1
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
2
|
Liu J, Wang Y, Zeng L, Yu C, Kang R, Klionsky DJ, Jiang J, Tang D. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024; 20:2616-2631. [PMID: 38916095 PMCID: PMC11587848 DOI: 10.1080/15548627.2024.2372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yichun Wang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Ming S, Li X, Xiao Q, Qu S, Wang Q, Fang Q, Liang P, Xu Y, Yang J, Yang Y, Huang X, Wu Y. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J Clin Invest 2024; 135:e159400. [PMID: 39405126 DOI: 10.1172/jci159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly upregulated in sepsis patients and correlated with the severity of sepsis. Knockout of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2-knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit bruton tyrosine kinase-mediated (BTK-mediated) FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO that may provide a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiongyan Fang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yating Xu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Yang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yongqiang Yang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| |
Collapse
|
4
|
Yumoto T, Coopersmith CM. Targeting AMP-activated protein kinase in sepsis. Front Endocrinol (Lausanne) 2024; 15:1452993. [PMID: 39469575 PMCID: PMC11513325 DOI: 10.3389/fendo.2024.1452993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a global health challenge marked by limited clinical options and high mortality rates. AMP-activated protein kinase (AMPK) is a cellular energy sensor that mediates multiple crucial metabolic pathways that may be an attractive therapeutic target in sepsis. Pre-clinical experimental studies have demonstrated that pharmacological activation of AMPK can offer multiple potential benefits during sepsis, including anti-inflammatory effects, induction of autophagy, promotion of mitochondrial biogenesis, enhanced phagocytosis, antimicrobial properties, and regulation of tight junction assembly. This review aims to discuss the existing evidence supporting the therapeutic potential of AMPK activation in sepsis management.
Collapse
Affiliation(s)
- Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Li N, Deng J, Zhang J, Yu F, Ye F, Hao L, Li S, Hu X. A New Strategy for Targeting UCP2 to Modulate Glycolytic Reprogramming as a Treatment for Sepsis A New Strategy for Targeting UCP2. Inflammation 2024; 47:1634-1647. [PMID: 38429403 PMCID: PMC11549132 DOI: 10.1007/s10753-024-01998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fei Yu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanghang Ye
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
8
|
Zeng T, Liang L, Deng W, Xie M, Zhao M, Wang S, Liu J, Yang M. BMAL1 plays a crucial role in immune homeostasis during sepsis-induced acute lung injury. Biochem Pharmacol 2024; 226:116379. [PMID: 38908531 DOI: 10.1016/j.bcp.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Sepsis is a widespread and life-threatening disease characterised by infection-triggered immune hyperactivation and cytokine storms, culminating in tissue damage and multiple organ dysfunction syndrome. BMAL1 is a pivotal transcription factor in the circadian clock that plays a crucial role in maintaining immune homeostasis. BMAL1 dysregulation has been implicated in inflammatory diseases and immunodeficiency. However, the mechanisms underlying BMAL1 disruption in sepsis-induced acute lung injury (ALI) remain poorly understood. In vitro, we used THP1 and mouse peritoneal macrophages to elucidate the potential mechanism of BMAL1 function in sepsis. In vivo, an endotoxemia model was used to investigate the effect of BMAL1 on sepsis and the therapeutic role of targeting CXCR2. We showed that BMAL1 significantly affected the regulation of innate immunity in sepsis-induced ALI. BMAL1 deficiency in the macrophages exacerbated systemic inflammation and sepsis-induced ALI. Mechanistically, BMAL1 acted as a transcriptional suppressor and regulated the expression of CXCL2. BMAL1 deficiency in macrophages upregulated CXCL2 expression, increasing the recruitment of polymorphonuclear neutrophils and the formation of neutrophil extracellular traps (NETs) by binding to the chemokine receptor CXCR2, thereby intensifying lung injury in a sepsis model. Furthermore, a selective inhibitor of CXCR2, SB225002, exerted promising therapeutic effects by markedly reducing neutrophil infiltration and NETs formation and alleviating lung injury. Importantly, CXCR2 blockade mitigated multiple organ dysfunction. Collectively, these findings suggest that BMAL1 controls the CXCL2/CXCR2 pathway, and the therapeutic efficacy of targeting CXCR2 in sepsis has been validated, presenting BMAL1 as a potential therapeutic target for lethal infections.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Long Liang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410013, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410013, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China.
| |
Collapse
|
9
|
Liu S, Yang T, Jiang Q, Zhang L, Shi X, Liu X, Li X. Lactate and Lactylation in Sepsis: A Comprehensive Review. J Inflamm Res 2024; 17:4405-4417. [PMID: 39006496 PMCID: PMC11244620 DOI: 10.2147/jir.s459185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis is a disorder of the immune response to infection or infectious factors with high morbidity and mortality in clinical settings. The lactylation of lysine residues, fueled by lactate, plays a pivotal role in its pathophysiology. In conducting a literature review on sepsis-related research, we employed a systematic approach to ensure comprehensiveness and accuracy. Initially, we conducted an extensive literature search through the PubMed database, utilizing a range of keywords including "sepsis", "lactate", "lactylation", and "epigenetic modification". The aim was to capture the most recent research related to the pathophysiological mechanisms of sepsis, metabolic disorders, and the role of lactylation. The results of the literature review revealed a close link between sepsis and metabolic dysfunction, particularly the pivotal role of lactylation in regulating immune responses and inflammatory processes. Lactate, not only an energy metabolic byproduct produced during glycolysis, affects the activity of various proteins, including those involved in immune regulation and cell signaling, through lactylation. In the context of sepsis, changes in the levels of lactylation may be closely associated with the severity and prognosis of the disease. In summary, lactylation, as an emerging type of epigenetic modification, provides a new perspective for the diagnosis and treatment of sepsis. Future research needs to further elucidate the exact mechanisms of lactylation in sepsis and explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Ting Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Qingsong Jiang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Xinhui Shi
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| |
Collapse
|
10
|
Ashcherkin N, Abdalla AA, Gupta S, Bhatt S, Yee CI, Cartin-Ceba R. Are sodium-glucose co-transporter-2 inhibitors associated with improved outcomes in diabetic patients admitted to intensive care units with septic shock? Acute Crit Care 2024; 39:251-256. [PMID: 38863355 PMCID: PMC11167419 DOI: 10.4266/acc.2023.01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/29/2024] [Accepted: 03/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to reduce organ dysfunction in renal and cardiovascular disease. There are limited data on the role of SGLT2i in acute organ dysfunction. We conducted a study to assess the effect of SGLT2i taken prior to intensive care unit (ICU) admission in diabetic patients admitted with septic shock. METHODS This retrospective cohort study used electronic medical records and included diabetic patients admitted to the ICU with septic shock. We compared diabetic patients on SGLT2i to those who were not on SGLT2i prior to admission. The primary outcome was in-hospital mortality, and secondary outcomes included hospital and ICU length of stay, use of renal replacement therapy, and 28- and 90-day mortality. RESULTS A total of 98 diabetic patients was included in the study, 36 in the SGLT2i group and 62 in the non-SGLT2i group. The Sequential Organ Failure Assessment and Acute Physiology and Chronic Health Evaluation III scores were similar in the groups. Inpatient mortality was significantly lower in the SGLT2i group (5.6% vs. 27.4%, P=0.008). There was no significant difference in secondary outcomes. CONCLUSIONS Our study found that diabetic patients on SGLT2i prior to hospitalization who were admitted to the ICU with septic shock had lower inpatient mortality compared to patients not on SGLT2i.
