1
|
Haker R, Helft C, Natali Shamir E, Shahar M, Solomon H, Omer N, Blumenfeld‐Katzir T, Zlotzover S, Piontkewitz Y, Weiner I, Ben‐Eliezer N. Characterization of Brain Abnormalities in Lactational Neurodevelopmental Poly I:C Rat Model of Schizophrenia and Depression Using Machine-Learning and Quantitative MRI. J Magn Reson Imaging 2025; 61:2281-2291. [PMID: 39466009 PMCID: PMC11987781 DOI: 10.1002/jmri.29634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND A recent neurodevelopmental rat model, utilizing lactational exposure to polyriboinosinic-polyribocytidilic acid (Poly I:C) leads to mimics of behavioral phenotypes resembling schizophrenia-like symptoms in male offspring and depression-like symptoms in female offspring. PURPOSE To identify mechanisms of neuronal abnormalities in lactational Poly I:C offspring using quantitative MRI (qMRI) tools. STUDY TYPE Prospective. ANIMAL MODEL Twenty Poly I:C rats and 20 healthy control rats, age 130 postnatal day. FIELD STRENGTH/SEQUENCE 7 T. Multiflip-angle FLASH protocol for T1 mapping; multi-echo spin-echo T2-mapping protocol; echo planar imaging protocol for diffusion tensor imaging. ASSESSMENT Nursing dams were injected with the viral mimic Poly I:C or saline (control group). In adulthood, quantitative maps of T1, T2, proton density, and five diffusion metrics were generated for the offsprings. Seven regions of interest (ROIs) were segmented, followed by extracting 10 quantitative features for each ROI. STATISTICAL TESTS Random forest machine learning (ML) tool was employed to identify MRI markers of disease and classify Poly I:C rats from healthy controls based on quantitative features. RESULTS Poly I:C rats were identified from controls with an accuracy of 82.5 ± 25.9% for females and 85.0 ± 24.0% for males. Poly I:C females exhibited differences mainly in diffusion-derived parameters in the thalamus and the medial prefrontal cortex (MPFC), while males displayed changes primarily in diffusion-derived parameters in the corpus callosum and MPFC. DATA CONCLUSION qMRI shows potential for identifying sex-specific brain abnormalities in the Poly I:C model of neurodevelopmental disorders. LEVEL OF EVIDENCE NA TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Rona Haker
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Coral Helft
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | | | - Moni Shahar
- The AI and Data Science CenterTel Aviv UniversityTel AvivIsrael
| | - Hadas Solomon
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Noam Omer
- Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
| | | | - Sharon Zlotzover
- Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
| | - Yael Piontkewitz
- School of Psychological SciencesTel Aviv UniversityTel AvivIsrael
| | - Ina Weiner
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- School of Psychological SciencesTel Aviv UniversityTel AvivIsrael
| | - Noam Ben‐Eliezer
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
- Center for Advanced Imaging Innovation and Research (CAI2R)New York University School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
2
|
Cheng M, Jiang Z, Yang J, Sun X, Song N, Du C, Luo Z, Zhang Z. The role of the neuroinflammation and stressors in premenstrual syndrome/premenstrual dysphoric disorder: a review. Front Endocrinol (Lausanne) 2025; 16:1561848. [PMID: 40225329 PMCID: PMC11985436 DOI: 10.3389/fendo.2025.1561848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD) are prevalent emotional disorders in females, characterized by cyclic variations in physiological stress responses and emotional symptoms that correspond with the menstrual cycle. Despite extensive research, the underlying causes of these disorders remain elusive. This review delves into the neurobiological mechanisms connecting stress-induced neuroinflammation with PMS/PMDD. Additionally, it traces the conceptual development and historical context of PMS/PMDD. The review further evaluates clinical evidence on the association between PMS/PMDD and stress, along with findings from both clinical and animal studies that link these disorders to inflammatory processes. Additionally, the neurobiological pathways by which inflammatory responses may play a role in the pathogenesis of PMS/PMDD were elucidated, including their interactions with the hypothalamic-pituitary-ovary (HPO) axis, serotonin-kynurenine (5-HT-KYN) system, GABAergic system, brain-derived neurotrophic factor (BDNF), hypothalamic-pituitary-adrena(HPA)axis and. Future research is encouraged to further investigate the pathogenesis of PMS/PMDD through the perspective of neuroinflammatory responses.
Collapse
Affiliation(s)
- Ming Cheng
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhaoshu Jiang
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Yang
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xu Sun
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
| | - Nan Song
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
| | - Chunyu Du
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
| | - Zhenliang Luo
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhen Zhang
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Liang Y, Yang Y, Jie Z, Kang X, Xu H, Zhang H, Wu X. Hippocampal GPR35 Participates in the Pathogenesis of Cognitive Deficits and Emotional Alterations Induced by Aβ 1-42 in Mice. Mol Neurobiol 2025; 62:557-582. [PMID: 38878116 DOI: 10.1007/s12035-024-04296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/08/2024] [Indexed: 01/11/2025]
Abstract
The amyloid-beta (Aβ) aggregation in Alzheimer's disease (AD) triggers neuroinflammation, and neurodegeneration, which lead to cognitive deficits along with other neuropsychiatric symptoms, including depression and anxiety. G protein-coupled receptor 35 (GPR35) is expressed in the brain and is involved in metabolic stresses. However, the role of GPR35 in AD pathogenesis remains unknown. Herein, pharmacological blockade, shRNA-mediated knockdown or knockout of GPR35 was performed to investigate the role and mechanisms of GPR35 in Aβ1-42-induced cognitive impairment and emotional alterations in mice. A series of behavioral, histopathological, and biochemical tests were performed in mice. Our results showed that hippocampal GPR35 expression was significantly increased in Aβ1-42-induced and APP/PS1 AD mouse models. Pharmacological blockade or knockdown of GPR35 ameliorated cognitive impairment and emotional alterations induced by Aβ1-42 in mice. We also found that blockade or knockdown of GPR35 decreased the accumulation of Aβ, and improved neuroinflammation, cholinergic system deficiency, and neuronal apoptosis via the RhoA/ROCK2 pathway in Aβ1-42-treaed mice. However, activation of GPR35 aggravates Aβ1-42-induced cognitive deficits and emotional alterations in mice. In addition, genetic deletion of GPR35 protects against the Aβ1-42-induced cognitive deficits and emotional alterations in mice. Moreover, GPR35 could bind to TLR4. These results indicate that GPR35 participates in the pathogenesis of cognitive deficits and emotional alterations induced by Aβ1-42 in mice, suggesting that GPR35 could be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- YuSheng Liang
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Yang
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Zhi Jie
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xu Kang
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Heng Xu
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - HaiWang Zhang
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xian Wu
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Abdallah SB, Fasching L, Brady M, Bloch MH, Lombroso P, Vaccarino FM, Fernandez TV. Tourette syndrome. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:951-962. [DOI: 10.1016/b978-0-443-19176-3.00044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Zagaria A, Ballesio A. Insomnia symptoms as long-term predictors of anxiety symptoms in middle-aged and older adults from the English Longitudinal Study of Ageing (ELSA), and the role of systemic inflammation. Sleep Med 2024; 124:120-126. [PMID: 39293197 DOI: 10.1016/j.sleep.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Insomnia, i.e., difficulties in sleep onset and sleep maintenance, may increase the risk of anxiety symptoms, although long-term follow-up studies are rarely reported. Here, we examined whether insomnia symptoms may predict anxiety symptoms in a 9-year follow-up, and whether inflammation may play a mediating role. Data from 1355 participants (63.44 ± 7.47 years, 55.1 % females) from the English Longitudinal Study of Ageing (ELSA) were analysed. Insomnia symptoms were assessed in 2012/13. High-sensitivity C-reactive protein (hs-CRP), a marker of systemic inflammation, was measured in 2016/17. Anxiety symptoms were assessed in 2020/21. After adjusting for confounders and baseline levels, structural equation modelling (SEM) revealed that insomnia symptoms significantly predicted anxiety symptoms (β = 0.357, p < .001) but not hs-CRP (β = -0.016, p = .634). Similarly, hs-CRP was not related to anxiety symptoms (β = -0.024, p = .453). The hs-CRP mediation hypothesis was therefore rejected (β = 0.0004; 95 % BCI -0.001 to 0.005), and multi-group SEM showed that sex did not moderate these paths. However, baseline diagnoses of anxiety disorders prospectively predicted higher hs-CRP (B = 0.083, p = .030). Results of the current study suggest that individuals with baseline anxiety disorders may be at higher risk of developing low-grade chronic inflammation. Several alternative psychophysiological mechanisms linking insomnia and anxiety symptoms should be explored, including autonomic and cortical pre-sleep arousal, cortisol reactivity, and pro-inflammatory cytokines. Finally, insomnia symptoms may be a treatment target to lower the risk of anxiety symptoms in elderly.
