1
|
Toscano ECB, Justo AFO, Paula MCA, Grossi LB, Neves VH, Leite REP, Paes VR, Melo RCN, Nitrini R, Pasqualucci C, Ferriolli E, Teixeira AL, Grinberg LT, Suemoto CK. Upregulation of NLRP3 Inflammasome in Specific Hippocampal Regions: Strengthening the Link Between Neuroinflammation and Selective Vulnerability in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04975-6. [PMID: 40281298 DOI: 10.1007/s12035-025-04975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Neuroinflammation has emerged as an important mechanism in the early stages of neurodegenerative diseases. Experimental models have demonstrated the detrimental role of inflammasomes in the development of Alzheimer's disease (AD). However, neuropathological studies characterizing NLRP1 and NLRP3 pathways in AD are scarce. In addition, the possible association between inflammasome-induced neuroinflammation and clinicopathological outcomes is unclear. This study aimed to characterize the hippocampal expression of the inflammasome proteins in post-mortem samples of individuals with pure AD neuropathological change (ADNC) compared to controls from an admixed Latin American sample (n = 28 per group). We also investigated potential associations of inflammasome expression with neuropathological burden and cognitive abilities. The expression of NLRP1, NLRP3, caspase-1, ASC, gasdermin D, IL-1β, IL-18, amyloid β, and hyperphosphorylated tau (p-tau) was evaluated in the cornu ammonis (CA), dentate gyrus (DG), and subiculum (SUB), using immunohistochemistry and morphometry. We also performed the alignment of serial sections and 3D reconstruction of ADNC samples to verify the spatial locations of NLRP3/ASC and AD pathology across the hippocampus. We used ordinal logistic regression to investigate potential associations between inflammasome proteins and AD pathology, while linear regression assessed relationships between inflammasome and cognitive abilities. NLRP3, ASC, caspase-1, IL-1β, and IL-18 were overexpressed in CA and SUB of individuals with ADNC compared to controls. NLRP3 pathway correlated with AD pathology and CDR-SB, mainly in CA and SUB. Our results suggest that hippocampal NLRP3, but not NLRP1, inflammasome was associated with pathologic burden and cognitive impairment in AD and may contribute to the selective vulnerability to AD pathology.
Collapse
Affiliation(s)
- Eliana C B Toscano
- Laboratory of Pathology, Department of Pathology, Federal University of Juiz de Fora Medical School, Eugênio Do Nascimento, S/No.-Dom Bosco, Juiz de Fora, MG, 36038 - 330, Brazil.
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil.
| | - Alberto F O Justo
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Michelle C A Paula
- Laboratory of Pathology, Department of Pathology, Federal University of Juiz de Fora Medical School, Eugênio Do Nascimento, S/No.-Dom Bosco, Juiz de Fora, MG, 36038 - 330, Brazil
| | - Laura B Grossi
- Laboratory of Pathology, Department of Pathology, Federal University of Juiz de Fora Medical School, Eugênio Do Nascimento, S/No.-Dom Bosco, Juiz de Fora, MG, 36038 - 330, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Renata E P Leite
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Vitor R Paes
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos Pasqualucci
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Eduardo Ferriolli
- Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio L Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Lea T Grinberg
- Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - Claudia K Suemoto
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
2
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Catalogna M, Somerville Y, Saporta N, Nathansohn-Levi B, Shelly S, Edry L, Zagoory-Sharon O, Feldman R, Amedi A. Brain connectivity correlates of the impact of a digital intervention for individuals with subjective cognitive decline on depression and IL-18. Sci Rep 2025; 15:6863. [PMID: 40011544 PMCID: PMC11865443 DOI: 10.1038/s41598-025-91457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Late-life depression represents a significant health concern, linked to disruptions in brain connectivity and immune functioning, mood regulation, and cognitive function. This pilot study explores a digital intervention targeting mental health, brain health, and immune functioning in individuals aged 55-60 with subjective cognitive decline, elevated stress and depressive symptoms. Seventeen participants engaged in a two-week intervention comprising spatial cognition, psychological techniques based on mindfulness, attention-training exercises, and cognitive behavioral therapy. Pre-and post-intervention changes in resting-state functional connectivity, inflammation, and psychological health were evaluated. Key findings include: (1) Reduced self-reported depression with a large effect size, (2) Decreased connectivity within the default mode network (DMN), (3) Enhanced anticorrelation between the DMN-Salience networks that was associated with improved depression scores (4) Reduced salivary IL-18 concentration with a medium effect size, correlated with decreased DMN-amygdala connectivity. There was a trend towards reduced anxiety, with no significant changes in quality of life. To our knowledge, this is the first study to investigate the effect of digital intervention on immune markers, clinical behavioral outcomes, and brain function, demonstrating positive synergistic potential across all three levels. These preliminary findings, which need replication in larger, controlled studies, have important implications for basic science and scalable digital interventions.
Collapse
Affiliation(s)
- Merav Catalogna
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Ya'ira Somerville
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | | | | | - Shahar Shelly
- Department of Neurology, Rambam Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liat Edry
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Orna Zagoory-Sharon
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel.
| |
Collapse
|
4
|
Cheon J, Kwon S, Kim M. Exerkines mitigating Alzheimer's disease progression by regulating inflammation: Focusing on macrophage/microglial NLRP3 inflammasome pathway. Alzheimers Dement 2025; 21:e14432. [PMID: 39641407 PMCID: PMC11848186 DOI: 10.1002/alz.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Recent research highlights the critical role of inflammation in accelerating amyloid beta and phosphorylated tubulin-associated protein tau cascade and Alzheimer's disease (AD) progression. Emerging evidence suggests that exercise influences AD by modulating inflammatory responses. We conducted a comprehensive search across multiple online databases. Our approach focused on previous and recent studies exploring the links among inflammation, AD, and the effects of exercise, specifically targeting research articles and books published in English. We pointed out that inflammation extends from the periphery to the central nervous system, facilitated by macrophage/microglial NLRP3 (nucleotide-binding domain, leucine rich-containing family, pyrin domain-containing protein 3) inflammasome signaling, which exacerbates classical AD mechanisms. Moreover, we provided further insights into the modulation of inflammasome signaling through exercise and exerkines, which may contribute to mitigating AD development. These insights deepen our understanding of AD mechanisms and offer the potential for identifying key therapeutic targets and biomarkers crucial for effective disease management and treatment. HIGHLIGHTS: Inflammation is potentially linked to the acceleration of classical Alzheimer's disease (AD) pathogenesis, including the pathways involving amyloid beta and phosphorylated tau, mediated by pro-inflammatory cytokines. Inflammation, initiated by the nucleotide-binding domain, leucine rich-containing family, pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway within M1-type macrophages/microglia, may contribute to neuroinflammation and AD progression. Exercise has the potential to reduce inflammation and the development of AD by influencing NLRP3 inflammasome signaling via exerkines.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical ScienceKorea University College of MedicineSeongbuk‐guSeoulRepublic of Korea
- Uimyung Research Institute for NeuroscienceDepartment of PharmacySahmyook UniversityNowon‐guSeoulRepublic of Korea
| | - Soonyong Kwon
- Uimyung Research Institute for NeuroscienceDepartment of PharmacySahmyook UniversityNowon‐guSeoulRepublic of Korea
- Department of Chemistry & Life ScienceSahmyook UniversityNowon‐guSeoulRepublic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for NeuroscienceDepartment of PharmacySahmyook UniversityNowon‐guSeoulRepublic of Korea
- Department of Chemistry & Life ScienceSahmyook UniversityNowon‐guSeoulRepublic of Korea
| |
Collapse
|
5
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
6
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Li C, Zhang X, Wang Y, Cheng L, Li C, Xiang Y. The role of IL-1 family of cytokines in the pathogenesis and therapy of Alzheimer's disease. Inflammopharmacology 2024:10.1007/s10787-024-01534-8. [PMID: 39126573 DOI: 10.1007/s10787-024-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological condition that occurs with age and poses a significant global public health concern, is distinguished by the degeneration of neurons and synapses in various regions of the brain. While the exact processes behind the neurodegeneration in AD are not completely known, it is now acknowledged that inflammation may have a significant impact on the beginning and advancement of AD neurodegeneration. The severity of many neurological illnesses can be influenced by the equilibrium between pro-inflammatory and anti-inflammatory mediators. The IL-1 family of cytokines is linked to innate immune responses, which are present in both acute inflammation and chronic inflammatory diseases. Research on the role of the IL-1 family in chronic neurological disease has been concentrated on AD. In this context, there is indirect evidence suggesting its involvement in the development of the disease. This review aims to provide a summary of the contribution of every IL-1 family member in AD pathogenesis, current immunotherapies in AD disease, and present treatment possibilities for either targeting or boosting these cytokines.