Collapse
Affiliation(s)
| | | | - Simran Gupta
- Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Shubhang Bhatt
- Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Claire I. Yee
- Department of Quantitative Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
11
|
Saraiva IE, Hamahata N, Huang DT, Kane-Gill SL, Rivosecchi RM, Shiva S, Nolin TD, Chen X, Minturn J, Chang CCH, Li X, Kellum J, Gómez H. Metformin for sepsis-associated AKI: a protocol for the Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI). BMJ Open 2024; 14:e081120. [PMID: 38688665 PMCID: PMC11086423 DOI: 10.1136/bmjopen-2023-081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common complication of sepsis associated with increased risk of death. Preclinical data and observational human studies suggest that activation of AMP-activated protein kinase, an ubiquitous master regulator of energy that can limit mitochondrial injury, with metformin may protect against sepsis-associated AKI (SA-AKI) and mortality. The Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI) aims to evaluate the safety and feasibility of enteral metformin in patients with sepsis at risk of developing SA-AKI. METHODS AND ANALYSIS Blind, randomised, placebo-controlled clinical trial in a single-centre, quaternary teaching hospital in the USA. We will enrol adult patients (18 years of age or older) within 48 hours of meeting Sepsis-3 criteria, admitted to intensive care unit, with oral or enteral access. Patients will be randomised 1:1:1 to low-dose metformin (500 mg two times per day), high-dose metformin (1000 mg two times per day) or placebo for 5 days. Primary safety outcome will be the proportion of metformin-associated serious adverse events. Feasibility assessment will be based on acceptability by patients and clinicians, and by enrolment rate. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board. All patients or surrogates will provide written consent prior to enrolment and any study intervention. Metformin is a widely available, inexpensive medication with a long track record for safety, which if effective would be accessible and easy to deploy. We describe the study methods using the Standard Protocol Items for Randomized Trials framework and discuss key design features and methodological decisions. LiMiT AKI will investigate the feasibility and safety of metformin in critically ill patients with sepsis at risk of SA-AKI, in preparation for a future large-scale efficacy study. Main results will be published as soon as available after final analysis. TRIAL REGISTRATION NUMBER NCT05900284.
Collapse
Affiliation(s)
- Ivan E Saraiva
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natsumi Hamahata
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David T Huang
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sandra L Kane-Gill
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Ryan M Rivosecchi
- Department of Pharmacy, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas D Nolin
- Department of Pharmacy & Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinlei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Minturn
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chung-Chou H Chang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaotong Li
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - John Kellum
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Liu D, Li L, Li Z. Anemonin inhibits sepsis-induced acute kidney injury via mitigating inflammation and oxidative stress. Biotechnol Appl Biochem 2023; 70:1983-2001. [PMID: 37592376 DOI: 10.1002/bab.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 08/19/2023]
Abstract
Elevated inflammation and oxidative stress (OS) are the main pathologic features of acute kidney injury (AKI)-caused by sepsis. Here, we made an investigation into the protective effects of the natural compound Anemonin (ANE) on sepsis-induced AKI both in vitro and in vivo. Lipopolysaccharide (LPS) was applied to construct an in vitro AKI model in renal tubular epithelial cells, and the septic C57BL/6J mouse model was constructed via cecal ligation and puncture (CLP). Cell viability and apoptosis were detected. The levels of p53, Bax, Bcl2, Caspase3, Caspase8, Caspase9, AMP-activated protein kinase (AMPK), Sirt-1, and forkhead box O3 were determined by Western Blot or RT-PCR. The reactive oxygen species level and OS markers were measured. Furthermore, the pathological changes of kidneys were evaluated by hematoxylin-eosin staining and immunohistochemistry. As per the information presented, ANE improved LPS-elicited apoptosis, inflammatory response, and OS in a dose-dependent pattern in renal tubular epithelial cells. Besides, ANE activated the AMPK/Sirt-1 pathway, and the AMPK inhibitor (Compound C) and Sirt-1 inhibitor (EX-527) significantly attenuated ANE-mediated protection on renal tubular epithelial cells. In vivo, ANE mitigated the levels of serum creatinine and urea nitrogen in the CLP-induced mouse sepsis model, reduced the renal tissue injury score, and attenuated OS, inflammation, and apoptosis levels in the kidney. Taken together, this study suggested that ANE has protective effects in sepsis-triggered AKI through repressing inflammation, OS, and cell apoptosis by activating the AMPK/Sirt-1 pathway.
Collapse
Affiliation(s)
- Dan Liu
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Li Li
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zengyan Li
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| |
Collapse
|
13
|
Guo J, Miao Y, Nie F, Gao F, Li H, Wang Y, Liu Q, Zhang T, Yang X, Liu L, Fan H, Wang Q, Qiao H. Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis. J Nanobiotechnology 2023; 21:448. [PMID: 38001490 PMCID: PMC10675904 DOI: 10.1186/s12951-023-02224-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by excessive formation of reactive oxygen species (ROS) and dysregulated inflammatory response. Previous studies have reported that shikonin (Shik) possess prominent anti-inflammatory and antioxidant effects and holds promise as a potential therapeutic drug for sepsis. However, the poor water solubility and the relatively high toxicity of shikonin hamper its clinical application. To address this challenge, we constructed Zn2+-shikonin nanoparticles, hereafter Zn-Shik-PEG NPs, based on an organic-inorganic hybridization strategy of metal-polyphenol coordination to improve the aqueous solubility and biosafety of shikonin. Mechanistic studies suggest that Zn-Shik-PEG NPs could effectively clear intracellular ROS via regulating the Nrf2/HO-1 pathway, meanwhile Zn-Shik-PEG NPs could inhibit NLRP3 inflammasome-mediated activation of inflammation and apoptosis by regulating the AMPK/SIRT1 pathway. As a result, the Zn-Shik-PEG NPs demonstrated excellent therapeutic efficacies in lipopolysaccharide (LPS) as well as cecal ligation puncture (CLP) induced sepsis model. These findings suggest that Zn-Shik-PEG NPs may have therapeutic potential for the treatment of other ROS-associated and inflammatory diseases.
