1
|
Maccioni L, Michelle CM, Brusaferri L, Silvestri E, Bertoldo A, Schubert JJ, Nettis MA, Mondelli V, Howes O, Turkheimer FE, Bottlaender M, Bodini B, Stankoff B, Loggia ML, Veronese M. A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging. Front Neurosci 2024; 18:1395769. [PMID: 39104610 PMCID: PMC11299498 DOI: 10.3389/fnins.2024.1395769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Recent evidence suggests the blood-to-brain influx rate (K1 ) in TSPO PET imaging as a promising biomarker of blood-brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test-retest dataset of [18F]DPA714 scans. Results Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03-0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers' unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carranza Mellana Michelle
- Department of Information Engineering, University of Padova, Padova, Italy
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Computer Science and Informatics, School of Engineering, London South Bank University, London, United Kingdom
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Maria A. Nettis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Federico E. Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS Inserm, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Bruno Stankoff
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Zagaria A, Fiori V, Vacca M, Lombardo C, Pariante CM, Ballesio A. Inflammation as a mediator between adverse childhood experiences and adult depression: A meta-analytic structural equation model. J Affect Disord 2024; 357:85-96. [PMID: 38677656 DOI: 10.1016/j.jad.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Exposure to adverse childhood experiences (ACEs) confers a higher risk of developing depression in adulthood, yet the mediation of inflammation remains under debate. To test this model, we conducted a systematic review and two-stage structural equation modelling meta-analysis of studies reporting correlations between ACEs before age 18, inflammatory markers and depression severity in adulthood. Scopus, Pubmed, Medline, PsycInfo, and CINAHL were searched up to 2 October 2023. Twenty-two studies reporting data on C-reactive protein (CRP, n = 12,935), interleukin-6 (IL-6, n = 4108), tumour necrosis factor-α (TNF-α, n = 2256) and composite measures of inflammation (n = 1674) were included. Unadjusted models revealed that CRP (β = 0.003, 95 % LBCI 0.0002 to 0.0068), IL-6 (β = 0.003, 95 % LBCI 0.001 to 0.006), and composite inflammation (β = 0.009, 95 % LBCI 0.004 to 0.018) significantly mediated the association between ACEs and adult depression. The mediation effects no longer survived after adjusting for BMI; however, a serial mediation model revealed that BMI and IL-6 sequentially mediated the association between ACEs and depression (β = 0.002, 95 % LBCI 0.0005 to 0.0046), accounting for 14.59 % and 9.94 % of the variance of IL-6 and depressive symptoms, respectively. Due to the cross-sectional nature of assessment of inflammation and depression findings should be approached with caution; however, results suggest that complex interactions of psychoneuroimmunological and metabolic factors underlie the association between ACEs and adulthood depression.
Collapse
Affiliation(s)
- Andrea Zagaria
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Valeria Fiori
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Mariacarolina Vacca
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Caterina Lombardo
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Ballesio
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy.
| |
Collapse
|
3
|
Zhou L, Butler TA, Wang XH, Xi K, Tanzi EB, Glodzik L, Chiang GC, de Leon MJ, Li Y. Multimodal assessment of brain fluid clearance is associated with amyloid-beta deposition in humans. J Neuroradiol 2024; 51:101164. [PMID: 37907155 PMCID: PMC11058119 DOI: 10.1016/j.neurad.2023.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE The present study investigates a multimodal imaging assessment of glymphatic function and its association with brain amyloid-beta deposition. METHODS Two brain CSF clearance measures (vCSF and DTI-ALPS) were derived from dynamic PET and MR diffusion tensor imaging (DTI) for 50 subjects, 24/50 were Aβ positive (Aβ+). T1W, T2W, DTI, T2FLAIR, and 11C-PiB and 18F-MK-6240 PET were acquired. Multivariate linear regression models were assessed with both vCSF and DTI-ALPS as independent variables and brain Aβ as the dependent variable. Three types of models were evaluated, including the vCSF-only model, the ALPS-only model and the vCSF+ALPS combined model. Models were applied to the whole group, and Aβ subgroups. All analyses were controlled for age, gender, and intracranial volume. RESULTS Sample demographics (N=50) include 20 males and 30 females with a mean age of 69.30 (sd=8.55). Our results show that the combination of vCSF and ALPS associates with Aβ deposition (p < 0.05, R2 = 0.575) better than either vCSF (p < 0.05, R2 = 0.431) or ALPS (p < 0.05, R2 = 0.372) alone in the Aβ+ group. We observed similar results in whole-group analyses (combined model: p < 0.05, R2 = 0.287; vCSF model: p <0.05, R2 = 0.175; ALPS model: p < 0.05, R2 = 0.196) with less significance. Our data also showed that vCSF has higher correlation (r = -0.548) in subjects with mild Aβ deposition and DTI-ALPS has higher correlation (r=-0.451) with severe Aβ deposition subjects. CONCLUSION The regression model with both vCSF and DTI-ALPS is better associated with brain Aβ deposition. These two independent brain clearance measures may better explain the variation in Aβ deposition than either term individually. Our results suggest that vCSF and DTI-ALPS reflect complementary aspects of brain clearance functions.
Collapse
Affiliation(s)
- Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Xiuyuan H Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Emily B Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States.
| |
Collapse
|
4
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024:10.1007/s12035-024-04205-5. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Manelis A, Hu H, Miceli R, Satz S, Lau R, Iyengar S, Swartz HA. The relationship between the size and asymmetry of the lateral ventricles and cortical myelin content in individuals with mood disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306621. [PMID: 38746112 PMCID: PMC11092679 DOI: 10.1101/2024.04.30.24306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Although enlargement of the lateral ventricles was previously observed in individuals with mood disorders, the link between ventricular size and asymmetry with other indices of brain structure remains underexplored. In this study, we examined the association of lateral ventricular size and asymmetry with cortical myelin content in individuals with bipolar (BD) and depressive (DD) disorders compared to healthy controls (HC). Methods Magnetic resonance imaging (MRI) was used to obtain T1w and T2w images from 149 individuals (age=27.7 (SD=6.1) years, 78% female, BD=38, DD=57, HC=54). Cortical myelin content was calculated using the T1w/T2w ratio. Elastic net regularized regression identified brain regions whose myelin content was associated with ventricular size and asymmetry. A post-hoc linear regression examined how participants' diagnosis, illness duration, and current level of depression moderated the relationship between the size and asymmetry of the lateral ventricles and levels of cortical myelin in the selected brain regions. Results Individuals with mood disorders had larger lateral ventricles than HC. Larger ventricles and lower asymmetry were observed in individuals with BD who had longer lifetime illness duration and more severe current depressive symptoms. A greater left asymmetry was observed in participants with DD than in those with BD (p<0.01). Elastic net revealed that both ventricular enlargement and asymmetry were associated with altered myelin content in cingulate, frontal, and sensorimotor cortices. In BD, but not other groups, ventricular enlargement was related to altered myelin content in the right insular regions. Conclusions Lateral ventricular enlargement and asymmetry are linked to myelin content imbalance, thus, potentially leading to emotional and cognitive dysfunction in mood disorders.