Collapse
Affiliation(s)
- ChangQing Li
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Xun Zhang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Yunqian Wang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Le Cheng
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - ChangBao Li
- Urology Department, Huili People's Hospital, Huili615100, Guangyuan, Sichuan, China
| | - Yu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Guan X, Leng W, Hu Q, Xiu M, Zhang X. Association between cognitive function and IL-18 levels in schizophrenia: Dependent on IL18 - 607 A/C polymorphism. Psychoneuroendocrinology 2023; 158:106386. [PMID: 37741261 DOI: 10.1016/j.psyneuen.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Accumulating evidence suggests that immune system dysregulation is associated with debilitating neurodevelopment in schizophrenia (SZ). Cognitive impairment is a persistent feature that occurs during the onset of SZ and persists throughout the course of the disease. Early studies have found that elevated interleukin (IL)- 18 interacts with IL18 polymorphism and is correlated with psychotic symptoms in SZ. This study aimed to investigate whether elevated IL-18 levels interacted with the -607 A/C polymorphism to determine cognitive decline in patients with chronic SZ. We recruited 693 inpatients and 422 healthy controls to measure IL-18 levels and genotype the - 607 A/C polymorphism. Further, cognitive function was measured by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). We found that IL-18 serum levels were higher in patients than those in healthy controls, and were not associated with IL18 - 607 A/C in combined subjects or either patients or healthy controls, respectively. Moreover, - 607 A/C was correlated with the visuospatial/constructional index only in the patients. In addition, our research found that IL-18 levels were positively correlated to immediate memory only in patients with the C/C genotype, but not in patients with C/A or A/A genotype. This study suggests that the relationship of IL-18 with cognitive function depends on the IL18 - 607 A/C polymorphism of SZ patients.
Collapse
Affiliation(s)
- Xiaoni Guan
- Peking University, Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | | | - Qiongyue Hu
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University, Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
11
|
Peilstöcker D, Meisinger C, Linseisen J, Baumgärtner J, Hasan A, Schmauß M, Kirchberger I. Are cytokine profiles associated with the cognitive performance of adults with severe major depression? J Psychiatr Res 2023; 166:32-39. [PMID: 37738778 DOI: 10.1016/j.jpsychires.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Cognitive impairment often occurs in major depressive disorder (MDD). Studies suggest that these cognitive deficits may be associated with inflammatory biomarkers, but data are limited. Therefore, this study aims to investigate the relationship between 48 peripheral blood cytokines and cognitive performance in patients with severe depressive disorder. One hundred consecutive hospitalized adult patients with severe depression who participated in the Depression long-term Augsburg (DELTA) study were included in the present analysis. To test working memory (WM) the Wechsler Adult Intelligence Scale (WAIS) IV and to assess interference control (IC) the Stroop Color and Word Test (SCWT) were performed. The serum concentrations of the biomarkers were measured using the Bio-Plex Pro™ Human Cytokine Screening Panel 1. Multiple linear regression models adjusted for possible confounders were fitted to examine associations. WM was impaired in 11% of the patients. IC was impaired in 1%-3% of the cases depending on the subtest. Eotaxin, IL-1β, IL-4, MCP-1, G-CSF, and PGF-BB were negatively associated with the WM. Eotaxin, IL-1β, IL-4, IL-16, IL-18, MCP-1, G-CSF, SCF, and MIP-1α were negatively associated with IC. None of these associations remained significant after adjustment for multiple testing. The present study identified eotaxin, IL-1β, IL-4, IL-16, IL-18, MCP-1, G-CSF, SCF, PGF-BB and MIP-1α as being associated with cognitive performance. After confirmation of these results in further studies, these cytokines may be potential targets for new treatments.
Collapse
Affiliation(s)
- Daniela Peilstöcker
- Institute for Medical Information Processing, Biometry, and Epidemiology, IBE, LMU Munich, Munich, Germany; Pettenkofer School of Public Health, Munich, Germany; Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christine Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Jessica Baumgärtner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Medical Faculty, BKH Augsburg, Augsburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Medical Faculty, BKH Augsburg, Augsburg, Germany
| | - Max Schmauß
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Medical Faculty, BKH Augsburg, Augsburg, Germany
| | - Inge Kirchberger
- Institute for Medical Information Processing, Biometry, and Epidemiology, IBE, LMU Munich, Munich, Germany; Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
12
|
Jin RR, Cheung CNM, Wong CH, Lo CC, Lee CP, Tsang HW, Virwani PD, Ip P, Lau KK, Lee TM. Sleep quality mediates the relationship between systemic inflammation and neurocognitive performance. Brain Behav Immun Health 2023; 30:100634. [PMID: 37251546 PMCID: PMC10209676 DOI: 10.1016/j.bbih.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023] Open
Abstract
Background Systemic inflammation is a significant mechanism underpinning adverse cognitive changes. Sleep quality is a crucial factor associated with systemic inflammation and neurocognitive health. Elevated levels of pro-inflammatory cytokines in the periphery help mark inflammation. With this background, we examined the relationship between systemic inflammation, subjective sleep quality, and neurocognitive performance in adults. Method & Results In 252 healthy adults, we measured the systemic inflammation reflected by serum levels of IL-6, IL-12, IL-18, TNF-α and IFN-γ, subjective sleep quality reflected by the global scores of the Pittsburgh Sleep Quality Index, and their neurocognitive performance measured by the Hong Kong Montreal Cognitive Assessment. We observed that neurocognitive performance was negatively related to IL-18 (p = 0.046) and positively related to sleep quality (p = 0.006). We did not observe significant associations between other cytokines and neurocognitive performance. Furthermore, we found that sleep quality as a mediator explained the relationship between IL-18 and neurocognitive performance depending on the levels of IL-12 (index of moderated mediation: 95% CI = [0.0047, 0.0664]). Better subjective sleep quality buffered the negative effect of IL-18 on neurocognitive performance when IL-12 was low (bootstrapping 95% CI: [- 0.0824, - 0.0018]). On the contrary, poor subjective sleep quality mediated the association between higher IL-18 and poorer neurocognitive performance when IL-12 was elevated (bootstrapping 95% CI: [0.0004, 0.0608]). Conclusion & Implications Our findings indicate that systemic inflammation was negatively associated with neurocognitive performance. Sleep quality regulated by IL-18/IL-12 axis activation could be a potential mechanism underpinning neurocognitive changes. Our results illustrate the intricate relationships between immune functioning, sleep quality and neurocognitive performance. These insights are essential to understand the potential mechanisms underpinning neurocognitive changes, paving the way for the development of preventive interventions for the risk of cognitive impairment.
Collapse
Affiliation(s)
- Rachel R. Jin
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Carman Nga-Man Cheung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clive H.Y. Wong
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Chelsea C.W. Lo
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Crystal P.I. Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hing Wai Tsang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Preeti Dinesh Virwani
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui Kai Lau
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Division of Neurology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tatia M.C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
14
|
Vellecco V, Saviano A, Raucci F, Casillo GM, Mansour AA, Panza E, Mitidieri E, Femminella GD, Ferrara N, Cirino G, Sorrentino R, Iqbal AJ, d'Emmanuele di Villa Bianca R, Bucci M, Maione F. Interleukin-17 (IL-17) triggers systemic inflammation, peripheral vascular dysfunction, and related prothrombotic state in a mouse model of Alzheimer's disease. Pharmacol Res 2023; 187:106595. [PMID: 36470548 DOI: 10.1016/j.phrs.2022.106595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of neurodegenerative disorders. Previously, we have shown that in vivo administration of an IL-17 neutralizing antibody (IL-17Ab) rescues amyloid-β-induced neuro-inflammation and memory impairment, demonstrating the pivotal role of IL-17 in AD-derived cognitive deficit. Recently, AD has been recognized as a more intriguing pathology affecting vascular networks and platelet function. However, not much is known about peripheral vascular inflammation and how pro-inflammatory circulating cells/mediators could affect peripheral vessels' function. This study aimed to evaluate whether IL-17Ab treatment could also impact peripheral AD features, such as systemic inflammation, peripheral vascular dysfunction, and related pro-thrombotic state in a non-genetic mouse model of AD. Mice were injected intracerebroventricularly with Aβ1-42 peptide (3 μg/3 μl). To evaluate the systemic/peripheral protective profile of IL-17Ab, we used an intranasal administration of IL-17Ab (1 μg/10 μl) at 5, 12, and 19 days after Aβ1-42 injection. Circulating Th17/Treg cells and related cyto-chemokines, haematological parameters, vascular/endothelial reactivity, platelets and coagulation function in mice were evaluated. IL-17Ab treatment ameliorates the systemic/peripheral inflammation, immunological perturbance, vascular/endothelial impairment and pro-thrombotic state, suggesting a key role for this cytokine in fostering inflammatory processes that characterize the multifaced aspects of AD.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Istituti Clinici Scientifici ICS-Maugeri, Telese Terme, BN, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | - Asif Jilani Iqbal
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
15
|
Ma G, Sun P, Chen Y, Jiang X, Zhang C, Qu B, Meng X. NLRP3 inflammasome activation contributes to the cognitive decline after cardiac surgery. Front Surg 2022; 9:992769. [PMID: 36406365 PMCID: PMC9666730 DOI: 10.3389/fsurg.2022.992769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) are a common complication of cardiac surgery in elderly patients. The etiopathogenesis of PND is not clear. Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, a macromolecular protein complex, regulates inflammation by inducing the release of proinflammatory cytokines interleukin (IL)-1β and IL-18. Studies have demonstrated a close link between the NLRP3 inflammasome and central nervous system diseases. Nevertheless, the involvement of NLRP3 inflammasome in the causation of PND occurring after cardiac surgery is unclear. This study aimed to investigate the association of serum NLRP3 level with PND. METHODS We performed a retrospective study, enrolled 75 patients undergoing elective cardiac surgery and evaluated their cognitive functions one day before and 7 days after surgery. PND were determined according to the International Study of Postoperative Cognitive Dysfunction studies. Demographics and perioperative parameters were recorded. Perioperative serum NLRP3 protein, IL-1β, and IL-18 levels were monitored. RESULTS The PND incidence in our cohort was 33.33%. NLRP3 protein levels were significantly increased in all patients at each postoperative time-point after general anesthesia and cardiac surgery under cardiopulmonary bypass. Patients showing cognitive dysfunction had higher serum NLRP3 protein, caspase-1, IL-1β, and IL-18 levels immediately after the operation. Variables associated with the incidence of early PND were included in the regression models. After adjusting for confounding variables, high serum NLRP3 protein level at the end of the operation and old age were identified as independent predictors of PND. CONCLUSIONS High serum NLRP3 protein level at the completion of cardiac surgery was associated with a higher risk of PND seven days after surgery. TRIAL REGISTRATION The study was registered at Clinicaltrials.gov (registration number: NCT04191642).