Collapse
Affiliation(s)
- Andrea Zagaria
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav Immun Health 2024; 40:100839. [PMID: 39263315 PMCID: PMC11387593 DOI: 10.1016/j.bbih.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/28/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, sociability, and repetitive/stereotyped behavior. The etiology of autism is diverse, with genetic susceptibility playing an important role alongside environmental insults and conditions. Human and preclinical studies have shown that ASD is commonly accompanied by inflammation, and inhibition of the inflammatory response can ameliorate, or prevent the phenotype in preclinical studies. The kynurenine pathway, responsible for tryptophan metabolism, is upregulated by inflammation. Hence, this metabolic route has drawn the attention of investigators across different disciplines such as cancer, immunology, and neuroscience. Over the past decade, studies have identified evidence that the kynurenine pathway is also altered in autism spectrum disorders. In this mini review, we will explore the current status quo of the link between the kynurenine pathway and ASD, shedding light on the compelling but still preliminary evidence of this relationship.
Collapse
|
7
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
8
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
10
|
Mandolfo O, Parker H, Aguado È, Ishikawa Learmonth Y, Liao AY, O'Leary C, Ellison S, Forte G, Taylor J, Wood S, Searle R, Holley RJ, Boutin H, Bigger BW. Systemic immune challenge exacerbates neurodegeneration in a model of neurological lysosomal disease. EMBO Mol Med 2024; 16:1579-1602. [PMID: 38890537 PMCID: PMC11251277 DOI: 10.1038/s44321-024-00092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Helen Parker
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Èlia Aguado
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Yuko Ishikawa Learmonth
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Ai Yin Liao
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Claire O'Leary
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Stuart Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Gabriella Forte
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Jessica Taylor
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Shaun Wood
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rachel Searle
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rebecca J Holley
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- INSERM, UMR 1253, iBrain, Université de Tours, Tours, France
| | - Brian W Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Kamada S, Noguchi H, Yamamoto S, Tamura K, Aoki H, Takeda A, Uchishiba M, Minato S, Arata M, Arakaki R, Inui H, Kagawa T, Kawakita T, Yoshida A, Mineda A, Yamamoto Y, Kinouchi R, Yoshida K, Kaji T, Nishimura M, Iwasa T. Stress responses to bacterial and viral mimetics in polycystic ovary syndrome model rats. Brain Behav Immun Health 2024; 38:100772. [PMID: 38650845 PMCID: PMC11033849 DOI: 10.1016/j.bbih.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with an increased risk of psychological distress as well as enhanced responses to psychosocial stress. Recently, it was hypothesized that PCOS patients may be at high risk of novel COVID-19 infections and worse clinical presentations during such infections. Here, we evaluated the effects of PCOS on stress responses to bacterial and viral mimetics using dihydrotestosterone-induced PCOS model rats. Lipopolysaccharide (LPS; a bacterial mimetic) or polyinosinic-polycytidylic acid (Poly-IC; a viral mimetic) was injected into PCOS model rats (PCOS) and non-PCOS rats (control), and the rats' stress responses were evaluated. In the PCOS group, the rats' anorectic and febrile responses to LPS injection were enhanced, whereas their anorectic and febrile responses to Poly-IC injection were unaltered. The PCOS group also exhibited greater changes in peripheral cytokine levels in response to LPS, but not Poly-IC. On the contrary, after the injection of Poly-IC depressed locomotor activity was more evident in the PCOS group, whereas no such changes were observed after LPS injection. These findings indicate that although the stress responses of PCOS model rats to infection may be enhanced, the patterns of change in stress responses and their underlying mechanisms may differ between bacterial and viral infections.
Collapse
Affiliation(s)
- Shuhei Kamada
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Moeka Arata
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroaki Inui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ayuka Mineda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Riyo Kinouchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
13
|
Verma K, Amitabh, Prasad DN, Reddy MPK, Kohli E. Kynurenines Dynamics in the Periphery and Central Nervous System Steers Behavioral Deficits in Rats under Hypobaric Hypoxia. ACS Chem Neurosci 2024; 15:1084-1095. [PMID: 38462729 DOI: 10.1021/acschemneuro.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
People travel to high-altitude regions as tourists, workers, and military personnel on duty. Despite the consistent 21% oxygen content in the atmosphere, ascending to higher altitudes results in a decrease in the partial pressure of oxygen, inducing a state known as hypobaric hypoxia (HH). HH is an environmental stress that is responsible for neuroinflammation and behavioral deficits (anxiety, depression, mood disturbance, etc.), but little is known about its metabolic pathways. The kynurenine pathway (KP) is a promising candidate to uncover the mysteries of HH stress, as it is an important regulator of the immune system and is associated with behavioral deficits. To investigate the role of KP under HH, the levels of KP metabolites in the serum, cerebrospinal fluid (CSF), and brain tissue (prefrontal cortex-PFC, neocortex, and hippocampus) of male Sprague-Dawley rats exposed to HH at 7620 m for 1, 3, and 7 days were estimated utilizing high-performance liquid chromatography (HPLC). The behavioral analogs for anxiety-like and depression-like behavior were assessed using the open field test and forced swim test, respectively. Upon HH exposure, crosstalk between the periphery and central nervous system and KP metabolite region-dependent differential expression in the brain were observed. KP metabolites showed a positive correlation with behavioral parameters. The results of our study are indicative that KP can be proposed as the etiology of behavioral deficits, and KP metabolite levels in serum or CSF can be used as plausible markers for anxiety-like and depression-like behaviors under HH stress with a scope of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kalyani Verma
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - Amitabh
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - Dipti N Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - M Prasanna Kumar Reddy
- Department of Applied Physiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Ekta Kohli
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| |
Collapse
|
14
|
Wang M, Peng C, Jiang T, Wu Q, Li D, Lu M. Association between systemic immune-inflammation index and post-stroke depression: a cross-sectional study of the national health and nutrition examination survey 2005-2020. Front Neurol 2024; 15:1330338. [PMID: 38562426 PMCID: PMC10984268 DOI: 10.3389/fneur.2024.1330338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Background Less research has linked the Systemic Immune Inflammatory Index (SII) with post-stroke depression (PSD). This study aims to look at any potential connections between SII and PSD. Methods The National Health and Nutrition Examination Survey (NHANES), conducted in a population that embodied complete SII and stroke data from 2005 to 2020, was used to perform the current cross-sectional survey. A fitted smoothed curve was used to depict the nonlinear link between SII and PSD, and multiple linear regression analysis demonstrated a positive correlation between SII and PSD. Results Multiple linear regression analysis showed that SII and PSD were markedly related [1.11(1.05, 1.17)]. Interaction tests showed that the association between SII and PSD was not statistically different between strata, and age, sex, BMI, income poverty ratio, education level, smoking status, diabetes mellitus, coronary heart disease, and heart failure did not have a significant effect on this positive association (p > 0.05 for interaction). In addition, a nonlinear association between SII and PSD was found using a two-stage linear regression model. Conclusion The results of our research support the existence of a significant positive correlation between SII levels and PSD. Further prospective trials are required to comprehend SII, which is for the PSD thoroughly.