Collapse
Affiliation(s)
- Jie Guo
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing Miao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Fayi Nie
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fei Gao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hua Li
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuan Wang
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qi Liu
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Tingbin Zhang
- Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaohang Yang
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Li Liu
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Qiang Wang
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Haifa Qiao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
14
|
Wang L, Tang D, Zhang P. Changes of Serum Pyruvate Kinase M2 Level in Patients with Sepsis and Its Clinical Value. Infect Drug Resist 2023; 16:6437-6449. [PMID: 37795205 PMCID: PMC10545902 DOI: 10.2147/idr.s429314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Purpose The glucose metabolic reprogramming is an important pathological mechanism in sepsis, which involves a series of enzymes including Pyruvate kinase M2 (PKM2). The purpose of this study is to explore the diagnostic and prognostic value of serum PKM2 in sepsis patients. Patients and Methods This study recruited 143 sepsis patients, 91 non-sepsis patients, and 65 physical examiners, divided into sepsis group, non-sepsis group, and control group. Measure the serum PKM2 concentration of subjects, collect and analyze clinical and laboratory indicators of all subjects. Independent risk factors were selected by Logistic regression analysis. The area under curve (AUC) was calculated by plotting the receiver operating characteristic (ROC) curve to determine the diagnostic and prognostic value of biomarkers. Results Compared with non-sepsis and control groups, the serum PKM2 levels in the sepsis group were significantly increased (both P<0.001). PKM2 was an independent risk factor for sepsis and had the best diagnostic efficacy when combined with procalcitonin, with the AUC value of 0.9352. Patients with high levels of PKM2 were more likely to experience organ damage and had a higher incidence of septic shock. On the 1st and 3rd days of admission, the serum PKM2 levels in the septic shock group were higher than those in the sepsis group (both P<0.05), with AUC values of 0.7296 and 0.6247, respectively. On the 3rd and 7th days of admission, the serum PKM2 levels in the non-survival group were significantly higher than those in the survival group (both P<0.001), with AUC values of 0.7033 and 0.8732, respectively. Conclusion The serum PKM2 levels in sepsis patients are significantly increased and correlated with disease severity and clinical outcomes. PKM2 may be a new diagnostic and prognostic biomarker for sepsis.
Collapse
Affiliation(s)
- Li Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Dongling Tang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Pingan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| |
Collapse
|
15
|
Fu XZ, Wang Y. Interferon-γ regulates immunosuppression in septic mice by promoting the Warburg effect through the PI3K/AKT/mTOR pathway. Mol Med 2023; 29:95. [PMID: 37434129 PMCID: PMC10337057 DOI: 10.1186/s10020-023-00690-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The main cause of high mortality from sepsis is that immunosuppression leads to life-threatening organ dysfunction, and reversing immunosuppression is key to sepsis treatment. Interferon γ (IFNγ) is a potential therapy for immunosuppression of sepsis, promoting glycolysis to restore metabolic defects in monocytes, but the mechanism of treatment is unclear. METHODS To explore the immunotherapeutic mechanism of IFNγ, this study linked the Warburg effect (aerobic glycolysis) to immunotherapy for sepsis and used cecal ligation perforation (CLP) and lipopolysaccharide (LPS) to stimulate dendritic cells (DC) to establish in vivo and in vitro sepsis models, Warburg effect inhibitors (2-DG) and PI3K pathway inhibitors (LY294002) were used to explore the mechanism by which IFNγ regulates immunosuppression in mice with sepsis through the Warburg effect. RESULTS IFNγ markedly inhibited the reduction in cytokine secretion from lipopolysaccharide (LPS)-stimulated splenocytes. IFNγ-treated mice had significantly increased the percentages of positive costimulatory receptor CD86 on Dendritic cells expressing and expression of splenic HLA-DR. IFNγ markedly reduced DC-cell apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax. CLP-induced formation of regulatory T cells in the spleen was abolished in IFNγ -treated mice. IFNγ treatment reduced the expression of autophagosomes in DC cells. IFNγ significant reduce the expression of Warburg effector-related proteins PDH, LDH, Glut1, and Glut4, and promote glucose consumption, lactic acid, and intracellular ATP production. After the use of 2-DG to suppress the Warburg effect, the therapeutic effect of IFNγ was suppressed, demonstrating that IFNγ reverses immunosuppression by promoting the Warburg effect. Moreover, IFNγ increased the expression of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt), rapamycin target protein (mTOR), hypoxia-inducible factor-1 (HIF-1α), pyruvate dehydrogenase kinase (PDK1) protein, the use of 2-DG and LY294002 can inhibit the expression of the above proteins, LY294002 also inhibits the therapeutic effect of IFNγ. CONCLUSIONS It was finally proved that IFNγ promoted the Warburg effect through the PI3K/Akt/mTOR pathway to reverse the immunosuppression caused by sepsis. This study elucidates the potential mechanism of the immunotherapeutic effect of IFNγ in sepsis, providing a new target for the treatment of sepsis.
Collapse
Affiliation(s)
- Xu-Zhe Fu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Yuan L, Wang Y, Chen Y, Chen X, Li S, Liu X. Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2. Int Immunopharmacol 2023; 121:110401. [PMID: 37302371 DOI: 10.1016/j.intimp.2023.110401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Sepsis, a life-threatening condition whereby immune dysregulation develops, is one of the major causes of death worldwide. To date, there is still no clinically effective therapeutic method for sepsis. As a natural product from traditional Chinese medicine, Shikonin has been demonstrated to have pleiotropic medical effects, including anti-tumor, anti-inflammation, and relieving sepsis. PD-L1, as the receptor of PD-1, was also involved in exacerbating sepsis by inducing immunosuppression, but the relationship between them is still unclear. In this study, we aimed to evaluate the effect of Shikonin on modulating PD-L1 expression and its contact with PKM2. The results showed that Shikonin significantly decreased the levels of sepsis mice serum inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-1β (IL-1β) and maintain the percentage of T cells from the spleen and significantly reduce the apoptosis of splenocytes in LPS-induced sepsis mice. Our data also demonstrated that Shikonin significantly decreased PD-L1 expression on macrophages, not PD-1 expression on T cells in vivo and in vitro. Additionally, we revealed that Shikonin attenuated PD-L1 expression on macrophages and was associated with downregulating phosphorylation and nuclear import of PKM2, which could bind to the HRE-1 and HRE-4 sites of the PD-L1 promoter. As the present research was conducted in sepsis mice model and macrophage cell line, further study is required to evaluate Shikonin to regulate PD-L1 by targeting PKM2 in clinical samples.