Collapse
Affiliation(s)
- Gang Ma
- Department of Anaesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Sun
- Department of Anaesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yi Chen
- Department of Anaesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Jiang
- Department of Anaesthesiology, Ningxia Medical University, Yinchuan, China
| | - Caixia Zhang
- Department of Anaesthesiology, Ningxia Medical University, Yinchuan, China
| | - Baofu Qu
- Department of Anaesthesiology, Ningxia Medical University, Yinchuan, China
| | - Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China,Correspondence: Xiangkun Meng
| |
Collapse
|
16
|
Review of the effects of polycystic ovary syndrome on Cognition: Looking beyond the androgen hypothesis. Front Neuroendocrinol 2022; 67:101038. [PMID: 36154816 DOI: 10.1016/j.yfrne.2022.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
Polycystic-ovary syndrome (PCOS) is the most common endocrine disorder affecting women of reproductive age, and many features associated with PCOS - such as elevated androgens, insulin resistance and inflammation - are known to affect cognition. However, effects of PCOS on cognition are not well-understood. Here we review the current literature on PCOS and cognition, note the extent of PCOS symptomatology studied in relation to cognitive outcomes, and identify key research gaps and common methodological concerns. Findings indicate a pattern of worse performance across cognitive domains and brain measures in women with PCOS relative to non-PCOS controls, as well as a lack of evidence for the common assumption that women with PCOS will have higher performance on tasks with a demonstrated male-advantage due to high testosterone levels. We suggest strategies for moving beyond the focus on elevated androgens, in favor of research practices that account for the nuances and heterogeneity of PCOS symptoms.
Collapse
|
17
|
Cheng L, Dong R, Song C, Li X, Zhang L, Shi M, Lv C, Wang L, Kou J, Xie H, Feng W, Zhao H. Mediation Effects of IL-1β and IL-18 on the Association Between Vitamin D Levels and Mild Cognitive Impairment Among Chinese Older Adults: A Case–Control Study in Taiyuan, China. Front Aging Neurosci 2022; 14:836311. [PMID: 35370605 PMCID: PMC8966426 DOI: 10.3389/fnagi.2022.836311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Objective Mild cognitive impairment (MCI) is a common, chronic, and complex disease in the elderly, which is often influenced by a variety of factors that include nutrition and inflammation. This study was undertaken to evaluate the mediation effects of inflammation on the association between vitamin D levels and MCI. Methods We explored the associations of inflammation and cognitive impairment related to 25(OH)D3 deficiency among 360 older people from the communities in China. Demographic characteristics, lifestyle, and health status were investigated by questionnaire, cognitive function was detected by MoCA, and plasma 25(OH)D3, interleukin-1β (IL-1β), and interleukin-18 (IL-18) were measured by ELISA. Spearman’s correlation analysis and logistic regression analysis were used to analyze the relationship among 25(OH)D3, IL-1β, and IL-18 in the MCI group and the control group and further to analyze the relationship between 25(OH)D3 and inflammatory factors in the MCI group. Finally, mediation analysis was performed to evaluate whether inflammation mediated the effect of 25(OH)D3 deficiency on cognitive impairment. Results There were lower plasma 25(OH)D3 concentration and higher IL-1β and IL-18 levels in the MCI group compared with the controls. The levels of 25(OH)D3 were positively correlated with the MoCA scores and scores of different domains; the levels of IL-1β and IL-18 were negatively correlated with them (p < 0.05). In multivariate logistic analysis, there were significant associations among 25(OH)D3, IL-1β, IL-18, and MCI after adjusted. Further analysis revealed the significant association between the subjects with VD deficiency and the highest quartile of IL-18 in MCI (OR = 4.066), not with IL-1β after adjusting the confounding variables in MCI group. Ultimately, mediation analysis suggested that IL-1β and IL-18 could explain 25.4 and 17.5% of effect of the risk of cognitive impairment related to 25(OH)D3 deficiency. Conclusion Our findings suggested that 25(OH)D3 deficiency could increase the risk of cognitive impairment by a mechanism partly involving inflammation. Therefore, vitamin D supplementation may improve or delay the decline in cognitive function caused by inflammation in the elderly.
Collapse
Affiliation(s)
- Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruirui Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chenhui Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jie Kou
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Haoran Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Haifeng Zhao,
| |
Collapse
|
18
|
Werner MCF, Wirgenes KV, Shadrin A, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Immune marker levels in severe mental disorders: associations with polygenic risk scores of related mental phenotypes and psoriasis. Transl Psychiatry 2022; 12:38. [PMID: 35082268 PMCID: PMC8792001 DOI: 10.1038/s41398-022-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence implicate immune abnormalities in the pathophysiology of severe mental disorders (SMD) and comorbid mental disorders. Here, we use the data from genome-wide association studies (GWAS) of autoimmune diseases and mental phenotypes associated with SMD to disentangle genetic susceptibilities of immune abnormalities in SMD. We included 1004 patients with SMD and 947 healthy controls (HC) and measured plasma levels of IL-1Ra, sIL-2R, gp130, sTNFR-1, IL-18, APRIL, and ICAM-1. Polygenic risk scores (PRS) of six autoimmune disorders, CRP, and 10 SMD-related mental phenotypes were calculated from GWAS. General linear models were applied to assess the association of PRS with immune marker abnormalities. We found negative associations between PRS of educational attainment and IL-1Ra (P = 0.01) and IL-18 (P = 0.01). There were nominal positive associations between PRS of psoriasis and sgp130 (P = 0.02) and PRS of anxiety and IL-18 (P = 0.03), and nominal negative associations between PRS of anxiety and sIL-2R (P = 0.02) and PRS of educational attainment and sIL-2R (P = 0.03). Associations explained minor amounts of the immune marker plasma-level difference between SMD and HC. Different PRS and immune marker associations in the SMD group compared to HC were shown for PRS of extraversion and IL-1Ra ([interaction effect (IE), P = 0.002), and nominally for PRS of openness and IL-1Ra (IE, P = 0.02) and sTNFR-1 (IE, P = 0.04). Our findings indicate polygenic susceptibilities to immune abnormalities in SMD involving genetic overlap with SMD-related mental phenotypes and psoriasis. Associations might suggest immune genetic factors of SMD subgroups characterized by autoimmune or specific mental features.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Anuradha U, Kumar A, Singh RK. The clinical correlation of proinflammatory and anti-inflammatory biomarkers with Alzheimer disease: a meta-analysis. Neurol Sci 2022; 43:285-298. [PMID: 34032945 DOI: 10.1007/s10072-021-05343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies have indicated the role of inflammation in the pathogenesis of Alzheimer's disease (AD). However, the exact role of inflammatory markers in AD is still unclear. OBJECTIVE The main objective of the current study was to find out the association between the level of inflammatory markers and AD. MATERIAL AND METHODS The relevant articles have been extracted from PubMed as per the inclusion and exclusion criteria of the study. The mean value with standard deviation and number of participants in AD and control groups were extracted from relevant articles. The inverse variance was used as a statistical method and standard mean difference (SMD) as effect measure with 95% C.I. The random effect model was used and all analyses were done using Rev. Man 5.0. RESULTS A total of 38 articles have been found relevant and selected for analysis. The overall estimate results have shown that the level of IL-6, TGF-β1, and IL-1α were increased significantly in AD patients as compared to the control group among all other pro-inflammatory, inflammatory and anti-inflammatory mediators. CONCLUSION The findings of the current study suggest that IL-6, TGF-β1, and IL-1α may be a useful early marker in AD. However, further studies are required to confirm the exact utility of these inflammatory markers.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, (U.P), Lucknow, 226002, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, (U.P), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
20
|
Kim REY, Abbott RD, Kim S, Thomas RJ, Yun CH, Kim H, Johnson H, Shin C. Sleep Duration, Sleep Apnea, and Gray Matter Volume. J Geriatr Psychiatry Neurol 2022; 35:47-56. [PMID: 33511901 DOI: 10.1177/0891988720988918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.