Collapse
Affiliation(s)
- Mingzhu Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengchao Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Jiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongfang Wu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danping Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Lu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Liang J, Xu Y, Gao W, Sun Y, Zhang Y, Shan F, Xia Q. Cytokine profile in first-episode drug-naïve major depressive disorder patients with or without anxiety. BMC Psychiatry 2024; 24:93. [PMID: 38308225 PMCID: PMC10835958 DOI: 10.1186/s12888-024-05536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE It is known that cytokines play a role in both depression and anxiety. This study aimed to compare the levels of multiple cytokines in patients with first-episode drug-naive major depressive disorder (MDD) with or without anxiety and analyze the correlation between the level of depression or anxiety and the serum cytokine levels. METHODS The study involved 55 patients with first-episode drug-naive MDD. To assess anxiety symptoms, the 14-item HAMA was used. MDD patients were divided into two groups: 23 MDD patients without anxiety and 32 MDD patients with anxiety. The measurement of 37 cytokines was conducted. Serum cytokine levels between patients with MDD without anxiety and anxiety were compared. In multiple linear regression models, the relationship between the group and abnormal cytokines was explored. The receiver operating characteristic (ROC) curve analysis was performed to estimate diagnostic performance of serum cytokines in discriminating MDD patients with anxiety from MDD patients without anxiety. A correlation was evaluated between the scores of HAMD or HAMA and the serum cytokine levels. RESULTS In MDD patients with anxiety, IL-17 C and CCL17 levels were significantly lower than in MDD patients without anxiety (all P < 0.05). Multiple measurements were corrected with Benjamini-Hochberger corrections, but none of these differences persisted (all P > 0.05). The results of multiple linear regression models revealed that after controlling for other independent variables, group was not a significant independent predictor of serum IL-17 C or CCL17 (all P > 0.05). The AUC values of IL-17 C and CCL17 were 0.643 and 0.637, respectively, in discriminating MDD patients with anxiety from MDD patients without anxiety. The results of partial correlation analyses showed the scores of HAMD were negatively correlated with the IL-17 C (r = -0.314, P = 0.021) levels with sex as a covariate. CONCLUSIONS The findings suggest that there is a potential absence of disparity in the levels of circulating cytokines among individuals diagnosed with first-episode drug-naïve MDD, regardless of the presence or absence of comorbid anxiety.
Collapse
Affiliation(s)
- Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Wenfan Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yanhong Sun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yuanyuan Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
- Anhui Clinical Research Center for Mental Disorders, Hefei, China.
- Department of Science and Education, Hefei Fourth People's Hospital, Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, 316 Huangshan Road, 230000, Hefei, PR China.
| |
Collapse
|
16
|
Manti S, Spoto G, Nicotera AG, Di Rosa G, Piedimonte G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge. Front Neurosci 2024; 17:1320319. [PMID: 38260010 PMCID: PMC10800711 DOI: 10.3389/fnins.2023.1320319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Brain development is a complex process that begins during pregnancy, and the events occurring during this sensitive period can affect the offspring's neurodevelopmental outcomes. Respiratory viral infections are frequently reported in pregnant women, and, in the last few decades, they have been related to numerous neuropsychiatric sequelae. Respiratory viruses can disrupt brain development by directly invading the fetal circulation through vertical transmission or inducing neuroinflammation through the maternal immune activation and production of inflammatory cytokines. Influenza virus gestational infection has been consistently associated with psychotic disorders, such as schizophrenia and autism spectrum disorder, while the recent pandemic raised some concerns regarding the effects of severe acute respiratory syndrome coronavirus 2 on neurodevelopmental outcomes of children born to affected mothers. In addition, emerging evidence supports the possible role of respiratory syncytial virus infection as a risk factor for adverse neuropsychiatric consequences. Understanding the mechanisms underlying developmental dysfunction allows for improving preventive strategies, early diagnosis, and prompt interventions.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
17
|
Wences Chirino T, Rangel López E, Luna Angulo A, Carrillo Mora P, Landa Solis C, Samudio Cruz MA, Fuentes Bello AC, Paniagua Pérez R, Ríos Martínez J, Sánchez Chapul L. Crosstalk between Exercise-Derived Endocannabinoidome and Kynurenines: Potential Target Therapies for Obesity and Depression Symptoms. Pharmaceuticals (Basel) 2023; 16:1421. [PMID: 37895892 PMCID: PMC10609722 DOI: 10.3390/ph16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.
Collapse
Affiliation(s)
- Tiffany Wences Chirino
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Edgar Rangel López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Paul Carrillo Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Carlos Landa Solis
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - María Alejandra Samudio Cruz
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Alim C. Fuentes Bello
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Rogelio Paniagua Pérez
- Biochemistry Laboratory, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Juan Ríos Martínez
- Health Sciences Research Institute, Mexican Navy, Mexico City 04470, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| |
Collapse
|
18
|
Mudra Rakshasa-Loots A. Depression and HIV: a scoping review in search of neuroimmune biomarkers. Brain Commun 2023; 5:fcad231. [PMID: 37693812 PMCID: PMC10489482 DOI: 10.1093/braincomms/fcad231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
People with HIV are at increased risk for depression, though the neurobiological mechanisms underlying this are unclear. In the last decade, there has been a substantial rise in interest in the contribution of (neuro)inflammation to depression, coupled with rapid advancements in the resolution and sensitivity of biomarker assays such as Luminex, single molecular array and newly developed positron emission tomography radioligands. Numerous pre-clinical and clinical studies have recently leveraged these next-generation immunoassays to identify biomarkers that may be associated with HIV and depression (separately), though few studies have explored these biomarkers in co-occurring HIV and depression. Using a systematic search, we detected 33 publications involving a cumulative N = 10 590 participants which tested for associations between depressive symptoms and 55 biomarkers of inflammation and related processes in participants living with HIV. Formal meta-analyses were not possible as statistical reporting in the field was highly variable; future studies must fully report test statistics and effect size estimates. The majority of included studies were carried out in the United States, with samples that were primarily older and primarily men. Substantial further work is necessary to diversify the geographical, age, and sex distribution of samples in the field. This review finds that alterations in concentrations of certain biomarkers of neuroinflammation (interleukin-6, tumour necrosis factor-α, neopterin) may influence the association between HIV and depression. Equally, the chemokines monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) or the metabolic index kynurenine:tryptophan (Kyn:Trp), which have been the focus of several studies, do not appear to be associated with depressive symptoms amongst people living with HIV, as all (MCP-1) or most (IL-8 and Kyn:Trp) available studies of these biomarkers reported non-significant associations. We propose a biomarker-driven hypothesis of the neuroimmunometabolic mechanisms that may precipitate the increased risk of depression among people with HIV. Chronically activated microglia, which trigger key neuroinflammatory cascades shown to be upregulated in people with HIV, may be the central link connecting HIV infection in the central nervous system with depressive symptoms. Findings from this review may inform research design in future studies of HIV-associated depression and enable concerted efforts towards biomarker discovery.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town 7505, South Africa
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton BN2 5BE, UK
| |
Collapse
|
19
|
Yildiz Taskiran S, Taskiran M, Unal G, Bozkurt NM, Golgeli A. The long-lasting effects of aceclofenac, a COX-2 inhibitor, in a Poly I:C-Induced maternal immune activation model of schizophrenia in rats. Behav Brain Res 2023; 452:114565. [PMID: 37414224 DOI: 10.1016/j.bbr.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
It is well established that rats exposed to inflammation during pregnancy or the perinatal period have an increased chance of developing schizophrenia-like symptoms and behaviors, and people with schizophrenia also have raised levels of inflammatory markers. Therefore, there is evidence supporting the idea that anti-inflammatory drugs may have therapeutic benefits. Aceclofenac is a nonsteroidal anti-inflammatory drug that has anti-inflammatory properties and is used clinically to treat inflammatory and painful processes such as osteoarthritis and rheumatoid arthritis, making it a potential candidate for preventive or adjunctive therapy in schizophrenia. This study therefore examined the effect of aceclofenac in a maternal immune activation model of schizophrenia, in which polyinosinic-polycytidylic acid (Poly I:C) (8 mg/kg, i.p.) was administered to pregnant rat dams. Young female rat pups received daily aceclofenac (5, 10, and 20 mg/kg, i.p., n = 10) between postnatal day 56 and 76. The effects of aceclofenac were compared with assessment of behavioral tests and ELISA results. During the postnatal days (PNDs) 73-76, behavioral tests were conducted in rats, and on PND 76, ELISA tests were performed to examine the changes in Tumor necrosis factor alpha (TNF-α), Interleukin-1β (IL-1β), Brain-derived neurotrophic factor (BDNF), and nestin levels. Aceclofenac treatment reversed deficits in prepulse inhibition, novel object recognition, social interaction, and locomotor activity tests. In addition, aceclofenac administration decreased TNF-α and IL-1β expression in the prefrontal cortex and hippocampus. In contrast, BDNF and nestin levels did not change significantly during treatment with aceclofenac. Taken together, these results suggest that aceclofenac may be an alternative therapeutic adjunctive strategy to improve the clinical expression of schizophrenia in the further studies.