Collapse
|
7
|
Ballesio A, Santamaria T, Furio S, Parisi P, Polese D, Micheli F, Baccini F, Di Nardo G, Lombardo C. Associations between immune biomarkers and symptoms of anxiety, depression, and insomnia in paediatric inflammatory bowel disease: A preliminary longitudinal analysis. Physiol Behav 2024; 278:114510. [PMID: 38479583 DOI: 10.1016/j.physbeh.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
Innate immunity may influence the onset of affective symptoms and alter sleep patterns in chronic inflammatory conditions. Here, we tested the prospective associations between baseline serum C-reactive protein (CRP), albumin, and CRP/albumin ratio (CAR, i.e., an emerging biomarker of disease activity), and self-reported symptoms of anxiety, depression, and insomnia at 1-year follow up in paediatric inflammatory bowel disease (n = 17). After controlling for baseline values, CAR (ρ = 0.591, p = 0.026) predicted anxiety symptoms, while albumin predicted both anxiety (ρ = -0.687, p = 0.007) and insomnia symptoms (ρ = -0.648, p = 0.012). Current findings preliminarily suggest that inflammation may influence anxiety and sleep disturbance in paediatric IBD.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy.
| | - Tiziana Santamaria
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Silvia Furio
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Pasquale Parisi
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Daniela Polese
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Federica Micheli
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Flavia Baccini
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Caterina Lombardo
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| |
Collapse
|
8
|
Danka MN, Steptoe A, Iob E. Physical activity, low-grade inflammation, and psychological responses to the COVID-19 pandemic among older adults in England. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.14.24305797. [PMID: 38699297 PMCID: PMC11065037 DOI: 10.1101/2024.04.14.24305797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mental health responses to the COVID-19 pandemic have been widely studied, but less is known about the potentially protective role of physical activity (PA) and the impact of low-grade inflammation. Using a sample of older adults from England, this study tested (1) if pre-pandemic PA and its changes during the pandemic were associated with mental health responses; (2) if older adults with low-grade inflammation experienced greater increases in depression and anxiety, compared to pre-pandemic levels; (3) if PA attenuated the association between inflammation and depression/anxiety. The study used data from the English Longitudinal Study of Ageing, a cohort study following a national sample aged 50+. Information on mental health and PA were collected before the pandemic (2016/17 and 2018/19) and during November and December 2020. Inflammation was ascertained using pre-pandemic C-reactive protein (CRP). Analyses were adjusted for sociodemographic and health-related factors and pre-pandemic mental health. Increasing PA from before to during the pandemic was linked to reduced odds of depression (OR = 0.955, 95%CI [0.937, 0.974]) and anxiety (OR = 0.954, 95%CI [0.927; 0.982]). Higher pre-pandemic PA was associated with reduced odds of depression (OR = 0.964, 95%CI [0.948, 0.981]) and anxiety (OR = 0.976, 95%CI [0.953, 1.000]), whereas elevated CRP was associated with 1.343 times higher odds of depression (95%CI [1.100, 1.641]). PA did not attenuate the inflammation-depression association. The findings suggest that PA may contribute to psychological resilience among older adults, independently of inflammation. Further research is needed to explore the psychobiological pathways underlying this protective mechanism.
Collapse
Affiliation(s)
- Martin N. Danka
- Centre for Longitudinal Studies, University College London, UK
- Department of Behavioural Science and Health, University College London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, UK
| | - Eleonora Iob
- Department of Behavioural Science and Health, University College London, UK
| |
Collapse
|
9
|
Butler T, Schubert J, Karakatsanis NA, Hugh Wang X, Xi K, Kang Y, Chen K, Zhou L, Fung EK, Patchell A, Jaywant A, Li Y, Chiang G, Glodzik L, Rusinek H, de Leon M, Turkheimer F, Shah SA. Brain Fluid Clearance After Traumatic Brain Injury Measured Using Dynamic Positron Emission Tomography. Neurotrauma Rep 2024; 5:359-366. [PMID: 38655117 PMCID: PMC11035850 DOI: 10.1089/neur.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Julia Schubert
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | | | - Xiuyuan Hugh Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Kewei Chen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Edward K. Fung
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abigail Patchell
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gloria Chiang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - Sudhin A. Shah
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Bannai D, Reuter M, Hegde R, Hoang D, Adhan I, Gandu S, Pong S, Raymond N, Zeng V, Chung Y, He G, Sun D, van Erp TGM, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Jeffries C, Stone W, Tsuang M, Walker E, Woods SW, Cannon TD, Perkins D, Keshavan M, Lizano P. Linking enlarged choroid plexus with plasma analyte and structural phenotypes in clinical high risk for psychosis: A multisite neuroimaging study. Brain Behav Immun 2024; 117:70-79. [PMID: 38169244 DOI: 10.1016/j.bbi.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1β (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nick Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT, USA
| | - George He
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jean Addington
- Hotchkins Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
| | - Elaine Walker
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Diana Perkins
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
11
|
Murck H, Karailiev P, Karailievova L, Puhova A, Jezova D. Treatment with Glycyrrhiza glabra Extract Induces Anxiolytic Effects Associated with Reduced Salt Preference and Changes in Barrier Protein Gene Expression. Nutrients 2024; 16:515. [PMID: 38398838 PMCID: PMC10893552 DOI: 10.3390/nu16040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
We have previously identified that low responsiveness to antidepressive therapy is associated with higher aldosterone/cortisol ratio, lower systolic blood pressure, and higher salt preference. Glycyrrhiza glabra (GG) contains glycyrrhizin, an inhibitor of 11β-hydroxysteroid-dehydrogenase type-2 and antagonist of toll-like receptor 4. The primary hypothesis of this study is that food enrichment with GG extract results in decreased anxiety behavior and reduced salt preference under stress and non-stress conditions. The secondary hypothesis is that the mentioned changes are associated with altered gene expression of barrier proteins in the prefrontal cortex. Male Sprague-Dawley rats were exposed to chronic mild stress for five weeks. Both stressed and unstressed rats were fed a diet with or without an extract of GG roots for the last two weeks. GG induced anxiolytic effects in animals independent of stress exposure, as measured in elevated plus maze test. Salt preference and intake were significantly reduced by GG under control, but not stress conditions. The gene expression of the barrier protein claudin-11 in the prefrontal cortex was increased in control rats exposed to GG, whereas stress-induced rise was prevented. Exposure to GG-enriched diet resulted in reduced ZO-1 expression irrespective of stress conditions. In conclusion, the observed effects of GG are in line with a reduction in the activity of central mineralocorticoid receptors. The treatment with GG extract or its active components may, therefore, be a useful adjunct therapy for patients with subtypes of depression and anxiety disorders with heightened renin-angiotensin-aldosterone system and/or inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039 Marburg, Germany
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Agnesa Puhova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| |
Collapse
|
12
|
Murck H, Fava M, Cusin C, Fatt CC, Trivedi M. Brain ventricle and choroid plexus morphology as predictor of treatment response in major depression: Findings from the EMBARC study. Brain Behav Immun Health 2024; 35:100717. [PMID: 38186634 PMCID: PMC10767278 DOI: 10.1016/j.bbih.2023.100717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Recent observations suggest a role of the volume of the cerebral ventricle volume, corpus callosum (CC) segment volume, in particular that of the central-anterior part, and choroid plexus (CP) volume for treatment resistance of major depressive disorder (MDD). An increased CP volume has been associated with increased inflammatory activity and changes in the structure of the ventricles and corpus callosum. We attempt to replicate and confirm that these imaging markers are associated with clinical outcome in subjects from the EMBARC study, as implied by a recent pilot study. The EMBARC study is a placebo controlled randomized study comparing sertraline vs. placebo in patients with MDD to identify biological markers of therapy resistance. Association of baseline volumes of the lateral ventricles (LVV), choroid plexus volume (CPV) and volume of segments of the CC with treatment response after 4 weeks treatment was evaluated. 171 subjects (61 male, 110 female) completed the 4 week assessments; gender and age were taken into account for this analyses. As previously reported, no treatment effect of sertraline vs. placebo was observed, therefore the study characterized prognostic markers of response in the pooled population. Change in depression severity was identified by the ratio of the Hamilton-Depression rating scale 17 (HAMD-17) at week 4 divided by the HAMD-17 at baseline (HAMD-17 ratio). Volumes of the lateral ventricles and choroid plexi were positively correlated with the HAMD-17 ratio, indication worse outcome with larger ventricles and choroid plexus volumes, whereas the volume of the central-anterior corpus callosum was negatively correlated with the HAMD-17 ratio. Responders (n = 54) had significantly smaller volumes of the lateral ventricles and CP compared to non-responders (n = 117), whereas the volume of mid-anterior CC was significantly larger compared to non-responders (n = 117), confirming our previous findings. In an exploratory way associations between enlarged LVV and CPV and signs of lipid dysregulation were observed. In conclusion, we confirmed that volumes of lateral ventricles, choroid plexi and the mid-anterior corpus callosum are associated with clinical improvement of depression and may be indicators of metabolic/inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Dept. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cherise Chin Fatt