Collapse
Affiliation(s)
- Lijia Yuan
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China; Department of Traditional Chinese Medicine, Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Road, Guangzhou 510632, China
| | - Yong Wang
- Majory Biotechnology Company Limited, Shenzhen 518110, China
| | - Youlian Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Xiaoyin Chen
- Department of Traditional Chinese Medicine, Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Road, Guangzhou 510632, China.
| | - Shun Li
- Majory Biotechnology Company Limited, Shenzhen 518110, China
| | - Xueyan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.
| |
Collapse
|
17
|
Di W, Jin Z, Lei W, Liu Q, Yang W, Zhang S, Lu C, Xu X, Yang Y, Zhao H. Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury. Cell Mol Biol Lett 2023; 28:35. [PMID: 37101253 PMCID: PMC10134561 DOI: 10.1186/s11658-022-00415-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/23/2022] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Heart failure is a common complication of sepsis with a high mortality rate. It has been reported that melatonin can attenuate septic injury due to various properties. On the basis of previous reports, this study will further explore the effects and mechanisms of melatonin pretreatment, posttreatment, and combination with antibiotics in the treatment of sepsis and septic myocardial injury. METHODS AND RESULTS Our results showed that melatonin pretreatment showed an obvious protective effect on sepsis and septic myocardial injury, which was related to the attenuation of inflammation and oxidative stress, the improvement of mitochondrial function, the regulation of endoplasmic reticulum stress (ERS), and the activation of the AMPK signaling pathway. In particular, AMPK serves as a key effector for melatonin-initiated myocardial benefits. In addition, melatonin posttreatment also had a certain degree of protection, while its effect was not as remarkable as that of pretreatment. The combination of melatonin and classical antibiotics had a slight but limited effect. RNA-seq detection clarified the cardioprotective mechanism of melatonin. CONCLUSION Altogether, this study provides a theoretical basis for the application strategy and combination of melatonin in septic myocardial injury.
Collapse
Affiliation(s)
- Wencheng Di
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, 29 Bulan Road, Shenzhen, Guangdong Province, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Shaofei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiaoling Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China.
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China.
| |
Collapse
|
18
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
19
|
Shen JL, Doherty J, Allen E, Fortier TM, Baehrecke EH. Atg6 promotes organismal health by suppression of cell stress and inflammation. Cell Death Differ 2022; 29:2275-2287. [PMID: 35523956 PMCID: PMC9614006 DOI: 10.1038/s41418-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Autophagy targets cytoplasmic materials for degradation, and influences cell health. Alterations in Atg6/Beclin-1, a key regulator of autophagy, are associated with multiple diseases. While the role of Atg6 in autophagy regulation is heavily studied, the role of Atg6 in organism health and disease progression remains poorly understood. Here, we discover that loss of Atg6 in Drosophila results in various alterations to stress, metabolic and immune signaling pathways. We find that the increased levels of circulating blood cells and tumor-like masses in atg6 mutants vary depending on tissue-specific function of Atg6, with contributions from intestine and hematopoietic cells. These phenotypes are suppressed by decreased function of macrophage and inflammatory response receptors crq and drpr. Thus, these findings provide a basis for understanding how Atg6 systemically regulates cell health within multiple organs, and highlight the importance of Atg6 in inflammation to organismal health.
Collapse
Affiliation(s)
- James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johnna Doherty
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Elizabeth Allen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Liu J, Zhou G, Wang X, Liu D. Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cell Mol Life Sci 2022; 79:456. [PMID: 35904600 PMCID: PMC9336160 DOI: 10.1007/s00018-022-04490-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
During sepsis, the importance of alterations in cell metabolism is underappreciated. The cellular metabolism, which has a variable metabolic profile in different cells and disease stages, is largely responsible for the immune imbalance and organ failure associated with sepsis. Metabolic reprogramming, in which glycolysis replaces OXPHOS as the main energy-producing pathway, is both a requirement for immune cell activation and a cause of immunosuppression. Meanwhile, the metabolites produced by OXPHOS and glycolysis can act as signaling molecules to control the immune response during sepsis. Sepsis-induced "energy shortage" leads to stagnated cell function and even organ dysfunction. Metabolic reprogramming can alleviate the energy crisis to some extent, enhance host tolerance to maintain cell survival functions, and ultimately increase the adaptation of cells during sepsis. However, a switch from glycolysis to OXPHOS is essential for restoring cell function. This review summarized the crosstalk between metabolic reprogramming and immune cell activity as well as organ function during sepsis, discussed the benefits and drawbacks of metabolic reprogramming to show the contradictions of metabolic reprogramming during sepsis, and assessed the feasibility of treating sepsis through targeted metabolism. Using metabolic reprogramming to achieve metabolic homeostasis could be a viable therapy option for sepsis.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| |
Collapse
|
21
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
22
|
Association of Metformin Use During Hospitalization and Mortality in Critically Ill Adults With Type 2 Diabetes Mellitus and Sepsis. Crit Care Med 2022; 50:935-944. [PMID: 35120041 DOI: 10.1097/ccm.0000000000005468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Whether metformin exposure is associated with improved outcomes in patients with type 2 diabetes mellitus and sepsis. DESIGN Retrospective cohort study. SETTING Patients admitted to ICUs in 16 hospitals in Pennsylvania from October 2008 to December 2014. PATIENTS Adult critical ill patients with type 2 diabetes mellitus and sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We conducted a retrospective cohort study to compare 90-day mortality in diabetic patients with sepsis with and without exposure to metformin during hospitalization. Data were obtained from the electronic health record of a large healthcare system in Pennsylvania from October 2008 to December 2014, on patients admitted to the ICU at any of the 16 hospitals within the system. The primary outcome was mortality at 90 days. The absolute and adjusted odds ratio (OR) with 95% CI were calculated in a propensity score-matched cohort. Among 14,847 patients with type 2 diabetes mellitus and sepsis, 682 patients (4.6%) were exposed to metformin during hospitalization and 14,165 (95.4%) were not. Within a total of 2,691 patients subjected to propensity score-matching at a 1:4 ratio, exposure to metformin (n = 599) was associated with decreased 90-day mortality (71/599, 11.9% vs 475/2,092, 22.7%; OR, 0.46; 95% CI, 0.35-0.60), reduced severe acute kidney injury (50% vs 57%; OR, 0.75; 95% CI, 0.62-0.90), less Major Adverse Kidney Events at 1 year (OR, 0.27; 95% CI, 0.22-0.68), and increased renal recovery (95% vs 86%; OR, 6.43; 95% CI, 3.42-12.1). CONCLUSIONS Metformin exposure during hospitalization is associated with a decrease in 90-day mortality in patients with type 2 diabetes mellitus and sepsis.