Collapse
Affiliation(s)
| | - Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Nuh Mehmet Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Asuman Golgeli
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
20
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
21
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
22
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
23
|
Lashgari NA, Roudsari NM, Shayan M, Niazi Shahraki F, Hosseini Y, Momtaz S, Abdolghaffari AH. IDO/Kynurenine; novel insight for treatment of inflammatory diseases. Cytokine 2023; 166:156206. [PMID: 37120946 DOI: 10.1016/j.cyto.2023.156206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Inflammation and oxidative stress play pivotal roles in pathogenesis of many diseases including cancer, type 2 diabetes, cardiovascular disease, atherosclerosis, neurological diseases, and inflammatory diseases such as inflammatory bowel disease (IBD). Inflammatory mediators such as interleukins (ILs), interferons (INF-s), and tumor necrosis factor (TNF)-α are related to an extended chance of inflammatory diseases initiation or progression due to the over expression of the nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLR), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. These pathways are completely interconnected. Theindoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) (IDO/KYN), is a metabolic inflammatory pathway involved in production of nicotinamide adenine dinucleotide (NAD + ). It has been shown that IDO/KYN actively participates in inflammatory processes and can increase the secretion of cytokines that provoke inflammatory diseases. Data were extracted from clinical and animal studies published in English between 1990-April 2022, which were collected from PubMed, Google Scholar, Scopus, and Cochrane library. IDO/KYN is completely associated with inflammatory-related pathways, thus leading to the production of cytokines such as TNF-α, IL-1β, and IL-6, and ultimately development and progression of various inflammatory disorders. Inhibition of the IDO/KYN pathway might be a novel therapeutic option for inflammatory diseases. Herein, we gathered data on probable interactions of the IDO/KYN pathway with induction of some inflammatory diseases.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
24
|
Müller SG, Jardim NS, Lutz G, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 benefits against anxiety-like phenotype associated with synaptic plasticity impairment and NMDAR-mediated neurotoxicity in young mice exposed to a lifestyle model. Chem Biol Interact 2023; 378:110486. [PMID: 37054933 DOI: 10.1016/j.cbi.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Lifestyle habits including energy-dense foods and ethanol intake are associated with anxiety disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been reported to modulate serotonergic and opioidergic systems and elicit an anxiolytic-like phenotype in animal models. This study investigated if the modulation of synaptic plasticity and NMDAR-mediated neurotoxicity contributes to the (m-CF3-PhSe)2 anxiolytic-like effect in young mice exposed to a lifestyle model. Swiss male mice (25-days old) were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) from the postnatal day (PND) 25-66 and sporadic ethanol (2 g/kg) (3 x a week, intragastrically, i.g.) from PND 45 to 60. From PND 60 to 66, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g). The corresponding vehicle (control) groups were carried out. After, mice performed anxiety-like behavioral tests. Mice exposed only to an energy-dense diet or sporadic ethanol did not show an anxiety-like phenotype. (m-CF3-PhSe)2 abolished the anxiety-like phenotype in young mice exposed to a lifestyle model. Anxious-like mice showed increased levels of cerebral cortical NMDAR2A and 2B, NLRP3 and inflammatory markers, and decreased contents of synaptophysin, PSD95, and TRκB/BDNF/CREB signaling. (m-CF3-PhSe)2 reversed cerebral cortical neurotoxicity, the increased levels of NMDA2A and 2B, and decreased levels of synaptic plasticity-related signaling in the cerebral cortex of young mice exposed to a lifestyle model. In conclusion, the (m-CF3-PhSe)2 anxiolytic-like effect was associated with the modulation of NMDAR-mediated neurotoxicity and synaptic plasticity in the cerebral cortex of young mice exposed to the lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Natália S Jardim
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Lutz
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Gilson Zeni
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
25
|
Zhou X, Li Y, Sun Z, Mu L, Ma Y. Elevated red blood cell distribution width levels predict depression after intracerebral hemorrhage: A 3-month follow-up study. Front Neurol 2023; 14:1077518. [PMID: 37090985 PMCID: PMC10113641 DOI: 10.3389/fneur.2023.1077518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectivesInflammation vitally impacts the progression of depression resulting from intracerebral hemorrhage (ICH), while red blood cell distribution width (RDW) marks inflammatory-related diseases. The present study aimed at evaluating how RDW affects depression after ICH.MethodsFrom prospective analyses of patients admitted to our department between January 2017 and September 2022, ICH patients with complete medical records were evaluated. The 17-item Hamilton Depression (HAMD-17) scale was used for measuring the depressive symptoms at 3 months after ICH. Diagnosis of post-ICH depression was conducted for patients based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria.ResultsA total of 438 patients were enrolled in the study, out of which 93 (21.23%) patients had PSD at the 3-month follow-up. Accordingly, patients with depression had higher RDW levels (13.70 [IQR: 13.56–13.89] vs.13.45 [IQR: 12.64–13.75], p < 0.001) at admission compared with those without depression. In multivariate analyses, RDW was used for independently predicting the depression after ICH at 3 months (OR: 2.832 [95% CI: 1.748–4.587], p < 0.001). After adjusting the underlying confounding factors, the odds ratio (OR) of depression after ICH was 4.225 (95% CI: 1.686–10.586, p = 0.002) for the highest tertile of RDW relative to the lowest tertile. With an AUC of 0.703 (95% CI: 0.649–0.757), RDW demonstrated a significantly better discriminatory ability relative to CRP and WBC. RDW as an indicator for predicting depression after ICH had an optimal cutoff value of 13.68, and the sensitivity and specificity were 63.4% and 64.6%, respectively.ConclusionsElevated RDW level predicted post-ICH depression at 3 months, confirming RDW as an effective inflammatory marker for predicting depression after ICH.