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| | - Madhukar Trivedi
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| |
Collapse
|
13
|
Bravi B, Melloni EMT, Paolini M, Palladini M, Calesella F, Servidio L, Agnoletto E, Poletti S, Lorenzi C, Colombo C, Benedetti F. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. Brain Behav Immun 2024; 116:52-61. [PMID: 38030049 DOI: 10.1016/j.bbi.2023.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Depressed patients exhibit altered levels of immune-inflammatory markers both in the peripheral blood and in the cerebrospinal fluid (CSF) and inflammatory processes have been widely implicated in the pathophysiology of mood disorders. The Choroid Plexus (ChP), located at the base of each of the four brain ventricles, regulates the exchange of substances between the blood and CSF and several evidence supported a key role for ChP as a neuro-immunological interface between the brain and circulating immune cells. Given the role of ChP as a regulatory gate between periphery, CSF spaces and the brain, we compared ChP volumes in patients with bipolar disorder (BP) or major depressive disorder (MDD) and healthy controls, exploring their association with history of illness and levels of circulating cytokines. Plasma levels of inflammatory markers and MRI scans were acquired for 73 MDD, 79 BD and 72 age- and sex-matched healthy controls (HC). Patients with either BD or MDD had higher ChP volumes than HC. With increasing age, the bilateral ChP volume was larger in patients, an effect driven by the duration of illness; while only minor effects were observed in HC. Right ChP volumes were proportional to higher levels of circulating cytokines in the clinical groups, including IFN-γ, IL-13 and IL-17. Specific effects in the two diagnostic groups were observed when considering the left ChP, with positive association with IL-1ra, IL-13, IL-17, and CCL3 in BD, and negative associations with IL-2, IL-4, IL-1ra, and IFN-γ in MDD. These results suggest that ChP could represent a reliable and easy-to-assess biomarker to evaluate the brain effects of inflammatory status in mood disorders, contributing to personalized diagnosis and tailored treatment strategies.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Calesella
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Servidio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Elena Agnoletto
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
14
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
15
|
Lan L, Feng K, Wu Y, Zhang W, Wei L, Che H, Xue L, Gao Y, Tao J, Qian S, Cao W, Zhang J, Wang C, Tian M. Phenomic Imaging. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:597-612. [PMID: 38223684 PMCID: PMC10781914 DOI: 10.1007/s43657-023-00128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 01/16/2024]
Abstract
Human phenomics is defined as the comprehensive collection of observable phenotypes and characteristics influenced by a complex interplay among factors at multiple scales. These factors include genes, epigenetics at the microscopic level, organs, microbiome at the mesoscopic level, and diet and environmental exposures at the macroscopic level. "Phenomic imaging" utilizes various imaging techniques to visualize and measure anatomical structures, biological functions, metabolic processes, and biochemical activities across different scales, both in vivo and ex vivo. Unlike conventional medical imaging focused on disease diagnosis, phenomic imaging captures both normal and abnormal traits, facilitating detailed correlations between macro- and micro-phenotypes. This approach plays a crucial role in deciphering phenomes. This review provides an overview of different phenomic imaging modalities and their applications in human phenomics. Additionally, it explores the associations between phenomic imaging and other omics disciplines, including genomics, transcriptomics, proteomics, immunomics, and metabolomics. By integrating phenomic imaging with other omics data, such as genomics and metabolomics, a comprehensive understanding of biological systems can be achieved. This integration paves the way for the development of new therapeutic approaches and diagnostic tools.
Collapse
Affiliation(s)
- Lizhen Lan
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Kai Feng
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Yudan Wu
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Wenbo Zhang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ling Wei
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Huiting Che
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Yidan Gao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ji Tao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Shufang Qian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Fudan University, Shanghai, 200040 China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| |
Collapse
|
16
|
Cousins O, Schubert JJ, Chandra A, Veronese M, Valkimadi P, Creese B, Khan Z, Arathimos R, Hampshire A, Rosenzweig I, Ballard C, Corbett A, Aasland D, Velayudhan L, O'Neill M, Collier D, Awais R, Sander K, Årstad E, Howes O, Turkheimer F, Hodges A. Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: a multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge. J Neuroinflammation 2023; 20:272. [PMID: 37990275 PMCID: PMC10664604 DOI: 10.1186/s12974-023-02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions.
Collapse
Affiliation(s)
- Oliver Cousins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Julia J Schubert
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Avinash Chandra
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
- Department of Information Engineering, University of Padua, 35131, Padua, Italy
| | - Polena Valkimadi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
- Division of Psychology, Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Zunera Khan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Ryan Arathimos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ivana Rosenzweig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Dag Aasland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | | | | | - Ramla Awais
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Federico Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
17
|
Luo Y, Yang J, Zhang L, Tai Z, Huang H, Xu Z, Zhang H. Phosphoglycerate kinase (PGK) 1 succinylation modulates epileptic seizures and the blood-brain barrier. Exp Anim 2023; 72:475-489. [PMID: 37258131 PMCID: PMC10658094 DOI: 10.1538/expanim.23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Epilepsy is the most common chronic disorder in the nervous system, mainly characterized by recurrent, periodic, unpredictable seizures. Post-translational modifications (PTMs) are important protein functional regulators that regulate various physiological and pathological processes. It is significant for cell activity, stability, protein folding, and localization. Phosphoglycerate kinase (PGK) 1 has traditionally been studied as an important adenosine triphosphate (ATP)-generating enzyme of the glycolytic pathway. PGK1 catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. In addition to cell metabolism regulation, PGK1 is involved in multiple biological activities, including angiogenesis, autophagy, and DNA repair. However, the exact role of PGK1 succinylation in epilepsy has not been thoroughly investigated. The expression of PGK1 succinylation was analyzed by Immunoprecipitation. Western blots were used to assess the expression of PGK1, angiostatin, and vascular endothelial growth factor (VEGF) in a rat model of lithium-pilocarpine-induced acute epilepsy. Behavioral experiments were performed in a rat model of lithium-pilocarpine-induced acute epilepsy. ELISA method was used to measure the level of S100β in serum brain biomarkers' integrity of the blood-brain barrier. The expression of the succinylation of PGK1 was decreased in a rat model of lithium-pilocarpine-induced acute epilepsy compared with the normal rats in the hippocampus. Interestingly, the lysine 15 (K15), and the arginine (R) variants of lentivirus increased the susceptibility in a rat model of lithium-pilocarpine-induced acute epilepsy, and the K15 the glutamate (E) variants, had the opposite effect. In addition, the succinylation of PGK1 at K15 affected the expression of PGK1 succinylation but not the expression of PGK1total protein. Furthermore, the study found that the succinylation of PGK1 at K15 may affect the level of angiostatin and VEGF in the hippocampus, which also affects the level of S100β in serum. In conclusion, the mutation of the K15 site of PGK1 may alter the expression of the succinylation of PGK1 and then affect the integrity of the blood-brain barrier through the angiostatin / VEGF pathway altering the activity of epilepsy, which may be one of the new mechanisms of treatment strategies.
