1
|
Wang Z, Xu J, Mo L, Zhan R, Zhang J, Liu L, Jiang J, Zhang Y, Bai Y. The Application Potential of the Regulation of Tregs Function by Irisin in the Prevention and Treatment of Immune-Related Diseases. Drug Des Devel Ther 2024; 18:3005-3023. [PMID: 39050796 PMCID: PMC11268596 DOI: 10.2147/dddt.s465713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. These research findings provide important clues for understanding the mechanisms of irisin's action and theoretical basis for its potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiaqi Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Liqun Mo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Renshu Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yingying Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| |
Collapse
|
2
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Li J, Chen CT, Li P, Zhang X, Liu X, Wu W, Gu W. Lung transcriptomics reveals the underlying mechanism by which aerobic training enhances pulmonary function in chronic obstructive pulmonary disease. BMC Pulm Med 2024; 24:154. [PMID: 38532405 DOI: 10.1186/s12890-024-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Aerobic training is the primary method of rehabilitation for improving respiratory function in patients with chronic obstructive pulmonary disease (COPD) in remission. However, the mechanism underlying this improvement is not yet fully understood. The use of transcriptomics in rehabilitation medicine offers a promising strategy for uncovering the ways in which exercise training improves respiratory dysfunction in COPD patients. In this study, lung tissue was analyzed using transcriptomics to investigate the relationship between exercise and lung changes. METHODS Mice were exposed to cigarette smoke for 24 weeks, followed by nine weeks of moderate-intensity treadmill exercise, with a control group for comparison. Pulmonary function and structure were assessed at the end of the intervention and RNA sequencing was performed on the lung tissue. RESULTS Exercise training was found to improve airway resistance and lung ventilation indices in individuals exposed to cigarette smoke. However, the effect of this treatment on damaged alveoli was weak. The pair-to-pair comparison revealed numerous differentially expressed genes, that were closely linked to inflammation and metabolism. CONCLUSIONS Further research is necessary to confirm the cause-and-effect relationship between the identified biomarkers and the improvement in pulmonary function, as this was not examined in the present study.
Collapse
Affiliation(s)
- Jian Li
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), 200433, Shanghai, PR China
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China
| | - Cai-Tao Chen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, PR China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Xiaoyun Zhang
- Laboratory Department of the 908th Hospital of the Joint Logistics Support Force, 330001, Nanchang, PR China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), No. 800 Xiangyin Road, Yangpu District, 200433, Shanghai, PR China.
| |
Collapse
|
4
|
Klain A, Giovannini M, Pecoraro L, Barni S, Mori F, Liotti L, Mastrorilli C, Saretta F, Castagnoli R, Arasi S, Caminiti L, Gelsomino M, Indolfi C, Del Giudice MM, Novembre E. Exercise-induced bronchoconstriction, allergy and sports in children. Ital J Pediatr 2024; 50:47. [PMID: 38475842 DOI: 10.1186/s13052-024-01594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is characterized by the narrowing of airways during or after physical activity, leading to symptoms such as wheezing, coughing, and shortness of breath. Distinguishing between EIB and exercise-induced asthma (EIA) is essential, given their divergent therapeutic and prognostic considerations. EIB has been increasingly recognized as a significant concern in pediatric athletes. Moreover, studies indicate a noteworthy prevalence of EIB in children with atopic predispositions, unveiling a potential link between allergic sensitivities and exercise-induced respiratory symptoms, underpinned by an inflammatory reaction caused by mechanical, environmental, and genetic factors. Holistic management of EIB in children necessitates a correct diagnosis and a combination of pharmacological and non-pharmacological interventions. This review delves into the latest evidence concerning EIB in the pediatric population, exploring its associations with atopy and sports, and emphasizing the appropriate diagnostic and therapeutic approaches by highlighting various clinical scenarios.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy.
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
- Department of Health Sciences, University of Florence, 50139, Florence, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126, Verona, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Lucia Liotti
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, 60123, Ancona, Italy
| | - Carla Mastrorilli
- Pediatric and Emergency Department, Pediatric Hospital Giovanni XXIII, AOU Policlinic of Bari, 70126, Bari, Italy
| | - Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Caminiti
- Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, 98124, Messina, Italy
| | - Mariannita Gelsomino
- Department of Life Sciences and Public Health, Pediatric Allergy Unit, University Foundation Policlinico Gemelli IRCCS, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Elio Novembre
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| |
Collapse
|
5
|
Hanna BS, Yaghi OK, Langston PK, Mathis D. The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration. Clin Exp Immunol 2023; 211:138-148. [PMID: 35972909 PMCID: PMC10019136 DOI: 10.1093/cei/uxac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Foxp3+CD4+ regulatory T cells (Tregs) are famous for their role in maintaining immunological tolerance. With their distinct transcriptomes, growth-factor dependencies and T-cell receptor (TCR) repertoires, Tregs in nonlymphoid tissues, termed "tissue-Tregs," also perform a variety of functions to help assure tissue homeostasis. For example, they are important for tissue repair and regeneration after various types of injury, both acute and chronic. They exert this influence by controlling both the inflammatory tenor and the dynamics of the parenchymal progenitor-cell pool in injured tissues, thereby promoting efficient repair and limiting fibrosis. Thus, tissue-Tregs are seemingly attractive targets for immunotherapy in the context of tissue regeneration, offering several advantages over existing therapies. Using skeletal muscle as a model system, we discuss the existing literature on Tregs' role in tissue regeneration in acute and chronic injuries, and various approaches for their therapeutic modulation in such contexts, including exercise as a natural Treg modulator.
Collapse
Affiliation(s)
- Bola S Hanna
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| |
Collapse
|
6
|
Tashiro H, Takahashi K, Uchida M, Kurihara Y, Sadamatsu H, Takamori A, Kimura S, Sueoka-Aragane N. Effect of Azithromycin on Exacerbations in Asthma Patients with Obesity: Protocol for a Multi-Center, Prospective, Single-Arm Intervention Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1861. [PMID: 36767227 PMCID: PMC9915079 DOI: 10.3390/ijerph20031861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Obesity is associated with severe asthma, but no specific treatment has been established. The gut microbiome is increasingly recognized as a crucial factor, but specific treatments focused on the gut microbiome have not been established. Recently, azithromycin has been found to have the capacity to attenuate exacerbations, a characteristic of severe asthma. The effect of azithromycin on obesity-induced severe asthma is not understood. METHODS The purpose of the present study is to clarify the effect of azithromycin on exacerbations in asthmatic patients with obesity. To explore the mechanism, the gut microbiome, metabolites of microbes such as short-chain fatty acids, and blood inflammatory cytokines will be analyzed to evaluate the correlation with the effect of azithromycin on exacerbations in obesity-induced severe asthma. A multi-center, prospective, single-arm intervention study is planned. DISCUSSION The present study will allow us to evaluate the effect of azithromycin on exacerbations, particularly in asthma patients with obesity, and explore biomarkers, targeting molecules including the gut microbiome, which are correlated with decreased exacerbations. The present results could contribute to identifying new therapeutic prospects and targeted microbes or molecules associated with severe clinical characteristics in asthmatic patients with obesity. TRIAL REGISTRATION This study has been registered as a prospective study with the University Hospital Medical Information Network (UMIN0000484389) and the Japan Registry of Clinical Trials (jRCTs071220023).
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 8498501, Japan
- TARGET Investigator Group, Saga 8498501, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 8498501, Japan
- TARGET Investigator Group, Saga 8498501, Japan
| | - Masaru Uchida
- TARGET Investigator Group, Saga 8498501, Japan
- Division of Internal Medicine, Japan Community Health Care Organization Saga Central Hospital, Saga 8498522, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 8498501, Japan
- TARGET Investigator Group, Saga 8498501, Japan
| | - Hironori Sadamatsu
- TARGET Investigator Group, Saga 8498501, Japan
- Division of Respiratory Medicine, Saga Prefectural Medical Center Koseikan, Saga 8408571, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga 8498501, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 8498501, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 8498501, Japan
| |
Collapse
|
7
|
The Effect of Aerobic Exercise and Low-Impact Pilates Workout on the Adaptive Immune System. J Clin Med 2022; 11:jcm11226814. [PMID: 36431291 PMCID: PMC9693105 DOI: 10.3390/jcm11226814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Growing evidence indicates the pronounced effects of physical activity on immune functions, which may largely depend on the type of exercise, intensity, and duration. However, limited information is available regarding the effects of low-impact exercises, especially on the level of adaptive immune system. Our study aimed to investigate and compare the changes in a broad spectrum of lymphocyte subtypes after 14 weeks of aerobic-type total-body-shaping workouts (TBSW) and Pilates workouts (PW) among healthy individuals. We determined the percentages of peripheral natural killer cells and different T and B lymphocyte subtypes with flow cytometry. At the end of the exercise program, significant changes in naïve and memory lymphocyte ratios were observed in TBSW group. Percentages of naïve cytotoxic T (Tc) cells elevated, frequencies of memory Tc and T-helper cell subsets decreased, and distribution of naïve and memory B cells rearranged. Proportions of activated T cells also showed significant changes. Nonetheless, percentages of anti-inflammatory interleukin (IL)-10-producing regulatory type 1 cells and immunosuppressive CD4+CD127lo/-CD25bright T regulative cells decreased not only after TBSW but also after PW. Although weekly performed aerobic workouts may have a more pronounced impact on the adaptive immune system than low-impact exercises, both still affect immune regulation in healthy individuals.