Collapse
|
23
|
Kang JH, Lee SK, Yun NJ, Kim YS, Song JJ, Bae Y. IM156, a new AMPK activator, protects against polymicrobial sepsis. J Cell Mol Med 2022; 26:3378-3386. [PMID: 35502484 PMCID: PMC9189331 DOI: 10.1111/jcmm.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022] Open
Abstract
IM156, a novel biguanide with higher potency of AMP-activated protein kinase activation than metformin, has inhibitory activity against angiogenesis and cancer. In this study, we investigated effects of IM156 against polymicrobial sepsis. Administration of IM156 significantly increased survival rate against caecal ligation and puncture (CLP)-induced sepsis. Mechanistically, IM156 markedly reduced viable bacterial burden in the peritoneal fluid and peripheral blood and attenuated organ damage in a CLP-induced sepsis model. IM156 also inhibited the apoptosis of splenocytes and the production of inflammatory cytokines including IL-1β, IL-6 and IL-10 in CLP mice. Moreover, IM156 strongly inhibited the generation of reactive oxygen species and subsequent formation of neutrophil extracellular traps in response to lipopolysaccharide in neutrophils. Taken together, these results show that IM156 can inhibit inflammatory response and protect against polymicrobial sepsis, suggesting that IM156 might be a new treatment for sepsis.
Collapse
Affiliation(s)
- Ji Hyeon Kang
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung Kyun Lee
- Center for Convergent Research of Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
| | - Nam Joo Yun
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Ye Seon Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jason Jungsik Song
- Division of RheumatologyDepartment of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Institute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoe‐Sik Bae
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
24
|
Song H, Zhang X, Zhai R, Liang H, Song G, Yuan Y, Xu Y, Yan Y, Qiu L, Sun T. Metformin attenuated sepsis-associated liver injury and inflammatory response in aged mice. Bioengineered 2022; 13:4598-4609. [PMID: 35156512 PMCID: PMC8973864 DOI: 10.1080/21655979.2022.2036305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sepsis-associated liver injury is with poor survival in intensive care units. Metformin is well known for its therapeutic effects; however, its impact on treating liver injury due to sepsis remains poorly understood. This study investigated the therapeutic effects of metformin on aged mice suffering from sepsis-associated liver injury. Male C57BL/6 J mice aged (18–19 months) were divided into 3 groups: 1) intraperitoneal injection of sterile normal saline (C group), 12.5 mg/kg lipopolysaccharide (LPS) to induce sepsis-associated liver injury (LPS group), and 25 mg/kg metformin (MET) at 1 h after LPS injection (MET group). After 24 h, blood samples and liver tissue were collected for biochemical analysis. Histological assays revealed significantly elevated inflammatory infiltration and apoptosis in the liver, while metformin was found to relieve these aberrant features. The percentage of apoptotic cells decreased after metformin treatment (P < 0.05). Additionally, MET group had significantly reduced plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared to the LPS group (P < 0.05). Furthermore, in the MET group, the mRNA levels of chemokines and inflammatory factors, TNF-α, IL-6, caspase-1, decreased markedly (P < 0.05). Metformin notably reversed the decreased phosphorylated AMP-activated protein kinase (p-AMPK) and PGC-1α expressions in the liver of septic rats. Metformin also inhibited PDK1, HIF-1α expression, including downstream inflammatory mediators, HMGB1 and TNF-α. Metformin attenuated inflammation and liver injury in septic aged mice. Most importantly, we report the effect of metformin on liver injury via the AMPK–PGC1α axis in septic aged mice for the first time.
Collapse
Affiliation(s)
- Heng Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
| | - Ruiqing Zhai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaofei Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yangyang Yuan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
| | - Yanan Xu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
| | - Yan Yan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
| | - Lingxiao Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Cao H, Huang W. HDL and Sepsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:129-139. [DOI: 10.1007/978-981-19-1592-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Patel S, Das A, Meshram P, Sharma A, Chowdhury A, Jariyal H, Datta A, Sarmah D, Nalla LV, Sahu B, Khairnar A, Bhattacharya P, Srivastava A, Shard A. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein-protein interactions. Cell Biol Toxicol 2021; 37:653-678. [PMID: 33864549 DOI: 10.1007/s10565-021-09605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.
Collapse
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Payal Meshram
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Arnab Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
27
|
Mainali R, Zabalawi M, Long D, Buechler N, Quillen E, Key CC, Zhu X, Parks JS, Furdui C, Stacpoole PW, Martinez J, McCall CE, Quinn MA. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. eLife 2021; 10:64611. [PMID: 33616039 PMCID: PMC7901874 DOI: 10.7554/elife.64611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.
Collapse
Affiliation(s)
- Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - David Long
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Nancy Buechler
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Ellen Quillen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Chia-Chi Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Bethesda, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
28
|
Li Y, Zhao H, Guo Y, Duan Y, Guo Y, Ding X. Association of Preadmission Metformin Use and Prognosis in Patients With Sepsis and Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:811776. [PMID: 35002982 PMCID: PMC8735596 DOI: 10.3389/fendo.2021.811776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIM A growing body of evidence suggests that preadmission metformin use could decrease the mortality of septic patients with diabetes mellitus (DM); however, the findings remain controversial. Therefore, this meta-analysis was conducted on available studies to confirm the relationship between preadmission metformin use and mortality in patients with sepsis and DM. METHODS A comprehensive search of the PubMed, Embase, and Cochrane Library databases was performed for studies published before August 8, 2021. Observational studies assessing the correlation between metformin use and mortality in patients with sepsis and DM were considered eligible studies. We used the Newcastle-Ottawa Scale (NOS) to assess the outcome quality of each included article. Furthermore, the odds ratios (ORs) and 95% confidence intervals (CIs) were analyzed using the inverse variance method with random effects modeling. RESULTS Eleven articles including 8195 patients were analyzed in this meta-analysis. All the included articles were scored as low risk of bias. Our results showed that preadmission metformin use had a lower mortality rate (OR, 0.74; 95% CIs, 0.62-0.88, P < 0.01) in patients with sepsis and DM. Surprisingly, there was no statistically significant difference in the levels of serum creatinine (weighted mean difference (WMD), 0.36; 95% CIs, -0.03-0.75; P = 0.84) and lactic acid (WMD, -0.16; 95% CIs, -0.49-0.18; P = 0.07) between preadmission metformin use and non-metformin use. CONCLUSIONS This study is the most comprehensive meta-analysis at present, which shows that preadmission metformin use may reduce mortality and not increase the levels of serum creatinine and lactic acid in adult patients with sepsis and DM. Therefore, these data suggest that the potential efficacy of metformin could be assessed in future clinical studies. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/?s=INPLASY2021100113, identifier INPLASY2021100113.