Collapse
Affiliation(s)
- Yuemei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
18
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
19
|
Kim E, Carreira Figueiredo I, Simmons C, Randall K, Rojo Gonzalez L, Wood T, Ranieri B, Sureda-Gibert P, Howes O, Pariante C, Nima Consortium, Pasternak O, Dell'Acqua F, Turkheimer F, Cash D. Mapping acute neuroinflammation in vivo with diffusion-MRI in rats given a systemic lipopolysaccharide challenge. Brain Behav Immun 2023; 113:289-301. [PMID: 37482203 DOI: 10.1016/j.bbi.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
It is becoming increasingly apparent that neuroinflammation plays a critical role in an array of neurological and psychiatric disorders. Recent studies have demonstrated the potential of diffusion MRI (dMRI) to characterize changes in microglial density and morphology associated with neuroinflammation, but these were conducted mostly ex vivo and/or in extreme, non-physiological animal models. Here, we build upon these studies by investigating the utility of well-established dMRI methods to detect neuroinflammation in vivo in a more clinically relevant animal model of sickness behavior. We show that diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) indicate widespread increases in diffusivity in the brains of rats given a systemic lipopolysaccharide challenge (n = 20) vs. vehicle-treated controls (n = 12). These diffusivity changes correlated with histologically measured changes in microglial morphology, confirming the sensitivity of dMRI to neuroinflammatory processes. This study marks a further step towards establishing a noninvasive indicator of neuroinflammation, which would greatly facilitate early diagnosis and treatment monitoring in various neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Ines Carreira Figueiredo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Karen Randall
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tobias Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Brigida Ranieri
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Paula Sureda-Gibert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Nima Consortium
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), United Kingdom
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
20
|
Kozlowski T, Bargiel W, Grabarczyk M, Skibinska M. Peripheral S100B Protein Levels in Five Major Psychiatric Disorders: A Systematic Review. Brain Sci 2023; 13:1334. [PMID: 37759935 PMCID: PMC10527471 DOI: 10.3390/brainsci13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Five major psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, autistic spectrum disorder, and attention-deficit/hyperactivity disorder, show a shared genetic background and probably share common pathobiological mechanisms. S100B is a calcium-binding protein widely studied in psychiatric disorders as a potential biomarker. Our systematic review aimed to compare studies on peripheral S100B levels in five major psychiatric disorders with shared genetic backgrounds to reveal whether S100B alterations are disease-specific. EMBASE, Web of Science, and PubMed databases were searched for relevant studies published until the end of July 2023. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA) guidelines. Overall, 1215 publications were identified, of which 111 full-text articles were included in the systematic review. Study designs are very heterogeneous, performed mostly on small groups of participants at different stages of the disease (first-episode or chronic, drug-free or medicated, in the exacerbation of symptoms or in remission), and various clinical variables are analyzed. Published results are inconsistent; most reported elevated S100B levels across disorders included in the review. Alterations in S100B peripheral levels do not seem to be disease-specific.
Collapse
Affiliation(s)
- Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Skibinska
- Protein Biomarkers Unit, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
21
|
Huang D, Lai S, Zhong S, Jia Y. Association between serum copper, zinc, and selenium concentrations and depressive symptoms in the US adult population, NHANES (2011-2016). BMC Psychiatry 2023; 23:498. [PMID: 37434135 DOI: 10.1186/s12888-023-04953-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Evidence suggests that alterations in serum trace element concentrations are closely associated with mental illness. However, studies on the relationship between serum copper, zinc, and selenium concentrations and depressive symptoms are limited and with controversial results. We aimed to investigate the association between serum concentrations of these trace elements and depressive symptoms in US adults. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) (2011-2016) were used in this cross-sectional study. The Patient Health Questionnaire-9 Items (PHQ-9) was employed to assess depressive symptoms. Multiple logistic regression was performed to determine the relationship between the serum concentrations of copper, zinc, and selenium and depressive symptoms. RESULTS A total of 4552 adults were included. Subjects with depressive symptoms had higher serum copper concentrations (123.88 ± 1.87) than those without depressive symptoms (116.99 ± 0.86) (p < 0.001). In Model 2, weighted logistic regression analysis showed that the second (Q2) quartile of zinc concentrations (odds ratio [OR] = 1.534, 95% confident interval [CI]: 1.018 to 2.313) were significantly associated with an increased risk of depressive symptoms. Subgroup analysis revealed that the third (Q3) and fourth (Q4) quartiles of copper concentrations (Q3: OR = 2.699, 95% CI: 1.285 to 5.667; Q4: OR = 2.490, 95% CI: 1.026 to 6.046) were also positively associated with depressive symptoms in obese individuals after controlling for all confounders. However, no significant relationship between serum selenium concentrations and depressive symptoms was observed. CONCLUSIONS Obese US adults with high serum copper concentrations, as well as US adults in general with low serum zinc concentrations, were susceptible to depressive symptoms. Nevertheless, the causal mechanisms underlying these relationships need to be further explored.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Turkheimer FE, Veronese M, Mondelli V, Cash D, Pariante CM. Sickness behaviour and depression: An updated model of peripheral-central immunity interactions. Brain Behav Immun 2023; 111:202-210. [PMID: 37076054 DOI: 10.1016/j.bbi.2023.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
Current research into mood disorders indicates that circulating immune mediators participating in the pathophysiology of chronic somatic disorders have potent influences on brain function. This paradigm has brought to the fore the use of anti-inflammatory therapies as adjunctive to standard antidepressant therapy to improve treatment efficacy, particularly in subjects that do not respond to standard medication. Such new practice requires biomarkers to tailor these new therapies to those most likely to benefit but also validated mechanisms of action describing the interaction between peripheral immunity and brain function to optimize target intervention. These mechanisms are generally studied in preclinical models that try to recapitulate the human disease, MDD, through peripherally induced sickness behaviour. In this proposal paper, after an appraisal of the data in rodent models and their adherence to the data in clinical cohorts, we put forward a modified model of periphery-brain interactions that goes beyond the currently established view of microglia cells as the drivers of depression. Instead, we suggest that, for most patients with mild levels of peripheral inflammation, brain barriers are the primary actors in the pathophysiology of the disease and in treatment resistance. We then highlight data gaps in this proposal and suggest novel lines of research.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padova, Padova, Italy
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Whitney MS, Scott SL, Perez JA, Barnes S, McVoy MK. Elevation of C-reactive protein in adolescent bipolar disorder vs. anxiety disorders. J Psychiatr Res 2022; 156:308-317. [PMID: 36306709 DOI: 10.1016/j.jpsychires.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Bipolar disorder (BD) largely begins in adolescence, but diagnosis lags for years, causing significant morbidity and mortality, and demonstrating the need for better diagnostic tools. Suggesting an association between BD and immune activity, elevated levels of peripheral inflammatory markers, including C-reactive protein (CRP), have been found in adults with BD. As similar data are extremely limited in adolescents, this study examined CRP levels in adolescents with BD (n = 37) compared to those with anxiety disorders (ADs, n = 157) and healthy controls with no psychiatric diagnoses (HCs, n = 2760). CRP blood levels for patients aged 12-17 years were retrieved from a nationwide repository of deidentified clinical data. After excluding patients with inflammatory conditions, differences in CRP were examined using multivariate and weighted regressions (covariates: demographics and BMI). Mean CRP levels were significantly elevated in adolescents with BD relative to those with ADs and HCs. Mean CRP levels were lower in the ADs cohort versus HCs. Although CRP levels were significantly higher in males and younger patients, the significant between-cohort differences in CRP remained after controlling for multiple confounders. To our knowledge, our study is the first to compare CRP levels between adolescent BD, ADs, and HCs, comprising a novel and essential contribution. Our results suggest the presence of a unique immune process in adolescents with BD and indicate that CRP may represent a biomarker with a crucial role in the diagnostic assessment of adolescent BD.