Collapse
|
8
|
Cuthbertson L, Turner SE, Jackson A, Ranson C, Loosemore M, Kelleher P, Moffatt MF, Cookson WO, Hull JH, Shah A. Evidence of immunometabolic dysregulation and airway dysbiosis in athletes susceptible to respiratory illness. EBioMedicine 2022; 79:104024. [PMID: 35490556 PMCID: PMC9062742 DOI: 10.1016/j.ebiom.2022.104024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
9
|
Maurer DJ, Liu C, Xepapadaki P, Stanic B, Bachert C, Finotto S, Gao Y, Graser A, Jartti T, Kistler W, Kowalski M, Lukkarinen H, Pasioti M, Tan G, Villiger M, Zhang L, Zhang N, Akdis M, Papadopoulos NG, Akdis CA. Physical activity in asthma control and its immune modulatory effect in asthmatic preschoolers. Allergy 2022; 77:1216-1230. [PMID: 34547110 PMCID: PMC9291774 DOI: 10.1111/all.15105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The impact of physical activity on immune response is a hot topic in exercise immunology, but studies involving asthmatic children are scarce. Our aims were to examine whether there were any differences in the level of physical activity and daily TV attendance, to assess its role on asthma control and immune responses to various immune stimulants. METHODS Weekly physical activity and daily television attendance were obtained from questionnaires at inclusion of the PreDicta study. PBMC cultures were stimulated with phytohemagglutinin (PHA), R848, poly I:C, and zymosan. A panel of cytokines was measured and quantified in cell culture supernatants using luminometric multiplex immunofluorescence beads-based assay. RESULTS Asthmatic preschoolers showed significantly more TV attendance than their healthy peers (58.6% vs. 41.5% 1-3 h daily and only 25.7% vs. 47.2% ≤1 h daily) and poor asthma control was associated with less frequent physical activity (PA) (75% no or occasional activity in uncontrolled vs. 20% in controlled asthma; 25% ≥3 times weekly vs. 62%). Asthmatics with increased PA exhibited elevated cytokine levels in response to polyclonal stimulants, suggesting a readiness of circulating immune cells for type 1, 2, and 17 cytokine release compared to subjects with low PA and high TV attendance. This may also represent a proinflammatory state in high PA asthmatic children. Low physical activity and high TV attendance were associated with a decrease in proinflammatory cytokines. Proinflammatory cytokines were correlating with each other in in vitro immune responses of asthmatic children, but not healthy controls, this correlation was more pronounced in children with sedentary behavior. CONCLUSION Asthmatic children show more sedentary behavior than healthy subjects, while poor asthma control is associated with a substantial decrease in physical activity. Our results suggest that asthmatic children may profit from regular exercise, as elevated cytokine levels in stimulated conditions indicate an immune system prepared for responding strongly in case of different types of infections. However, it has to be considered that a hyperinflammatory state in high PA may not be beneficial in asthmatic children.
Collapse
Affiliation(s)
- Debbie J. Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Department of Sports Medicine Davos Hospital Davos Switzerland
| | - Chengyao Liu
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital Capital Medical University Beijing China
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Claus Bachert
- Upper Airway Research Laboratory Ghent University Hospital Ghent Belgium
| | - Susetta Finotto
- Department of Molecular Pneumology Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum Erlangen Erlangen Germany
| | - Ya‐Dong Gao
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China
| | - Anna Graser
- Department of Molecular Pneumology Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum Erlangen Erlangen Germany
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine University of Turku and Turku University Hospital Turku Finland
- PEDEGO Research Unit, Medical Research Center University of Oulu Oulu Finland
- Department of Pediatrics and Adolescent Medicine Oulu University Hospital Oulu Finland
| | - Walter Kistler
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Department of Sports Medicine Davos Hospital Davos Switzerland
| | - Marek Kowalski
- Department of Immunology, Rheumatology and Allergy Central University Hospital Lodz Poland
| | - Heikki Lukkarinen
- Department of Pediatrics and Adolescent Medicine University of Turku and Turku University Hospital Turku Finland
| | - Maria Pasioti
- Allergy Department, 2nd Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Michael Villiger
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Department of Sports Medicine Davos Hospital Davos Switzerland
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital Capital Medical University Beijing China
- Department of Allergy, Beijing TongRen Hospital Capital Medical University Beijing China
| | - Nan Zhang
- Upper Airway Research Laboratory Ghent University Hospital Ghent Belgium
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
- Division of Infection, Immunity & Respiratory Medicine University of Manchester Manchester UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
10
|
Silva RAD. People with asthma: care during the COVID-19 pandemic and the importance of regular exercise for the immune system. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Alterations in the mucosal immune system by a chronic exhausting exercise in Wistar rats. Sci Rep 2020; 10:17950. [PMID: 33087757 PMCID: PMC7578053 DOI: 10.1038/s41598-020-74837-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Exhausting exercise can disturb immune and gastrointestinal functions. Nevertheless, the impact of it on mucosal-associated lymphoid tissue has not been studied in depth. Here, we aim to establish the effects of an intensive training and exhausting exercise on the mucosal immunity of rats and to approach the mechanisms involved. Rats were submitted to a high-intensity training consisting of running in a treadmill 5 days per week for 5 weeks, involving 2 weekly exhaustion tests. At the end, samples were obtained before (T), immediately after (TE) and 24 h after (TE24) an additional final exhaustion test. The training programme reduced the salivary production of immunoglobulin A, impaired the tight junction proteins’ gene expression and modified the mesenteric lymph node lymphocyte composition and function, increasing the ratio between Tαβ+ and B lymphocytes, reducing their proliferation capacity and enhancing their interferon-γ secretion. As a consequence of the final exhaustion test, the caecal IgA content increased, while it impaired the gut zonula occludens expression and enhanced the interleukin-2 and interferon-γ secretion. Our results indicate that intensive training for 5 weeks followed or not by an additional exhaustion disrupts the mucosal-associated lymphoid tissue and the intestinal epithelial barrier integrity in rats.
Collapse
|
12
|
Freeman AT, Staples KJ, Wilkinson TMA. Defining a role for exercise training in the management of asthma. Eur Respir Rev 2020; 29:29/156/190106. [PMID: 32620584 DOI: 10.1183/16000617.0106-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of asthma remains high worldwide, with increasing awareness of the morbidity and mortality from asthma in low-income countries. In the UK, despite the development of biological treatments, many patients remain suboptimally controlled, and mortality rates have been static for decades. Therefore, new approaches are needed to treat asthma that are scalable at minimal cost. Exercise immunology is an expanding field, and there is growing evidence that exercise can modulate inflammatory and immune processes in asthma. Whilst exercise is encouraged in current treatment guidelines, there are no specific recommendations as to the intensity, frequency or duration of exercise exposure. Despite national and international guidance to increase exercise, patients with asthma are less likely to engage in physical activity. This review explores the disease modifying benefit of exercise in asthma. We also review the domains in which exercise exerts positive clinical effects in asthma, including the effects of exercise on symptom scores, quality of life, psychosocial health, and in the obese asthma phenotype. Finally, we review the barriers to exercise in asthma, given the benefits it confers. A better understanding of the mechanisms through which exercise exerts its positive effects in asthma may provide more accurate prescription of exercise training programmes as part of broader asthma management, with the potential of identification of new drug targets.
Collapse
Affiliation(s)
- Anna T Freeman
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Karl J Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
13
|
Andersson SEM, Lange E, Kucharski D, Svedlund S, Önnheim K, Bergquist M, Josefsson E, Lord JM, Mårtensson IL, Mannerkorpi K, Gjertsson I. Moderate- to high intensity aerobic and resistance exercise reduces peripheral blood regulatory cell populations in older adults with rheumatoid arthritis. IMMUNITY & AGEING 2020; 17:12. [PMID: 32467712 PMCID: PMC7229606 DOI: 10.1186/s12979-020-00184-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022]
Abstract
Objective Exercise can improve immune health and is beneficial for physical function in patients with rheumatoid arthritis (RA), but the immunological mechanisms are largely unknown. We evaluated the effect of moderate- to high intensity exercise with person-centred guidance on cells of the immune system, with focus on regulatory cell populations, in older adults with RA. Methods Older adults (≥65 years) with RA were randomized to either 20-weeks of moderate – to high intensity aerobic and resistance exercise (n = 24) or to an active control group performing home-based exercise of light intensity (n = 25). Aerobic capacity, muscle strength, DAS28 and CRP were evaluated. Blood samples were collected at baseline and after 20 weeks. The frequency of immune cells defined as adaptive regulatory populations, CD4 + Foxp3 + CD25 + CD127- T regulatory cells (Tregs) and CD19 + CD24hiCD38hi B regulatory cells (Bregs) as well as HLA-DR−/lowCD33 + CD11b + myeloid derived suppressor cells (MDSCs), were assessed using flow cytometry. Results After 20 weeks of moderate- to high intensity exercise, aerobic capacity and muscle strength were significantly improved but there were no significant changes in Disease Activity Score 28 (DAS28) or CRP. The frequency of Tregs and Bregs decreased significantly in the intervention group, but not in the active control group. The exercise intervention had no effect on MDSCs. The reduction in regulatory T cells in the intervention group was most pronounced in the female patients. Conclusion Moderate- to high intensity exercise in older adults with RA led to a decreased proportion of Tregs and Bregs, but that was not associated with increased disease activity or increased inflammation. Trial registration Improved Ability to Cope With Everyday Life Through a Person-centered Training Program in Elderly Patients With Rheumatoid Arthritis - PEP-walk Study, NCT02397798. Registered at ClinicalTrials.gov March 19, 2015.
Collapse
Affiliation(s)
- Sofia E M Andersson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Elvira Lange
- 2University of Gothenburg Centre for Person-Centred Care, Gothenburg, Sweden.,3Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Kucharski
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Sara Svedlund
- 4Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Önnheim
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Maria Bergquist
- 5Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Elisabet Josefsson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Janet M Lord
- 6MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Inga-Lill Mårtensson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Kaisa Mannerkorpi
- 2University of Gothenburg Centre for Person-Centred Care, Gothenburg, Sweden.,3Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden.,2University of Gothenburg Centre for Person-Centred Care, Gothenburg, Sweden
| |
Collapse
|
14
|
Lu KD, Forno E, Radom-Aizik S, Cooper DM. Low fitness and increased sedentary time are associated with worse asthma-The National Youth Fitness Survey. Pediatr Pulmonol 2020; 55:1116-1123. [PMID: 32040886 PMCID: PMC7187732 DOI: 10.1002/ppul.24678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma is the most common chronic illness in children and is independently impacted by obesity and by fitness. The National Youth Fitness Survey collected data on aerobic fitness, body composition, and health outcomes in children 6 to 11 years old. The goal of this study is to test hypotheses regarding relationships between asthma, aerobic fitness, and sedentary time in this uniquely studied cohort of young children. METHODS A total of 665 children (6-11 years old; 49% male) were included in analyses. We explored relationships between asthma outcomes and aerobic fitness (measured by endurance time), self-reported sedentary time, and body mass index categories. Fitness was categorized as unfit (lowest 25% of endurance times) or fit. Multivariate logistic regression models were created for asthma outcomes and adjusted for race, age, sex, poverty status, and overweight/obesity. RESULTS Among the participants, 17.9% had a previous history of asthma and 11.4% had current asthma. Additionally, 37.3% of participants were overweight or obese. Low fitness was significantly associated with increased odds of past asthma, current asthma, asthma attacks, wheeze with exercise, and wheeze with activity limitations in multivariate models. Increased sedentary time was significantly associated with increased odds of previous asthma, current asthma, asthma attacks, and wheeze with activity limitations. CONCLUSION Decreased aerobic fitness and increased sedentary time were associated with worse asthma outcomes in this group of children (6-11 years old). This data suggest that fitness and sedentary time, both modifiable factors, each have an independent effect on asthma and should be included in assessments and management of asthma health.