Collapse
Affiliation(s)
- Xianping Zhou
- Department of Laboratory, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| | - Yaqiang Li
- Department of Neurology, People's Hospital of Lixin County, Bozhou, China
| | - Zhongbo Sun
- Department of Neurosurgery, First Affiliated Hospital of Anhui University of Science and Technology (First People's Hospital of Huainan), Huainan, China
- *Correspondence: Zhongbo Sun
| | - Li Mu
- Department of Laboratory, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| | - Yaoyao Ma
- Department of Laboratory, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| |
Collapse
|
26
|
Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H. Altered Tryptophan-Kynurenine Pathway in Delirium: A Review of the Current Literature. Int J Mol Sci 2023; 24:5580. [PMID: 36982655 PMCID: PMC10056900 DOI: 10.3390/ijms24065580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
Collapse
Affiliation(s)
- Ang Hui Phing
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
27
|
Hursitoglu O, Kurutas EB, Strawbridge R, Oner E, Gungor M, Tuman TC, Uygur OF. Serum NOX1 and Raftlin as new potential biomarkers of Major Depressive Disorder: A study in treatment-naive first episode patients. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110670. [PMID: 36341844 DOI: 10.1016/j.pnpbp.2022.110670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Biological factors are known to be important in understanding the pathogenesis of Major Depressive Disorder (MDD). Oxidative stress and neuroinflammation pathways are likely to play a critical role here. METHODS We undertook a study to investigate two novel biomarkers - serum NADPH oxidase 1 (NOX1) and Raftlin levels - in treatment-naive, smoking-free first episode patients with MDD compared to healthy controls (HCs) matched for age, sex and body mass index. RESULTS We found increased NOX1 and Raftlin levels in MDD patients compared to HCs. Both parameters showed very good diagnostic performance in the MDD group. In addition, we found a significant positive correlation between depression severity (HAMD) scores and both biomarker levels in the patient group. CONCLUSION To the best of our knowledge, this is the first human study to evaluate serum NOX1 and Raftlin levels in depression. NOX1, an important source of reactive oxygen species (ROS), and Raftlin, which may play a role in the inflammatory process, represent novel potential biomarkers of MDD. These findings support the implication of oxidative stress and inflammatory processes in patients with MDD, and indicate that the deteriorated ROS-antioxidant balance can be regulated via NOX1 in patients with depression.
Collapse
Affiliation(s)
- Onur Hursitoglu
- Department of Psychiatry, Sular Academy Hospital, Kahramanmaras, Turkey.
| | - Ergul Belge Kurutas
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Rebecca Strawbridge
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Meltem Gungor
- Department of Medical Biochemistry, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Taha Can Tuman
- Medipol University, Medical Faculty, Department of Psychiatry, İstanbul, Turkey
| | - Omer Faruk Uygur
- Ataturk University, Medical Faculty, Department of Psychiatry, Erzurum, Turkey
| |
Collapse
|
28
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
29
|
Yan L, Liu CH, Xu L, Qian YY, Song PP, Wei M, Liu BL. Alpha-Asarone modulates kynurenine disposal in muscle and mediates resilience to stress-induced depression via PGC-1α induction. CNS Neurosci Ther 2023; 29:941-956. [PMID: 36575869 PMCID: PMC9928554 DOI: 10.1111/cns.14030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Kynurenine (KYN) accumulation in periphery induces brain injury, responsible for depression. α-Asarone is a simple phenylpropanoids that exerts beneficial effects on central nervous system. However, the effect of α-asarone on periphery is unexplored. AIMS Here, we investigated its protective role against depression from the aspect of KYN metabolism in skeletal muscle. METHODS The antidepressant effects of α-asarone were evaluated in chronic mild stress (CMS) and muscle-specific PGC-1α-deficient mice. The effects of KYN metabolism were determined in mice and C2C12 myoblasts. RESULTS α-Asarone exerted antidepressant effects in CMS and KYN-challenged mice via modulating KYN metabolism. In myoblasts, α-asarone regulated PGC-1α induction via cAMP/CREB signaling and upregulated KYN aminotransferases (KATs) to increase KYN clearance in a manner dependent on PGC-1α. KAT function is coupled with malate-aspartate shuttle (MAS), while α-asarone combated oxidative stress to protect MAS and mitochondrial integrity by raising the NAD+ /NADH ratio, ensuring effective KYN disposal. In support, the antidepressant effect of α-asarone was diminished by muscle-specific PGC-1α deficient mice subjected to KYN challenge. CONCLUSION KATs coupled with MAS to clear KYN in muscle. α-Asarone increased PGC-1α induction and promoted KYN disposal in muscle, suggesting that protection of mitochondria is a way for pharmacological intervention to depression.
Collapse
Affiliation(s)
- Lu Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chu-Han Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy Sciences, Beijing, China
| | - Yi-Yun Qian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ping-Ping Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Wei
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Giffin KA, Lovelock DF, Besheer J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav Brain Res 2023; 438:114200. [PMID: 36334783 PMCID: PMC10123804 DOI: 10.1016/j.bbr.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.
Collapse
Affiliation(s)
| | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Halaris A, Cook J. The Glutamatergic System in Treatment-Resistant Depression and Comparative Effectiveness of Ketamine and Esketamine: Role of Inflammation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:487-512. [PMID: 36949323 DOI: 10.1007/978-981-19-7376-5_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The glutamatergic system is the primary excitatory pathway within the CNS and is responsible for cognition, memory, learning, emotion, and mood. Because of its significant importance in widespread nervous system function, it is tightly regulated through multiple mechanisms, such as glutamate recycling, microglial interactions, and inflammatory pathways. Imbalance within the glutamatergic system has been implicated in a wide range of pathological conditions including neurodegenerative conditions, neuromuscular conditions, and mood disorders including depression. Major depressive disorder (MDD) is the most common mood disorder worldwide, has a high prevalence rate, and afflicts approximately 280 million people. While there are numerous treatments for the disease, 30-40% of patients are unresponsive to treatment and deemed treatment resistant; approximately another third experience only partial improvement (World Health Organization, Depression fact sheet [Internet], 2020). Esketamine, the S-enantiomer of ketamine, was approved by the Food and Drug Administration for treatment-resistant depression (TRD) in 2019 and has offered new hope to patients. It is the first treatment targeting the glutamatergic system through a complex mechanism. Numerous studies have implicated imbalance in the glutamatergic system in depression and treatment resistance. Esketamine and ketamine principally work through inhibition of the NMDA receptor, though more recent studies have implicated numerous other mechanisms mediating the antidepressant efficacy of these agents. These mechanisms include increase in brain-derived neurotrophic factor (BDNF), activation of mammalian target of the rapamycin complex (mTORC), and reduction in inflammation. Esketamine and ketamine have been shown to decrease inflammation in numerous ways principally through reducing pro-inflammatory cytokines (e.g., TNF-α, IL-6) (Loix et al., Acta Anaesthesiol Belg 62(1):47-58, 2011; Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021). This anti-inflammatory effect has also been shown to be involved in the antidepressive properties of both ketamine and esketamine (Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021).
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - John Cook
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
32
|
Mutovina A, Ayriyants K, Mezhlumyan E, Ryabushkina Y, Litvinova E, Bondar N, Khantakova J, Reshetnikov V. Unique Features of the Immune Response in BTBR Mice. Int J Mol Sci 2022; 23:15577. [PMID: 36555219 PMCID: PMC9779573 DOI: 10.3390/ijms232415577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a considerable role in the pathogenesis of many diseases, including neurodegenerative and psychiatric ones. Elucidation of the specific features of an immune response in various model organisms, and studying the relation of these features with the behavioral phenotype, can improve the understanding of the molecular mechanisms of many psychopathologies. In this work, we focused on BTBR mice, which have a pronounced autism-like behavioral phenotype, elevated levels of oxidative-stress markers, an abnormal immune response, several structural aberrations in the brain, and other unique traits. Although some studies have already shown an abnormal immune response in BTBR mice, the existing literature data are still fragmentary. Here, we used inflammation induced by low-dose lipopolysaccharide, polyinosinic:polycytidylic acid, or their combinations, in mice of strains BTBR T+Itpr3tf/J (BTBR) and C57BL6/J. Peripheral inflammation was assessed by means of a complete blood count, lymphocyte immunophenotyping, and expression levels of cytokines in the spleen. Neuroinflammation was evaluated in the hypothalamus and prefrontal cortex by analysis of mRNA levels of proinflammatory cytokines (tumor necrosis factor, Tnf), (interleukin-1 beta, Il-1β), and (interleukin-6, Il-6) and of markers of microglia activation (allograft inflammatory factor 1, Aif1) and astroglia activation (glial fibrillary acidic protein, Gfap). We found that in both strains of mice, the most severe inflammatory response was caused by the administration of polyinosinic:polycytidylic acid, whereas the combined administration of the two toll-like receptor (TLR) agonists did not enhance this response. Nonetheless, BTBR mice showed a more pronounced response to low-dose lipopolysaccharide, an altered lymphocytosis ratio due to an increase in the number of CD4+ lymphocytes, and high expression of markers of activated microglia (Aif1) and astroglia (Gfap) in various brain regions as compared to C57BL6/J mice. Thus, in addition to research into mechanisms of autism-like behavior, BTBR mice can be used as a model of TLR3/TLR4-induced neuroinflammation and a unique model for finding and evaluating the effectiveness of various TLR antagonists aimed at reducing neuroinflammation.
