of prior wake time. Sleep homeostasis has traditionally been thought to be a product of neurons, but recent findings demonstrate that this process is also modulated by glial astrocytes. The precise role of astrocytes in the accumulation and discharge of sleep drive is unknown. We investigated this question by selectively activating basal forebrain (BF) astrocytes using designer receptors exclusively activated by designer drugs (DREADDs) in male and female mice. DREADD activation of the Gq-protein-coupled pathway in BF astrocytes produced long and continuous periods of wakefulness that paradoxically did not cause the expected homeostatic response to sleep loss (e.g., increases in sleep time or intensity). Further investigations showed that this was not because of indirect effects of the ligand that activated DREADDs. These findings suggest that the need for sleep is not only driven by wakefulness per se, but also by specific neuronal-glial circuits that are differentially activated in wakefulness.SIGNIFICANCE STATEMENT Sleep drive is controlled by a homeostatic process that increases sleep duration and intensity based on prior time spent awake. Non-neuronal brain cells (e.g., glial astrocytes) influence this homeostatic process, but their precise role is unclear. We used a genetic technique to activate astrocytes in the basal forebrain (BF) of mice, a brain region important for sleep and wake expression and sleep homeostasis. Astroglial activation induced prolonged wakefulness without the expected homeostatic increase in sleep drive (i.e., sleep duration and intensity). These findings indicate that our need to sleep is also driven by non-neuronal cells, and not only by time spent awake.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Christopher R Hayworth
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
- Gleason Institute for Neuroscience, Washington State University, Spokane, Washington 99202
- Sleep Performance and Research Center, Washington State University, Spokane, Washington, 99202
| |
Collapse
|
6
|
Vialard F, Allaeys I, Dong G, Phan MP, Singh U, Hébert MJ, Dieudé M, Langlais D, Boilard E, Labbé DP, Olivier M. Thermoneutrality and severe malaria: investigating the effect of warmer environmental temperatures on the inflammatory response and disease progression. Front Immunol 2023; 14:1128466. [PMID: 37350957 PMCID: PMC10283000 DOI: 10.3389/fimmu.2023.1128466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Most studies using murine disease models are conducted at housing temperatures (20 - 22°C) that are sub-optimal (ST) for mice, eliciting changes in metabolism and response to disease. Experiments performed at a thermoneutral temperature (TT; 28 - 31°C) have revealed an altered immune response to pathogens and experimental treatments in murine disease model that have implications for their translation to clinical research. How such conditions affect the inflammatory response to infection with Plasmodium berghei ANKA (PbA) and disease progression is unknown. We hypothesized that changes in environmental temperature modulate immune cells and modify host response to malaria disease. To test this hypothesis, we conducted experiments to determine: (1) the inflammatory response to malarial agents injection in a peritonitis model and (2) disease progression in PbA-infected mice at TT compared to ST. Methods In one study, acclimatized mice were injected intraperitoneally with native hemozoin (nHZ) or Leishmania at TT (28 - 31°C) or ST, and immune cells, cytokine, and extracellular vesicle (EV) profiles were determined from the peritoneal cavity (PEC) fluid. In another study, PbA-infected mice were monitored until end-point (i.e. experimental malaria score ≥4). Results We found that Leishmania injection resulted in decreased cell recruitment and higher phagocytosis of nHZ in mice housed at TT. We found 398 upregulated and 293 downregulated proinflammatory genes in mice injected with nHZ, at both temperatures. We report the presence of host-derived EVs never reported before in a murine parasitic murine model at both temperatures. We observed metabolic changes in mice housed at TT, but these did not result to noticeable changes in disease progression compared to ST. Discussion To our knowledge, these experiments are the first to investigate the effect of thermoneutrality on a malaria murine model. We found important metabolic difference in mice housed at TT. Our results offer insights on how thermoneutrality might impact a severe malaria murine model and directions for more targeted investigations.
Collapse
Affiliation(s)
- Fiorella Vialard
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Allaeys
- Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - George Dong
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Minh Phuong Phan
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Urvashi Singh
- Department of Human Genetics, McGill University Genome Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marie Josée Hébert
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Mélanie Dieudé
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Département Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - David Langlais
- Department of Human Genetics, McGill University Genome Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Boilard
- Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - David P. Labbé
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Martin Olivier
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Constant C, Moriarty TF, Arens D, Pugliese B, Zeiter S. Peri-anesthetic hypothermia in rodents: A factor to consider for accurate and reproducible outcomes in orthopedic device-related infection studies. J Orthop Res 2023; 41:619-628. [PMID: 35716157 DOI: 10.1002/jor.25397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most ODRI models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri-anesthetic hypothermia in rodents on outcomes in preclinical ODRI studies. A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance (one-way MANCOVA) was used to determine the fixed effect of peri-anesthetic hypothermia (hypothermic defined as rectal temperature <35°C) on the combined harvested tissue and implant colony-forming unit (CFU) counts, and having controlled for the study groups including treatments received, duration of surgery and anesthesia, and study period. The results showed a significant effect of peri-anesthetic hypothermia on the post-mortem combined CFU counts from the harvested tissue and implant(s) (p = 0.01) when comparing normo- versus hypothermic rodents. Using Wilks' Λ as a criterion to determine the contribution of independent variables to the model, peri-anesthetic hypothermia was the most significant, though still a weak predictor, of increased harvested CFU counts. Altogether, the data corroborate the concept that bacterial colonization is affected by abnormal body temperature during general anesthesia at the time of bacterial inoculation in rodents, which needs to be taken into consideration to decrease infection data variability and improve experimental reproducibility.
Collapse
|
8
|
Bin NR, Prescott SL, Horio N, Wang Y, Chiu IM, Liberles SD. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 2023; 615:660-667. [PMID: 36890237 PMCID: PMC10033449 DOI: 10.1038/s41586-023-05796-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 03/10/2023]
Abstract
Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sara L Prescott
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nao Horio
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yandan Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Matsuki E, Kawamoto S, Morikawa Y, Yahagi N. The Impact of Cold Ambient Temperature in the Pattern of Influenza Virus Infection. Open Forum Infect Dis 2023; 10:ofad039. [PMID: 36789010 PMCID: PMC9915965 DOI: 10.1093/ofid/ofad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Background Prior literature suggests that cold temperature strongly influences the immune function of animals and human behaviors, which may allow for the transmission of respiratory viral infections. However, information on the impact of cold stimuli, especially the impact of temporal change in the ambient temperature on influenza virus transmission, is limited. Methods A susceptible-infected-recovered-susceptible model was applied to evaluate the effect of temperature change on influenza virus transmission. Results The mean temperature of the prior week was positively associated with the number of newly diagnosed cases (0.107 [95% Bayesian credible interval {BCI}, .106-.109]), whereas the mean difference in the temperature of the prior week was negatively associated (-0.835 [95% BCI, -.840 to -.830]). The product of the mean temperature and mean difference in the temperature of the previous week were also negatively associated with the number of newly diagnosed cases (-0.192 [95% BCI, -.197 to -.187]). Conclusions The mean temperature and the mean difference in temperature affected the number of newly diagnosed influenza cases differently. Our data suggest that high ambient temperature and a drop in the temperature and their interaction increase the risk of infection. Therefore, the highest risk of infection is attributable to a steep fall in temperature in a relatively warm environment.