Collapse
Affiliation(s)
- Kim D. Lu
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, CA
| | - Erick Forno
- University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Pediatric Pulmonary Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, CA
| | - Dan M. Cooper
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, CA
| |
Collapse
|
15
|
Dorneles GP, dos Passos AA, Romão PR, Peres A. New Insights about Regulatory T Cells Distribution and Function with Exercise: The Role of Immunometabolism. Curr Pharm Des 2020; 26:979-990. [DOI: 10.2174/1381612826666200305125210] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
Abstract
A lack of physical activity is linked to the development of many chronic diseases through a chronic
low-grade inflammation state. It is now well accepted that the immune system plays a central role in the development
of several chronic diseases, including insulin resistance, type 2 diabetes, atherosclerosis, heart failure and
certain types of cancer. Exercise elicits a strong anti-inflammatory response independently of weight loss and can
be a useful non-pharmacologic strategy to counteract the low-grade inflammation. The CD4+CD25+CD127-
FoxP3+ Regulatory T (Treg) cells are a unique subset of helper T-cells, which regulate immune response and
establish self-tolerance through the secretion of immunoregulatory cytokines, such as IL-10 and TGF-β, and the
suppression of the function and activity of many immune effector cells (including monocytes/macrophages, dendritic
cells, CD4+ and CD8+ T cells, and Natural Killers). The metabolic phenotype of Tregs are regulated by the
transcription factor Foxp3, providing flexibility in fuel choice, but a preference for higher fatty acid oxidation. In
this review, we focus on the mechanisms by which exercise - both acute and chronic - exerts its antiinflammatory
effects through Treg cells mobilization. Furthermore, we discuss the implications of immunometabolic
changes during exercise for the modulation of Treg phenotype and its immunosuppressive function. This
narrative review focuses on the current knowledge regarding the role of Treg cells in the context of acute and
chronic exercise using data from observational and experimental studies. Emerging evidence suggests that the
immunomodulatory effects of exercise are mediated by the ability of exercise to adjust and improve Tregs number
and function.
Collapse
Affiliation(s)
- Gilson P. Dorneles
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Aline A.Z. dos Passos
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Pedro R.T. Romão
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| |
Collapse
|
16
|
Peerboom S, Graff S, Seidel L, Paulus V, Henket M, Sanchez C, Guissard F, Moermans C, Louis R, Schleich F. Predictors of a good response to inhaled corticosteroids in obesity-associated asthma. Biochem Pharmacol 2020; 179:113994. [PMID: 32335139 DOI: 10.1016/j.bcp.2020.113994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Asthma in obese subjects is poorly understood. According to GINA guidelines, pulmonologists increase ICS in case of poor asthma control but lung volume restriction may also worsen respiratory symptoms in obese asthmatics leading to overtreatment in this subpopulation. METHODS We conducted a retrospective study on 1217 asthmatics recruited from University Hospital of Liege. 92 patients with a BMI ≥30 came at least two times at the asthma clinic (mean interval: 335 days). In this obese population, we identified predictors of good (decrease in ACQ ≥0.5) versus poor response (rise in ACQ ≥0.5) to ICS step-up therapy. RESULTS Obese asthmatics had a poorer asthma control and quality of life as compared to non-obese and exhibited reduced FVC, higher levels of blood leucocytes and markers of systemic inflammation. The proportion of asthma inflammatory phenotypes was similar to that observed in a general population of asthmatics. Among uncontrolled obese asthmatics receiving ICS step-up therapy, 53% improved their asthma control while 31% had a worsening of their asthma. Uncontrolled obese asthmatics showing a good response to increase in ICS had higher ACQ, lower CRP levels, higher sputum eosinophil counts and higher FeNO levels at visit 1. Uncontrolled obese asthmatics that worsened after increasing the dose of ICS had lower FVC, lower sputum eosinophil counts and higher sputum neutrophil counts. CONCLUSION We observed poorer asthma control in obese asthmatics despite similar bronchial inflammation. Managing obese asthmatics according to ACQ alone seems to underestimate asthma control and the contribution of restriction to dyspnea. Increasing the dose of ICS in the absence of sputum eosinophilic inflammation or in the presence of restriction or bronchial neutrophilia led to poorer asthma control. In those patients, management of obesity should be the first choice.
Collapse
Affiliation(s)
- S Peerboom
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - S Graff
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - L Seidel
- Medical Informatics and Biostatistics, University of Liege, Belgium
| | - V Paulus
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - M Henket
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - C Sanchez
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - F Guissard
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - C Moermans
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - R Louis
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - F Schleich
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium.
| |
Collapse
|
17
|
Barkhordari S, Mirmosayyeb O, Mansourian M, Hosseininasab F, Ramezani S, Barzegar M, Amin MM, Poursafa P, Esmaeil N, Kelishadi R. Omega 3 Supplementation Can Regulate Inflammatory States in Gas Station Workers: A Double-Blind Placebo-Controlled Clinical Trial. J Interferon Cytokine Res 2020; 40:262-267. [PMID: 32176565 DOI: 10.1089/jir.2019.0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental exposure to diesel particulate matter and commercial gasoline in gas station workers might induce oxidative stress and changes in the balance of the immune system. In this study, the immunomodulatory impacts of omega 3 fatty acid (ω3FA) supplement were assessed on inflammatory and anti-inflammatory markers in gas station workers in a double-blind placebo-controlled clinical trial. Fifty-three men working in gas stations were treated with ω3FA (n = 29) or placebo (n = 24) for 60 days. C-reactive protein, interleukin-12 (IL-12), transforming growth factor β (TGF-β), interferon γ (IFN-γ), tumor necrosis factor α, IL-10, and IL-17 levels were measured by enzyme-linked immunosorbent assay method before and after the completion of the trial. The concentrations of IFN-γ and IL-17 were significantly decreased in ω3FA group compared with the placebo group (P < 0.001). Moreover, the levels of inhibitory cytokines including TGF-β and IL-10 significantly were increased in ω3FA group (P < 0.001). Overall, ω3FA nutritional supplementation can be useful in reducing inflammatory immune responses and maintaining immune tolerance in people with high exposure to inflammation-inducing factors. [Figure: see text].
Collapse
Affiliation(s)
- Shoresh Barkhordari
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marjan Mansourian
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Hosseininasab
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Ramezani
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Abstract
Obesity is a major risk factor for asthma. This association appears related to altered dietary composition and metabolic factors that can directly affect airway reactivity and airway inflammation. This article discusses how specific changes in the western diet and metabolic changes associated with the obese state affect inflammation and airway reactivity and reviews evidence that interventions targeting weight, dietary components, lifestyle, and metabolism might improve outcomes in asthma.
Collapse
|
19
|
Mähler A, Balogh A, Csizmadia I, Klug L, Kleinewietfeld M, Steiniger J, Šušnjar U, Müller DN, Boschmann M, Paul F. Metabolic, Mental and Immunological Effects of Normoxic and Hypoxic Training in Multiple Sclerosis Patients: A Pilot Study. Front Immunol 2018; 9:2819. [PMID: 30555484 PMCID: PMC6281996 DOI: 10.3389/fimmu.2018.02819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023] Open
Abstract
Background: Physical activity might attenuate inflammation and neurodegeneration in multiple sclerosis (MS). Erythropoietin, which is produced upon exposure to hypoxia, is thought to act as a neuroprotective agent in MS. Therefore, we studied the effects of intermittent hypoxic training on activity energy expenditure, maximal workload, serum erythropoietin, and immunophenotype focusing on regulatory and IL-17A-producing T cells. Methods: We assigned 34 relapsing-remitting MS patients within a randomized, single blind, parallel-group study to either normoxic (NO) or hypoxic (HO) treadmill training, both 3 times/week for 1 h over 4 weeks (Clinicaltrials.gov identifier: NCT02509897). Before and after training, activity energy expenditure (metabolic chamber), maximal workload (incremental treadmill test), walking ability, depressive symptoms (Beck Depression Inventory I), serum erythropoietin concentrations, and immunophenotype of peripheral blood mononuclear cells (PBMCs) were assessed. Results: Energy expenditure did not change due to training in both groups, but was rather fueled by fat than by carbohydrate oxidation after HO training (P = 0.002). Maximal workload increased by 40 Watt and 42 Watt in the NO and HO group, respectively (both P < 0.0001). Distance patients walked in 6 min increased by 25 m and 27 m in the NO and HO group, respectively (NO P = 0.02; HO P = 0.01). Beck Depression Inventory score markedly decreased in both groups (NO P = 0.03; HO P = 0.0003). NO training shifted Treg subpopulations by increasing and decreasing the frequency of CD39+ and CD31+ Tregs, respectively, and decreased IL-17A-producing CD4+ cells. HO training provoked none of these immunological changes. Erythropoietin concentrations were within normal range and did not significantly change in either group. Conclusion: 4 weeks of moderate treadmill training had considerable effects on fitness level and mood in MS patients, both under normoxic and hypoxic conditions. Additionally, NO training improved Th17/Treg profile and HO training improved fatty acid oxidation during exercise. These effects could not be attributed to an increase of erythropoietin. Clinical Trial Registration: ClinicalTrials.gov; NCT02509897; http://www.clinicaltrials.gov
Collapse
Affiliation(s)
- Anja Mähler
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research Partner Site Berlin, Berlin, Germany
| | - Andras Balogh
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research Partner Site Berlin, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ilona Csizmadia
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Lars Klug
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research Hasselt University, Diepenbeek, Belgium
| | - Jochen Steiniger
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Urša Šušnjar
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,International Centre for Genetic Engineering and Biotechnology, Triste, Italy
| | - Dominik N Müller
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research Partner Site Berlin, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center Cooperation Between Charité Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center and Department of Neurology, Charité Universitätsmedizin Berlin Humboldt Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Madani A, Alack K, Richter MJ, Krüger K. Immune-regulating effects of exercise on cigarette smoke-induced inflammation. J Inflamm Res 2018; 11:155-167. [PMID: 29731655 PMCID: PMC5923223 DOI: 10.2147/jir.s141149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus-capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible.