Collapse
Affiliation(s)
| | - Stephen L Scott
- Department of Child and Adolescent Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Jaime Abraham Perez
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Stephanie Barnes
- Department of Child and Adolescent Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Molly K McVoy
- Department of Child and Adolescent Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Neurological and Behavioral Outcomes Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
24
|
Eggerstorfer B, Kim JH, Cumming P, Lanzenberger R, Gryglewski G. Meta-analysis of molecular imaging of translocator protein in major depression. Front Mol Neurosci 2022; 15:981442. [PMID: 36226319 PMCID: PMC9549359 DOI: 10.3389/fnmol.2022.981442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular neuroimaging studies provide mounting evidence that neuroinflammation plays a contributory role in the pathogenesis of major depressive disorder (MDD). This has been the focus of a number of positron emission tomography (PET) studies of the 17-kDa translocator protein (TSPO), which is expressed by microglia and serves as a marker of neuroinflammation. In this meta-analysis, we compiled and analyzed all available molecular imaging studies comparing cerebral TSPO binding in MDD patients with healthy controls. Our systematic literature search yielded eight PET studies encompassing 238 MDD patients and 164 healthy subjects. The meta-analysis revealed relatively increased TSPO binding in several cortical regions (anterior cingulate cortex: Hedges' g = 0.6, 95% CI: 0.36, 0.84; hippocampus: g = 0.54, 95% CI: 0.26, 0.81; insula: g = 0.43, 95% CI: 0.17, 0.69; prefrontal cortex: g = 0.36, 95% CI: 0.14, 0.59; temporal cortex: g = 0.39, 95% CI: -0.04, 0.81). While the high range of effect size in the temporal cortex might reflect group-differences in body mass index (BMI), exploratory analyses failed to reveal any relationship between elevated TSPO availability in the other four brain regions and depression severity, age, BMI, radioligand, or the binding endpoint used, or with treatment status at the time of scanning. Taken together, this meta-analysis indicates a widespread ∼18% increase of TSPO availability in the brain of MDD patients, with effect sizes comparable to those in earlier molecular imaging studies of serotonin transporter availability and monoamine oxidase A binding.
Collapse
Affiliation(s)
- Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Jong-Hoon Kim
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Neuroscience Research Institute, GAIHST, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Jiang J, Wang Z, Yu R, Yang J, Tian H, Liu H, Wang S, Li Z, Zhu X. Effects of Electroacupuncture on the Correlation between Serum and Central Immunity in AD Model Animals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3478847. [PMID: 36147643 PMCID: PMC9489346 DOI: 10.1155/2022/3478847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Objective The goal was to investigate the connection between neuroinflammation in the brain and serum inflammatory markers as Alzheimer's disease progressed. We also sought to determine whether electroacupuncture had an effect on inflammatory markers found in blood and other brain regions. Methods As an animal model for AD, we used senescence-accelerated mouse prone 8 (SAMP8) mice. To examine the effects and probable mechanism of electroacupuncture, we used HE staining, immunofluorescence staining, western blotting, and enzyme-linked immunosorbent assay. Results Electroacupuncture therapy protected neurons, significantly downregulated the Iba-1 level in the hippocampus (p value was 0.003), frontal lobe cortex (p value was 0.042), and temporal lobe cortex (p value was 0.013) of the AD animal model, all of which had significantly lower levels of IL-6 (p value was 0.001), IL-1β (p value was 0.001), and TNF-α (p value was 0.001) in their serum. Conclusion The amounts of IL-6, IL-1β, and TNF-α detected in the serum were strongly linked to the levels discovered in the hippocampus and the frontal lobes of the brain, respectively. A better understanding of the electroacupuncture process as well as the course of Alzheimer's disease and the therapeutic benefits of electroacupuncture may be gained by using biomarkers such as serum inflammatory marker biomarkers.
Collapse
Affiliation(s)
- Jing Jiang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Zidong Wang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Ruxia Yu
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Jiayi Yang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Huiling Tian
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Hao Liu
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Shun Wang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Zhigang Li
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Xiaoshu Zhu
- Western Sydney University, School of Health Sciences, Sydney, Australia
| |
Collapse
|
26
|
Zeng X, Xu C, Xu X, Huang Y, Wang Q, Huo X. Combined toxicity of air pollutants related to e-waste on inflammatory cytokines linked with neurotransmitters and pediatric behavioral problems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113657. [PMID: 35617902 DOI: 10.1016/j.ecoenv.2022.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023]
Abstract
E-waste usually refers to the discarded electrical or electronic equipment that is no longer used. Informal e-waste recycling methods, such as burning, roasting, acid leaching, and shredding, had resulted in serious air pollution, which is a prominent risk factor for children's health. However, the combined toxicity of air pollutants on children's behavioral health remains unclear. This study collected data on air pollution exposure, calculated the average daily dose (ADD) based on these air pollutants for children in Guiyu (e-waste group, n = 112) and Haojiang (reference group, n = 101), then assessed children's behavioral health using the Strengths and Difficulties Questionnaire (SDQ), and further estimated the associations of ADD, inflammatory cytokines, neurotransmitters, and children's behavioral problems. Compared with Haojiang, Guiyu has poorer air quality and higher levels of ADD, inflammatory cytokines (such as IL-1β, IL-6, and TNF-α), neurotransmitters (such as DA and SP), and SDQ scores, but lower levels of serum neuropeptide Y (NPY) levels. Spearman correlation analyses indicated that there were significant relationships among inflammatory cytokines, neurotransmitters, and behavioral scores. Multiple linear regression analyses showed that each unit increase in ADD was associated with serum levels of DA and SP, the serum NPY subsequently changed by B (95% CI): 0.99 (0.14, 1.84) nmol/L, 0.25 (0.08, 0.42) ng/mL, and - 0.16 (-0.26, -0.05) ng/mL, respectively. After adjustment for confounders, logistic regression analyses suggested that with each one-fold increase in ADD was associated with the risk of emotional symptoms [OR (95% CI): 18.15 (2.72, 121.06)], hyperactivity-inattention [13.64 (2.28, 81.65)] and total difficulties [8.90 (1.60, 49.35)] and prosocial behavior [- 7.32 (-44.37, -1.21)]. Taken together, this study demonstrates that combined exposure to air pollutants may alter the levels of inflammatory cytokines and serum neurotransmitter to subsequently impact behavioral health in children.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
27
|
Chen X, Yao T, Cai J, Fu X, Li H, Wu J. Systemic inflammatory regulators and 7 major psychiatric disorders: A two-sample Mendelian randomization study. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110534. [PMID: 35150783 DOI: 10.1016/j.pnpbp.2022.110534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 11/27/2022]
Abstract
Systemic inflammation has been thought to play a considerable part in psychiatric disorders. However, the causal relationships between systemic inflammation and psychiatric disorders and the directions of the causal effects remain elusive and need further investigation. By leveraging the summary statistics of genome-wide association studies, the standard inverse variance weighted method was applied to assess the causal associations among 41 systemic inflammatory regulators and 7 major psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), anorexia nervosa (AN), autism spectrum disorder (ASD), bipolar disorder (BIP), major depression disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia (SCZ), within a two-sample bidirectional Mendelian randomization analysis. Additionally, the weighted median test and the Mendelian randomization pleiotropy residual sum and outlier test were conducted for sensitivity analyses. The results suggested a total of 15 unique systemic inflammatory regulators might be causally associated with disease risk, including 2 for ADHD, 4 for AN, 2 for ASD, 2 for MDD, 2 for OCD, and 5 for SCZ. Among them, the genetically predicted concentration of basic fibroblast growth factor was significantly related to AN at the Bonferroni-corrected threshold (Odds ratio = 0.403, 95% confidence interval = (0.261, 0.622), P = 4.03 × 10-5). Furthermore, the concentrations of 9 systemic inflammatory regulators might be influenced by neuropsychiatric disorders, including 2 by ADHD, 2 by BIP, 3 by MDD, and 2 by SCZ, and the causal effects of ASD, AN, and OCD need to be further assessed when more significant genetic variants are identified in the future. Overall, this study provides additional insights into the relationships between systemic inflammation and psychiatric disorders and may provide new clues regarding the aetiology, diagnosis and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jinliang Cai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
28
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
29
|
Zhao NO, Topolski N, Tusconi M, Salarda EM, Busby CW, Lima CN, Pillai A, Quevedo J, Barichello T, Fries GR. Blood-brain barrier dysfunction in bipolar disorder: Molecular mechanisms and clinical implications. Brain Behav Immun Health 2022; 21:100441. [PMID: 35308081 PMCID: PMC8924633 DOI: 10.1016/j.bbih.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder affecting approximately 1-3% of the population and characterized by a chronic and recurrent course of debilitating symptoms. An increasing focus has been directed to discover and explain the function of Blood-Brain Barrier (BBB) integrity and its association with a number of psychiatric disorders; however, there has been limited research in the role of BBB integrity in BD. Multiple pathways may play crucial roles in modulating BBB integrity in BD, such as inflammation, insulin resistance, and alterations of neuronal plasticity. In turn, BBB impairment is hypothesized to have a significant clinical impact in BD patients. Based on the high prevalence of medical and psychiatric comorbidities in BD and a growing body of evidence linking inflammatory and neuroinflammatory mechanisms to the disorder, recent studies have suggested that BBB dysfunction may play a key role in BD's pathophysiology. In this comprehensive narrative review, we aim to discuss studies investigating biological markers of BBB in patients with BD, mechanisms that modulate BBB integrity, their clinical implications on patients, and key targets for future development of novel therapies.