Collapse
Affiliation(s)
- Eri Matsuki
- Correspondence: Naohisa Yahagi, MD, PhD, Keio University, Graduate School of Media and Governance, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan (); Eri Matsuki, MD, PhD, MPH, Keio University School of Medicine, Clinical and Translational Research Center, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan ()
| | - Shota Kawamoto
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Yoshihiko Morikawa
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Naohisa Yahagi
- Correspondence: Naohisa Yahagi, MD, PhD, Keio University, Graduate School of Media and Governance, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan (); Eri Matsuki, MD, PhD, MPH, Keio University School of Medicine, Clinical and Translational Research Center, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan ()
| |
Collapse
|
10
|
Kolbe T, Lassnig C, Poelzl A, Palme R, Auer KE, Rülicke T. Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains. Animals (Basel) 2022; 12:ani12162141. [PMID: 36009730 PMCID: PMC9405067 DOI: 10.3390/ani12162141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The optimal temperature for laboratory mice has been under discussion for some time. Current standard temperature is 20 °C–24 °C but it has been suggested to elevate the standard to 30 °C, which is the thermoneutral zone for mice. In this study, the effect of different cage temperatures (20 °C, 25 °C, 30 °C) on reproduction and stress hormone metabolite excretion was evaluated in lactating females of two commonly used mouse strains. Pup loss was higher, and weights of mothers and pups were reduced at 30 °C compared to the lower temperatures. In addition, pups showed increased tail length at weaning under the high temperature (30 °C). There was no difference in stress hormone metabolite excretion in mice between temperature groups. We could not show any detrimental effects of the lower or higher cage temperature on stress hormone metabolite excretion, but found decreased reproductive outcome under the higher temperature. Abstract Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 °C represents a chronic cold stress or the 30 °C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 °C, 25 °C, and 30 °C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 °C. Furthermore, at 30 °C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 °C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance.
Collapse
Affiliation(s)
- Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Correspondence:
| | - Caroline Lassnig
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
11
|
Schork IG, Manzo IA, Beiral De Oliveira MR, Costa FV, Palme R, Young RJ, de Azevedo CS. How environmental conditions affect sleep? An investigation in domestic dogs (Canis lupus familiaris). Behav Processes 2022; 199:104662. [DOI: 10.1016/j.beproc.2022.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
|
12
|
Silverstein NJ, Wang Y, Manickas-Hill Z, Carbone C, Dauphin A, Boribong BP, Loiselle M, Davis J, Leonard MM, Kuri-Cervantes L, Meyer NJ, Betts MR, Li JZ, Walker BD, Yu XG, Yonker LM, Luban J. Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. eLife 2022; 11:e74681. [PMID: 35275061 PMCID: PMC9038195 DOI: 10.7554/elife.74681] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Background Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. Methods Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n = 40), treated for COVID-19 as outpatients (n = 51), and in uninfected controls (n = 86), as well as in children with COVID-19 (n = 19), recovering from COVID-19 (n = 14), MIS-C (n = 11), recovering from MIS-C (n = 7), and pediatric controls (n = 17). Results This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls. Conclusions These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males. Funding This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183.
Collapse
Affiliation(s)
- Noah J Silverstein
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Medical Scientist Training Program, University of Massachusetts Medical SchoolWorcesterUnited States
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
| | - Zachary Manickas-Hill
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Brittany P Boribong
- Massachusetts General Hospital, Mucosal Immunology and Biology Research CenterBostonUnited States
- Massachusetts General Hospital, Department of PediatricsBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Maggie Loiselle
- Massachusetts General Hospital, Mucosal Immunology and Biology Research CenterBostonUnited States
| | - Jameson Davis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research CenterBostonUnited States
| | - Maureen M Leonard
- Massachusetts General Hospital, Mucosal Immunology and Biology Research CenterBostonUnited States
- Massachusetts General Hospital, Department of PediatricsBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Immunology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Immunology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jonathan Z Li
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
- Department of Medicine, Brigham and Women’s HospitalBostonUnited States
| | - Bruce D Walker
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xu G Yu
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Medicine, Brigham and Women’s HospitalBostonUnited States
| | - Lael M Yonker
- Massachusetts General Hospital, Mucosal Immunology and Biology Research CenterBostonUnited States
- Massachusetts General Hospital, Department of PediatricsBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Massachusetts Consortium on Pathogen ReadinessBostonUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| |
Collapse
|
13
|
Role of Dorsomedial Hypothalamus GABAergic Neurons in Sleep-Wake States in Response to Changes in Ambient Temperature in Mice. Int J Mol Sci 2022; 23:ijms23031270. [PMID: 35163194 PMCID: PMC8836016 DOI: 10.3390/ijms23031270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Good sleep quality is essential for maintaining the body's attention during wakefulness, which is easily affected by external factors such as an ambient temperature. However, the mechanism by which an ambient temperature influences sleep-wake behaviors remains unclear. The dorsomedial hypothalamus (DMH) has been reported to be involved in thermoregulation. It also receives projection from the preoptic area, which is an important region for sleep and energy homeostasis and the suprachiasmatic nucleus-a main control area of the clock rhythm. Therefore, we hypothesized that the DMH plays an important role in the regulation of sleep related to ambient temperatures. In this study, we found that cold exposure (24/20/16/12 °C) increased wakefulness and decreased non-rapid eye movement (NREM) sleep, while warm exposure (32/36/40/44 °C) increased NREM sleep and decreased wakefulness compared to 28 °C conditions in wild-type mice. Then, using non-specific and specific apoptosis, we found that lesions of whole DMH neurons and DMH γ-aminobutyric acid (GABA)-ergic neurons induced by caspase-3 virus aggravated the fluctuation of core body temperature after warm exposure and attenuated the change in sleep-wake behaviors during cold and warm exposure. However, chemogenetic activation or inhibition of DMH GABAergic neurons did not affect the sleep-wake cycle. Collectively, our findings reveal an essential role of DMH GABAergic neurons in the regulation of sleep-wake behaviors elicited by a change in ambient temperature.
Collapse
|
14
|
Silverstein NJ, Wang Y, Manickas-Hill Z, Carbone C, Dauphin A, Boribong BP, Loiselle M, Davis J, Leonard MM, Kuri-Cervantes L, Meyer NJ, Betts MR, Li JZ, Walker B, Yu XG, Yonker LM, Luban J. Innate lymphoid cells and disease tolerance in SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33469605 PMCID: PMC7814851 DOI: 10.1101/2021.01.14.21249839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. This study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan — T cell subsets decrease less than 2-fold — and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis, and the percentage of amphiregulin-producing ILCs was higher in females than in males. These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance accounts for increased COVID-19 severity with age and in males.