Collapse
Affiliation(s)
- Ashkan Madani
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany
| | - Katharina Alack
- Department of Sports Medicine, University of Giessen, Germany
| | - Manuel Jonas Richter
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany
| |
Collapse
|
21
|
Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol 2018; 141:1169-1179. [PMID: 29627041 PMCID: PMC5973542 DOI: 10.1016/j.jaci.2018.02.004] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Obesity is a vast public health problem and both a major risk factor and disease modifier for asthma in children and adults. Obese subjects have increased asthma risk, and obese asthmatic patients have more symptoms, more frequent and severe exacerbations, reduced response to several asthma medications, and decreased quality of life. Obese asthma is a complex syndrome, including different phenotypes of disease that are just beginning to be understood. We examine the epidemiology and characteristics of this syndrome in children and adults, as well as the changes in lung function seen in each age group. We then discuss the better recognized factors and mechanisms involved in disease pathogenesis, focusing particularly on diet and nutrients, the microbiome, inflammatory and metabolic dysregulation, and the genetics/genomics of obese asthma. Finally, we describe current evidence on the effect of weight loss and mention some important future directions for research in the field.
Collapse
Affiliation(s)
- Ubong Peters
- Pulmonary and Critical Care Medicine, University of Vermont, Burlington, Vt
| | - Anne E Dixon
- Pulmonary and Critical Care Medicine, University of Vermont, Burlington, Vt
| | - Erick Forno
- Pediatric Pulmonary Medicine, Allergy, and Immunology, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
22
|
Dugger KJ, Chrisman T, Sayner SL, Chastain P, Watson K, Estes R. Beta-2 adrenergic receptors increase TREG cell suppression in an OVA-induced allergic asthma mouse model when mice are moderate aerobically exercised. BMC Immunol 2018; 19:9. [PMID: 29452585 PMCID: PMC5816563 DOI: 10.1186/s12865-018-0244-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background The potency of T regulatory (TREG) cells to inhibit T helper (Th)-driven immune cell responses has been linked to increased intracellular cyclic-AMP (cAMP) levels of TREG cells. In an ovalbumin (OVA)-driven allergic asthma mouse model, moderate aerobic exercise increases TREG cell function in a contact-dependent manner that leads to a significant reduction in chronic inflammation and restoration of lung function. However, the mechanism, whereby exercise increases TREG function, remains unknown and was the focus of these investigations. Exercise can communicate with TREG cells by their expression of β2-adrenergic receptors (β2-AR). Activation of these receptors results in an increase in intracellular levels of cyclic-AMP, potentially creating a potent inhibitor of Th cell responses. Results For the allergic asthma model, female wildtype BALB/c mice were challenged with OVA, and exercised (13.5 m/min for 45 min) 3×/week for 4 weeks. TREG cells were isolated from all mouse asthma/exercise groups, including β2-AR−/− mice, to test suppressive function and intracellular cAMP levels. In these studies, cAMP levels were increased in TREG cells isolated from exercised mice. When β2-AR expression was absent on TREG cells, cAMP levels were significantly decreased. Correlatively, their suppressive function was compromised. Next, TREG cells from all mouse groups were tested for suppressive function after treatment with either a pharmaceutical β2-adrenergic agonist or an effector-specific cAMP analogue. These experiments showed TREG cell function was increased when treated with either a β2-adrenergic agonist or effector-specific cAMP analogue. Finally, female wildtype BALB/c mice were antibody-depleted of CD25+CD4+ TREG cells (anti-CD25). Twenty-four hours after TREG depletion, either β2-AR−/− or wildtype TREG cells were adoptively transferred. Recipient mice underwent the asthma/exercise protocols. β2-AR−/− TREG cells isolated from these mice showed no increase in TREG function in response to moderate aerobic exercise. Conclusion These studies offer a novel role for β2-AR in regulating cAMP intracellular levels that can modify suppressive function in TREG cells.
Collapse
Affiliation(s)
- Kari J Dugger
- Department of Clinical and Diagnostic Sciences, Biomedical Sciences, School of Health Professions, University of Alabama at Birmingham, 1716 9th Ave S, SHPB 472, Birmingham, 35294, AL, USA.
| | - Taylor Chrisman
- Department of Biomedical Sciences, College of Allied Health; University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, 36688, AL, USA
| | - Sarah L Sayner
- Department of Physiology and Cell Biology, Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, 36688, AL, USA
| | - Parker Chastain
- Department of Biomedical Sciences, College of Allied Health; University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, 36688, AL, USA
| | - Kacie Watson
- Department of Biomedical Sciences, College of Allied Health; University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, 36688, AL, USA
| | - Robert Estes
- Department of Clinical and Diagnostic Sciences, Biomedical Sciences, School of Health Professions, University of Alabama at Birmingham, 1716 9th Ave S, SHPB 472, Birmingham, 35294, AL, USA
| |
Collapse
|
23
|
Effect of Aerobic Exercise on Treg and Th17 of Rats with Ischemic Cardiomyopathy. J Cardiovasc Transl Res 2018; 11:230-235. [PMID: 29453746 DOI: 10.1007/s12265-018-9794-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Immune activation and inflammation participate in the progression of chronic heart failure (CHF). Th17 cells and CD4+CD25+ regulatory T (Treg) cells both come from naive Th cells and share reciprocal development pathways but exhibit opposite effects. We hypothesized that the Th17/Treg balance was impaired in patients with CHF, and exercise can improve it. Rats with ischemic cardiomyopathy were prepared by ligaturing the left anterior descending branch of the left coronary artery. Rats in training group were trained with treadmill; Th17 cells increased significantly while Treg cells significantly decreased in s by flow cytometry, and the peripheral blood level of IL-6, IL-17, and TNF-α was obviously elevated by ELISA assay. We found that Th17/Treg balance is impaired in CHF rats, suggesting Th17/Treg imbalance potentially plays a role in the pathogenesis of CHF. Exercise can improve Th17/Treg imbalance, which also improves cardiac function of CHF.
Collapse
|
24
|
Mackenzie B, Andrade-Sousa AS, Oliveira-Junior MC, Assumpção-Neto E, Brandão-Rangel MAR, Silva-Renno A, Santos-Dias A, Cicko S, Grimm M, Müller T, Oliveira APL, Martins MA, Idzko M, Vieira RP. Dendritic Cells Are Involved in the Effects of Exercise in a Model of Asthma. Med Sci Sports Exerc 2017; 48:1459-67. [PMID: 27015383 DOI: 10.1249/mss.0000000000000927] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION This study investigated the effects of aerobic exercise (AE) on both the maturation of dendritic cells (DC) and the activation of lymphocytes in a mouse model of chronic allergic airway inflammation. METHODS C57BL/6 mice distributed into control, exercise, ovalbumin (OVA), and OVA + exercise groups were submitted to OVA sensitization and challenge. Treadmill training was performed for 4 wk, and mice were assessed for classical features of chronic allergic airway inflammation as well as dendritic cell activation and T-lymphocyte response. RESULTS AE reduced OVA-induced eosinophilic inflammation as observed in bronchoalveolar lavage fluid (P < 0.001), airway walls (P < 0001), and also reduced collagen deposition (P < 0.001). AE also reduced bronchoalveolar lavage fluid cytokines (interleukin [IL]-4, P < 0.001; IL-5, P < 0.01; IL-6, P < 0.001; IL-13, P < 0.01; and tumor necrosis factor α, P < 0.01). Cells derived from mediastinal lymphnodes of AE animals that were restimulated with OVA produced less IL-4 (P < 0.01), IL-5 (P < 0.01), and IL-13 (P < 0.001). In addition, AE reduced both DC activation, as demonstrated by reduced release of IL-6 (P < 0.001), CXCL1/KC (P < 0.01), IL-12p70 (P < 0.01), and tumor necrosis factor α (P < 0.05) and DC maturation, as demonstrated by lower MCH-II expression (P < 0.001). CONCLUSION AE attenuated dendritic cell and lymphocyte activation and maturation, which contributed to reduced airway inflammation and remodeling in the OVA model of chronic allergic airway inflammation.