Collapse
Affiliation(s)
- Yuanzhe Li
- Department of Pediatrics, Children’s Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Huayan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yalin Guo
- Department of Pediatrics, Children’s Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Department of Pediatrics, Children’s Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yanjun Guo
- Department of Pediatrics, Children’s Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xianfei Ding, ; Yanjun Guo,
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xianfei Ding, ; Yanjun Guo,
| |
Collapse
|
29
|
Bailly C, Vergoten G. Mechanistic insights into dimethyl cardamonin-mediated pharmacological effects: A double control of the AMPK-HMGB1 signaling axis. Life Sci 2020; 263:118601. [PMID: 33086122 PMCID: PMC7568849 DOI: 10.1016/j.lfs.2020.118601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022]
Abstract
Dimethyl cardamonin (DMC) has been isolated from diverse plants, notably from Cleistocalyx operculatus. We have reviewed the pharmacological properties of this natural product which displays anti-inflammatory, anti-hyperglycemic and anti-cancer properties. The pharmacological activities essentially derive from the capacity of DMC to interact with the protein targets HMGB1 and AMPK. Upon binding to HMGB1, DMC inhibits the nucleocytoplasmic transfer of the protein and its extracellular secretion, thereby blocking its alarmin function. DMC also binds to the AMP site of AMPK to activate phospho-AMPK and then to trigger downstream signals leading to the anti-inflammatory and anti-hyperglycemic effects. AMPK activation by DMC reinforces inhibition of HMGB1, to further reduce the release of the alarmin protein, likely contributing to the anticancer effects. The characterization of a tight control of DMC over the AMPK-HMGB1 axis not only helps to explain the known activities of DMC but also suggests opportunities to use this chalcone to treat other pathological conditions such as the acute respiratory distress syndrome (which affects patients with COVID-19). DMC structural analogues are also evoked.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
30
|
Wang H, Cui W, Qiao L, Hu G. Overexpression of miR-451a in sepsis and septic shock patients is involved in the regulation of sepsis-associated cardiac dysfunction and inflammation. Genet Mol Biol 2020; 43:e20200009. [PMID: 33211058 PMCID: PMC7678258 DOI: 10.1590/1678-4685-gmb-2020-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the expression and clinical value of microRNA-451a
(miR-451a) in septic patients and analyze its effect on sepsis-associated cardiac dysfunction and
inflammation response. A rat model of sepsis was constructed by cecal ligation and puncture. The
expression of miR-451a was measured by quantitative real-time PCR. Receiver operating characteristic
(ROC) analysis was used to assess the diagnostic value of serum miR-451a. The cardiac function and
inflammatory responses in septic rats were measured to explore the functional role of miR-451a.
Serum expression of miR-451a was increased in septic patients compared with healthy controls, and
had the ability to distinguish septic patients from healthy volunteers with a sensitivity and
specificity of 87.8% and 81.5%, respectively. Elevated serum miR-451a was associated with sepsis
severity, as evidenced by the increased expression of miR-451a in septic shock patients and its
correlation with key clinical indicators. Significantly upregulated expression of miR-451a was found
in septic patients with cardiac dysfunction, and the knockdown of miR-451a in sepsis rats improved
cardiac function and inhibited inflammatory responses. All the data revealed that serum miR-451a
serves as a candidate diagnostic biomarker of sepsis and a potential parameter to indicate disease
severity. The reduction of miR-451a may mitigate sepsis-induced cardiac dysfunction and inflammatory
responses.
Collapse
Affiliation(s)
- Heng Wang
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| | - Wenjuan Cui
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| | - Lujun Qiao
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| | - Guoxin Hu
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| |
Collapse
|
31
|
Investigation of the Mechanism of Shengmai Injection on Sepsis by Network Pharmacology Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4956329. [PMID: 32831866 PMCID: PMC7422069 DOI: 10.1155/2020/4956329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
Shengmai injection (SMI) contains Ginsen Radix et Rhizoma Rubra, Ophiopogon japonicus, and Schisandrae Chinensis Fructus. It is used as a supportive herbal medicine in the management of sepsis, systemic inflammatory response syndrome, and septic or hemorrhagic shock. An UPLC method was established to identify and evaluate SMI fingerprints. Fingerprint similarities of 9 batches of SMI were compared. The network platform, “TCM-components-core targets-key pathways,” was established, and the mechanism of SMI in the treatment of sepsis was investigated. The similarity of 9 batches of SMI fingerprints was greater than 0.91. 44 peaks were selected as the common peaks, of which 11 peaks were identified. KEGG functional pathway analysis showed SMI was mainly involved in the pathways of cancer, cell cycle, and p53 signaling, suggesting SMI protects multiple organs via regulating immunity, inflammation, apoptosis, and energy metabolism. GO enrichment analysis showed active SMI components regulated various biological processes and altered the pathophysiology of sepsis. The interplays between SMI and multiple energy metabolism signaling cascades confer protection from life-threatening multiple organ failure in sepsis.
Collapse
|
32
|
Hurley HJ, Dewald H, Rothkopf ZS, Singh S, Jenkins F, Deb P, De S, Barnes BJ, Fitzgerald-Bocarsly P. Frontline Science: AMPK regulates metabolic reprogramming necessary for interferon production in human plasmacytoid dendritic cells. J Leukoc Biol 2020; 109:299-308. [PMID: 32640499 DOI: 10.1002/jlb.3hi0220-130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a crucial role in innate viral immunity as the most potent producers of type I interferons (IFN) in the human body. However, the metabolic regulation of IFN production in such vast quantity remains poorly understood. In this study, AMP-activated protein kinase (AMPK) is strongly implicated as a driver of metabolic reprogramming that the authors and others have observed in pDCs after activation via TLR7/9. Oxygen consumption and mitochondrial membrane potential (MMP) were elevated following stimulation of pDCs with influenza or herpes simplex virus. Blocking these changes using mitochondrial inhibitors abrogated IFN-α production. While it appears that multiple carbon sources can be used by pDCs, blocking pyruvate metabolism had the strongest effect on IFN-α production. Furthermore, we saw no evidence of aerobic glycolysis (AG) during pDC activation and blocking lactate dehydrogenase activity did not inhibit IFN-α. TLR7/9 ligation induces a posttranslational modification in Raptor that is catalyzed by AMPK, and blocking TLR7/9 before virus introduction prevents this change. Finally, it is demonstrated that Dorsomorphin, an AMPK inhibitor, inhibited both IFN-α production and MMP in a dose-dependent manner. Taken together, these data reveal a potential cellular mechanism for the metabolic reprogramming in TLR 7/9-activated pDCs that supports activation and IFN-α production.