Collapse
Affiliation(s)
- Anastasia Mutovina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Ayriyants
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Eva Mezhlumyan
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Yulia Ryabushkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Ekaterina Litvinova
- Physical Engineering Faculty, Novosibirsk State Technical University, Prospekt Karl Marx, 20, 630073 Novosibirsk, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Julia Khantakova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
33
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
35
|
Cai Q, Zhang W, Sun Y, Xu L, Wang M, Wang X, Wang S, Ni Z. Study on the mechanism of andrographolide activation. Front Neurosci 2022; 16:977376. [PMID: 36177361 PMCID: PMC9513578 DOI: 10.3389/fnins.2022.977376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Andrographolide is a natural antibiotic that has the ability to dispel heat, detoxify, reduce inflammation, and relieve pain. Recent research has shown that it can exert anti-inflammatory effects via multiple pathways and multiple targets (mediated by NF-κB, JAK/STAT, T cell receptor, and other signaling pathways). It can inhibit human lung cancer cells, colon cancer cells, osteosarcoma cells, and other tumor cells, as well as reduce bacterial virulence and inhibit virus-induced cell apoptosis. It can also regulate inflammatory mediator expression to protect the nervous system and effectively prevent mental illness. Additionally, andrographolide regulates the immune system, treats cardiovascular and cerebral vascular diseases, protects the liver, and the gallbladder. It is clear that andrographolide has a huge range of potential applications. The mechanism of andrographolide's anti-inflammatory, antibacterial, antiviral, and nervous system defense in recent years have been reviewed in this article.
Collapse
Affiliation(s)
- Qihan Cai
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Weina Zhang
- Hebei Institute of Dermatology, Baoding, China
| | - Yanan Sun
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Lu Xu
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Mengmeng Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Xinliang Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Siming Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, Baoding, China
- Clinical Medical College, Hebei University, Baoding, China
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, China
| |
Collapse
|
36
|
Miura S, Oyanagi E, Watanabe C, Hamada H, Aoki T, Kremenik MJ, Yano H. Acetyl-L-carnitine attenuates Poly I: C- induced sickness behavior in mice. Biosci Biotechnol Biochem 2022; 86:1423-1430. [PMID: 35945649 DOI: 10.1093/bbb/zbac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
Fatigue is accompanied by a decrease in physical activity or malaise, and might be reduced by acetyl-L-carnitine (ALC) administration. The purpose of this study was to investigate the preventive effects of ALC on Poly I: C-induced sickness behavior in mice. For the experiment, male C3H/HeN mice were used and treated with ALC for 5 days before Poly I: C administration. ALC administration attenuated the decrease in wheel behavior activity of mice at 24 h after Poly I: C administration, and ALC treated mice quickly recovered from the sickness behavior. The gene expression of brain-derived neurotrophic factor (BDNF) in the cerebrum and hippocampus, which is associated with physical activity, was higher in the ALC-treated group. Translocator protein 18kDa (TSPO), which has cytoprotective effects, was up-regulated in the cerebrum and hippocampus, suggesting that ALC suppressed the decrease in activity induced by Poly I: C treatment through enhancement of cytoprotective effects in the brain.
Collapse
Affiliation(s)
- Suzuka Miura
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Chihiro Watanabe
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Hiroki Hamada
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Takafumi Aoki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, Kurashiki, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Michael J Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| |
Collapse
|
37
|
Bay-Richter C, Wegener G. Antidepressant Effects of NSAIDs in Rodent Models of Depression-A Systematic Review. Front Pharmacol 2022; 13:909981. [PMID: 35754506 PMCID: PMC9213814 DOI: 10.3389/fphar.2022.909981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years much focus has been on neuroimmune mechanisms of depression. As a consequence, many preclinical and clinical trials have been performed examining potential antidepressant effects of several anti-inflammatory drugs. The results of such trials have been varied. With the current manuscript we wished to elucidate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on depressive-like behaviour in rodent models of depression by performing a systematic review of the available literature. We performed a systematic literature search in PubMed for rodent models of depression where NSAIDs were administered and a validated measure of depressive-like behaviour was applied. 858 studies were initially identified and screened using Covidence systematic review software. Of these 36 met the inclusion criteria and were included. The extracted articles contained data from both rat and mouse studies but primarily male animals were used. Several depression models were applied and 17 different NSAIDs were tested for antidepressant effects. Our results suggest that stress models are the best choice when examining antidepressant effects of NSAIDs. Furthermore, we found that rat models provide a more homogenous response than mouse models. Intriguingly, the use of female animals was only reported in three studies and these failed to find antidepressant effects of NSAIDs. This should be explored further. When comparing the different classes of NSAIDs, selective COX-2 inhibitors were shown to provide the most stable antidepressant effect compared to non-selective COX-inhibitors. Suggested mechanisms behind the antidepressant effects were attenuation of neuroinflammation, HPA-axis dysregulation and altered monoamine expression.
Collapse
Affiliation(s)
- Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Fang C, Zhang Z, Xu H, Liu Y, Wang X, Yuan L, Xu Y, Zhu Z, Zhang A, Shao A, Lou M. Natural Products for the Treatment of Post-stroke Depression. Front Pharmacol 2022; 13:918531. [PMID: 35712727 PMCID: PMC9196125 DOI: 10.3389/fphar.2022.918531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Post-stroke depression (PSD) is the most frequent and important neuropsychiatric consequence of stroke. It is strongly associated with exacerbated deterioration of functional recovery, physical and cognitive recoveries, and quality of life. However, its mechanism is remarkably complicated, including the neurotransmitters hypothesis (which consists of a monoaminergic hypothesis and glutamate-mediated excitotoxicity hypothesis), inflammation hypothesis, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophic hypothesis and neuroplasticity. So far, the underlying pathogenesis of PSD has not been clearly defined yet. At present, selective serotonin reuptake inhibitors (SSRIs) have been used as the first-line drugs to treat patients with PSD. Additionally, more than SSRIs, a majority of the current antidepressants complied with multiple side effects, which limits their clinical application. Currently, a wide variety of studies revealed the therapeutic potential of natural products in the management of several diseases, especially PSD, with minor side effects. Accordingly, in our present review, we aim to summarize the therapeutic targets of these compounds and their potential role in-clinic therapy for patients with PSD.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| |
Collapse
|
39
|
Bekfani T, Bekhite M, Neugebauer S, Derlien S, Hamadanchi A, Nisser J, Hilse MS, Haase D, Kretzschmar T, Wu MF, Lichtenauer M, Kiehntopf M, von Haehling S, Schlattmann P, Lehmann G, Franz M, Möbius-Winkler S, Schulze C. Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker. Cells 2022; 11:cells11101674. [PMID: 35626711 PMCID: PMC9139290 DOI: 10.3390/cells11101674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aims: Metabolic and structural perturbations in skeletal muscle have been found in patients with heart failure (HF) both with preserved (HFpEF) and reduced (HFrEF) ejection fraction in association with reduced muscle endurance (RME). We aimed in the current study to create phenotypes for patients with RME and HFpEF compared to RME HFrEF according to their metabolomic profiles and to test the potential of Kynurenine (Kyn) as a marker for RME. Methods: Altogether, 18 HFrEF, 17 HFpEF, and 20 healthy controls (HC) were prospectively included in the current study. The following tests were performed on all participants: isokinetic muscle function tests, echocardiography, spiroergometry, and varied blood tests. Liquid chromatography tandem mass spectrometry was used to quantify metabolites in serum. Results: Except for aromatic and branched amino acids (AA), patients with HF showed reduced AAs compared to HC. Further perturbations were elevated concentrations of Kyn and acylcarnitines (ACs) in HFpEF and HFrEF patients (p < 0.05). While patients with HFpEF and RME presented with reduced concentrations of ACs (long- and medium-chains), those with HFrEF and RME had distorted AAs metabolism (p < 0.05). With an area under the curve (AUC) of 0.83, Kyn shows potential as a marker in HF and RME (specificity 70%, sensitivity 83%). In a multiple regression model consisting of short-chain-ACs, spermine, ornithine, glutamate, and Kyn, the latest was an independent predictor for RME (95% CI: −13.01, −3.30, B: −8.2 per 1 µM increase, p = 0.001). Conclusions: RME in patients with HFpEF vs. HFrEF proved to have different metabolomic profiles suggesting varied pathophysiology. Kyn might be a promising biomarker for patients with HF and RME.