Collapse
Affiliation(s)
- Breanne Mackenzie
- 1Laboratory of Pulmonary and Exercise Immunology (LABPEI), Nove de Julho University (UNINOVE), Sao Paulo, BRAZIL; 2COPD and Asthma Research Group, University Hospital Freigurg, Freiburg, GERMANY; and 3Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo (USP), Sao Paulo, BRAZIL
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, Perera FP, Rundle AG, Perzanowski MS, Chillrud SN, Miller RL. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics 2017. [PMID: 28630656 PMCID: PMC5470266 DOI: 10.1186/s13148-017-0364-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). Methods We performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. Results In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (βestimate = −2.37%, p < 0.01) but not among those with lower BC exposure (βestimate = 0.54%, p > 0.05). Differences across strata were statistically significant (pinteraction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (βestimate = −0.40%, p < 0.01) and reduced FEF25–75% (βestimate = −1.46%, p < 0.01). Conclusions Physical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 3959 Broadway CHC-745, New York, NY 10032 USA
| | - Kyung Hwa Jung
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - Jacqueline R Jezioro
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - David Z Torrone
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | | | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Frederica P Perera
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA.,Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA.,Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| |
Collapse
|
26
|
Lifelong training improves anti-inflammatory environment and maintains the number of regulatory T cells in masters athletes. Eur J Appl Physiol 2017; 117:1131-1140. [PMID: 28391394 DOI: 10.1007/s00421-017-3600-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/26/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to quantify and characterize peripheral blood regulatory T cells (Tregs), as well as the IL-10 plasma concentration, in Masters athletes at rest and after an acute exhaustive exercise test. METHODS Eighteen Masters athletes (self-reported training: 24.6 ± 1.83 years; 10.27 ± 0.24 months and 5.45 ± 0.42 h/week per each month trained) and an age-matched control group of ten subjects (that never took part in regular physical training) volunteered for this study. All subjects performed an incremental test to exhaustion on a cycle ergometer. Blood samples were obtained before (Pre), 10 min into recovery (Post), and 1 h after the test (1 h). RESULTS Absolute numbers of Tregs were similar in both groups at rest. Acute exercise induced a significant increase in absolute numbers of Tregs at Post (0.049 ± 0.021 to 0.056 ± 0.024 × 109/L, P = 0.029 for Masters; 0.048 ± 0.017 to 0.058 ± 0.020 × 109/L, P = 0.037 for control) in both groups. Treg mRNA expression for FoxP3, IL-10, and TGF-β in sorted Tregs was similar throughout the trials in both groups. Masters athletes showed a higher percentage of subjects expressing the FoxP3 (100% for Masters vs. 78% for Controls, P = 0.038) and TGF-β (89% for Masters vs. 56% for Controls, P = 0.002) after exercise and a higher plasma IL-10 concentration (15.390 ± 7.032 for Masters vs. 2.411 ± 1.117 for control P = 0.001, ES = 2.57) at all timepoints. KLRG1 expression in Tregs was unchanged. CONCLUSION Our findings showed that Masters athletes have elevated anti-inflammatory markers and maintain the number of Tregs, and may be an adaptive response to lifelong training.
Collapse
|
27
|
Alberca-Custódio RW, Greiffo FR, MacKenzie B, Oliveira-Junior MC, Andrade-Sousa AS, Graudenz GS, Santos ABG, Damaceno-Rodrigues NR, Castro-Faria-Neto HC, Arantes-Costa FM, Martins MDA, Abbasi A, Lin CJ, Idzko M, Ligeiro Oliveira AP, Northoff H, Vieira RP. Aerobic Exercise Reduces Asthma Phenotype by Modulation of the Leukotriene Pathway. Front Immunol 2016; 7:237. [PMID: 27379098 PMCID: PMC4905963 DOI: 10.3389/fimmu.2016.00237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Introduction Leukotrienes (LTs) play a central role in asthma. Low- to moderate-intensity aerobic exercise (AE) reduces asthmatic inflammation in clinical studies and in experimental models. This study investigated whether AE attenuates LT pathway activation in an ovalbumin (OVA) model of asthma. Methods Sixty-four male, BALB/c mice were distributed into Control, Exercise (Exe), OVA, and OVA + Exe groups. Treadmill training was performed at moderate intensity, 5×/week, 1 h/session for 4 weeks. Quantification of bronchoalveolar lavage (BAL) cellularity, leukocytes, airway remodeling, interleukin (IL)-5, IL-13, cysteinyl leukotriene (CysLT), and leukotriene B4 (LTB4) in BAL was performed. In addition, quantitative analyses on peribronchial leukocytes and airway epithelium for LT pathway agents: 5-lypoxygenase (5-LO), LTA4 hydrolase (LTA4H), CysLT1 receptor, CysLT2 receptor, LTC4 synthase, and LTB4 receptor 2 (BLT2) were performed. Airway hyperresponsiveness (AHR) to methacholine (MCh) was assessed via whole body plethysmography. Results AE decreased eosinophils (p < 0.001), neutrophils (p > 0.001), lymphocytes (p < 0.001), and macrophages (p < 0.01) in BAL, as well as eosinophils (p < 0.01), lymphocytes (p < 0.001), and macrophages (p > 0.001) in airway walls. Collagen (p < 0.01), elastic fibers (p < 0.01), mucus production (p < 0.01), and smooth muscle thickness (p < 0.01), as well as IL-5 (p < 0.01), IL-13 (p < 0.01), CysLT (p < 0.01), and LTB4 (p < 0.01) in BAL were reduced. 5-LO (p < 0.05), LTA4H (p < 0.05), CysLT1 receptor (p < 0.001), CysLT2 receptor (p < 0.001), LTC4 synthase (p < 0.001), and BLT2 (p < 0.01) expression by peribronchial leukocytes and airway epithelium were reduced. Lastly, AHR to MCh 25 mg/mL (p < 0.05) and 50 mg/mL (p < 0.01) was reduced. Conclusion Moderate-intensity AE attenuated asthma phenotype and LT production in both pulmonary leukocytes and airway epithelium of OVA-treated mice.
Collapse
Affiliation(s)
- Ricardo Wesley Alberca-Custódio
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - Flávia Regina Greiffo
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - BreAnne MacKenzie
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - Manoel Carneiro Oliveira-Junior
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - Adilson Santos Andrade-Sousa
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - Gustavo Silveira Graudenz
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - Angela Batista Gomes Santos
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | | | - Hugo Caire Castro-Faria-Neto
- Laboratory of Immunopharmacology, Institute Oswaldo Cruz (IOF), Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | - Milton De Arruda Martins
- Laboratory of Experimental Therapeutics (LIM 20), School of Medicine, University of São Paulo (USP) , São Paulo , Brazil
| | - Asghar Abbasi
- Institute for Memory Impairments and Neurological Disorders (MIND Institute), University of California Irvine , Irvine, CA , USA
| | - Chin Jia Lin
- Department of Pathology (LIM 05), School of Medicine, University of São Paulo (USP) , São Paulo , Brazil
| | - Marco Idzko
- COPD and Asthma Research Group, Department of Pneumology, University Hospital Freiburg , Freiburg , Germany
| | - Ana Paula Ligeiro Oliveira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University of Tübingen , Tübingen , Germany
| | - Rodolfo Paula Vieira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE) , São Paulo , Brazil
| |
Collapse
|
28
|
Johnson AM, Kurti SP, Smith JR, Rosenkranz SK, Harms CA. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation. Appl Physiol Nutr Metab 2016; 41:284-91. [DOI: 10.1139/apnm-2015-0314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENOincreased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENOand TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.
Collapse
Affiliation(s)
- Ariel M. Johnson
- Department of Kinesiology, Kansas State University, 1A Natatorium, Manhattan, KS 66506, USA
| | - Stephanie P. Kurti
- Department of Kinesiology, Kansas State University, 1A Natatorium, Manhattan, KS 66506, USA
| | - Joshua R. Smith
- Department of Kinesiology, Kansas State University, 1A Natatorium, Manhattan, KS 66506, USA
| | - Sara K. Rosenkranz
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Craig A. Harms
- Department of Kinesiology, Kansas State University, 1A Natatorium, Manhattan, KS 66506, USA
| |
Collapse
|
29
|
de Araújo CC, Marques PS, Silva JD, Samary CS, da Silva AL, Henriques I, Antunes MA, de Oliveira MV, Goldenberg RC, Morales MM, Abreu I, Diaz BL, Rocha NN, Capelozzi VL, Rocco PRM. Regular and moderate aerobic training before allergic asthma induction reduces lung inflammation and remodeling. Scand J Med Sci Sports 2016; 26:1360-1372. [PMID: 27152850 DOI: 10.1111/sms.12614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 12/13/2022]
Abstract
Experimental studies have reported that aerobic exercise after asthma induction reduces lung inflammation and remodeling. Nevertheless, no experimental study has analyzed whether regular/moderate aerobic training before the induction of allergic asthma may prevent these inflammatory and remodeling processes. For this purpose, BALB/c mice (n = 96) were assigned into non-trained and trained groups. Trained animals ran on a motorized treadmill at moderate intensity, 30 min/day, 3 times/week, for 8 weeks, and were further randomized into subgroups to undergo ovalbumin sensitization and challenge or receive saline using the same protocol. Aerobic training continued until the last challenge. Twenty-four hours after challenge, compared to non-trained animals, trained mice exhibited: (a) increased systolic output and left ventricular mass on echocardiography; (b) improved lung mechanics; (c) decreased smooth muscle actin expression and collagen fiber content in airways and lung parenchyma; (d) decreased transforming growth factor (TGF)-β levels in bronchoalveolar lavage fluid (BALF) and blood; (e) increased interferon (IFN)-γ in BALF and interleukin (IL)-10 in blood; and (f) decreased IL-4 and IL-13 in BALF. In conclusion, regular/moderate aerobic training prior to allergic asthma induction reduced inflammation and remodeling, perhaps through increased IL-10 and IFN-γ in tandem with decreased Th2 cytokines.
Collapse
Affiliation(s)
- C C de Araújo
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P S Marques
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - I Henriques
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M V de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R C Goldenberg
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - I Abreu
- Laboratory of Inflammation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B L Diaz
- Laboratory of Inflammation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - N N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Fluminense Federal University, Niteroi, Brazil
| | - V L Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - P R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin Respir J 2015. [PMID: 26672959 DOI: 10.3402/ecrj.v2.27984.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The terms 'exercise-induced asthma' (EIA) and 'exercise-induced bronchoconstriction' (EIB) are often used interchangeably to describe symptoms of asthma such as cough, wheeze, or dyspnoea provoked by vigorous physical activity. In this review, we refer to EIB as the bronchoconstrictive response and to EIA when bronchoconstriction is associated with asthma symptoms. EIB is a common occurrence for most of the asthmatic patients, but it also affects more than 10% of otherwise healthy individuals as shown by epidemiological studies. EIA and EIB have a high prevalence also in elite athletes, especially within endurance type of sports, and an athlete's asthma phenotype has been described. However, the occurrence in elite athletes shows that EIA/EIB, if correctly managed, may not impair physical activity and top sports performance. The pathogenic mechanisms of EIA/EIB classically involve both osmolar and vascular changes in the airways in addition to cooling of the airways with parasympathetic stimulation. Airways inflammation plays a fundamental role in EIA/EIB. Diagnosis and pharmacological management must be carefully performed, with particular consideration of current anti-doping regulations, when caring for athletes. Based on the demonstration that the inhaled asthma drugs do not improve performance in healthy athletes, the doping regulations are presently much less strict than previously. Some sports are at a higher asthma risk than others, probably due to a high environmental exposure while performing the sport, with swimming and chlorine exposure during swimming as one example. It is considered very important for the asthmatic child and adolescent to master EIA/EIB to be able to participate in physical activity on an equal level with their peers, and a precise early diagnosis with optimal treatment follow-up is vital in this aspect. In addition, surprising recent preliminary evidences offer new perspectives for moderate exercise as a potential therapeutic tool for asthmatics.