Collapse
Affiliation(s)
- Ning O. Zhao
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Erika M. Salarda
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Christopher W. Busby
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Camila N.N.C. Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Gabriel R. Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. 7000 Fannin, 77030, Houston, TX, USA
| |
Collapse
|
30
|
Liu J, Fang Y, Cui L, Wang Z, Luo Y, Gao C, Ge W, Huang T, Wen J, Zhou T. Butyrate emerges as a crucial effector of Zhi-Zi-Chi decoctions to ameliorate depression via multiple pathways of brain-gut axis. Biomed Pharmacother 2022; 149:112861. [PMID: 35339110 DOI: 10.1016/j.biopha.2022.112861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/09/2022] Open
Abstract
Gut microbiota has emerged as a crucial target of gut-brain axis to influence depression. Zhi-Zi-Chi decoctions (ZZCD), as a classic oral formula in clinic, is widely applied in depression treatment nowadays. However, the underlying mechanism in the antidepressant activity of ZZCD remains unknown. A classic depression model of chronic mild unpredictable stress (CUMS) was established in rats based on the results of behavioral tests and hippocampal histomorphology. 16S rRNA sequencing analysis indicated that ZZCD could increase short-chain fatty acid-producing and anti-inflammatory bacteria and reduce inflammatory and tryptophan-metabolizing bacteria. Furthermore, ZZCD reversed the alterations of BDNF, TNF-α, pro-inflammatory cytokines and neurotransmitters in the gut, blood and brain along the brain-gut axis and restored the decrease of butyrate in cecal content caused by CUMS. Then, butyrate was utilized to validate its ameliorative effect on pathological characteristics of depressive rats. Taken together, these results show that ZZCD exhibits antidepressant effect through modulating gut microbiota to facilitate the production of butyrate, which further regulate anti-inflammation, neurotransmitters, endocrine and BDNF along the gut-brain axis. Hence, this study fills the gap of the antidepressive mechanism of ZZCD in the light of the brain-gut axis and established a multi-targets and multi-levels platform eventually for further research into the mechanism of other TCM efficacy.
Collapse
Affiliation(s)
- Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yichao Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lixun Cui
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhongzhao Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Changzheng hospital, second affiliated hospital of Second Military Medical University, Shanghai 200003, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Congcong Gao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Ge
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
31
|
Abstract
In the field of neuropsychiatry, neuroinflammation is one of the prevailing hypotheses to explain the pathophysiology of mood and psychotic disorders. Neuroinflammation encompasses an ill-defined set of pathophysiological processes in the central nervous system that cause neuronal or glial atrophy or death and disruptions in neurotransmitter signaling, resulting in cognitive and behavioral changes. Positron emission tomography for the brain-based translocator protein has been shown to be a useful tool to measure glial activation in neuropsychiatric disorders. Recent neuroimaging studies also indicate a potential disruption in the choroid plexus and blood-brain barrier, which modulate the transfer of ions, molecules, toxins, and cells from the periphery into the brain. Simultaneously, peripheral inflammatory markers have consistently been shown to be altered in mood and psychotic disorders. The crosstalk (i.e., the communication between peripheral and central inflammatory pathways) is not well understood in these disorders, however, and neuroimaging studies hold promise to shed light on this complex process. In the current Perspectives article, we discuss the neuroimaging insights into neuroimmune crosstalk offered in selected works. Overall, evidence exists for peripheral immune cell infiltration into the central nervous system in some patients, but the reason for this is unknown. Future neuroimaging studies should aim to extend our knowledge of this system and the role it likely plays in symptom onset and recurrence.
Collapse
|
32
|
Althubaity N, Schubert J, Martins D, Yousaf T, Nettis MA, Mondelli V, Pariante C, Harrison NA, Bullmore ET, Dima D, Turkheimer FE, Veronese M. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. Neuroimage Clin 2021; 33:102926. [PMID: 34972034 PMCID: PMC8718974 DOI: 10.1016/j.nicl.2021.102926] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have shown that choroid plexuses (CP) may be involved in the neuro-immune axes, playing a role in the interaction between the central and peripheral inflammation. Here we aimed to investigate CP volume alterations in depression and their associations with inflammation. METHODS 51 depressed participants (HDRS score > 13) and 25 age- and sex-matched healthy controls (HCs) from the Wellcome Trust NIMA consortium were re-analysed for the study. All the participants underwent full peripheral cytokine profiling and simultaneous [11C]PK11195 PET/structural MRI imaging for measuring neuroinflammation and CP volume respectively. RESULTS We found a significantly greater CP volume in depressed subjects compared to HCs (t(76) = +2.17) that was positively correlated with [11C]PK11195 PET binding in the anterior cingulate cortex (r = 0.28, p = 0.02), prefrontal cortex (r = 0.24, p = 0.04), and insular cortex (r = 0.24, p = 0.04), but not with the peripheral inflammatory markers: CRP levels (r = 0.07, p = 0.53), IL-6 (r = -0.08, p = 0.61), and TNF-α (r = -0.06, p = 0.70). The CP volume correlated with the [11C]PK11195 PET binding in CP (r = 0.34, p = 0.005). Integration of transcriptomic data from the Allen Human Brain Atlas with the brain map depicting the correlations between CP volume and PET imaging found significant gene enrichment for several pathways involved in neuroinflammatory response. CONCLUSION This result supports the hypothesis that changes in brain barriers may cause reduction in solute exchanges between blood and CSF, disturbing the brain homeostasis and ultimately contributing to inflammation in depression. Given that CP anomalies have been recently detected in other brain disorders, these results may not be specific to depression and might extend to other conditions with a peripheral inflammatory component.
Collapse
Affiliation(s)
- Noha Althubaity
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Radiological Sciences, College of Applied Medical Science, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Julia Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tayyabah Yousaf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria A Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK; Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Immuno-Psychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychology, School of Arts and Social Sciences, City University of London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Information Engineering, University of Padua, Padua, Italy
| |
Collapse
|
33
|
Joo YH, Lee MW, Son YD, Chang KA, Yaqub M, Kim HK, Cumming P, Kim JH. In Vivo Cerebral Translocator Protein (TSPO) Binding and Its Relationship with Blood Adiponectin Levels in Treatment-Naïve Young Adults with Major Depression: A [ 11C]PK11195 PET Study. Biomedicines 2021; 10:biomedicines10010034. [PMID: 35052718 PMCID: PMC8773340 DOI: 10.3390/biomedicines10010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Adiponectin is an adipokine that mediates cellular cholesterol efflux and plays important roles in neuroinflammatory processes. In this study, we undertook positron emission tomography (PET) with the translocator protein (TSPO) ligand [11C]PK11195 and measured serum adiponectin levels in groups of treatment-naïve young adult patients with major depressive disorder (MDD) and matched healthy controls. Thirty treatment-naïve MDD patients (median age: 24 years) and twenty-three healthy controls underwent [11C]PK11195 PET. We quantified TSPO availability in brain as the [11C]PK11195 binding potential (BPND) using a reference tissue model in conjunction with the supervised cluster analysis (SVCA4) algorithm. Age, sex distribution, body mass index, and serum adiponectin levels did not differ between the groups. Between-group analysis using a region-of-interest approach showed significantly higher [11C]PK11195 BPND in the left anterior and right posterior cingulate cortices in MDD patients than in controls. Serum adiponectin levels had significant negative correlations with [11C]PK11195 BPND in the bilateral hippocampus in MDD patients, but significant positive correlations in the bilateral hippocampus in the control group. Our results indicate significantly higher TSPO binding in the anterior and posterior cingulate cortices in treatment-naïve young MDD patients, suggesting microglial activation in these limbic regions, which are involved in cognitive and emotional processing. The opposite correlations between [11C]PK11195 BPND in the hippocampus with serum adiponectin levels in MDD and control groups suggest that microglial activation in the hippocampus may respond differentially to adiponectin signaling in MDD and healthy subjects, possibly with respect to microglial phenotype.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (Y.-H.J.); (M.-W.L.); (Y.-D.S.); (K.-A.C.); (H.-K.K.)
| | - Min-Woo Lee
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (Y.-H.J.); (M.-W.L.); (Y.-D.S.); (K.-A.C.); (H.-K.K.)