Collapse
Affiliation(s)
- Regina Eun Young Kim
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Robert Douglas Abbott
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| | - Soriul Kim
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| | - Robert Joseph Thomas
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si Gyeonggi-do, South Korea
| | - Chang-Ho Yun
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Hyun Kim
- Department of Clinical Psychology, Boston University, Boston, MA, USA
| | - Hans Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Chol Shin
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| |
Collapse
|
21
|
Walker KA, Chen J, Zhang J, Fornage M, Yang Y, Zhou L, Grams ME, Tin A, Daya N, Hoogeveen RC, Wu A, Sullivan KJ, Ganz P, Zeger SL, Gudmundsson EF, Emilsson V, Launer LJ, Jennings LL, Gudnason V, Chatterjee N, Gottesman RF, Mosley TH, Boerwinkle E, Ballantyne CM, Coresh J. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. NATURE AGING 2021; 1:473-489. [PMID: 37118015 PMCID: PMC10154040 DOI: 10.1038/s43587-021-00064-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/02/2021] [Indexed: 04/30/2023]
Abstract
The plasma proteomic changes that precede the onset of dementia could yield insights into disease biology and highlight new biomarkers and avenues for intervention. We quantified 4,877 plasma proteins in nondemented older adults in the Atherosclerosis Risk in Communities cohort and performed a proteome-wide association study of dementia risk over five years (n = 4,110; 428 incident cases). Thirty-eight proteins were associated with incident dementia after Bonferroni correction. Of these, 16 were also associated with late-life dementia risk when measured in plasma collected nearly 20 years earlier, during mid-life. Two-sample Mendelian randomization causally implicated two dementia-associated proteins (SVEP1 and angiostatin) in Alzheimer's disease. SVEP1, an immunologically relevant cellular adhesion protein, was found to be part of larger dementia-associated protein networks, and circulating levels were associated with atrophy in brain regions vulnerable to Alzheimer's pathology. Pathway analyses for the broader set of dementia-associated proteins implicated immune, lipid, metabolic signaling and hemostasis pathways in dementia pathogenesis.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jingning Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yunju Yang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrienne Tin
- MIND Center and Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Natalie Daya
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ron C Hoogeveen
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aozhou Wu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kevin J Sullivan
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
22
|
Tian H, Li G, Xu G, Liu J, Wan X, Zhang J, Xie S, Cheng J, Gao S. Inflammatory cytokines derived from peripheral blood contribute to the modified electroconvulsive therapy-induced cognitive deficits in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2021; 271:475-485. [PMID: 32361811 DOI: 10.1007/s00406-020-01128-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
Little is known about the pathophysiology of memory deficits in patients with major depressive disorder (MDD) treated with modified electroconvulsive therapy (MECT). This study examined the profiles of cytokines, the memory function, and their association in MECT-treated MDD patients. Forty first-episode, drug-free MDD patients and 40 healthy controls were recruited. MECT was started with antidepressant treatment at a stable initial dose. The Wechsler Memory Scale (WMS) and Hamilton Rating Scale for Depression 17 (HRSD-17) were used to assess the cognitive function. MDD patients were divided into the memory impairment group (WMS < 50) and the non-memory impairment group (WMS ≥ 50) based on the total WMS scores after MECT. The levels of NOD-like receptor 3 (NLRP3) inflammasome, interleukin-18 (IL-18) and nuclear factor kappa-B (NF-κB) in the serum were measured. MDD patients showed significantly higher levels of NLRP3 inflammasome, IL-18 and NF-κB than that in the controls prior to MECT, and the levels also significantly increased after MECT. In MDD patients, the serum levels of these inflammatory cytokines were negatively associated with the total WMS scores and likely contributed to the scores independently. The receiver operating characteristic curve showed that the serum levels of these inflammatory cytokines may predict the cognitive impairment risk in MDD patients receiving MECT. Abnormal levels of NLRP3 inflammasome, IL-18 and NF-κB reflecting the disturbed balance of pro-inflammatory and anti-inflammatory mechanisms likely contribute to the MECT-induced cognitive deficits in MDD patients.
Collapse
Affiliation(s)
- Haihua Tian
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Guangxue Li
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Guoan Xu
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Jimeng Liu
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Xiaohan Wan
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiao Zhang
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shuguang Xie
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Jia Cheng
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China.
- Zhongshan Hospital, Xiamen University, Xiamen, 361004, China.
| | - Shugui Gao
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China.
| |
Collapse
|
23
|
Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol 2020; 11:604179. [PMID: 33362788 PMCID: PMC7758428 DOI: 10.3389/fimmu.2020.604179] [Citation(s) in RCA: 447] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiota has a fundamental role in host physiology and pathology. Gut microbial alteration, also known as dysbiosis, is a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs. Recently it became evident that the intestinal bacteria can affect the central nervous system (CNS) physiology and inflammation. The nervous system and the gastrointestinal tract are communicating through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the vagus nerve, the immune system, and bacterial metabolites and products. During dysbiosis, these pathways are dysregulated and associated with altered permeability of the blood-brain barrier (BBB) and neuroinflammation. However, numerous mechanisms behind the impact of the gut microbiota in neuro-development and -pathogenesis remain poorly understood. There are several immune pathways involved in CNS homeostasis and inflammation. Among those, the inflammasome pathway has been linked to neuroinflammatory conditions such as multiple sclerosis, Alzheimer's and Parkinson's diseases, but also anxiety and depressive-like disorders. The inflammasome complex assembles upon cell activation due to exposure to microbes, danger signals, or stress and lead to the production of pro-inflammatory cytokines (interleukin-1β and interleukin-18) and to pyroptosis. Evidences suggest that there is a reciprocal influence of microbiota and inflammasome activation in the brain. However, how this influence is precisely working is yet to be discovered. Herein, we discuss the status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson's diseases, and also neuropsychiatric disorders. In particular, we focus on the innate inflammasome pathway as immune mechanism that can be involved in several of these conditions, upon exposure to certain microbes.
Collapse
Affiliation(s)
| | | | - Francesca Ronchi
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|
24
|
Ben Selma W, Alibi S, Smach MA, Saad A, Boukadida J. IL-18 variant increases risk of enhanced HBV DNA replication in chronic hepatitis. Immunol Lett 2020; 228:70-75. [DOI: 10.1016/j.imlet.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
|
25
|
Trenova AG, Miteva LD, Stanilova SA. Association between TNFA, IL10 and IL18 promoter gene variants and cognitive functions in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2020; 347:577357. [PMID: 32795736 DOI: 10.1016/j.jneuroim.2020.577357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the relationship between TNFA-308G > A, IL10-1082A > G, IL18-607C > A, and cognitive functioning in relapsing-remitting multiple sclerosis (RRMS). RESULTS In the patients' group: AG genotype of TNFA-308G > A was associated with higher serum tumor necrosis factor-alpha (TNF-alpha) than GG genotype, and higher TNF-alpha levels correlated with poorer results on Symbol Digit Modalities Test; CC genotype of IL18-607C > A was related to lower score on Isaacs test, compared to AC variant; AA genotype of IL10-1082A > G was associated with abnormally low results on Paced Auditory Series Addition Test. CONCLUSIONS TNFA-308G > A, IL10-1082A > G and IL18-607C > A gene variants may be associated with impaired cognitive functions in RRMS patients.
Collapse
Affiliation(s)
| | - Lyuba Dineva Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Trakia University, Stara Zagora 6000, Bulgaria
| | - Spaska Angelova Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Trakia University, Stara Zagora 6000, Bulgaria
| |
Collapse
|
26
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
27
|
Mochol M, Taubøll E, Aukrust P, Ueland T, Andreassen OA, Svalheim S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020; 80:221-225. [PMID: 32659652 DOI: 10.1016/j.seizure.2020.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Proinflammatory cytokines seems to play a role in epileptogenesis independent of the underlying cause. The purpose of this study was to assess if IL-18 and its binding protein IL-18BP are related to epilepsy and could act as a predictive biomarker for epileptogenesis. METHODS In this cross-sectional study, circulating levels of IL-18 and IL-18BP were analysed in 119 epilepsy patients, and 80 healthy controls. Participants completed a questionnaire regarding epilepsy, use of drug(-s) and comorbidity. RESULTS Epilepsy patients had significantly higher serum levels of IL-18 (p = 0.003) and IL-18BP (p = 0.009) than healthy controls. The groups differed in sex, age and weight, however none of those variables were significantly correlated with IL-18 and IL-18BP in patients or controls. Weight was considered an important confounder in our study. Subgroup investigations revealed that in participants with BMI under 30 kg/m², serum IL-18 (p = 0.032) and IL-18BP (p = 0.029) remained significantly higher in patients than controls. Further analyses showed significantly higher concentration of IL-18 among participants using carbamazepine (CBZ) (p = 0.016) or lamotrigine (LTG) (p = 0.024), but not in those using levetiracetam (LEV) (p = 0.102) compared to controls. No associations were found between serum levels of IL-18 and IL-18BP and epilepsy duration, seizures type, or presence of seizures in the last six months. CONCLUSION The study shows an elevation of IL-18 and IL-18BP serum levels in epilepsy patients. This result indicates the presence of a low-grade systemic inflammation involving IL-18 in epilepsy. Further investigations should explore the character and clinical impact of IL-18 as well its possible role as a biomarker for epilepsy.