Collapse
Affiliation(s)
- Noah J Silverstein
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Zachary Manickas-Hill
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Brittany P Boribong
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Maggie Loiselle
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Jameson Davis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Maureen M Leonard
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Z Li
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bruce Walker
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Xu G Yu
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lael M Yonker
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| |
Collapse
|
15
|
Russell LN, Hyatt WS, Gannon BM, Simecka CM, Randolph MM, Fantegrossi WE. Effects of Laboratory Housing Conditions on Core Temperature and Locomotor Activity in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:272-280. [PMID: 33888181 DOI: 10.30802/aalas-jaalas-20-000093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drug developers worldwide assess compound safety and efficacy using measures that include mouse core temperature and locomotor activity. Subtle differences in animal housing conditions between institutions can alter these values, impacting scientific rigor and reproducibility. In these studies, adult male NIH Swiss mice were surgically implanted with radiotelemetry probes that simultaneously monitored core temperature and locomotor activity across various housing conditions. In the first study, ambient temperature was varied between 20 °C and 28°C in groups of singly housed mice. Additional studies held the mice at a constant ambient temperature and examined the effects of cage density (housing animals singly or in groups of 3 or 6), bedding change and provision of nesting material, and the availability of a running wheel on core temperature and locomotor activity. Mice overwhelmingly maintained species-typical core temperatures across all ambient temperatures, across all housing conditions, when bedding was fresh or old, and with or without the provision of cotton squares as nesting material. However, engaging in wheel running and the combination of fresh bedding and cotton squares transiently increased core temperatures beyond the species-typical range. Similarly, the circadian distribution of locomotor activity was significantly disrupted by placing animals in cages with fresh bedding or nesting material, or by performing both of these manipulations concurrently during the light period. These findings suggest that standard husbandry practices and common housing conditions may transiently affect core temperature in adult mice. Furthermore, these practices may have profound and relatively long-lasting effects on motor activity and the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Lauren N Russell
- Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - William S Hyatt
- Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - Christy M Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mildred M Randolph
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
16
|
Bai W, Irie M, Liu Z, Luan H, Franklin D, Nandoliya K, Guo H, Zang H, Weng Y, Lu D, Wu D, Wu Y, Song J, Han M, Song E, Yang Y, Chen X, Zhao H, Lu W, Monti G, Stepien I, Kandela I, Haney CR, Wu C, Won SM, Ryu H, Rwei A, Shen H, Kim J, Yoon HJ, Ouyang W, Liu Y, Suen E, Chen HY, Okina J, Liang J, Huang Y, Ameer GA, Zhou W, Rogers JA. Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME FRONTIERS 2021; 2021:8653218. [PMID: 37849909 PMCID: PMC10521677 DOI: 10.34133/2021/8653218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. Introduction. Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. Methods. Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. Results. The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. Conclusion. The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.
Collapse
Affiliation(s)
- Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Masahiro Irie
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhonghe Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Daniel Franklin
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Khizar Nandoliya
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Hao Zang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Yang Weng
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Di Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Joseph Song
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Enming Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Xuexian Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hangbo Zhao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Giuditta Monti
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Iwona Stepien
- The Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, USA
| | - Irawati Kandela
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Chad R. Haney
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hanjun Ryu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Alina Rwei
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Haixu Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Jihye Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Yihan Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Emily Suen
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Huang-yu Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Jerry Okina
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Jushen Liang
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Weidong Zhou
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
17
|
Vialard F, Olivier M. Thermoneutrality and Immunity: How Does Cold Stress Affect Disease? Front Immunol 2020; 11:588387. [PMID: 33329571 PMCID: PMC7714907 DOI: 10.3389/fimmu.2020.588387] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges the scientific community faces today is the lack of translational data generated from mouse trials for human health application. Housing temperature-dependent chronic cold stress in laboratory rodents is one of the key factors contributing to lack of translatability because it reveals major metabolic differences between humans and rodents. While humans tend to operate at temperatures within their thermoneutral zone, most laboratory rodents are housed at temperatures below this zone and have an increased energy demand to generate heat. This has an impact on the immune system of mice and thus affects results obtained using murine models of human diseases. A limited number of studies and reviews have shown that results obtained on mice housed at thermoneutrality were different from those obtained from mice housed in traditional housing conditions. Most of those studies, focused on obesity and cancer, found that housing mice at thermoneutrality changed the outcomes of the diseases negatively and positively, respectively. In this review, we describe how thermoneutrality impacts the immune system of rodents generally and in the context of different disease models. We show that thermoneutrality exacerbates cardiovascular and auto-immune diseases; alleviates asthma and Alzheimer’s disease; and, changes gut microbiome populations. We also show that thermoneutrality can have exacerbating or alleviating effects on the outcome of infectious diseases. Thus, we join the call of others in this field to urge researchers to refine murine models of disease and increase their translational capacity by considering housing at thermoneutrality for trials involving rodents.
Collapse
Affiliation(s)
- Fiorella Vialard
- Department of Microbiology and Immunology, Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Lang GP, Ndongson-Dongmo B, Lajqi T, Brodhun M, Han Y, Wetzker R, Frasch MG, Bauer R. Impact of ambient temperature on inflammation-induced encephalopathy in endotoxemic mice-role of phosphoinositide 3-kinase gamma. J Neuroinflammation 2020; 17:292. [PMID: 33028343 PMCID: PMC7541275 DOI: 10.1186/s12974-020-01954-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 μg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.
Collapse
Affiliation(s)
- Guang-Ping Lang
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Joint International Research Laboratory of Ethnomedicine and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
19
|
Group activity of mice in communal home cage used as an indicator of disease progression and rate of recovery: Effects of LPS and influenza virus. Life Sci 2020; 258:118214. [PMID: 32768585 DOI: 10.1016/j.lfs.2020.118214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Large numbers of rodents are often used in the study of disease progression and in the evaluation of its potential treatments. To avoid subjective observation and to minimize home cage interference, we developed a computerized home cage monitoring system (HCMS100) based on a standard cage rack adapted with a single laser beam and a detector mounted on each cage, enabling to monitor mice movements based on laser beam interruptions. This retrofit system provided continuous and uninterrupted monitoring of spontaneous movement of a group of mice in a home cage. Validity was evaluated using disease state induced by LPS modelling bacterial infection and by influenza virus. RESULTS: Spontaneous activity of different number of mice (2-8) per cage showed the expected circadian rhythm with increased activity during the night, and its extent dependent on the number of mice in the cage. Females and males show similar circadian rhythm. Intranasal LPS administration and pulmonary infection with live influenza virus resulted in major reduction of mice activity along disease progression. Increase in activity over time was a good indicator of the recovery process from both LPS exposure and the flu infection. CONCLUSIONS: HCMS100 was shown to be a reliable, inexpensive, easy to use system that requires no changes in the common housing of various experimental animals (mice, hamsters, rats etc.). With minimal intervention, HCMS100 provides a continuous record of group activity with clear pattern of circadian rhythm, allowing long term recording of home cage activity even in restricted access environments.