Collapse
Affiliation(s)
- Stefano R Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy;
| | - Davide Firinu
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | | |
Collapse
|
31
|
Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin Respir J 2015; 2:27984. [PMID: 26672959 PMCID: PMC4653278 DOI: 10.3402/ecrj.v2.27984] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/04/2015] [Indexed: 01/03/2023] Open
Abstract
The terms 'exercise-induced asthma' (EIA) and 'exercise-induced bronchoconstriction' (EIB) are often used interchangeably to describe symptoms of asthma such as cough, wheeze, or dyspnoea provoked by vigorous physical activity. In this review, we refer to EIB as the bronchoconstrictive response and to EIA when bronchoconstriction is associated with asthma symptoms. EIB is a common occurrence for most of the asthmatic patients, but it also affects more than 10% of otherwise healthy individuals as shown by epidemiological studies. EIA and EIB have a high prevalence also in elite athletes, especially within endurance type of sports, and an athlete's asthma phenotype has been described. However, the occurrence in elite athletes shows that EIA/EIB, if correctly managed, may not impair physical activity and top sports performance. The pathogenic mechanisms of EIA/EIB classically involve both osmolar and vascular changes in the airways in addition to cooling of the airways with parasympathetic stimulation. Airways inflammation plays a fundamental role in EIA/EIB. Diagnosis and pharmacological management must be carefully performed, with particular consideration of current anti-doping regulations, when caring for athletes. Based on the demonstration that the inhaled asthma drugs do not improve performance in healthy athletes, the doping regulations are presently much less strict than previously. Some sports are at a higher asthma risk than others, probably due to a high environmental exposure while performing the sport, with swimming and chlorine exposure during swimming as one example. It is considered very important for the asthmatic child and adolescent to master EIA/EIB to be able to participate in physical activity on an equal level with their peers, and a precise early diagnosis with optimal treatment follow-up is vital in this aspect. In addition, surprising recent preliminary evidences offer new perspectives for moderate exercise as a potential therapeutic tool for asthmatics.
Collapse
Affiliation(s)
- Stefano R Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy;
| | - Davide Firinu
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | | |
Collapse
|
32
|
Alizadeh H, Daryanoosh F, Moatari M, Hoseinzadeh K. Effects of aerobic and anaerobic training programs together with omega-3 supplement on interleukin-17 and CRP plasma levels in male mice. Med J Islam Repub Iran 2015; 29:236. [PMID: 26793627 PMCID: PMC4715379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/20/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Herein, we studied the effects of two different exercise protocols on IL-17 and CRP plasma levels along with the anti-inflammatory effects of fish oil. The purpose of the present study was to investigate the effect of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) consumption along with two different types of physical activities on IL-17 and CRP plasma levels in trained male mice. METHODS A total of 130 adult male mice of Syrian race with the age of 2 months and the weight of 35±1 grams were selected. At the beginning, 10 mice were killed in order to determine the amounts of pre-test variables. The rest of the mice were randomly divided into 6 groups including control group (n=20), supplement (n=20), aerobic exercise (n=20), anaerobic exercise (n=20), supplementaerobic exercise (n=20), and supplement-anaerobic exercise (n=20). Blood samples were withdrawn from the tail under intraperitoneal ketamine and xylasine anaesthesia. The anaerobic training program included 8 weeks of running on treadmill, 3 sessions per week; the aerobic training program included 8 weeks of running on treadmill, 5 sessions per week. At the end of the training program, the blood sample from each group was taken in order to measure the CRP and IL-17 levels. The analysis of variance (ANOVA) was used to determine the differences among the groups. RESULTS The results showed that there was a significant difference in IL-17 and CRP plasma levels between the groups after 8 weeks (P<0.05). CONCLUSION Following the two different training programs, both IL-17 and CRP plasma levels increased, although these observed increases were not same for two measured variables. The results might also show that the effect of the supplement depends on the type of training.
Collapse
Affiliation(s)
- Hamid Alizadeh
- 1 PhD Student, Exercise Physiology Department, Mazandaran University, Mazandaran, Babolsar, Iran. .
,(Corresponding author) PhD Student, Exercise Physiology Department, Mazandaran University, Mazandaran, Babolsar, Iran. Exercise.
| | - Farhad Daryanoosh
- 2 Assistant Professor of Sport Physiology, Department of Physical Education, Shiraz University, Shiraz, Iran.
| | - Maryam Moatari
- 3 MSc, Exercise Physiology Department, Shiraz University, Fars, Iran.
| | | |
Collapse
|
33
|
Silva RA, Almeida FM, Olivo CR, Saraiva-Romanholo BM, Martins MA, Carvalho CRF. Exercise reverses OVA-induced inhibition of glucocorticoid receptor and increases anti-inflammatory cytokines in asthma. Scand J Med Sci Sports 2015; 26:82-92. [DOI: 10.1111/sms.12411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
Affiliation(s)
- R. A. Silva
- Department of Physical Therapy; School of Medicine; University of Sao Paulo; São Paulo SP Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - F. M. Almeida
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - C. R. Olivo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - B. M. Saraiva-Romanholo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
- University City of São Paulo (UNICID); São Paulo SP Brazil
| | - M. A. Martins
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - C. R. F. Carvalho
- Department of Physical Therapy; School of Medicine; University of Sao Paulo; São Paulo SP Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| |
Collapse
|
34
|
da Silva RA, Almeida FM, Olivo CR, Saraiva-Romanholo BM, Perini A, Martins MA, Carvalho CRF. Comparison of the Effects of Aerobic Conditioning Before and After Pulmonary Allergic Inflammation. Inflammation 2014; 38:1229-38. [DOI: 10.1007/s10753-014-0090-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Silva RA, Almeida FM, Olivo CR, Saraiva-Romanholo BM, Martins MA, Carvalho CRF. Airway remodeling is reversed by aerobic training in a murine model of chronic asthma. Scand J Med Sci Sports 2014; 25:e258-66. [DOI: 10.1111/sms.12311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 01/31/2023]
Affiliation(s)
- R. A. Silva
- Department of Physical Therapy; School of Medicine; University of São Paulo; São Paulo Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - F. M. Almeida
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - C. R. Olivo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - B. M. Saraiva-Romanholo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
- University City of São Paulo (UNICID); São Paulo Brazil
| | - M. A. Martins
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - C. R. F. Carvalho
- Department of Physical Therapy; School of Medicine; University of São Paulo; São Paulo Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| |
Collapse
|
36
|
Exercise training, lymphocyte subsets and their cytokines production: experience of an Italian professional football team and their impact on allergy. BIOMED RESEARCH INTERNATIONAL 2014. [PMID: 25050349 DOI: 10.1155/2014/429248.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In recent years, numerous articles have attempted to shed light on our understanding of the pathophysiological mechanisms of exercise-induced immunologic changes and their impact on allergy and asthma. It is known that lymphocyte subclasses, cytokines, and chemokines show modifications after exercise, but outcomes can be affected by the type of exercise as well as by its intensity and duration. Interesting data have been presented in many recent studies on mouse models, but few studies on humans have been performed to check the long-term effects of exercise over a whole championship season. METHODS This study evaluated lymphocyte subsets and their intracellular IL-2, IL-4, TNF-α, and IFN-γ production in professional football (soccer) players, at three stages of the season, to evaluate if alterations occur, particularly in relation to their allergic status. RESULTS AND CONCLUSION Despite significant mid-season alterations, no significant lymphocyte subclasses count modifications, except for NKs that were significantly higher, were observed at the end. IL-2 and IL-4 producing cells showed a significant decrease (P = 0.018 and P = 0.001, but in a steady fashion for IL-4), confirming the murine data about the potential beneficial effects of aerobic exercise for allergic asthma.
Collapse
|
37
|
Exercise training, lymphocyte subsets and their cytokines production: experience of an Italian professional football team and their impact on allergy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:429248. [PMID: 25050349 PMCID: PMC4094862 DOI: 10.1155/2014/429248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND In recent years, numerous articles have attempted to shed light on our understanding of the pathophysiological mechanisms of exercise-induced immunologic changes and their impact on allergy and asthma. It is known that lymphocyte subclasses, cytokines, and chemokines show modifications after exercise, but outcomes can be affected by the type of exercise as well as by its intensity and duration. Interesting data have been presented in many recent studies on mouse models, but few studies on humans have been performed to check the long-term effects of exercise over a whole championship season. METHODS This study evaluated lymphocyte subsets and their intracellular IL-2, IL-4, TNF-α, and IFN-γ production in professional football (soccer) players, at three stages of the season, to evaluate if alterations occur, particularly in relation to their allergic status. RESULTS AND CONCLUSION Despite significant mid-season alterations, no significant lymphocyte subclasses count modifications, except for NKs that were significantly higher, were observed at the end. IL-2 and IL-4 producing cells showed a significant decrease (P = 0.018 and P = 0.001, but in a steady fashion for IL-4), confirming the murine data about the potential beneficial effects of aerobic exercise for allergic asthma.
Collapse
|
38
|
Pradeepan S, Garrison G, Dixon AE. Obesity in asthma: approaches to treatment. Curr Allergy Asthma Rep 2014; 13:434-42. [PMID: 23619597 DOI: 10.1007/s11882-013-0354-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is mounting evidence that obesity is associated with asthma, both of which are seeing a dramatic increase in prevalence. Not only is obesity a risk factor for the development of asthma but it is also associated with poor asthma control. Asthma phenotypes associated with obesity include early-onset allergic asthma and late-onset non-allergic asthma. The pathogenesis of the linkage is complex; obesity causes a variety of mechanical, metabolic, and immunological changes that can affect the airways. The treatment of asthma in obesity can be challenging, as obesity is associated with poor response to standard controller medications. A tailored approach that involves combining pharmacologic and non-pharmacologic therapies including weight loss, dietary interventions, and exercise, along with identification and treatment of obstructive sleep apnea, should therefore be considered in this population.