Collapse
Affiliation(s)
- Monika Mochol
- Department of Neurology, Østfold Hospital Trust, Norway; ERGO - Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Erik Taubøll
- ERGO - Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Immunology and Infectious Disease, Oslo University Hospital, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Sigrid Svalheim
- ERGO - Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Norway
| |
Collapse
|
28
|
Chen J, Shu S, Chen Y, Liu Z, Yu L, Yang L, Xu Y, Zhang M. AIM2 deletion promotes neuroplasticity and spatial memory of mice. Brain Res Bull 2019; 152:85-94. [DOI: 10.1016/j.brainresbull.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
|
29
|
Salani F, Sterbini V, Sacchinelli E, Garramone M, Bossù P. Is Innate Memory a Double-Edge Sword in Alzheimer's Disease? A Reappraisal of New Concepts and Old Data. Front Immunol 2019; 10:1768. [PMID: 31440234 PMCID: PMC6692769 DOI: 10.3389/fimmu.2019.01768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
An emergent concept in immunology suggests that innate immune system is capable to undergo non-specific long-term responses and to provide resistance by modifying the reactivity to sequential pathogen challenge. This phenomenon, named innate memory, involves epigenetic, and metabolic reprogramming of innate immune cells. Current literature shows that the innate memory process has a mainly beneficial role in host defense, but sometimes can exert detrimental effects, as common in many diseases. Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and dementia. Accumulating findings demonstrate that inflammation is involved in AD pathogenesis and progression and recent genetic and functional data confirm the driving role of the innate immune component in the disease. Furthermore, AD patients show high burden of the most relevant infectious agents and up-regulation of inflammatory features in their innate immune cells, including an activated, or “primed” status of myeloid phagocytic cells in both brain and periphery, resembling trained immunity conditions. Thus, it is conceivable that AD innate cells may be firstly involved in the attempt to resolve recurrent/persistent inflammation but then acquire a trained phenotype mostly unable to maintain the immune regulation, leaving uncontrolled or sometimes supporting the progression of neurodegeneration. The present review aims to summarize evidence evoking innate immune memory mechanisms in AD, and to interpret their potential role, either protective or harmful, in disease progression. A better understanding of such mechanisms will provide a fertile ground for development of novel diagnostic, and therapeutic pathways in AD cure.
Collapse
Affiliation(s)
- Francesca Salani
- Experimental Neuropsychobiology Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valentina Sterbini
- Experimental Neuropsychobiology Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | - Paola Bossù
- Experimental Neuropsychobiology Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
30
|
Pirozhkov SV, Terebilina NN, Litvitskiy PF. [A role of inflammasomes in the pathogenesis of neurological and mental diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:81-91. [PMID: 30698567 DOI: 10.17116/jnevro201811812181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inflammasomes are macromolecular complexes that contain many copies of receptors recognizing molecular patterns of pathogenic agents (PAMP) and damage-associated structures (DAMP), and also include molecules of adapter protein ASC and procaspase-1. Activation of inflammasomes leads to the formation of active caspase-1 that, in turn, provides the maturation of pro-IL-1β and pro-IL-18 to IL-1β and IL-18. The latter cytokines play an important role in control of neuroinlfammation in the central nervous system contributing to the pathogenesis of a series of neurological, neurodegenerative and mental disorders. The review discusses the involvement of NLRP3 inflammasome and other their types in the development of the traumatic brain injury, ischemic and hemorrhagic stroke, brain tumors, CNS infections, Alzheimer's and Parkinson's diseases, epilepsy, amyotrophic lateral sclerosis, depressiver, and consequences of alcohol abuse. The elucidation of molecular mechanisms and signaling pathways controlled by inflammasomes will allow the development of new therapeutic measures for diseases, in which neuroinflammation plays a leading pathogenetic role.
Collapse
Affiliation(s)
- S V Pirozhkov
- Sechenov First Moscow State Medical University of the MH, Moscow, Russia
| | - N N Terebilina
- Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - P F Litvitskiy
- Sechenov First Moscow State Medical University of the MH, Moscow, Russia
| |
Collapse
|
31
|
Italiani P, Puxeddu I, Napoletano S, Scala E, Melillo D, Manocchio S, Angiolillo A, Migliorini P, Boraschi D, Vitale E, Di Costanzo A. Circulating levels of IL-1 family cytokines and receptors in Alzheimer's disease: new markers of disease progression? J Neuroinflammation 2018; 15:342. [PMID: 30541566 PMCID: PMC6292179 DOI: 10.1186/s12974-018-1376-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Background Although the mechanisms underlying AD neurodegeneration are not fully understood, it is now recognised that inflammation could play a crucial role in the initiation and progression of AD neurodegeneration. A neuro-inflammatory network, based on the anomalous activation of microglial cells, includes the production of a number of inflammatory cytokines both locally and systemically. These may serve as diagnostic markers or therapeutic targets for AD neurodegeneration. Methods We have measured the levels of the inflammation-related cytokines and receptors of the IL-1 family in serum of subjects with AD, compared to mild cognitive impairment (MCI), subjective memory complaints (SMC), and normal healthy subjects (NHS). Using a custom-made multiplex ELISA array, we examined ten factors of the IL-1 family, the inflammation-related cytokines IL-1α, IL-1β, IL-18, and IL-33, the natural inhibitors IL-1Ra and IL-18BP, and the soluble receptors sIL-1R1, sIL-1R2, sIL-1R3, and sIL-1R4. Results The inflammatory cytokines IL-1α and IL-1β, their antagonist IL-1Ra, and their soluble receptor sIL-1R1 were increased in AD. The decoy IL-1 receptor sIL-1R2 was only increased in MCI. IL-33 and its soluble receptor sIL-1R4 were also significantly higher in AD. The soluble form of the accessory receptor for both IL-1 and IL-33 receptor complexes, sIL-1R3, was increased in SMC and even more in AD. Total IL-18 levels were unchanged, whereas the inhibitor IL-18BP was significantly reduced in MCI and SMC, and highly increased in AD. The levels of free IL-18 were significantly higher in MCI. Conclusions AD is characterised by a significant alteration in the circulating levels of the cytokines and receptors of the IL-1 family. The elevation of sIL-1R4 in AD is in agreement with findings in other diseases and can be considered a marker of ongoing inflammation. Increased levels of IL-1Ra, sIL-1R1, sIL-1R4, and IL-18BP distinguished AD from MCI and SMC, and from other inflammatory diseases. Importantly, sIL-1R1, sIL-1R3, sIL-1R4, and IL-18BP negatively correlated with cognitive impairment. A significant elevation of circulating sIL-1R2 and free IL-18, not present in SMC, is characteristic of MCI and disappears in AD, making them additional interesting markers for evaluating progression from MCI to AD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1376-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Italiani
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Sabrina Napoletano
- NeurOmics Laboratory, Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Emanuele Scala
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Melillo
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Simone Manocchio
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Località Tappino, 86100, Campobasso, Italy
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Località Tappino, 86100, Campobasso, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Diana Boraschi
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Emilia Vitale
- NeurOmics Laboratory, Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Località Tappino, 86100, Campobasso, Italy
| |
Collapse
|
32
|
Marinelli L, Fornasari E, Di Stefano A, Turkez H, Genovese S, Epifano F, Di Biase G, Costantini E, D'Angelo C, Reale M, Cacciatore I. Synthesis and biological evaluation of novel analogues of Gly-l-Pro-l-Glu (GPE) as neuroprotective agents. Bioorg Med Chem Lett 2018; 29:194-198. [PMID: 30522955 DOI: 10.1016/j.bmcl.2018.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
This study investigated the anti-inflammatory effects of novel pseudotripeptides (GPE 1-3) as potential candidates to counteract neuroinflammation processes in Alzheimer's disease. GPE 1-3 pseudotripeptides are synthetic derivatives of Gly-l-Pro-l-Glu (GPE), the N-terminal tripeptide of IGF-1, obtained through the introduction of isosteres of the amidic bond (aminomethylene unit) to increase the metabolic stability of the native tripeptide. The results showed that all synthetic derivatives possessed higher half-lives (t1/2 > 4 h) than GPE (t1/2 = 30 min) in human plasma and had good water solubility. The biological results demonstrated that GPE 1-3 had protective properties in several experimental models of treated THP-1 cells. Notably, the novel pseudotripeptides influenced inflammatory cytokine expression (IL-1β, IL-18, and TNF-α) in Aβ25-35-, PMA-, and LPS-treated THP-1 cells. In PMA-differentiated THP-1 macrophages, both GPE 1 and GPE 3 reduced the expression levels of all selected cyto-chemokines, even though GPE 3 showed the best neuroprotective properties.