Collapse
|
20
|
Abstract
Regulatory guidelines mandate housing for laboratory mice at temperatures below their thermoneutral zone, creating chronic cold stress. However, increases in housing temperature could alter immune responses. We hypothesized housing mice at temperatures within their thermoneutral zone would improve sepsis survival and alter immune responses. Male C57BL/6 mice were housed at 22°C or 30°C after cecal ligation and puncture (CLP) for 10 days. Survival of mice housed at 30°C (78%) after CLP was significantly increased compared with mice housed at 22°C (40%). Experimental groups were repeated with mice euthanized at 0, 12, 24, and 48 h post-surgery to examine select immune parameters. Raising housing temperature minimally altered systemic, peritoneal, or splenic cell counts. However, IL-6 levels in plasma and peritoneal lavage fluid were significantly lower at 12 h post-surgery in mice housed at 30°C compared with 22°C. Bacterial colony counts from peritoneal lavage fluid were significantly lower in mice housed at 30°C and in vivo studies suggested this was the result of increased phagocytosis by neutrophils. As previously demonstrated, adoptive transfer of fibrocytes significantly increased sepsis survival compared with saline at 22°C. However, there was no additive effect when adoptive transfer was performed at 30°C. Overall, the results demonstrated that thermoneutral housing improves survival after CLP by increasing local phagocytic activity and technical revisions may be necessary to standardize the severity of the model across different housing temperatures. These findings stress the pronounced impact housing temperature has on the CLP model and the importance of reporting housing temperature.
Collapse
|
21
|
Repeated cold exposures protect a mouse model of Alzheimer's disease against cold-induced tau phosphorylation. Mol Metab 2019; 22:110-120. [PMID: 30770297 PMCID: PMC6437631 DOI: 10.1016/j.molmet.2019.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Old age is associated with a rise in the incidence of Alzheimer's disease (AD) but also with thermoregulatory deficits. Indicative of a link between the two, hypothermia induces tau hyperphosphorylation. The 3xTg-AD mouse model not only develops tau and amyloid pathologies in the brain but also metabolic and thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals, and its stimulation counteracts metabolic deficits in rodents and humans. We thus investigated whether BAT stimulation impedes AD neuropathology. Methods 15-month-old 3xTg-AD mice were subjected to repeated short cold exposures (RSCE), consisting of 4-hour sessions of cold exposure (4 °C), five times per week for four weeks, compared to animals kept at housing temperature. Results First, we confirmed that 3xTg-AD RSCE-trained mice exhibited BAT thermogenesis and improved glucose tolerance. RSCE-trained mice were completely resistant to tau hyperphosphorylation in the hippocampus induced by a 24-hour cold challenge. Finally, RSCE increased plasma levels of fibroblast growth factor 21 (FGF21), a batokine, which inversely correlated with hippocampal tau phosphorylation. Conclusions Overall, BAT stimulation through RSCE improved metabolic deficits and completely blocked cold-induced tau hyperphosphorylation in the 3xTg-AD mouse model of AD neuropathology. These results suggest that improving thermogenesis could exert a therapeutic effect in AD. Cold acclimation increases brown adipose tissue thermogenesis in old 3xTg-AD mice. Cold acclimation improved glucose tolerance in old 3xTg-AD mice. Enhanced thermogenesis protects against cold-induced brain tau phosphorylation. Repeated cold exposures increased plasmatic levels of fibroblast growth factor 21. Peripheral fibroblast growth factor 21 levels correlate with tau phosphorylation.
Collapse
|
22
|
Hankenson FC, Marx JO, Gordon CJ, David JM. Effects of Rodent Thermoregulation on Animal Models in the Research Environment. Comp Med 2018; 68:425-438. [PMID: 30458902 DOI: 10.30802/aalas-cm-18-000049] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To best promote animal wellbeing and the efficacy of biomedical models, scientific, husbandry, and veterinary professionals must consider the mechanisms, influences, and outcomes of rodent thermoregulation in contemporary research environments. Over the last 2 decades, numerous studies have shown that laboratory mice and rats prefer temperatures that are several degrees warmer than the environments in which they typically are housed within biomedical facilities. Physiologic changes to rodents that are cage-housed under standard temperatures (20 to 26 °C) are attributed to 'cold stress' and include alterations in metabolism, cardiovascular parameters, respiration, and immunologic function. This review article describes common behavioral and physiologic adaptations of laboratory mice and rats to cold stress within modern vivaria, with emphasis on environmental enrichment and effects of anesthesia and procedural support efforts. In addition, potential interventions and outcomes for rodents are presented, relative to the importance of repeating and reproducing experiments involving laboratory rodent research models of human disease.
Collapse
Affiliation(s)
- F Claire Hankenson
- Campus Animal Resources, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - James O Marx
- University Laboratory Animal Resources, Department of Pathobiology, School of Veterinary Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Gordon
- Toxicity Assessment Division, Neurotoxicology Branch, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John M David
- Comparative Medicine, Pfizer, La Jolla, California, USA
| |
Collapse
|
23
|
Ajwad A, Huffman D, Yaghouby F, OrHara BF, Sunderam S. Sleep Depth Enhancement Through Ambient Temperature Manipulation in Mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1392-1395. [PMID: 30440652 DOI: 10.1109/embc.2018.8512557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The restorative properties of deep sleep and its central role in learning and memory are well-recognized but still in the process of being elucidated with the help of animal models. Currently available approaches for deep sleep enhancement are mainly pharmacological and may have undesirable side effects on physiology and behavior. Here, we propose a simple strategy for sleep depth enhancement that involves manipulation of ambient temperature (Ta) using a closed-loop control system. Even mild shifts in Ta are known to evoke thermoregulatory responses that alter sleep-wake dynamics. In our experiments, mice evinced greater proportions of deep NREM sleep as well as REM sleep under the dynamic sleep depth modulation protocol compared to a reference baseline in which Ta was left unchanged. The active manipulation approach taken in this study could be used as a more natural means for enhancing deep sleep in patients with disorders like epilepsy, Alzheimer's disease and Parkinson's, in which poor quality sleep is common and associated with adverse outcomes.
Collapse
|
24
|
Rubin RL. Mice Housed at Elevated Vivarium Temperatures Display Enhanced T-cell Response and Survival to Francisella tularensis. Comp Med 2017; 67:491-497. [PMID: 29212580 PMCID: PMC5713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/03/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The inability to translate findings from studies performed in mouse models to the corresponding human condition is well known, especially those involving infectious, atherosclerotic, and other inflammatory diseases. We hypothesize that mice fail to a mount robust or adequate immune response to infectious agents because of physiologic effects of cold stress due to housing temperatures below the mouse thermoneutral zone (TNZ). This hypothesis was tested by comparing the immune response to the Francisella tularensis live vaccine strain in mice housed at a typical vivarium temperature, which is below the TNZ, with that of mice housed at a temperature near their TNZ. Mice maintained at 28 °C displayed elevated antigen-specific T-cell responses compared with mice housed at 22 °C and survived intranasal challenge that was fatal to immunized mice at 22 °C. These results demonstrate that cold stress due to housing below the mouse TNZ results in a blunted immune response and may compromise their translational value a models for infectious diseases and vaccine development.