Collapse
Affiliation(s)
- Shyamala Pradeepan
- Department of Respiratory and Sleep Medicine, John Hunter Hospital Newcastle, Lookout Road, New Lambton, NSW, 2305, Australia,
| | | | | |
Collapse
|
39
|
van de Weert – van Leeuwen PB, de Vrankrijker AMM, Fentz J, Ciofu O, Wojtaszewski JFP, Arets HGM, Hulzebos HJ, van der Ent CK, Beekman JM, Johansen HK. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model. PLoS One 2013; 8:e82869. [PMID: 24376599 PMCID: PMC3871638 DOI: 10.1371/journal.pone.0082869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 11/06/2013] [Indexed: 12/29/2022] Open
Abstract
Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa) loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research.
Collapse
Affiliation(s)
- Pauline B. van de Weert – van Leeuwen
- Department of Pediatric Pulmonology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| | | | - Joachim Fentz
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Department of International Health, Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F. P. Wojtaszewski
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Hubertus G. M. Arets
- Department of Pediatric Pulmonology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hendrikus J. Hulzebos
- Child Development & Exercise Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
40
|
Dugger KJ, Chrisman T, Jones B, Chastain P, Watson K, Estell K, Zinn K, Schwiebert L. Moderate aerobic exercise alters migration patterns of antigen specific T helper cells within an asthmatic lung. Brain Behav Immun 2013; 34:67-78. [PMID: 23928286 PMCID: PMC3826814 DOI: 10.1016/j.bbi.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022] Open
Abstract
Studies have indicated increased incidence and severity of allergic asthma due to western lifestyle and increased sedentary activity. Investigations also indicate that exercise reduces the severity of asthma; however, a mechanism of action has not been elucidated. Additional work implicates re-distribution of T helper (Th) cells in mediating alterations of the immune system as a result of moderate aerobic exercise in vivo. We have previously reported that exercise decreases T helper 2 (Th2) responses within the lungs of an ovalbumin (OVA)-sensitized murine allergic asthma model. Therefore, we hypothesized that exercise alters the migration of OVA-specific Th cells in an OVA-challenged lung. To test this hypothesis, wildtype mice received OVA-specific Th cells expressing a luciferase-reporter construct and were OVA-sensitized and exercised. OVA-specific Th cell migration was decreased in OVA-challenged lungs of exercised mice when compared to their sedentary controls. Surface expression levels of lung-homing chemokine receptors, CCR4 and CCR8, on Th cells and their cognate lung-homing chemokine gradients revealed no difference between exercised and sedentary OVA-sensitized mice. However, transwell migration experiments demonstrated that lung-derived Th cells from exercised OVA-sensitized mice exhibited decreased migratory function versus controls. These data suggest that Th cells from exercised mice are less responsive to lung-homing chemokine. Together, these studies demonstrate that moderate aerobic exercise training can reduce the accumulation of antigen-specific Th cell migration into an asthmatic lung by decreasing chemokine receptor function.
Collapse
Affiliation(s)
- Kari J. Dugger
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, AL, 36688
| | - Taylor Chrisman
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, AL, 36688
| | - Ben Jones
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, AL, 36688
| | - Parker Chastain
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, AL, 36688
| | - Kacie Watson
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, 5721 USA Dr. N, HAHN 4021, Mobile, AL, 36688
| | - Kim Estell
- Department of Cell Biology, University of Alabama at Birmingham, BBRB 863, 845 19th St. S., Birmingham, Alabama, 35294
| | - Kurt Zinn
- Department of Radiology, University of Alabama at Birmingham, BBRB 863, 845 19th St. S., Birmingham, Alabama, 35294
| | - Lisa Schwiebert
- Department of Cell Biology, University of Alabama at Birmingham, BBRB 863, 845 19th St. S., Birmingham, Alabama, 35294
| |
Collapse
|
41
|
Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A 2013; 110:18360-7. [PMID: 24154724 DOI: 10.1073/pnas.1313731110] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies suggest that living close to the natural environment is associated with long-term health benefits including reduced death rates, reduced cardiovascular disease, and reduced psychiatric problems. This is often attributed to psychological mechanisms, boosted by exercise, social interactions, and sunlight. Compared with urban environments, exposure to green spaces does indeed trigger rapid psychological, physiological, and endocrinological effects. However, there is little evidence that these rapid transient effects cause long-term health benefits or even that they are a specific property of natural environments. Meanwhile, the illnesses that are increasing in high-income countries are associated with failing immunoregulation and poorly regulated inflammatory responses, manifested as chronically raised C-reactive protein and proinflammatory cytokines. This failure of immunoregulation is partly attributable to a lack of exposure to organisms ("Old Friends") from mankind's evolutionary past that needed to be tolerated and therefore evolved roles in driving immunoregulatory mechanisms. Some Old Friends (such as helminths and infections picked up at birth that established carrier states) are almost eliminated from the urban environment. This increases our dependence on Old Friends derived from our mothers, other people, animals, and the environment. It is suggested that the requirement for microbial input from the environment to drive immunoregulation is a major component of the beneficial effect of green space, and a neglected ecosystem service that is essential for our well-being. This insight will allow green spaces to be designed to optimize health benefits and will provide impetus from health systems for the preservation of ecosystem biodiversity.
Collapse
|
42
|
Craig TJ, Dispenza MC. Benefits of exercise in asthma. Ann Allergy Asthma Immunol 2013; 110:133-140.e2. [PMID: 23548519 DOI: 10.1016/j.anai.2012.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/26/2012] [Accepted: 10/21/2012] [Indexed: 11/25/2022]
Affiliation(s)
- Timothy J Craig
- Section of Allergy, Asthma, and Immunology, Penn State University, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
43
|
Luks V, Burkett A, Turner L, Pakhale S. Effect of physical training on airway inflammation in animal models of asthma: a systematic review. BMC Pulm Med 2013; 13:24. [PMID: 23617952 PMCID: PMC3691924 DOI: 10.1186/1471-2466-13-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is little data on the effect of exercise on markers of airway inflammation in human asthmatics. The main objective of this review is to determine the effects of physical training on markers of airway inflammation in animal models of asthma. METHODS A peer reviewed search was applied to Medline, Embase, Web of Science, Cochrane, and DARE databases. Data extraction was performed in a blinded fashion. RESULTS From the initial 2336 studies, a total of 10 studies were selected for the final analysis. All were randomized controlled trials with low to moderate intensity training on ovalbumin-sensitized mice. In the exercised group of mice, there was a reduction in BAL eosinophils and Th-2 cytokines, no change in Th-1 cytokines, an increase in IL-10, and a reversal of airway remodeling. The data was not pooled owing to significant heterogeneity between studies, and a funnel plot test for publication bias was not performed because there were few studies reporting on any one outcome measure. The asthma models differed between studies in age and gender of mice, as well as in timing of physical training after sensitization. The risk of bias was unclear for some studies though this may not influence outcome measures. The accuracy of data extracted from graphics is unknown. CONCLUSIONS Physical training improves airway inflammation in animal asthma models.
Collapse
Affiliation(s)
- Vanessa Luks
- Division of Respirology, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | - Andrew Burkett
- Division of Respirology, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | - Lucy Turner
- The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Smita Pakhale
- Divison of Respirology, The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
44
|
Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, Demain J, Portnoy J, von Hertzen L. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J 2013; 6:3. [PMID: 23663440 PMCID: PMC3646540 DOI: 10.1186/1939-4551-6-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Biodiversity loss and climate change secondary to human activities are now being associated with various adverse health effects. However, less attention is being paid to the effects of biodiversity loss on environmental and commensal (indigenous) microbiotas. Metagenomic and other studies of healthy and diseased individuals reveal that reduced biodiversity and alterations in the composition of the gut and skin microbiota are associated with various inflammatory conditions, including asthma, allergic and inflammatory bowel diseases (IBD), type1 diabetes, and obesity. Altered indigenous microbiota and the general microbial deprivation characterizing the lifestyle of urban people in affluent countries appear to be risk factors for immune dysregulation and impaired tolerance. The risk is further enhanced by physical inactivity and a western diet poor in fresh fruit and vegetables, which may act in synergy with dysbiosis of the gut flora. Studies of immigrants moving from non-affluent to affluent regions indicate that tolerance mechanisms can rapidly become impaired in microbe-poor environments. The data on microbial deprivation and immune dysfunction as they relate to biodiversity loss are evaluated in this Statement of World Allergy Organization (WAO). We propose that biodiversity, the variability among living organisms from all sources are closely related, at both the macro- and micro-levels. Loss of the macrodiversity is associated with shrinking of the microdiversity, which is associated with alterations of the indigenous microbiota. Data on behavioural means to induce tolerance are outlined and a proposal made for a Global Allergy Plan to prevent and reduce the global allergy burden for affected individuals and the societies in which they live.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
| | - Stephen Holgate
- School of Medicine, University of Southampton, Southampton, UK
| | | | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Suwat Benjaponpitak
- Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Jeffrey Demain
- Allergy, Asthma & Immunology Center of Alaska, Dept of Pediatrics, University of Washington, Washington, USA
| | - Jay Portnoy
- University of Missouri-Kansas City School of Medicine, Missouri, USA
| | - Leena von Hertzen
- Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
| |
Collapse
|
45
|
Rehm KE, Elci OU, Hahn K, Marshall GD. The impact of self-reported psychological stress levels on changes to peripheral blood immune biomarkers in recreational marathon runners during training and recovery. Neuroimmunomodulation 2013; 20:164-76. [PMID: 23548735 DOI: 10.1159/000346795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Marathon training is both physically and psychologically stressful, both of which can lead to altered immunity. The purpose of this study was to determine if the overall immunoregulatory changes associated with the physical stress of marathon training are affected by psychological stress. METHODS Nineteen recreational marathoners completed the Perceived Stress Scale (PSS), State-Trait Anxiety Inventory (STAI) and Penn State Worry Questionnaire (PSWQ), and had levels of T cell subpopulations and cytokine (IFNγ, IL4 and IL10) production determined 4 weeks before (baseline), 24-48 h before (prerace) and 1 week after (recovery) participation in a marathon. RESULTS PSS scores decreased at the prerace visit compared to baseline and remained low at recovery. Compared to baseline, there were significant changes to numerous immune measures at the prerace visit, including decreases in Th1/Th2 ratio, Tc1/Tc2 ratio, Tr1 and Th3 cell populations as well as decreases in IFNγ/IL4 cytokine ratio and IL10 production. Most immune parameters had returned to near baseline values at the recovery visit. Higher levels of perceived stress, anxiety and worry exacerbated many of the alterations in immunity that were observed at the prerace visit. Higher levels of perceived stress and worry had significant effects on changes to Treg, IL4 production and the IFNγ/IL4 cytokine ratio. Stress had an additional impact on changes in IL10 production. High anxiety levels resulted in significant changes to Treg, Tr1 and Th3. CONCLUSION These data suggest that recreational marathon runners with higher levels of psychological stress may be more at risk for the immune alterations that are common during periods of prolonged physical training.