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (Y.-H.J.); (M.-W.L.); (Y.-D.S.); (K.-A.C.); (H.-K.K.)
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon 21565, Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (Y.-H.J.); (M.-W.L.); (Y.-D.S.); (K.-A.C.); (H.-K.K.)
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon 21565, Korea
- Department of Pharmacology, Gachon University College of Medicine, Gachon University, Incheon 21936, Korea
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands;
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (Y.-H.J.); (M.-W.L.); (Y.-D.S.); (K.-A.C.); (H.-K.K.)
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon 21565, Korea
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, CH-3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (Y.-H.J.); (M.-W.L.); (Y.-D.S.); (K.-A.C.); (H.-K.K.)
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon 21565, Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-460-2696
| |
Collapse
|
34
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
35
|
De Picker LJ, Haarman BCM. Applicability, potential and limitations of TSPO PET imaging as a clinical immunopsychiatry biomarker. Eur J Nucl Med Mol Imaging 2021; 49:164-173. [PMID: 33735406 DOI: 10.1007/s00259-021-05308-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE TSPO PET imaging may hold promise as a single-step diagnostic work-up for clinical immunopsychiatry. This review paper on the clinical applicability of TSPO PET for primary psychiatric disorders discusses if and why TSPO PET imaging might become the first clinical immunopsychiatry biomarker and the investment prerequisites and scientific advancements needed to accommodate this transition from bench to bedside. METHODS We conducted a systematic search of the literature to identify clinical studies of TSPO PET imaging in patients with primary psychiatric disorders. We included both original case-control studies as well as longitudinal cohort studies of patients with a primary psychiatric diagnosis. RESULTS Thirty-one original studies met our inclusion criteria. In the field of immunopsychiatry, TSPO PET has until now mostly been studied in schizophrenia and related psychotic disorders, and to a lesser extent in mood disorders and neurodevelopmental disorders. Quantitative TSPO PET appears most promising as a predictive biomarker for the transdiagnostic identification of subgroups or disease stages that could benefit from immunological treatments, or as a prognostic biomarker forecasting patients' illness course. Current scanning protocols are still too unreliable, impractical and invasive for clinical use in symptomatic psychiatric patients. CONCLUSION TSPO PET imaging in its present form does not yet offer a sufficiently attractive cost-benefit ratio to become a clinical immunopsychiatry biomarker. Its translation to psychiatric clinical practice will depend on the prioritising of longitudinal research and the establishment of a uniform protocol rendering clinically meaningful TSPO uptake quantification at the shortest possible scan duration without arterial cannulation.
Collapse
Affiliation(s)
- Livia J De Picker
- University Psychiatric Hospital Campus Duffel, Stationsstraat 22C, 2570, Duffel, Belgium.
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Wilrijkstraat 1, 2650, Edegem, Belgium.
| | - Benno C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RA, Groningen, The Netherlands
- Rob Giel Research Center (RGOc), University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RA, Groningen, The Netherlands
| |
Collapse
|
36
|
Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat Rev Neurol 2021; 17:689-701. [PMID: 34522039 PMCID: PMC8439173 DOI: 10.1038/s41582-021-00549-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of the immune system is a cardinal feature of Alzheimer disease (AD), and a considerable body of evidence indicates pathological alterations in central and peripheral immune responses that change over time. Considering AD as a systemic immune process raises important questions about how communication between the peripheral and central compartments occurs and whether this crosstalk represents a therapeutic target. We established a whitepaper workgroup to delineate the current status of the field and to outline a research prospectus for advancing our understanding of peripheral-central immune crosstalk in AD. To guide the prospectus, we begin with an overview of seminal clinical observations that suggest a role for peripheral immune dysregulation and peripheral-central immune communication in AD, followed by formative animal data that provide insights into possible mechanisms for these clinical findings. We then present a roadmap that defines important next steps needed to overcome conceptual and methodological challenges, opportunities for future interdisciplinary research, and suggestions for translating promising mechanistic studies into therapeutic interventions.
Collapse
Affiliation(s)
- Brianne M Bettcher
- Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Malú G Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Guillaume Dorothée
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Team "Immune System and Neuroinflammation", Hôpital Saint-Antoine, Paris, France
| | - Michael T Heneka
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
37
|
Natale G, Clouston S, Smith D. Elevated C-Reactive Protein in Alzheimer's Disease without Depression in Older Adults: Findings from the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2021; 77:673-682. [PMID: 34671810 DOI: 10.1093/gerona/glab282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/14/2022] Open
Abstract
We examined the association between differential diagnoses of major stroke and probable Alzheimer's disease (AD) and Mixed AD on c-reactive protein (CRP) in older adults with and without depression. Secondary data analyses examined associations between blood-based measures of probable peripheral inflammation using CRP collected from dried blood spots in the Health and Retirement Study (HRS), a nationally representative sample of individuals aged 50 and older. A validated pattern recognition algorithm was utilized to identify cognitive decline indicative of probable AD, Mixed AD, and major stroke. Negative binomial regressions were utilized to model concentrations of serologic CRP. On average, participants (N=4,601) were 70 years old, female, and non-Hispanic white. Mixed AD participants had 0.26 mg/dL increase in CRP compared to unimpaired participants, controlling for demographics, health behaviors and comorbidities. Those with Mixed AD had 2.14 times increased odds of having high CRP (OR=2.14; [1.19-3.85]). In analyses stratified by depression, adults with Mixed AD and without depression had an additional 0.37 mg/dL increase in CRP (SE=0.06; p<0.001) compared to unimpaired adults. Those with AD without depression had an 0.20 mg/dL increase in CRP (SE=0.07; p<0.01). Age was not associated with increased CRP in non-depressed older adults. Depressed adults with major stroke had a -0.26 mg/dL decrease in CRP (SE=0.11; p=0.02), controlling for hypertension, alcoholic drinks/beverages per week and smoking status. Concentration modeling revealed that participants with major stroke, probable AD and probable mixed AD without depression had significantly higher CRP concentrations when compared to unimpaired older adults.