Collapse
Affiliation(s)
- Robert L Rubin
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico;,
| |
Collapse
|
25
|
Hylander BL, Eng JWL, Repasky EA. The Impact of Housing Temperature-Induced Chronic Stress on Preclinical Mouse Tumor Models and Therapeutic Responses: An Important Role for the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:173-189. [PMID: 29275472 PMCID: PMC9423006 DOI: 10.1007/978-3-319-67577-0_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last 10-15 years, there has been a recognition that the catecholamines (norepinephrine, NE, and epinephrine, Epi) released by the sympathetic nervous system under stressful conditions promote tumor growth through a variety of mechanisms. Tumors recruit autonomic nerves during their development and NE is then released locally in the tumor microenvironment (TME). Acting through adrenergic receptors present on a variety of cells in the TME, NE and Epi induce proliferation, resistance to apoptosis, epithelial to mesenchymal transition, metastasis of tumor cells, angiogenesis, and inflammation in the TME. These pre-clinical studies have been conducted in mouse models whose care and housing parameters are outlined in "The Guide for the Care and Use of Laboratory Animals [1]. In particular, the Guide mandates that mice be housed at standardized sub-thermoneutral temperatures; however, this causes a state of chronic cold-stress and elevated levels of NE. Although mice are able to maintain a normal body temperature when kept at these cool temperatures, it is becoming clear that this cold-stress is sufficient to activate physiological changes which affect experimental outcomes. We find that when mice are housed under standard, sub-thermoneutral temperatures (~22 °C, ST), tumor growth is significantly greater than when mice are housed at thermoneutrality (~30 °C TT). We also find that the anti-tumor immune response is suppressed at ST and this immunosuppression can be reversed by housing mice at TT or by administration of propranolol (a β-adrenergic receptor antagonist) to mice housed at ST. Furthermore, at ST tumors are more resistant to therapy and can also be sensitized to cytotoxic therapies by housing mice at TT or by treating mice with propranolol. The implications of these observations are particularly relevant to the way in which experiments conducted in preclinical models are interpreted and the findings implemented in the clinic. It may be that the disappointing failure of many new therapies to fulfill their promise in the clinic is related to an incomplete preclinical assessment in mouse models. Further, an expanded understanding of the efficacy of a therapy alone or in combination obtained by testing under a wider range of conditions would better predict how patients, who are under various levels of stress, might respond in a clinical setting. This may be particularly important to consider since we now appreciate that long term outcome of many therapies depends on eliciting an immune response.It is clear that the outcome of metabolic experiments, immunological investigations and therapeutic efficacy testing in tumors of mice housed at ST is restricted and expanding these experiments to include results obtained at TT may provide us with valuable information that would otherwise be overlooked.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
26
|
Davis CJ, Taishi P, Honn KA, Koberstein JN, Krueger JM. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1004-R1012. [PMID: 27707719 DOI: 10.1152/ajpregu.00167.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.
Collapse
Affiliation(s)
- Christopher J Davis
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington; .,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University-Spokane, Spokane, Washington; and
| | - Ping Taishi
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - Kimberly A Honn
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Elson S. Floyd College of Medicine, Department of Medical Education and Clinical Sciences, Washington State University-Spokane, Spokane, Washington
| | - John N Koberstein
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - James M Krueger
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University-Spokane, Spokane, Washington; and
| |
Collapse
|
27
|
Ajwad A, Yaghouby F, Huffman D, O'Hara B, Sunderam S. Effect of temperature on sleep regulation in an animal epilepsy model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:1644-1647. [PMID: 28268645 DOI: 10.1109/embc.2016.7591029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Besides recurring seizures, disordered sleep is common in individuals with epilepsy and may present as reduced sleep depth, altered proportions of different stages of sleep, intermittent arousal, and other phenomena. Sleep loss can in turn precipitate seizures, thus sustaining a vicious cycle. It is well known that changes in ambient temperature elicit thermoregulatory responses that alter the dynamics of sleep. As a first step toward therapeutic sleep modulation for epilepsy, we assessed the effect of elevated ambient temperature on sleep dynamics and seizure yield in the chronic pilocarpine mouse model of temporal lobe epilepsy. The results in a small sample indicate that temperature does in fact significantly alter the proportions and durations of each vigilance state in this model, with possibly correlated changes in seizure incidence. Manipulation of ambient temperature therefore offers a simple and relatively unobtrusive way of titrating sleep quality and perhaps alleviating the seizure burden in epilepsy.
Collapse
|
28
|
Abstract
The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay.
Collapse
|
29
|
Hylander BL, Repasky EA. Thermoneutrality, Mice, and Cancer: A Heated Opinion. Trends Cancer 2016; 2:166-175. [PMID: 28741570 DOI: 10.1016/j.trecan.2016.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
The 'mild' cold stress caused by standard sub-thermoneutral housing temperatures used for laboratory mice in research institutes is sufficient to significantly bias conclusions drawn from murine models of several human diseases. We review the data leading to this conclusion, discuss the implications for research and suggest ways to reduce problems in reproducibility and experimental transparency caused by this housing variable. We have found that these cool temperatures suppress endogenous immune responses, skewing tumor growth data and the severity of graft versus host disease, and also increase the therapeutic resistance of tumors. Owing to the potential for ambient temperature to affect energy homeostasis as well as adrenergic stress, both of which could contribute to biased outcomes in murine cancer models, housing temperature should be reported in all publications and considered as a potential source of variability in results between laboratories. Researchers and regulatory agencies should work together to determine whether changes in housing parameters would enhance the use of mouse models in cancer research, as well as for other diseases. Finally, for many years agencies such as the National Cancer Institute (NCI) have encouraged the development of newer and more sophisticated mouse models for cancer research, but we believe that, without an appreciation of how basic murine physiology is affected by ambient temperature, even data from these models is likely to be compromised.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA
| | - Elizabeth A Repasky
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
| |
Collapse
|
30
|
Templeman NM, Mehran AE, Johnson JD. Hyper-Variability in Circulating Insulin, High Fat Feeding Outcomes, and Effects of Reducing Ins2 Dosage in Male Ins1-Null Mice in a Specific Pathogen-Free Facility. PLoS One 2016; 11:e0153280. [PMID: 27055260 PMCID: PMC4824531 DOI: 10.1371/journal.pone.0153280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
Insulin is an essential hormone with key roles in energy homeostasis and body composition. Mice and rats, unlike other mammals, have two insulin genes: the rodent-specific Ins1 gene and the ancestral Ins2 gene. The relationships between insulin gene dosage and obesity has previously been explored in male and female Ins2-/- mice with full or reduced Ins1 dosage, as well as in female Ins1-/- mice with full or partial Ins2 dosage. We report herein unexpected hyper-variability in Ins1-null male mice, with respect to their circulating insulin levels and to the physiological effects of modulating Ins2 gene dosage. Two large cohorts of Ins1-/-:Ins2+/- mice and their Ins1-/-:Ins2+/+ littermates were fed chow diet or high fat diet (HFD) from weaning, and housed in specific pathogen-free conditions. Cohort A and cohort B were studied one year apart. Contrary to female mice from the same litters, inactivating one Ins2 allele on the complete Ins1-null background did not consistently cause a reduction of circulating insulin in male mice, on either diet. In cohort A, all HFD-fed males showed an equivalent degree of insulin hypersecretion and weight gain, regardless of Ins2 dosage. In cohort B the effects of HFD appeared generally diminished, and cohort B Ins1-/-:Ins2+/- males showed decreased insulin levels and body mass compared to Ins1-/-:Ins2+/+ littermates, on both diets. Although experimental conditions were consistent between cohorts, we found that HFD-fed Ins1-/-:Ins2+/- mice with lower insulin levels had increased corticosterone. Collectively, these observations highlight the phenotypic characteristics that change in association with differences in circulating insulin and Ins2 gene dosage, particularly in male mice.