Collapse
Affiliation(s)
- Lisa Marinelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Erika Fornasari
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Hasan Turkez
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy; Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Salvatore Genovese
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Francesco Epifano
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Giuseppe Di Biase
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Chiara D'Angelo
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Italy.
| |
Collapse
|
33
|
Vérité J, Page G, Paccalin M, Julian A, Janet T. Differential chemokine expression under the control of peripheral blood mononuclear cells issued from Alzheimer's patients in a human blood brain barrier model. PLoS One 2018; 13:e0201232. [PMID: 30092003 PMCID: PMC6084889 DOI: 10.1371/journal.pone.0201232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Growing evidence highlights the peripheral blood mononuclear cells (PBMCs) role and the chemokine involvement in the Alzheimer's disease (AD) physiopathology. However, few data are available about the impact of AD PBMCs in the chemokine signature in a brain with AD phenotype. Therefore, this study analyzed the chemokine levels in a human blood brain barrier model. A human endothelial cell line from the immortalized cerebral microvascular endothelial cell line (hCMEC/D3) and a human glioblastoma U-87 MG cell line, both with no AD phenotype were used while PBMCs came from AD at mild or moderate stage and control patients. PBMCs from moderate AD patients decreased CCL2 and CCL5 levels in endothelial, and also CXCL10 in abluminal compartments and in PBMCs compared to PBMCs from mild AD patients. The CX3CL1 expression increased in endothelial and abluminal compartments with PBMCs from mild AD patients compared to controls. AD PBMCs can convert the chemokine signature towards that found in AD brain, targeting some chemokines as new biomarkers in AD.
Collapse
Affiliation(s)
- Julie Vérité
- EA3808, molecular Targets and Therapeutics of Alzheimer’s disease, University of Poitiers, Poitiers, France
| | - Guylène Page
- EA3808, molecular Targets and Therapeutics of Alzheimer’s disease, University of Poitiers, Poitiers, France
| | - Marc Paccalin
- EA3808, molecular Targets and Therapeutics of Alzheimer’s disease, University of Poitiers, Poitiers, France
- Department of Geriatrics, Poitiers University Hospital, Poitiers, France
- Memory Resource and Research Center of Poitiers, Poitiers University Hospital, Poitiers, France
| | - Adrien Julian
- EA3808, molecular Targets and Therapeutics of Alzheimer’s disease, University of Poitiers, Poitiers, France
- Memory Resource and Research Center of Poitiers, Poitiers University Hospital, Poitiers, France
- Department of Neurology, Poitiers University Hospital, Poitiers, France
| | - Thierry Janet
- EA3808, molecular Targets and Therapeutics of Alzheimer’s disease, University of Poitiers, Poitiers, France
| |
Collapse
|
34
|
Prieto GA, Tong L, Smith ED, Cotman CW. TNFα and IL-1β but not IL-18 Suppresses Hippocampal Long-Term Potentiation Directly at the Synapse. Neurochem Res 2018; 44:49-60. [PMID: 29619614 DOI: 10.1007/s11064-018-2517-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
CNS inflammatory responses are linked to cognitive impairment in humans. Research in animal models supports this connection by showing that inflammatory cytokines suppress long-term potentiation (LTP), the best-known cellular correlate of memory. Cytokine-induced modulation of LTP has been previously studied in vivo or in brain slices, two experimental approaches containing multiple cell populations responsive to cytokines. In their target cells, cytokines commonly increase the expression of multiple cytokines, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Whether cytokines suppress LTP by direct effects on neurons or by indirect mechanisms is still an open question. Here, we evaluated the effect of a major set of inflammatory cytokines including tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β) and interleukin-18 (IL-18) on chemically-induced LTP (cLTP) in isolated hippocampal synaptosomes of mice, using fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). We found that TNFα and IL-1β suppress synaptosomal cLTP. In contrast, cLTP was not affected by IL-18, at a concentration previously shown to block LTP in hippocampal slices. We also found that IL-18 does not impair cLTP or brain-derived neurotrophic factor (BDNF) signaling in primary hippocampal neuronal cultures. Thus, using both synaptosomes and neuron cultures, our data suggest that IL-18 impairs LTP by indirect mechanisms, which may depend on non-neuronal cells, such as glia. Notably, our results demonstrate that TNFα and IL-1β directly suppress hippocampal plasticity via neuron-specific mechanisms. A better understanding of the brain's cytokine networks and their final molecular effectors is crucial to identify specific targets for intervention.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Erica D Smith
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
35
|
Karpenko MN, Vasilishina AA, Gromova EA, Muruzheva ZM, Miliukhina IV, Bernadotte A. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson's disease. Cell Immunol 2018; 327:77-82. [PMID: 29478949 DOI: 10.1016/j.cellimm.2018.02.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 01/20/2023]
Abstract
Several parameters representing the clinical diversity of Parkinson's disease (PD), including severity, phenotypes, cognitive decline, anxiety and depression were analyzed to examine the link with interleukin-1β (IL-1β), the interleukin-1 receptor antagonist (IL-1RA), IL-6, IL-10, and tumor necrosis factor-α (TNFα) and also to determine the relationship between levels of these factors in serum and cerebrospinal fluid (CSF). Significantly elevated serum IL-1β and IL-6 and reduced IL-1RA levels were found in the PD group. In CSF and serum, inflammatory factors behaved differently, with increased CSF TNFα indicating rapid PD progression, and increased IL-1β in serum. A low level of IL-6 was associated with a longer duration of PD. Anxiety, depression, non-tremor phenotype and late-onset PD correlated with a high serum level of IL-10. The serum TNFα level was lower in PD patients with mild cognitive impairment compared to controls. Serum IL-1β, IL-6 and IL-10 levels correlated with CSF markers.
Collapse
Affiliation(s)
- M N Karpenko
- Institute of Experimental Medicine, Saint Petersburg, Russian Federation; Peter the Great St Petersburg Polytechnic University, Saint Petersburg, Russian Federation; ITMO University, Saint Petersburg, Russian Federation
| | - A A Vasilishina
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - E A Gromova
- Institute of Human Brain, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Z M Muruzheva
- Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | | | - A Bernadotte
- Karolinska Institute, Department of Medical Biochemistry & Biophysics, Stockholm, Sweden; Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
36
|
La Fratta I, Tatangelo R, Campagna G, Rizzuto A, Franceschelli S, Ferrone A, Patruno A, Speranza L, De Lutiis MA, Felaco M, Grilli A, Pesce M. The plasmatic and salivary levels of IL-1β, IL-18 and IL-6 are associated to emotional difference during stress in young male. Sci Rep 2018; 8:3031. [PMID: 29445205 PMCID: PMC5813044 DOI: 10.1038/s41598-018-21474-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Saliva collection is considered a non-invasive method to detect inflammatory markers in response to emotional states within natural social contexts. Numerous studies have prompted an important role of cytokines in modulating distinct aspects of social and emotional behavior. The aim of this study was to investigate the reliability of plasma and saliva as investigative tools for measure some inflammatory marker levels (CRP, IL-1β, IL-18, and IL-6). At the same time, the relationships between these markers and emotional states in response to a socio-cognitive stress (Academic Exam, AE), were considered. It was demonstrated that the plasma and saliva concentrations of all immune-mediators analyzed were significantly related across the socio-cognitive stress. In addition, when there was a close correlation to AE, the anger state, the IL-1β, the IL-18 salivary and plasmatic concentrations were significantly higher, while they decreased during the AE. On the other hand, the anxiety state and the IL-6 levels significantly increased throughout the AE. The IL-1β and IL-6 were positively associated to the anger and the anxiety state, respectively. In conclusion, our data highlight that different immune markers are similarly detectable in plasma and saliva during socio-cognitive stress. Also, they could be related to different emotional responses.
Collapse
Affiliation(s)
- I La Fratta
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - R Tatangelo
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - G Campagna
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - A Rizzuto
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - S Franceschelli
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - A Ferrone
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - A Patruno
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - L Speranza
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - M A De Lutiis
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - M Felaco
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - A Grilli
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy
| | - M Pesce
- Medicine and Health Science School, Via dei Vestini, 31-66100, Chieti, Italy.