Collapse
Affiliation(s)
- Harry J Hurley
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA
| | - Hannah Dewald
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA
| | - Zachary S Rothkopf
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA
| | - Sukhwinder Singh
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Frank Jenkins
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Pratik Deb
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA
| | - Saurav De
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA.,Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Patricia Fitzgerald-Bocarsly
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA
| |
Collapse
|
33
|
The Warburg Effect Promotes Mitochondrial Injury Regulated by Uncoupling Protein-2 in Septic Acute Kidney Injury. Shock 2020; 55:640-648. [PMID: 32496419 DOI: 10.1097/shk.0000000000001576] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Evidence implying that metabolism reprogramming plays an important role in the regulation of sepsis is increasing; however, whether it has a similar role in septic organ dysfunction remains unclear. Here, we provide evidence to support a new role of uncoupling protein-2 (UCP2)-regulated Warburg effect, i.e., aerobic glycolysis, in promoting mitochondrial injury in the kidney. METHODS To imitate sepsis condition, male C57BL/6 mice were operated by the cecal ligation puncture in vivo, whereas a normal human kidney cell line (HK-2) was treated with lipopolysaccharide in vitro. UCP2 small interfering RNA pretreatment was performed to knock down UCP2 expression in vitro. The glycolysis metabolite was detected by liquid chromatography/tandem mass spectrometry in vivo and detected by commercial kits in vitro. Oxidative phosphorylation level and glycolysis level were monitored by measuring the oxygen consumption rate (indicative of respiration) and extracellular acidification rate (indicative of glycolysis) in vitro. Exogenous lactate was supplied to stimulate HK-2 cells and indicators of mitochondrial dysfunction were also assessed. RESULTS Aerobic glycolysis is enhanced in septic tubular epithelial cells, and the glycolysis inhibitor 2-deoxyglucose can partially restore mitochondrial membrane potential and decrease the reactive oxygen species production. With the knockdown of UCP2, the aerobic glycolysis level upregulates, and mitochondrial injury increases. CONCLUSIONS These results provide insights on a new mechanism of metabolic regulation of mitochondrial injury and the importance of targeting aerobic glycolysis for the treatment of septic acute kidney injury.
Collapse
|
34
|
Association between prior metformin therapy and sepsis in diabetes patients: a nationwide sample cohort study. J Anesth 2020; 34:358-366. [PMID: 32146543 DOI: 10.1007/s00540-020-02753-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE There have been no large-scale studies on whether metformin therapy might have a potential benefit for lowering mortality. Thus, this study aimed to investigate the association between prior metformin therapy and the development of sepsis as well as the association between prior metformin therapy and 30-day mortality in sepsis patients. METHODS We evaluated adult diabetes patients registered in the 2010 sample cohort database of the National Health Insurance Service in South Korea. Diabetes was identified according to the International Classification of Disease-10 diagnostic system (E10-E14). The cohorts were divided into the metformin user group (i.e., those who had been prescribed continuous oral metformin over a period of ≥ 90 days) and the control group (i.e., all other individuals). The primary endpoint was the development of sepsis between 2011 and 2015, and the secondary endpoint was 30-day mortality among diabetes patients diagnosed with sepsis. RESULTS In total, 77,337 patients (34,041 in the metformin user group and 43,296 in the control group) were included in the analysis, among whom 2512 patients (3.2%) were diagnosed with sepsis between 2011 and 2015. After propensity score adjustment, metformin use was not significantly associated with both the risk of sepsis (OR: 0.92, 95%CI 0.82-1.03; P = 0.143) and the risk of 30-day mortality after diagnosis of sepsis (OR: 0.94, 95%CI 0.75-1.17; P = 0.571). CONCLUSIONS Prior metformin therapy was not significantly associated with the risk of sepsis and 30-day mortality after diagnosis of sepsis among diabetes patients.
Collapse
|
35
|
Rihan M, Nalla LV, Dharavath A, Shard A, Kalia K, Khairnar A. Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:149-167. [PMID: 31183810 PMCID: PMC6937361 DOI: 10.1007/s12307-019-00226-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a newly emerged hallmark of cancer attaining a recent consideration as an essential factor for the progression and endurance of cancer cells. A prime event of this altered metabolism is increased glucose uptake and discharge of lactate into the cells surrounding constructing a favorable tumor niche. Several oncogenic factors help in promoting this consequence including, pyruvate kinase M2 (PKM2) a rate-limiting enzyme of glycolysis in tumor metabolism via exhibiting its low pyruvate kinase activity and nuclear moon-lightening functions to increase the synthesis of lactate and macromolecules for tumor proliferation. Not only its role in cancer cells but also its role in the tumor microenvironment cells has to be understood for developing the small molecules against it which is lacking with the literature till date. Therefore, in this present review, the role of PKM2 with respect to various tumor niche cells will be clarified. Further, it highlights the updated list of therapeutics targeting PKM2 pre-clinically and clinically with their added limitations. This upgraded understanding of PKM2 may provide a pace for the reader in developing chemotherapeutic strategies for better clinical survival with limited resistance.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India
| | - Anil Dharavath
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India.
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India.
| |
Collapse
|
36
|
Fitzpatrick SF. Immunometabolism and Sepsis: A Role for HIF? Front Mol Biosci 2019; 6:85. [PMID: 31555665 PMCID: PMC6742688 DOI: 10.3389/fmolb.2019.00085] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of innate immune cells occurs during both the hyperinflammatory and immunotolerant phases of sepsis. The hypoxia inducible factor (HIF) signaling pathway plays a vital role in regulating these metabolic changes. This review initially summarizes the HIF-driven changes in metabolic dynamics of innate immune cells in response to sepsis. The hyperinflammatory phase of sepsis is accompanied by a metabolic switch from oxidative phosphorylation to HIF-1α mediated glycolysis. Furthermore, HIF driven alterations in arginine metabolism also occur during this phase. This promotes sepsis pathophysiology and the development of clinical symptoms. These early metabolic changes are followed by a late immunotolerant phase, in which suppressed HIF signaling promotes a switch from aerobic glycolysis to fatty acid oxidation, with a subsequent anti-inflammatory response developing. Recently the molecular mechanisms controlling HIF activation during these early and late phases have begun to be elucidated. In the final part of this review the contribution of toll-like receptors, transcription factors, metabolic intermediates, kinases and reactive oxygen species, in governing the HIF-induced metabolic reprogramming of innate immune cells will be discussed. Importantly, understanding these regulatory mechanisms can lead to the development of novel diagnostic and therapeutic strategies targeting the HIF-dependent metabolic state of innate immune cells.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Ismail Hassan F, Didari T, Khan F, Niaz K, Mojtahedzadeh M, Abdollahi M. A Review on The Protective Effects of Metformin in Sepsis-Induced Organ Failure. CELL JOURNAL 2019; 21:363-370. [PMID: 31376317 PMCID: PMC6722446 DOI: 10.22074/cellj.2020.6286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/17/2018] [Indexed: 02/02/2023]
Abstract
Despite advances in sepsis management, it remains a major intensive-care-unit (ICU) concern. From new prospective, positive
effects of metformin, such as anti-oxidant and anti-inflammatory properties are considered potentially beneficial properties
for management of septic patients. This article reviewed the potential ameliorative effects of metformin in sepsis-induced
organ failure. Information were retrieved from PubMed, Scopus, Embase, and Google Scholar. Multi-organ damage, oxidative
stress, inflammatory cytokine stimulation, and altered circulation are hallmarks of sepsis. Metformin exerts its effect via
adenosine monophosphate-activated protein kinase (AMPK) activation. It improves sepsis-induced organ failure by inhibiting
the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, preventing the activation of transcription
factors related to inflammation, decreasing neutrophil accumulation/infiltration, and also maintaining mitochondrial membrane
potential. Studies reported the safety of metformin therapeutic doses, with no evidence of lactic acidosis, in septic patients.