Collapse
Affiliation(s)
- Nicole M Templeman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Toth LA, Trammell RA, Ilsley-Woods M. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2015; 54:708-717. [PMID: 26632780 PMCID: PMC4671786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/28/2014] [Accepted: 04/01/2015] [Indexed: 06/05/2023]
Abstract
To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed.
Collapse
Affiliation(s)
- Linda A Toth
- Department of Pharmacology, Southern Illinois School of Medicine, Springfield, Illinois, USA.
| | - Rita A Trammell
- Department of Internal Medicine, Southern Illinois School of Medicine, Springfield, Illinois, USA
| | - Megan Ilsley-Woods
- Department of Pharmacology, Southern Illinois School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
32
|
Toth LA. The influence of the cage environment on rodent physiology and behavior: Implications for reproducibility of pre-clinical rodent research. Exp Neurol 2015; 270:72-7. [DOI: 10.1016/j.expneurol.2015.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/14/2022]
|
33
|
Oosthuizen MK, Bennett NC. The effect of ambient temperature on locomotor activity patterns in reproductive and non-reproductive female Damaraland mole-rats. J Zool (1987) 2015. [DOI: 10.1111/jzo.12254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. K. Oosthuizen
- Department of Zoology and Entomology; University of Pretoria; Pretoria South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology; University of Pretoria; Pretoria South Africa
| |
Collapse
|
34
|
Downs CT, Awuah A, Jordaan M, Magagula L, Mkhize T, Paine C, Raymond-Bourret E, Hart LA. Too hot to sleep? Sleep behaviour and surface body temperature of Wahlberg's Epauletted Fruit Bat. PLoS One 2015; 10:e0119419. [PMID: 25775371 PMCID: PMC4361190 DOI: 10.1371/journal.pone.0119419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg’s epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios.
Collapse
Affiliation(s)
- Colleen T. Downs
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
- * E-mail:
| | - Adwoa Awuah
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Maryna Jordaan
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Londiwe Magagula
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Truth Mkhize
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Christine Paine
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Esmaella Raymond-Bourret
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Lorinda A. Hart
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
35
|
Ascorbic acid, ultraviolet C rays, and glucose but not hyperthermia are elicitors of human β-defensin 1 mRNA in normal keratinocytes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714580. [PMID: 25815330 PMCID: PMC4359827 DOI: 10.1155/2015/714580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/24/2014] [Indexed: 01/18/2023]
Abstract
Hosts' innate defense systems are upregulated by antimicrobial peptide elicitors (APEs). Our aim was to investigate the effects of hyperthermia, ultraviolet A rays (UVA), and ultraviolet C rays (UVC) as well as glucose and ascorbic acid (AA) on the regulation of human β-defensin 1 (DEFB1), cathelicidin (CAMP), and interferon-γ (IFNG) genes in normal human keratinocytes (NHK). The indirect in vitro antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes of these potential APEs was tested. We found that AA is a more potent APE for DEFB1 than glucose in NHK. Glucose but not AA is an APE for CAMP. Mild hypo- (35°C) and hyperthermia (39°C) are not APEs in NHK. AA-dependent DEFB1 upregulation below 20 mM predicts in vitro antimicrobial activity as well as glucose- and AA-dependent CAMP and IFNG upregulation. UVC upregulates CAMP and DEFB1 genes but UVA only upregulates the DEFB1 gene. UVC is a previously unrecognized APE in human cells. Our results suggest that glucose upregulates CAMP in an IFN-γ-independent manner. AA is an elicitor of innate immunity that will challenge the current concept of late activation of adaptive immunity of this vitamin. These results could be useful in designing new potential drugs and devices to combat skin infections.
Collapse
|
36
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
37
|
Trammell RA, Verhulst S, Toth LA. Effects of sleep fragmentation on sleep and markers of inflammation in mice. Comp Med 2014; 64:13-24. [PMID: 24512957 PMCID: PMC3929215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/15/2013] [Accepted: 09/11/2013] [Indexed: 06/03/2023]
Abstract
Many people in our society experience curtailment and disruption of sleep due to work responsibilities, care-giving, or life style choice. Delineating the health effect of acute and chronic disruptions in sleep is essential to raising awareness of and creating interventions to manage these prevalent concerns. To provide a platform for studying the health impact and underlying pathophysiologic mechanisms associated with inadequate sleep, we developed and characterized an approach to creating chronic disruption of sleep in laboratory mice. We used this method to evaluate how 3 durations of sleep fragmentation (SF) affect sleep recuperation and blood and lung analyte concentrations in male C57BL/6J mice. Mice housed in environmentally controlled chambers were exposed to automated SF for periods of 6, 12, or 24 h or for 12 h daily during the light (somnolent) phase for 4 sequential days. Sleep time, slow-wave amplitude, or bout lengths were significantly higher when uninterrupted sleep was permitted after each of the 3 SF durations. However, mice did not recover all of the lost slow-wave sleep during the subsequent 12- to 24-h period and maintained a net loss of sleep. Light-phase SF was associated with significant changes in serum and lung levels of some inflammatory substances, but these changes were not consistent or sustained. The data indicate that acute light-phase SF can result in a sustained sleep debt in mice and may disrupt the inflammatory steady-state in serum and lung.