| |
Collapse
|
37
|
Abstract
Inflammasomes are responsible for the maturation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-18, and IL-33 and activation of inflammatory cell death, pyroptosis. They assemble in response to cellular infection and stress or to tissue damage, promote inflammatory reactions, and are important in regulating innate immunity particularly by acting as platforms for activation of caspase proteases. They appear to be involved in several pathological processes activated by microbes including Alzheimer's disease (AD). Best characterized in microbial pathogenesis is the nucleotide-binding domain and leucine-rich repeat (NLR)-protein 3 (NLRP3) inflammasome. AD is a neurodegenerative condition in which the neuropathological hallmarks are the deposition of amyloid-β (Aβ) and hyperphosphorylated tau protein coated neurofibrillary tangles. For decades, the role of the innate immune system in the etiology of AD was considered less important, but the recently discovered inflammatory genes by genome-wide association studies driving inflammation in this disease has changed this view. Innate immune inflammatory activity in the AD brain can result from the pathological hallmark protein Aβ as well as from specific bacterial infections that tend to possess weak immunostimulatory responses for peripheral blood myeloid cell recruitment to the brain. The weak immunostimulatory activity is a consequence of their immune evasion strategies and survival. In this review we discuss the possibility that inflammasomes, particularly via the NLR family of proteins NLRP3 are involved in the pathogenesis of AD. In addition, we discuss the plausible contribution of specific bacteria playing a role in influencing the activity of the NLRP3 inflammasome to AD progression.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
38
|
Sacchinelli E, Piras F, Orfei MD, Banaj N, Salani F, Ciaramella A, Caltagirone C, Spalletta G, Bossù P. IL-18 Serum Levels and Variants of the Serotonin Transporter Gene Are Related to Awareness of Emotions in Healthy Subjects: A Preliminary Study. Neuroimmunomodulation 2018; 25:129-137. [PMID: 30326484 DOI: 10.1159/000492030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Interaction between the nervous and immune systems may influence emotions, ultimately affecting human health. Cytokines may play a role in developing emotional dysregulation as in alexithymia, a personality construct characterized by the subclinical inability to identify and describe emotions, often associated with several psychiatric and psychosomatic disorders. The proinflammatory cytokine IL-18, with a recognized role in brain functions, may influence serotonin metabolism and appears to be associated with alexithymia. Healthy individuals carrying the long allele (L) of the serotonin transporter gene polymorphic region (5-HTTLPR), and thus having lower concentrations of serotonin in the synaptic cleft, show a greater tendency toward alexithymia, with some gender differences. To explore a potential physiological interaction between IL-18, serotonin neurotransmission, and alexithymia, we investigated whether IL-18 serum levels and 5-HTTLPR are linked to alexithymic traits in healthy subjects. METHODS We measured IL-18 serum levels in 115 Italian-Caucasian healthy subjects genotyped for 5-HTTLPR allele variants, divided by gender and assessed for alexithymia scores using the 20-item Toronto Alexithymia Scale. RESULTS IL-18 levels are significantly more elevated in individuals with the LL genotype (n = 25) than in carriers of the short allele (n = 90, p = 0.0073). Specifically, in LL males (n = 11), i.e., the group with the most relevant increase in IL-18, cytokine values positively correlated with difficulty identifying feelings, which is a component of alexithymia (r = 0.634, p = 0.036). CONCLUSIONS These results indicate a possible novel interaction between IL-18 and the serotoninergic system to mediate emotional unawareness, suggesting putative biological predictors of emotional dysregulation, which in turn can act as a risk factor for a variety of medical conditions in susceptible subjects.
Collapse
Affiliation(s)
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Nerisa Banaj
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Salani
- Experimental Neuropsychobiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonio Ciaramella
- Experimental Neuropsychobiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Paola Bossù
- Experimental Neuropsychobiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
39
|
Boyko AA, Troyanova NI, Kovalenko EI, Sapozhnikov AM. Similarity and Differences in Inflammation-Related Characteristics of the Peripheral Immune System of Patients with Parkinson's and Alzheimer's Diseases. Int J Mol Sci 2017; 18:ijms18122633. [PMID: 29211044 PMCID: PMC5751236 DOI: 10.3390/ijms18122633] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common age-related neurodegenerative disorders. Both diseases are characterized by chronic inflammation in the brain-neuroinflammation. The first signs of PD and AD are most often manifested in old age, in which the immune system is usually characterized by chronic inflammation, so-called "inflammaging" In recent years, there is growing evidence that pathogenesis of these diseases is connected with both regional and peripheral immune processes. Currently, the association of clinical signs of PD and AD with different characteristics of patient immune status is actively being researched. In this mini-review we compare the association of PD and AD alterations of a number of immune system parameters connected with the process of inflammation.
Collapse
Affiliation(s)
- Anna A Boyko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| | - Natalya I Troyanova
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| |
Collapse
|
40
|
Magalhães TNC, Weiler M, Teixeira CVL, Hayata T, Moraes AS, Boldrini VO, dos Santos LM, de Campos BM, de Rezende TJR, Joaquim HPG, Talib LL, Forlenza OV, Cendes F, Balthazar MLF. Systemic Inflammation and Multimodal Biomarkers in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Mol Neurobiol 2017; 55:5689-5697. [DOI: 10.1007/s12035-017-0795-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022]
|
41
|
Pesce M, Tatangelo R, La Fratta I, Rizzuto A, Campagna G, Turli C, Ferrone A, Franceschelli S, Speranza L, Verrocchio MC, De Lutiis MA, Felaco M, Grilli A. Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults. Front Mol Neurosci 2017; 10:233. [PMID: 28790890 PMCID: PMC5522887 DOI: 10.3389/fnmol.2017.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable with Memory Training (MT) programs, even among older adults and beyond. The study aims to evaluate whether MT could contribute to ameliorate cognitive performance and modulate the HPA axis activity as well the low level inflammation in the aging phenotype. Whether the phosphatase WIP-1, a negative regulator for inflammation, is involved in this process was also investigated. We recruited 31 young adults (19-28, years of age) and 62 older adults aged over 60. Thirty-two older adults were submitted to 6-months of MT program (EG), and 28 older adults were no treated and used as Control Group (CG). Global cognitive functioning (MMSE score), verbal and visual memory, and attention were assessed at baseline (T0) and after 6-months (T1). At the same time, plasmatic level of Cortisol (C), IL-1β, IL-18, IL-6, and the expression of WIP-1 mRNA and protein in ex vivo Peripheral Blood Mononuclear Cells were analyzed in young adults at T0, as well in older adults at T0 and T1. Together, the results suggest that MT improves the global cognitive functionality, verbal and visual memory, as well as the level of attention. At the same time we observed a decrease of the plasmatic level of C, of the cytokines, and an increase of the expression of mRNA and protein of WIP-1. The analysis of correlations highlighted that the level of the mRNA of WIP-1 was positively associated to the MMSE score, and negatively to the C and cytokine levels. In conclusion, we purpose the MT as tool that could help support successful aging through the improving of memory, attention and global cognitive function performance. Furthermore, this approach could participate to maintain lower the peripheral levels of the C and pro-inflammatory cytokines. The WIP-1 as a potential new target of the pathophysiology of aging is theorized.
Collapse
Affiliation(s)
| | - Raffaella Tatangelo
- School of Medicine and Health Science, University G. D’AnnunzioChieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Inflammatory Cytokines and Alzheimer's Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci Bull 2016; 32:469-80. [PMID: 27568024 DOI: 10.1007/s12264-016-0055-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022] Open
Abstract
Neuroinflammatory processes are a central feature of Alzheimer's disease (AD) in which microglia are over-activated, resulting in the increased production of pro-inflammatory cytokines. Moreover, deficiencies in the anti-inflammatory system may also contribute to neuroinflammation. Recently, advanced methods for the analysis of genetic polymorphisms have further supported the relationship between neuroinflammatory factors and AD risk because a series of polymorphisms in inflammation-related genes have been shown to be associated with AD. In this review, we summarize the polymorphisms of both pro- and anti-inflammatory cytokines related to AD, primarily interleukin-1 (IL-1), IL-6, tumor necrosis factor alpha, IL-4, IL-10, and transforming growth factor beta, as well as their functional activity in AD pathology. Exploration of the relationship between inflammatory cytokine polymorphisms and AD risk may facilitate our understanding of AD pathogenesis and contribute to improved treatment strategies.
Collapse
|
43
|
Wu JQ, Chen DC, Tan YL, Tan SP, Xiu MH, Wang ZR, Yang FD, Soares JC, Zhang XY. Altered interleukin-18 levels are associated with cognitive impairment in chronic schizophrenia. J Psychiatr Res 2016; 76:9-15. [PMID: 26866662 DOI: 10.1016/j.jpsychires.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
The pathophysiology of cognitive deficits in schizophrenia may involve the neuroinflammation mediated by cytokines. This study examined the IL-18 levels, the cognitive function, and their association in schizophrenia. We recruited 70 chronic patients and 75 normal controls and examined the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and IL-18 levels. Positive and Negative Syndrome Scale (PANSS) was assessed in chronic patients. IL-18 levels were increased in chronic patients as compared to normal controls (p < 0.01). RBANS total score and the subscales of immediate memory and delayed memory were lower in patients than controls (all p < 0.001). In patients, IL-18 levels were positively associated with RBANS total score and the subscales of immediate and delayed memory (all p < 0.05). Multiple regression analysis further confirmed that IL-18 was an independent contributor to RBANS total score and the aforementioned two indexes (all p < 0.05). Our data demonstrate that immune responses may play an important role in cognitive deficits in schizophrenia and the abnormal levels of IL-18 reflecting the disturbed balance of proinflammatory and anti-inflammatory mechanisms may be relevant to cognitive deficits of this disorder.
Collapse
Affiliation(s)
- Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu Ping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Mei Hong Xiu
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhi Ren Wang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu De Yang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
44
|
Qian M, Shen X, Wang H. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:471-82. [PMID: 26119306 PMCID: PMC11482503 DOI: 10.1007/s10571-015-0232-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.