Collapse
Affiliation(s)
- Fatima Ismail Hassan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:.,Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Guo CY, Zhu Q, Tou FF, Wen XM, Kuang YK, Hu H. The prognostic value of PKM2 and its correlation with tumour cell PD-L1 in lung adenocarcinoma. BMC Cancer 2019; 19:289. [PMID: 30925904 PMCID: PMC6441172 DOI: 10.1186/s12885-019-5519-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognostic value of PKM2 and its correlation with tumour cell PD-L1 in lung adenocarcinoma (LUAD) is unclear. METHODS A total of 506 lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) dataset and 173 LUAD tumour tissues from Jiangxi Cancer Hospital were used to analyse the correlation between PKM2 and PD-L1 expression. We further established a stable LUAD cell line with PKM2 knockdown and confirmed the association via Western blotting and flow cytometry analysis. Moreover, the prognostic values of PKM2 and PD-L1 were evaluated by the Kaplan-Meier method and Cox proportional hazards models. RESULTS Based on the above two large cohorts, we found that PKM2 was significantly positively associated with PD-L1 expression (r = 0.132, P = 0.003 and r = 0.287, P < 0.001, respectively). Subsequently, we found that PKM2 knockdown substantially inhibited PD-L1 expression in the A549 LUAD cell line. Moreover, survival analysis showed that higher expression of PKM2 was correlated with significantly shorter overall survival (OS) and disease-free survival (DFS) in lung adenocarcinoma patients (P < 0.001 and P = 0.050, respectively). Subgroup analysis showed that lung adenocarcinoma patients who expressed high PKM2 and PD-L1 levels experienced the poorest OS and DFS. Additionally, multivariate analysis suggested that high PKM2 and PD-L1 expression was an independent prognostic indicator for worse OS and DFS (HR = 1.462, P < 0.001 and HR = 1.436, P = 0.004, respectively). CONCLUSIONS Our results demonstrated that PKM2 regulated PD-L1 expression and was associated with poor outcomes in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Chang-Ying Guo
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, 330006 China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, No. 519 Beijing East Road, Nanchang, 330006 China
- Department of Thoracic Surgery, Ji’an Central Hospital, Ji’an, 343000 China
| | - Qian Zhu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Fang-Fang Tou
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, No. 519 Beijing East Road, Nanchang, 330006 China
| | - Xiao-Ming Wen
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, No. 519 Beijing East Road, Nanchang, 330006 China
| | - Yu-Kang Kuang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, No. 519 Beijing East Road, Nanchang, 330006 China
| | - Hao Hu
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, No. 519 Beijing East Road, Nanchang, 330006 China
- Department of Thoracic Surgery, Ji’an Central Hospital, Ji’an, 343000 China
| |
Collapse
|
39
|
|
40
|
Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, Cao L, Wang H, Billiar TR, Jiang J, Xie M, Tang D. The Circadian Clock Controls Immune Checkpoint Pathway in Sepsis. Cell Rep 2018; 24:366-378. [PMID: 29996098 PMCID: PMC6094382 DOI: 10.1016/j.celrep.2018.06.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis and septic shock are associated with life-threatening organ dysfunction caused by an impaired host response to infections. Although circadian clock disturbance impairs the early inflammatory response, its impact on post-septic immunosuppression remains poorly elucidated. Here, we show that Bmal1, a core circadian clock gene, plays a role in the regulation of host immune responses in experimental sepsis. Mechanistically, Bmal1 deficiency in macrophages increases PKM2 expression and lactate production, which is required for expression of the immune checkpoint protein PD-L1 in a STAT1-dependent manner. Consequently, targeted ablation of Pkm2 in myeloid cells or administration of anti-PD-L1-neutralizing antibody or supplementation with recombinant interleukin-7 (IL-7) facilitates microbial clearance, inhibits T cell apoptosis, reduces multiple organ dysfunction, and reduces septic death in Bmal1-deficient mice. Collectively, these findings suggest that the circadian clock controls the immune checkpoint pathway in macrophages and therefore represents a potential therapeutic target for lethal infection.
Collapse
Affiliation(s)
- Wenjun Deng
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China; Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research Institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jiao Liu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research Institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Kumar V. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. Int Immunopharmacol 2018; 58:173-185. [PMID: 29625385 DOI: 10.1016/j.intimp.2018.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Sepsis is known since the time (470 BC) of great Greek physician, Hippocrates. Advancement in modern medicine and establishment of separate branches of medical science dealing with sepsis research have improved its outcome. However, mortality associated with sepsis still remains higher (25-30%) that further increases to 40-50% in the presence of septic shock. For example, sepsis-associated deaths account more in comparison to deaths-associated with myocardial-infarction and certain cancers (i.e. breast and colorectal cancer). However, it is now well established that profound activation of innate immune cells including macrophages play a very important role in the immunopathogenesis of sepsis. Macrophages are sentinel cells of the innate immune system with their location varying from peripheral blood to various target organs including lungs, liver, brain, kidneys, skin, testes, vascular endothelium etc. Thus, profound and dysregulated activation of these cells during sepsis can directly impact the outcome of sepsis. However, the emergence of the concept of immunometabolism as a major controller of immune response has raised a new hope for identifying new targets for immunomodulatory therapeutic approaches. Thus this present review starts with an introduction of sepsis as a major medical problem worldwide and signifies the role of dysregulated innate immune response including macrophages in its immunopathogenesis. Thereafter, subsequent sections describe changes in immunometabolic stage of macrophages (both M1 and M2) during sepsis. The article ends with the discussion of novel macrophage-specific therapeutic targets targeting their immunometabolism during sepsis and epigenetic regulation of macrophage immunometabolism and vice versa.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|