Collapse
Affiliation(s)
- Kristina E Rehm
- Laboratory of Behavioral Immunology Research, Department of Medicine, Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | | | | | | |
Collapse
|
46
|
Yang YL, Pan YQ, He BS, Zhong TY. Regulatory T cells and Th1/Th2 in peripheral blood and their roles in asthmatic children. Transl Pediatr 2013; 2:27-33. [PMID: 26835281 PMCID: PMC4728940 DOI: 10.3978/j.issn.2224-4336.2012.04.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine the changes in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) and the Th1/Th2 ratio in peripheral blood of children with asthma, in order to investigate its association with asthma. METHODS A total of 150 children with asthma were allocated into the acute phase group (n=94) and remission phase group (n=56) based on clinical manifestations. The acute phase group was subdivided into the mild group (n=54) and severe group (n=40). Flow cytometry was applied to determine CD4(+)CD25(+)Foxp3(+) Treg, CD4(+)IFN-γ(+) Th1 and CD4(+)IL-4(+) Th2 levels in peripheral blood of different groups, and the results were compared with normal children (control group, n=50). RESULTS The Treg level was significantly lower in the asthma group than the control group (P<0.01): the Treg level was significantly lower in the acute phase group than the remission phase group and control group (P<0.01) and also significantly lower in the severe group than the mild group (P<0.01). The Th1/Th2 ratio was significantly lower in the asthma group than the control group (P<0.01) and also significantly lower in the acute phase group than the remission phase group and control group (P<0.01). The Treg level in peripheral blood of asthmatic children was negatively correlated with the severity of asthma (r=-0.737, P<0.01) and the Th1/Th2 ratio was also negatively correlated with the severity of asthma (r=-0.615, P<0.01), but the Treg level was positively correlated with the Th1/Th2 ratio (r=0.856, P<0.01). CONCLUSIONS The significantly decreased level of Treg in peripheral blood and Th subset imbalance in asthmatic children suggest the important roles of Treg and Th immunity in pathogenesis of asthma. The Treg level and Th1/Th2 ratio in peripheral blood can be used to evaluate the severity asthma.
Collapse
Affiliation(s)
- Yan-Li Yang
- Clinical Laboratory, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Yu-Qin Pan
- Clinical Laboratory, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Bang-Shun He
- Clinical Laboratory, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Tian-Ying Zhong
- Clinical Laboratory, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
47
|
Boyd A, Yang CT, Estell K, Ms CT, Gerald LB, Dransfield M, Bamman M, Bonner J, Atkinson TP, Schwiebert LM. Feasibility of exercising adults with asthma: a randomized pilot study. Allergy Asthma Clin Immunol 2012; 8:13. [PMID: 22863207 PMCID: PMC3511803 DOI: 10.1186/1710-1492-8-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/04/2012] [Indexed: 01/18/2023] Open
Abstract
Background Aerobic exercise appears to have clinical benefits for many asthmatics, yet a complete understanding of the mechanisms underlying these benefits has not been elucidated at this time. Purpose The objective of this study was to determine feasibility for a larger, future study that will define the effect of aerobic exercise on cellular, molecular, and functional measures in adults with mild-moderate asthma. Design Recruited subjects were randomized into usual care (sedentary) or usual care with moderate intensity aerobic exercise treatment groups. Setting / Participants Nineteen adults with mild-moderate asthma but without a recent history of exercise were recruited at the UAB Lung Health Center, Birmingham, AL. Intervention The exercise group underwent a 12 week walking program exercising at 60 – 75% of maximum heart rate (HRmax). Subjects self-monitored HRmax levels using heart rate monitors; exercise diaries and recreation center sign-in logs were also used. Main outcome measures Functional measures, including lung function and asthma control scores, were evaluated for all subjects at pre- and post-study time-points; fitness measures were also assessed for subjects in the exercise group. Peripheral blood and nasal lavage fluid were collected from all subjects at pre- and post-study visits in order to evaluate cellular and molecular measures, including cell differentials and eosinophilic cationic protein (ECP). Results Sixteen subjects completed the prescribed protocol. Results show that subjects randomized to the exercise group adhered well (80%) to the exercise prescription and exhibited a trend toward improved fitness levels upon study completion. Both groups exhibited improvements in ACQ scores. No changes were observed in lung function (FEV1, FEV1/FVC), cell differentials, or ECP between groups. Conclusions Results indicate that a moderate intensity aerobic exercise training program may improve asthma control and fitness levels without causing asthma deterioration in adult asthmatics. As such, these findings demonstrate the feasibility of the study protocol in preparation for a larger, clinical trial that will elucidate the functional consequences of aerobic exercise on asthmatic cellular and molecular responses.
Collapse
Affiliation(s)
- Amy Boyd
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, 1918 University Boulevard, Birmingham, AL, 35294-0005, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev 2012; 11:404-20. [PMID: 22465452 DOI: 10.1016/j.arr.2012.03.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/26/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
Aging is associated with a decline in the normal functioning of the immune system that is described by the canopy term "immunosenescence". This contributes to poorer vaccine responses and the increased incidence of infection and malignancy seen in the elderly. Regular exercise has been associated with enhanced vaccination responses, lower numbers of exhausted/senescent T-cells, increased T-cell proliferative capacity, lower circulatory levels of inflammatory cytokines ("inflamm-aging"), increased neutrophil phagocytic activity, lowered inflammatory response to bacterial challenge, greater NK-cell cytotoxic activity and longer leukocyte telomere lengths in aging humans, all of which indicate that habitual exercise is capable of regulating the immune system and delaying the onset of immunosenescence. This contention is supported by the majority of animal studies that report improved immune responses and outcomes to viral infections and malignancies due to exercise training. However, whether or not exercise can reverse, as well as prevent, immunosenescence is a contentious issue, particularly because most longitudinal exercise training studies do not report the same positive effects of exercise on immunity that have been widely reported in studies with a cross-sectional design. In this review, we summarize some of the known effects of exercise on immunosenescence, discuss avenues for future research, and provide potential mechanisms by which exercise may help rejuvinate the aging immune system.
Collapse
|
49
|
Scichilone N, Morici G, Zangla D, Arrigo R, Cardillo I, Bellia V, Bonsignore MR. Effects of exercise training on airway closure in asthmatics. J Appl Physiol (1985) 2012; 113:714-8. [PMID: 22744971 DOI: 10.1152/japplphysiol.00529.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that responsiveness to methacholine (Mch) in the absence of deep inspiration (DI) decreased in healthy subjects after a short course of exercise training. We assessed whether a similar beneficial effect of exercise on airway responsiveness could occur in asthmatics. Nine patients (male/female: 3/6; mean age ± SD: 24 ± 2 yr) with mild untreated asthma [forced expiratory volume in 1 s (FEV(1)): 100 ± 7.4% pred; FEV(1)/vital capacity (VC): 90 ± 6.5%] underwent a series of single-dose Mch bronchoprovocations in the absence of DI in the course of a 10-wk training rowing program (6 h/wk of submaximal and maximal exercise), at baseline (week 0), and at week 5 and 10. The single-dose Mch was established as the dose able to induce ≥ 15% reduction in inspiratory vital capacity (IVC) and was administered to each subject at every challenge occasion. Five asthmatics (male/female: 1/4; mean age ± SD: 26 ± 3 yr) with similar baseline lung function (FEV(1): 102 ± 7.0% predicted; FEV(1)/VC: 83 ± 6.0%; P = 0.57 and P = 0.06, respectively) not participating in the exercise training program served as controls. In the trained group, the Mch-induced reduction in IVC from baseline was 22 ± 10% at week 0, 13 ± 11% at week 5 (P = 0.03), and 11 ± 8% at week 10 (P = 0.028). The Mch-induced reduction in FEV(1) did not change with exercise (P = 0.69). The reduction in responsiveness induced by exercise was of the same magnitude of that previously obtained in healthy subjects (50% with respect to pretraining). Conversely, Mch-induced reduction in IVC in controls remained unchanged after 10 wk (%reduction IVC at baseline: 21 ± 20%; after 10 wk: 29 ± 14%; P = 0.28). This study indicates that a short course of physical training is capable of reducing airway responsiveness in mild asthmatics.
Collapse
Affiliation(s)
- Nicola Scichilone
- Department of Internal Medicine, Section of Pulmonology, DIBIMIS University of Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Physical activity is beneficial for children with positive outcomes for mental and physical well-being. Allergic conditions unique to the sporting arena may serve as an impediment to participation in physical activity for allergic children. A common example is exercise-induced asthma; less common activity-related allergic conditions include food-dependent exercise-induced anaphylaxis, exercise-induced anaphylaxis, and exercise-induced urticaria. Allergic children may also be at risk of allergic reactions when exposed to allergens that are more commonly found in the sports environment, e.g., latex, sports drinks, and medications such as NSAIDs. Recent advances in our understanding of the patho-physiological and immunologic mechanisms that may account for these conditions have facilitated more effective and safer management strategies. There are also important immunologic lessons to be learnt with respect to specific physical factors that may result in diminished allergen tolerance; indeed, these lessons may facilitate safer allergen desensitisation regimens. The role of the immune system in exercise-induced immunoallergic syndromes, clinical aspects, and diagnostic and therapeutic approaches are discussed in this review.
Collapse
Affiliation(s)
- Stefano R Del Giacco
- Department of Medical Sciences M. Aresu, University of Cagliari, Cagliari, Italy.
| | | | | |
Collapse
|