Collapse
Affiliation(s)
- Meng Qian
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Xiaoqiang Shen
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Huanhuan Wang
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| |
Collapse
|
45
|
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 2016; 5:7. [PMID: 27054030 PMCID: PMC4822284 DOI: 10.1186/s40035-016-0054-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/29/2016] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although the mechanisms underlying AD neurodegeneration are not fully understood, it is well recognized that inflammation plays a crucial role in the initiation and/or deterioration of AD neurodegeneration. Increasing evidence suggests that different cytokines, including interleukins, TNF-α, TGF-β and IFN-γ, are actively participated in AD pathogenesis and may serve as diagnostic or therapeutic targets for AD neurodegeneration. Here, we review the progress in understanding the important role that these cytokines or neuroinflammation has played in AD etiology and pathogenesis.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xin-Wen Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ; Co-innovation Center of Neuroregeneration, Nantong, 226000 China
| |
Collapse
|
46
|
Jamalidoust M, Ravanshad M, Namayandeh M, Zare M, Asaei S, Ziyaeyan M. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Aβ (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay. Jundishapur J Microbiol 2016; 9:e30444. [PMID: 27217922 PMCID: PMC4870549 DOI: 10.5812/jjm.30444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Interleukin-4 (IL-4), as the most prominent anti-inflammatory cytokine, plays an important role in modulating microglial activation and inflammatory responses in Alzheimer's disease (AD), a chronic inflammatory disorder. OBJECTIVES The current study aimed to develop a new recombinant Adeno-associated viral (rAAV) vector that delivers IL-4 and then assess the counterbalancing effect of the new construct along with recombinant IL-4 (rIL-4) protein in in-vitro models of AD. MATERIALS AND METHODS The rAAV-IL4 was originally prepared and then employed along with rIL-4 protein to counter Amyloid β (1-42)-induced proinflammatory cytokines in a primary microglia cell culture and the B92 rat microglia continuous cell line, using relative Real-Time PCR assay. RESULTS Aβ (1-42) stimulated the production of the proinflammatory cytokines IL6, IL1β, TNFα, and IL18 in both the primary microglia cell culture and the B92 cell line. Both the rAAV-IL4 construct and the rIL-4 protein were found to inhibit production of the most important Aβ (1-42)-induced proinflammatory cytokine mRNAs in the two types of cells with different patterns. CONCLUSIONS It seems that the new construct can serve as an appropriate option in the modulation of Aβ-induced proinflammatory cytokine gene expression and microglia activation in patients affected by AD.
Collapse
Affiliation(s)
- Marzieh Jamalidoust
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Mehrdad Ravanshad, Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-2182883836, Fax: +98-2188013030, E-mail:
| | - Mandana Namayandeh
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Maryam Zare
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Sadaf Asaei
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mazyar Ziyaeyan
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
47
|
Zhang J, Song T, Liang H, Lian J, Zhang G, Gong H. Interleukin-18 -137 G/C and -607 C/A polymorphisms and Alzheimer's disease risk: a meta-analysis. Neurol Sci 2016; 37:921-7. [PMID: 26897018 DOI: 10.1007/s10072-016-2516-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
The -137 G/C and -607 C/A polymorphisms in interleukin-18 (IL-18) gene have been reported to be associated with Alzheimer's disease (AD) risk, but the results are inconclusive. Considering a single study may lack the power to provide reliable conclusion, we performed a meta-analysis to investigate the association between the IL-18 -137 G/C and -607 C/A polymorphisms and AD susceptibility. A comprehensive literature search of PubMed, Embase, China National Knowledge Infrastructure (CNKI) and Wanfang databases were conducted before September 1, 2015. The pooled odds ratio (OR) with 95 % confidence intervals (CIs) were calculated. Five eligible studies with a total of 1536 subjects were finally included in this meta-analysis. For the IL-18 -137 G/C polymorphism, a significantly decreased risk was detected in patients carrying the C allele of -137 G/C in all study subjects in allele model (C vs. G: OR = 0.816, 95 % CI = 0.680-0.980, p = 0.029). Moreover, stratification by ethnicity indicated markedly association between the -137 G/C C allele and AD risk in Asians. For the IL-18 -607 C/A polymorphism, a significantly decreased risk was found in patients carrying the A allele of -607 C/A in all study subjects in dominant model (AA + CA vs. CC: OR = 0.696, 95 % CI = 0.529-0.915, p = 0.010). However, the results suggested no significant association between the -607 C/A polymorphism and AD susceptibility when stratified by ethnicity. Our present meta-analysis suggests that the C allele carrier of IL-18 -137 G/C was associated with decreased risk for AD in Asians. Further well-designed case-control studies with larger sample size and more ethnic groups are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Department of Pathology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tingting Song
- Department of Pediatrics, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Hua Liang
- Department of Pathology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Guanjun Zhang
- Department of Pathology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Huilin Gong
- Department of Pathology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
48
|
Liu Z, Guo J, Wang Y, Li K, Kang J, Wei Y, Sun Q, Xu Q, Xu C, Yan X, Tang B. Lack of association between IL-10 and IL-18 gene promoter polymorphisms and Parkinson's disease with cognitive impairment in a Chinese population. Sci Rep 2016; 6:19021. [PMID: 26830320 PMCID: PMC4735643 DOI: 10.1038/srep19021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Inflammatory processes have been implicated in the pathogenesis of Parkinson's disease (PD), including the development of PD-associated cognitive impairment. Whether genetic variants of inflammatory cytokine genes influence the risk of cognitive impairment in PD is unknown. In this study, we investigated single nucleotide polymorphisms (SNPs) in the IL-10 promoter (rs1800871 and rs1800872) and in the IL-18 promoter (rs1946518 and rs187238) in a Han Chinese cohort (N = 933). PD patients (N = 460) and controls (N = 473) were genotyped. Additionally, 268 PD patients were divided into three subgroups [cognitively normal (PD-NC), mild cognitive impairment (PD-MCI), and with dementia (PD-D)] on the basis of their performance on a battery of neuropsychological tests. No associations were found between the aforementioned polymorphisms and cognitive impairment in PD; thus no confirmatory evidence for the hypothesis of IL-10 and IL-18 alleles modulating the risk of cognitive impairment in Chinese PD patients was obtained.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- State Key Laboratory of Medical Genetics, Changsha, 410008 Hunan, People’s Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Yaqin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Jifeng Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Yang Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Changshui Xu
- Department of Neurology, Henan provincial people’s hospital, Zhengzhou, 450003, Henan, People’s Republic of China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- State Key Laboratory of Medical Genetics, Changsha, 410008 Hunan, People’s Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008 Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, 410008 Hunan, People’s Republic of China
| |
Collapse
|
49
|
Callaway JK, Wood C, Jenkins TA, Royse AG, Royse CF. Isoflurane in the presence or absence of surgery increases hippocampal cytokines associated with memory deficits and responses to brain injury in rats. Behav Brain Res 2016; 303:44-52. [PMID: 26784560 DOI: 10.1016/j.bbr.2016.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/25/2022]
Abstract
Evidence from experimental animal studies convincingly argues for a role of pro-inflammatory cytokines due to surgical trauma in causing postoperative cognitive dysfunction. However, other studies have shown exposure to 2-4h of isoflurane anesthetic without surgical trauma can also impair cognitive function. We aimed to determine cytokine changes over time following isoflurane exposure in the presence and absence of surgery and examine subsequent cognitive function. Male rats were exposed to isoflurane (1.8%, 4h) with or without laparotomy or control conditions and tested in a contextual fear conditioning paradigm 8 days later. On day 9 rats were perfused, serum and hippocampal samples were collected and 24 cytokines were analysed. Groups of rats exposed as above were killed 6 or 48h after isoflurane exposure to examine early cytokine changes. Isoflurane exposure resulted in significantly less freezing in the contextual fear conditioning test (F(2,31)=6.11, P=0.006) and addition of laparotomy caused no further deficits (P>0.05). At 6h post isoflurane exposure an immunosuppressive response was observed in the serum while hippocampal cytokines were largely unchanged. These finding suggest isoflurane alone causes inflammatory changes and cognitive deficits. The addition of a laparotomy had a negligible effect. Early after isoflurane exposure changes in serum and hippocampal cytokines were divergent but by 9 days were aligned. At this time cytokines associated with memory deficits and brain injury processes were significantly elevated in serum and brain.
Collapse
Affiliation(s)
- Jennifer K Callaway
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Wood
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Trisha A Jenkins
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | - Alistair G Royse
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Department of Cardiac Surgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Colin F Royse
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Chen JM, Jiang GX, Li QW, Zhou ZM, Cheng Q. Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2015; 38:321-9. [PMID: 25138786 DOI: 10.1159/000360606] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
AIMS To evaluate the serum levels of interleukin (IL)-18, IL-23 and IL-17 in Chinese patients with Alzheimer's disease (AD), and explore correlations between the three cytokines and relevant parameters. METHODS Serum concentrations of IL-18, IL-23 and IL-17 were measured by ELISA for 53 AD patients and 53 sex- and age-matched healthy controls in a community of elderly individuals in a Shanghai suburb. RESULTS Serum concentrations of IL-18, IL-23 and IL-17 were significantly higher in AD patients than controls. The serum level of IL-23 was observed to be significantly higher (p = 0.049) in female AD patients than male AD patients. In addition, a significantly inverse correlation was found between IL-18 and MMSE score (rs = -0.356, p = 0.011) for all AD patients. CONCLUSION Elevated IL-18, IL-23 and IL-17 levels are observed in AD patients and differences may exist between males and females. Besides, IL-18 may correlate with the severity of AD.
Collapse
Affiliation(s)
- Jin-Mei Chen
- Department of Neurology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University,, Shanghai, China
| | | | | | | | | |
Collapse
|