Collapse
Key Words
- dwa, δ wave amplitude
- de, disk environment
- e, time of euthanasia
- g-csf, granulocyte colony-stimulating factor
- hc, home cage
- hpa, hypothalamic–pituitary–adrenal
- ip10, interferon-γ-induced protein 10 (cxcl10)
- kc, keratinocyte-derived chemokine (cxcl1)
- lcn2, lipocalin 2
- mcp1, monocyte chemotactic protein 1 (ccl2)
- m-csf, macrophage colony-stimulating factor
- mip1α, macrophage inflammatory protein
- nrems, non-rapid-eye-movement sleep
- rems, rapid-eye-movement sleep
- sf, sleep fragmentation
- smet, simple main-effects test
- sws, slow-wave sleep
- tpai1, total plasminogen activator inhibitor 1
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Steve Verhulst
- Department of Statistics and Research Informatics, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
38
|
Szentirmai É, Kapás L. Intact brown adipose tissue thermogenesis is required for restorative sleep responses after sleep loss. Eur J Neurosci 2013; 39:984-998. [PMID: 24372950 DOI: 10.1111/ejn.12463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Abstract
Metabolic signals related to feeding and body temperature regulation have profound effects on vigilance. Brown adipose tissue (BAT) is a key effector organ in the regulation of metabolism in several species, including rats and mice. Significant amounts of active BAT are also present throughout adulthood in humans. The metabolic activity of BAT is due to the tissue-specific presence of the uncoupling protein-1 (UCP-1). To test the involvement of BAT thermogenesis in sleep regulation, we investigated the effects of two sleep-promoting stimuli in UCP-1-deficient mice. Sleep deprivation by gentle handling increased UCP-1 mRNA expression in BAT and elicited rebound increases in non-rapid-eye-movement sleep and rapid-eye-movement sleep accompanied by elevated slow-wave activity of the electroencephalogram. The rebound sleep increases were significantly attenuated, by ~ 35-45%, in UCP-1-knockout (KO) mice. Wild-type (WT) mice with capsaicin-induced sensory denervation of the interscapular BAT pads showed similar impairments in restorative sleep responses after sleep deprivation, suggesting a role of neuronal sleep-promoting signaling from the BAT. Exposure of WT mice to 35 °C ambient temperature for 5 days led to increased sleep and body temperature and suppressed feeding and energy expenditure. Sleep increases in the warm environment were significantly suppressed, by ~ 50%, in UCP-1-KO animals while their food intake and energy expenditure did not differ from those of the WTs. These results suggest that the metabolic activity of the BAT plays a role in generating a metabolic environment that is permissive for optimal sleep. Impaired BAT function may be a common underlying cause of sleep insufficiency and metabolic disorders.
Collapse
Affiliation(s)
- Éva Szentirmai
- Washington, Wyoming, Alaska, Montana and Idaho (WWAMI) Medical Education Program, PO Box 1495, Spokane, WA 99210-1495, USA; Department of Integrative Physiology and Neuroscience, Pullman, WA, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | | |
Collapse
|
39
|
|
40
|
Kaushal N, Ramesh V, Gozal D. TNF-α and temporal changes in sleep architecture in mice exposed to sleep fragmentation. PLoS One 2012; 7:e45610. [PMID: 23029133 PMCID: PMC3448632 DOI: 10.1371/journal.pone.0045610] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
TNF-α plays critical roles in host-defense, sleep-wake regulation, and the pathogenesis of various disorders. Increases in the concentration of circulating TNF-α after either sleep deprivation or sleep fragmentation (SF) appear to underlie excessive daytime sleepiness in patients with sleep apnea (OSA). Following baseline recordings, mice were subjected to 15 days of SF (daily for 12 h/day from 07.00 h to 19.00 h), and sleep parameters were recorded on days1, 7 and 15. Sleep architecture and sleep propensity were assessed in both C57BL/6J and in TNF-α double receptor KO mice (TNFR KO). To further confirm the role of TNF-α, we also assessed the effect of treatment with a TNF- α neutralizing antibody in C57BL/6J mice. SF was not associated with major changes in global sleep architecture in C57BL/6J and TNFR KO mice. TNFR KO mice showed higher baseline SWS delta power. Further, following 15 days of SF, mice injected with TNF-α neutralizing antibody and TNFR KO mice showed increased EEG SWS activity. However, SWS latency, indicative of increased propensity to sleep, was only decreased in C57BL/6J, and was unaffected in TNFR KO mice as well as in C57BL/6J mice exposed to SF but treated with TNF-α neutralizing antibody. Taken together, our findings show that the excessive sleepiness incurred by recurrent arousals during sleep may be due to activation of TNF-alpha-dependent inflammatory pathways, despite the presence of preserved sleep duration and global sleep architecture.
Collapse
Affiliation(s)
| | | | - David Gozal
- Department of Pediatrics, Section of Pediatric Sleep Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
41
|
Zielinski MR, Taishi P, Clinton JM, Krueger JM. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation. Eur J Neurosci 2012; 35:1789-98. [PMID: 22540145 DOI: 10.1111/j.1460-9568.2012.08112.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.
Collapse
Affiliation(s)
- Mark R Zielinski
- Sleep and Performance Research Center, Programs in Neuroscience, WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | | | | | |
Collapse
|
42
|
Voronova IP, Khramova GM, Kulikov AV, Kozyreva TV. Effect of transfer of the chromosome 13 fragment containing gene il6st on parameters of temperature homeostasis in mice. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Taishi P, Davis CJ, Bayomy O, Zielinski MR, Liao F, Clinton JM, Smith DE, Krueger JM. Brain-specific interleukin-1 receptor accessory protein in sleep regulation. J Appl Physiol (1985) 2012; 112:1015-22. [PMID: 22174404 PMCID: PMC3311656 DOI: 10.1152/japplphysiol.01307.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-1β is involved in several brain functions, including sleep regulation. It promotes non-rapid eye movement (NREM) sleep via the IL-1 type I receptor. IL-1β/IL-1 receptor complex signaling requires adaptor proteins, e.g., the IL-1 receptor brain-specific accessory protein (AcPb). We have cloned and characterized rat AcPb, which shares substantial homologies with mouse AcPb and, compared with AcP, is preferentially expressed in the brain. Furthermore, rat somatosensory cortex AcPb mRNA varied across the day with sleep propensity, increased after sleep deprivation, and was induced by somnogenic doses of IL-1β. Duration of NREM sleep was slightly shorter and duration of REM sleep was slightly longer in AcPb knockout than wild-type mice. In response to lipopolysaccharide, which is used to induce IL-1β, sleep responses were exaggerated in AcPb knockout mice, suggesting that, in normal mice, inflammation-mediated sleep responses are attenuated by AcPb. We conclude that AcPb has a role in sleep responses to inflammatory stimuli and, possibly, in physiological sleep regulation.