Collapse
Affiliation(s)
- Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, Otto von Guericke-University, 39120 Magdeburg, Germany;
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Mohamed Bekhite
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Sophie Neugebauer
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07743 Jena, Germany; (S.N.); (M.K.)
| | - Steffen Derlien
- Institute of Physiotherapy, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (S.D.); (J.N.)
| | - Ali Hamadanchi
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Jenny Nisser
- Institute of Physiotherapy, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (S.D.); (J.N.)
| | - Marion S. Hilse
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Daniela Haase
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Tom Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Mei-Fang Wu
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07743 Jena, Germany; (S.N.); (M.K.)
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, 37075 Göttingen, Germany;
- German Center for Cardiovascular Research (DZHK), 37075 Göttingen, Germany
| | - Peter Schlattmann
- Institute for Medical Statistics, Computer Science and Data Science (IMSID), Jena University Hospital, 07743 Jena, Germany;
| | - Gabriele Lehmann
- Department of Internal Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany;
| | - Marcus Franz
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Sven Möbius-Winkler
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
| | - Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University, 07743 Jena, Germany; (M.B.); (A.H.); (M.S.H.); (D.H.); (T.K.); (M.-F.W.); (M.F.); (S.M.-W.)
- Correspondence: ; Tel.: +49-3641-932-4101; Fax: +49-3641-932-4102
| |
Collapse
|
40
|
Costa-Ferro ZSM, do Prado-Lima PAS, Onsten GA, Oliveira GN, Brito GC, Ghilardi IM, Dos Santos PG, Bertinatto RJ, da Silva DV, Salamoni SD, Machado DC, da Cruz IBM, de Freitas Souza BS, da Costa JC. Bone marrow mononuclear cell transplant prevents rat depression and modulates inflammatory and neurogenic molecules. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110455. [PMID: 34637870 DOI: 10.1016/j.pnpbp.2021.110455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Major depressive disorder is associated with chronic inflammation and deficient production of brain-derived neurotrophic factor (BDNF). Bone marrow mononuclear cell (BMMC) transplantation has an anti-inflammatory effect and has been proven effective in restoring non-depressive behavior. This study investigated whether BMMC transplantation can prevent the development of depression or anxiety in chronic mild stress (CMS), as well as its effect on inflammatory and neurogenic molecules. METHOD Three groups of animals were compared: BMMC-transplanted animals subjected to CMS for 45 days, CMS non-transplanted rats, and control animals. After the CMS period, the three groups underwent the following behavioral tests: sucrose preference test (SPT), eating-related depression test (ERDT), social avoidance test (SAT), social interaction test (SIT), and elevated plus maze test (EPMT). Transplanted cell tracking and measurement of the expression of high-mobility group box 1 (HMGB1), interleukin-1β (IL-1β), tumor necrosis factor (TNFα), and BDNF were performed on brain and spleen tissues. RESULTS BMMC transplantation prevented the effects of CMS in the SPT, ERDT, SAT, and SIT, while prevention was less pronounced in the EPMT. It was found to prevent increased HMGB-1 expression induced by CMS in the hippocampus and spleen, increase BDNF expression in both tissues, and prevent increased IL-1β expression in the hippocampus alone, while no effect of the transplant was observed in the TNFα expression. In addition, no transplanted cells were found in either the brain or spleen. CONCLUSIONS BMMC transplantation prevents the development of depression and anxiety-like behavior triggered by CMS. It could prevent increased HMGB-1 and IL-1β expression in the hippocampus and increased BDNF expression in the same tissue. Cell treatment represents a further perspective in the research and treatment of depression and possible mood disorders.
Collapse
Affiliation(s)
| | | | - Guilherme Ary Onsten
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gutierre Neves Oliveira
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Camargo Brito
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Gabrielli Dos Santos
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricardo Jean Bertinatto
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Vieira da Silva
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Denise Salamoni
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia, Brazil; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | - Jaderson Costa da Costa
- Brain Institute (BraIns), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry 2022; 12:77-97. [PMID: 35111580 PMCID: PMC8783167 DOI: 10.5498/wjp.v12.i1.77] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is a debilitating disorder affecting millions of people each year. Brain-derived neurotrophic factor (BDNF) and inflammation are two prominent biologic risk factors in the pathogenesis of depression that have received considerable attention. Many clinical and animal studies have highlighted associations between low levels of BDNF or high levels of inflammatory markers and the development of behavioral symptoms of depression. However, less is known about potential interaction between BDNF and inflammation, particularly within the central nervous system. Emerging evidence suggests that there is bidirectional regulation between these factors with important implications for the development of depressive symptoms and anti-depressant response. Elevated levels of inflammatory mediators have been shown to reduce expression of BDNF, and BDNF may play an important negative regulatory role on inflammation within the brain. Understanding this interaction more fully within the context of neuropsychiatric disease is important for both developing a fuller understanding of biological pathogenesis of depression and for identifying novel therapeutic opportunities. Here we review these two prominent risk factors for depression with a particular focus on pathogenic implications of their interaction.