Collapse
Affiliation(s)
- Ping Taishi
- Sleep and Performance Research Center, WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Krueger JM, Taishi P, De A, Davis CJ, Winters BD, Clinton J, Szentirmai E, Zielinski MR. ATP and the purine type 2 X7 receptor affect sleep. J Appl Physiol (1985) 2010; 109:1318-27. [PMID: 20829501 DOI: 10.1152/japplphysiol.00586.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep is dependent upon prior brain activities, e.g., after prolonged wakefulness sleep rebound occurs. These effects are mediated, in part, by humoral sleep regulatory substances such as cytokines. However, the property of wakefulness activity that initiates production and release of such substances and thereby provides a signal for indexing prior waking activity is unknown. We propose that extracellular ATP, released during neuro- and gliotransmission and acting via purine type 2 (P2) receptors, is such a signal. ATP induces cytokine release from glia. Cytokines in turn affect sleep. We show here that a P2 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP), increased non-rapid eye movement sleep (NREMS) and electroencephalographic (EEG) delta power while two different P2 receptor antagonists, acting by different inhibitory mechanisms, reduced spontaneous NREMS in rats. Rat P2X7 receptor protein varied in the somatosensory cortex with time of day, and P2X7 mRNA was altered by interleukin-1 treatment, by sleep deprivation, and with time of day in the hypothalamus and somatosensory cortex. Mice lacking functional P2X7 receptors had attenuated NREMS and EEG delta power responses to sleep deprivation but not to interleukin-1 treatment compared with wild-type mice. Data are consistent with the hypothesis that extracellular ATP, released as a consequence of cell activity and acting via P2 receptors to release cytokines and other sleep regulatory substances, provides a mechanism by which the brain could monitor prior activity and translate it into sleep.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, Programs in Neuroscience, Dept. of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kambe D, Kotani M, Yoshimoto M, Kaku S, Chaki S, Honda K. Effects of quercetin on the sleep–wake cycle in rats: Involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep. Brain Res 2010; 1330:83-8. [DOI: 10.1016/j.brainres.2010.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/12/2010] [Accepted: 03/10/2010] [Indexed: 11/27/2022]
|
46
|
Leyva-Grado VH, Churchill L, Harding J, Krueger JM. The olfactory nerve has a role in the body temperature and brain cytokine responses to influenza virus. Brain Behav Immun 2010; 24:281-8. [PMID: 19836444 PMCID: PMC2818451 DOI: 10.1016/j.bbi.2009.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 11/30/2022] Open
Abstract
Mouse-adapted human influenza virus is detectable in the olfactory bulbs of mice within hours after intranasal challenge and is associated with enhanced local cytokine mRNA and protein levels. To determine whether signals from the olfactory nerve influence the unfolding of the acute phase response (APR), we surgically transected the olfactory nerve in mice prior to influenza infection. We then compared the responses of olfactory-nerve-transected (ONT) mice to those recorded in sham-operated control mice using measurements of body temperature, food intake, body weight, locomotor activity and immunohistochemistry for cytokines and the viral antigen, H1N1. ONT did not change baseline body temperature (Tb); however, the onset of virus-induced hypothermia was delayed for about 13 h in the ONT mice. Locomotor activity, food intake and body weights of the two groups were similar. At 15 h post-challenge fewer viral antigen-immunoreactive (IR) cells were observed in the olfactory bulb (OB) of ONT mice compared to sham controls. The number of tumor necrosis factor alpha (TNFalpha)- and interleukin 1beta (IL1beta)-IR cells in ONT mice was also reduced in the OB and other interconnected regions in the brain compared to sham controls. These results suggest that the olfactory nerve pathway is important for the initial pathogenesis of the influenza-induced APR.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
47
|
Majde JA, Kapás L, Bohnet SG, De A, Krueger JM. Attenuation of the influenza virus sickness behavior in mice deficient in Toll-like receptor 3. Brain Behav Immun 2010; 24:306-15. [PMID: 19861156 PMCID: PMC2818367 DOI: 10.1016/j.bbi.2009.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/14/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
Abstract
Certain sickness behaviors occur consistently in influenza-infected humans and mice. These include body temperature changes, somnolence, and anorexia. Several cytokines serve as mediators of the influenza acute phase response (APR), including these sickness behaviors, and one likely inducer of these cytokines is dsRNA produced during viral replication. TLR3 is known to be one of the host cellular components capable of recognizing dsRNA and activating cytokine synthesis. To determine the role of TLR3-detected viral dsRNA in the causation of viral symptoms, TLR3-deficient mice (TLR3 knockouts, or KOs) were infected with a marginally-lethal dose of mouse-adapted X-31 influenza virus. TLR3 KOs and their wild-type (WT) controls were monitored for baseline body temperature, locomotor activity, and sleep profiles prior to infection. Both mouse strains were then infected and monitored for changes in these sickness behaviors plus body weight changes and mortality for up to 14days post-infection. Consistent with the observations that influenza pathology is reduced in TLR3 KOs, we showed that hypothermia after post-infection day 5 and the total loss of body weight were attenuated in the TLR3 KOs. Sleep changes characteristic of this infection model [particularly increased non-rapid-eye-movement sleep (NREMS)] were also attenuated in TLR3 KOs and returned to baseline values more rapidly. Locomotor activity suppression was similar in both strains. Therefore virus-associated dsRNA detected by TLR3 appears to play a substantial role in mediating several aspects of the influenza syndrome in mice.
Collapse
Affiliation(s)
- Jeannine A. Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Levente Kapás
- WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495
| | - Stewart G. Bohnet
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Alok De
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - James M. Krueger
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| |
Collapse
|
48
|
Verhoeven D, Teijaro JR, Farber DL. Pulse-oximetry accurately predicts lung pathology and the immune response during influenza infection. Virology 2009; 390:151-6. [PMID: 19493556 DOI: 10.1016/j.virol.2009.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/16/2009] [Accepted: 05/06/2009] [Indexed: 11/26/2022]
Abstract
In animal models of influenza, systemic weight loss is the primary indicator of morbidity from infection, which does not assess local lung pathology or the immune response. Here, we used a mouse-adapted pulse-oximeter as a non-invasive clinical readout of lung function during influenza infection in mice, and found direct correlations between oxygen saturation levels and lung pathology, that reflected the morbidity and survival from influenza infection. We found blood oxygen levels to be a more accurate assessment than weight-loss morbidity in predicting lung pathology in hosts infected with different viral doses, and in assessing immune-mediated viral clearance in the lung.
Collapse
Affiliation(s)
- David Verhoeven
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21210, USA.
| | | | | |
Collapse
|
49
|
Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau JL. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci Biobehav Rev 2009; 33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
|
50
|
Kapás L, Bohnet SG, Traynor TR, Majde JA, Szentirmai E, Magrath P, Taishi P, Krueger JM. Spontaneous and influenza virus-induced sleep are altered in TNF-alpha double-receptor deficient mice. J Appl Physiol (1985) 2008; 105:1187-98. [PMID: 18687977 DOI: 10.1152/japplphysiol.90388.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is associated with sleep regulation in health and disease. Previous studies assessed sleep in mice genetically deficient in the TNF-alpha 55-kDa receptor. In this study, spontaneous and influenza virus-induced sleep profiles were assessed in mice deficient in both the 55-kDa and 75-kDa TNF-alpha receptors [TNF-2R knockouts (KO)] and wild-type (WT) strain controls. Under baseline conditions the TNF-2R KO mice had less non-rapid eye movement sleep (NREMS) than WTs during the nighttime and more rapid eye movement sleep (REMS) than controls during the daytime. The differences between nighttime maximum and daytime minimum values of electroencephalogram (EEG) delta power during NREMS were greater in the TNF-2R KO mice than in WTs. Viral challenge (mouse-adapted influenza X-31) enhanced NREMS and decreased REMS in both strains roughly to the same extent. EEG delta power responses to viral challenge differed substantially between strains; the WT animals increased, whereas the TNF-2R KO mice decreased their EEG delta wave power during NREMS. There were no differences between strains in body temperatures or locomotor activity in uninfected mice or after viral challenge. Analyses of cortical mRNAs confirmed that the TNF-2R KO mice lacked both TNF-alpha receptors; these mice also had higher levels of orexin mRNA and reduced levels of the purine P2X7 receptor compared with WTs. Results reinforce the hypothesis that TNF-alpha is involved in physiological sleep regulation but plays a limited role in the acute-phase response induced by influenza virus.
Collapse
Affiliation(s)
- Levente Kapás
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | | | | | | | | | | | | | | |
Collapse
|