Collapse
Affiliation(s)
- Grace A Porter
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Jason C O’Connor
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Audie L. Murphy VA Hospital, South Texas Veterans Health System, San Antonio, TX 78229, United States
| |
Collapse
|
42
|
Cheng Y, Wang Y, Wang X, Jiang Z, Zhu L, Fang S. Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Depression: An Updated Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:893097. [PMID: 35782448 PMCID: PMC9240476 DOI: 10.3389/fpsyt.2022.893097] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Research on neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) in depression is still emerging and has increased 3-fold since the first meta-analysis. An updated meta-analysis with sufficient studies can provide more evidence for a potential relationship between NLR, PLR, MLR, and depression. METHODS We identified 18 studies from the PubMed, EMBASE, Cochrane library, and Web of Science databases. Meta-analyses were performed to generate pooled standardized mean differences (SMDs) and 95% confidence intervals (CIs) between patients with depression and controls. Sensitivity analysis, subgroup analysis, meta-regression, and publication bias were conducted. RESULTS A total of 18 studies including 2,264 depressed patients and 2,415 controls were included. Depressed patients had significantly higher NLR and PLR compared with controls (SMD = 0.33, 95% CI: 0.15-0.52, p < 0.001 and SMD = 0.24, 95% CI: 0.02-0.46, p < 0.05, respectively). MLR was slightly higher in depressed individuals compared to controls (SMD = 0.15, 95% CI: -0.26 to 0.55, p > 0.05), despite the absence of significance. Sensitivity analysis removing one study responsible for heterogeneity showed a higher and significant effect (SMD = 0.32, 95% CI: 0.20-0.44) of MLR. Three subgroup analyses of NLR, PLR, MLR, and depression revealed obvious differences in the inflammatory ratios between depressed patients and controls in China and the matched age and gender subgroup. Individuals with post-stroke depression (PSD) had higher NLR and MLR values as compared to non-PSD patients (SMD = 0.51, 95% CI: 0.36-0.67, p < 0.001 and SMD = 0.46, 95% CI: 0.12-0.79, p < 0.01, respectively). Meta-regression analyses showed that male proportion in the case group influenced the heterogeneity among studies that measured NLR values (p < 0.05). CONCLUSIONS Higher inflammatory ratios, especially NLR, were significantly associated with an increased risk of depression. In the subgroup of China and matched age and gender, NLR, PLR, and MLR were all elevated in depressed patients vs. controls. Individuals with PSD had higher NLR and MLR values as compared to non-PSD patients. Gender differences may have an effect on NLR values in patients with depression.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Yiwen Wang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangyi Wang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Zhuoya Jiang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Lijun Zhu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Li XL, Liu H, Liu SH, Cheng Y, Xie GJ. Intranasal Administration of Brain-Derived Neurotrophic Factor Rescues Depressive-Like Phenotypes in Chronic Unpredictable Mild Stress Mice. Neuropsychiatr Dis Treat 2022; 18:1885-1894. [PMID: 36062024 PMCID: PMC9438797 DOI: 10.2147/ndt.s369412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Major depression disorder is the most common diagnosed mental illnesses, and it bring a high social and economic burden. However, the current treatment for depression has limitations with side effects. Hence, there is an urgent need to search more effective treatment for major depressive disorder. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons. METHODS We administered BDNF into chronic unpredictable mild stress (CUMS)-induced depression mice and assessed the effects of intranasal delivery of BDNF in depression by the tail suspension test, forced swimming test, novelty suppressed feeding test, and open-field test. RESULTS We find that the intranasal administration of BDNF reversed the depressive-like behaviors in CUMS mice as measured Further analyses suggested that BDNF treatment reduced pro-inflammatory cytokine (IL-6, TNF-α, iNOS and IL-1β) expressions in the hippocampus of CUMS mice. In addition, our results showed that BDNF markedly reduced oxidative stress in the hippocampus and blood of CUMS mice. Moreover, our data suggested that BDNF treatment increased neurogenesis in the hippocampus of CUMS mice. DISCUSSION Taken together, our results for the first time demonstrated that intranasal delivery of BDNF protein exhibited anti-depressant-like effects in mice, and therefore may represent a new therapeutic strategy for major depressive disorder.
Collapse
Affiliation(s)
- Xiao-Ling Li
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| | - Hua Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Shu-Han Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Yong Cheng
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China.,Institute of National Security, Minzu University of China, Beijing, People's Republic of China
| | - Guo-Jun Xie
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| |
Collapse
|
44
|
Sherer ML, Lemanski EA, Patel RT, Wheeler SR, Parcells MS, Schwarz JM. A Rat Model of Prenatal Zika Virus Infection and Associated Long-Term Outcomes. Viruses 2021; 13:v13112298. [PMID: 34835104 PMCID: PMC8624604 DOI: 10.3390/v13112298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life. Adult offspring that were prenatally infected with ZIKV exhibited motor deficits in a sex-specific manner, and failed to mount a normal interferon response to a viral immune challenge later in life. Despite undetectable levels of ZIKV in the brain and serum in these offspring at P2, P24, or P60, these results suggest that prenatal exposure to ZIKV results in lasting consequences that could significantly impact the health of the offspring. To help individuals already exposed to ZIKV, as well as be prepared for future outbreaks, we need to understand the full spectrum of neurological and immunological consequences that could arise following prenatal ZIKV infection.
Collapse
Affiliation(s)
- Morgan L. Sherer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
- Correspondence: (M.L.S.); (E.A.L.)
| | - Elise A. Lemanski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
- Correspondence: (M.L.S.); (E.A.L.)
| | - Rita T. Patel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| | - Shannon R. Wheeler
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Jaclyn M. Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| |
Collapse
|
45
|
Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021; 12:e0177621. [PMID: 34700379 PMCID: PMC8546584 DOI: 10.1128/mbio.01776-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.
Collapse
|
46
|
Caulfield JI. Anxiety, depression, and asthma: New perspectives and approaches for psychoneuroimmunology research. Brain Behav Immun Health 2021; 18:100360. [PMID: 34661176 PMCID: PMC8502834 DOI: 10.1016/j.bbih.2021.100360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
The field of psychoneuroimmunology has advanced the understanding of the relationship between immunology and mental health. More work can be done to advance the field by investigating the connection between internalizing disorders and persistent airway inflammation from asthma and air pollution exposure. Asthma is a prominent airway condition that affects about 10% of developing youth and 7.7% of adults in the United States. People who develop with asthma are at three times increased risk to develop internalizing disorders, namely anxiety and depression, compared to people who do not have asthma while developing. Interestingly, sex differences also exist in asthma prevalence and internalizing disorder development that differ based on age. Exposure to air pollution also is associated with increased asthma and internalizing disorder diagnoses. New perspectives of how chronic inflammation affects the brain could provide more understanding into internalizing disorder development. This review on how asthma and air pollution cause chronic airway inflammation details recent preclinical and clinical research that begins to highlight potential mechanisms that drive comorbidity with internalizing disorder symptoms. These findings provide a foundation for future studies to identify therapies that can simultaneously treat asthma and internalizing disorders, thus potentially decreasing mental health diagnoses in asthma patients.
Collapse
Affiliation(s)
- Jasmine I Caulfield
- Yale Cancer Center, Yale School of Medicine, 333Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
47
|
Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats. J Chem Neuroanat 2021; 118:102035. [PMID: 34597812 DOI: 10.1016/j.jchemneu.2021.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.
Collapse
|
48
|
Ghosh R, Mitra P, Kumar PVSNK, Goyal T, Sharma P. T helper cells in depression: central role of Th17 cells. Crit Rev Clin Lab Sci 2021; 59:19-39. [PMID: 34592888 DOI: 10.1080/10408363.2021.1965535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common neuropsychiatric disorders in the world. While conventional pharmaceutical therapy targets monoaminergic pathway dysfunction, it has not been totally successful in terms of positive outcomes, remission, and preventing relapses. There is an increasing amount of evidence that neuroinflammation may play a significant part in the pathophysiology of depression. Among the key components of the neuroinflammatory pathways already known to be active are the T helper (Th) cells, especially Th17 cells. While various preclinical and clinical studies have reported increased levels of Th17 cells in both serum and brain tissue of laboratory model animals, contradictory results have argued against a pertinent role of Th17 cells in depression. Recent studies have also revealed a role for more pathogenic and inflammatory subsets of Th17 in depression, as well as IL-17A and Th17 cells in non-responsiveness to conventional antidepressant therapy. Despite recent advances, there is still a significant knowledge gap concerning the exact mechanism by which Th17 cells influence neuroinflammation in depression. This review first provides a short introduction to the major findings that led to the discovery of the role of Th cells in depression. The major subsets of Th cells known to be involved in neuroimmunology of depression, such as Th1, Th17, and T regulatory cells, are subsequently described, with an in-depth discussion on current knowledge about Th17 cells in depression.
Collapse
Affiliation(s)
- Raghumoy Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
49
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
50
|
Flannery LE, Kerr DM, Hughes EM, Kelly C, Costello J, Thornton AM, Humphrey RM, Finn DP, Roche M. N-acylethanolamine regulation of TLR3-induced hyperthermia and neuroinflammatory gene expression: A role for PPARα. J Neuroimmunol 2021; 358:577654. [PMID: 34265624 PMCID: PMC8243641 DOI: 10.1016/j.jneuroim.2021.577654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Edel M Hughes
- Physiology, National University of Ireland, Galway, Ireland
| | - Colm Kelly
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - Rachel M Humphrey
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|