Collapse
Affiliation(s)
- Ginny Natale
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sean Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Dylan Smith
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
38
|
Kopra E, Mondelli V, Pariante C, Nikkheslat N. Ketamine's effect on inflammation and kynurenine pathway in depression: A systematic review. J Psychopharmacol 2021; 35:934-945. [PMID: 34180293 PMCID: PMC8358579 DOI: 10.1177/02698811211026426] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ketamine is a novel rapid-acting antidepressant with high efficacy in treatment-resistant patients. Its exact therapeutic mechanisms of action are unclear; however, in recent years its anti-inflammatory properties and subsequent downstream effects on tryptophan (TRP) metabolism have sparked research interest. AIM This systematic review examined the effect of ketamine on inflammatory markers and TRP-kynurenine (KYN) pathway metabolites in patients with unipolar and bipolar depression and in animal models of depression. METHODS MEDLINE, Embase, and PsycINFO databases were searched on October 2020 (1806 to 2020). RESULTS Out of 807 initial results, nine human studies and 22 animal studies on rodents met the inclusion criteria. Rodent studies provided strong support for ketamine-induced decreases in pro-inflammatory cytokines, namely in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and indicated anti-inflammatory effects on TRP metabolism, including decreases in the enzyme indoleamine 2,3-dioxygenase (IDO). Clinical evidence was less robust with high heterogeneity between sample characteristics, but most experiments demonstrated decreases in peripheral inflammation including in IL-1β, IL-6, and TNF-α. Preliminary support was also found for reduced activation of the neurotoxic arm of the KYN pathway. CONCLUSION Ketamine appears to induce anti-inflammatory effects in at least a proportion of depressed patients. Suggestions for future research include investigation of markers in the central nervous system and examination of clinical relevance of inflammatory changes.
Collapse
Affiliation(s)
- Emma Kopra
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
39
|
Di Cataldo V, Debatisse J, Piraquive J, Géloën A, Grandin C, Verset M, Taborik F, Labaronne E, Loizon E, Millon A, Mury P, Pialoux V, Serusclat A, Lamberton F, Ibarrola D, Lavenne F, Le Bars D, Troalen T, Confais J, Crola Da Silva C, Mechtouff L, Contamin H, Fayad ZA, Canet-Soulas E. Cortical inflammation and brain signs of high-risk atherosclerosis in a non-human primate model. Brain Commun 2021; 3:fcab064. [PMID: 33937770 PMCID: PMC8063585 DOI: 10.1093/braincomms/fcab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood−brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood−brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.
Collapse
Affiliation(s)
- Vanessa Di Cataldo
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Debatisse
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | | | - Alain Géloën
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Emmanuel Labaronne
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuelle Loizon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Mury
- LIBM Laboratory, Univ Lyon, Université Lyon 1, Lyon, France
| | | | - André Serusclat
- Radiology Department, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | - Claire Crola Da Silva
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | | | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
40
|
Forbes MP, O'Neil A, Lane M, Agustini B, Myles N, Berk M. Major Depressive Disorder in Older Patients as an Inflammatory Disorder: Implications for the Pharmacological Management of Geriatric Depression. Drugs Aging 2021; 38:451-467. [PMID: 33913114 DOI: 10.1007/s40266-021-00858-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Depression is a common and highly disabling condition in older adults. It is a heterogenous disorder and there is emerging evidence of a link between inflammation and depression in older patients, with a possible inflammatory subtype of depression. Persistent low-level inflammation, from several sources including psychological distress and chronic disease, can disrupt monoaminergic and glutaminergic systems to create dysfunctional brain networks. Despite the evidence for the role of inflammation in depression, there is insufficient evidence to recommend use of any putative anti-inflammatory agent in the treatment of depression in older adults at this stage. Further characterisation of markers of inflammation and stratification of participants with elevated rates of inflammatory markers in treatment trials is needed.
Collapse
Affiliation(s)
- Malcolm P Forbes
- Mental Health, Drugs and Alcohol Services, Barwon Health, Geelong, VIC, 3216, Australia.
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
- Department of Psychiatry, University of Melbourne, Parkville, VIC, 3050, Australia.
| | - Adrienne O'Neil
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Melissa Lane
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Bruno Agustini
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Nick Myles
- Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC, 3050, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
41
|
Treatment-Resistant Depression Revisited: A Glimmer of Hope. J Pers Med 2021; 11:jpm11020155. [PMID: 33672126 PMCID: PMC7927134 DOI: 10.3390/jpm11020155] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Major Depressive Disorder (MDD) is a highly prevalent psychiatric disorder worldwide. It causes individual suffering, loss of productivity, increased health care costs and high suicide risk. Current pharmacologic interventions fail to produce at least partial response to approximately one third of these patients, and remission is obtained in approximately 30% of patients. This is known as Treatment-Resistant Depression (TRD). The burden of TRD exponentially increases the longer it persists, with a higher risk of impaired functional and social functioning, vast losses in quality of life and significant risk of somatic morbidity and suicidality. Different approaches have been suggested and utilized, but the results have not been encouraging. In this review article, we present new approaches to identify and correct potential causes of TRD, thereby reducing its prevalence and with it the overall burden of this disease entity. We will address potential contributory factors to TRD, most of which can be investigated in many laboratories as routine tests. We discuss endocrinological aberrations, notably, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and thyroid and gonadal dysfunction. We address the role of Vitamin D in contributing to depression. Pharmacogenomic testing is being increasingly used to determine Single Nucleotide Polymorphisms in Cytochrome P450, Serotonin Transporter, COMT, folic acid conversion (MTHFR). As the role of immune system dysregulation is being recognized as potentially a major contributory factor to TRD, the measurement of C-reactive protein (CRP) and select immune biomarkers, where testing is available, can guide combination treatments with anti-inflammatory agents (e.g., selective COX-2 inhibitors) reversing treatment resistance. We focus on established and emerging test procedures, potential biomarkers and non-biologic assessments and interventions to apply personalized medicine to effectively manage treatment resistance in general and TRD specifically.
Collapse
|
42
|
Mondelli V, Pariante CM. What can neuroimmunology teach us about the symptoms of long-COVID? OXFORD OPEN IMMUNOLOGY 2021; 2:iqab004. [PMID: 34192271 PMCID: PMC7928677 DOI: 10.1093/oxfimm/iqab004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long-Coronavirus Disease (Long-COVID) is becoming increasingly recognized due to the persistence of symptoms such as profound fatigue, neurocognitive difficulties, muscle pains and weaknesses and depression, which would last beyond 3-12 weeks following infection with SARS-CoV-2. These particular symptoms have been extensively observed and studied in the context of previous psychoneuroimmunology research. In this short commentary, we discuss how previous neuroimmunology studies could help us to better understand pathways behind the development of these prolonged symptoms. Various mechanisms, including viral neuroinvasion, glial cells activation, neurogenesis, oxidative stress have been shown to explain these symptoms in the context of other disorders. Previous neuroimmunology findings could represent helpful pointers for future research on long-COVID symptoms and suggest potential management strategies for patients suffering with long-COVID.
Collapse
Affiliation(s)
- Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
43
|
Schubert JJ, Veronese M, Fryer TD, Manavaki R, Kitzbichler MG, Nettis MA, Mondelli V, Pariante CM, Bullmore ET, Turkheimer FE. A Modest Increase in 11C-PK11195-Positron Emission Tomography TSPO Binding in Depression Is Not Associated With Serum C-Reactive Protein or Body Mass Index. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:716-724. [PMID: 33515765 PMCID: PMC8264953 DOI: 10.1016/j.bpsc.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Background Immune mechanisms have been implicated in the pathogenesis of depression. Translocator protein (TSPO)–targeted positron emission tomography (PET) has been used to assess neuroinflammation in major depressive disorder. We aimed to 1) test the hypothesis of significant case-control differences in TSPO binding in the anterior cingulate cortex, prefrontal cortex, and insula regions; and 2) explore the relationship between cerebral TSPO binding and peripheral blood C-reactive protein (CRP) concentration. Methods A total of 51 depressed subjects with Hamilton Depression Rating Scale score >13 (median 17; interquartile range, 16–22) and 25 healthy control subjects underwent dynamic brain 11C-PK11195 PET and peripheral blood immune marker characterization. Depressed subjects were divided into high CRP (>3 mg/L; n = 20) and low CRP (<3 mg/L; n = 31). Results Across the three regions, TSPO binding was significantly increased in depressed versus control subjects (η2p = .09; F1,71 = 6.97, p = .01), which was not influenced by body mass index. The case-control difference was greatest in the anterior cingulate cortex (d = 0.49; t74 = 2.00, p = .03) and not significant in the prefrontal cortex or insula (d = 0.27 and d = 0.36, respectively). Following CRP stratification, significantly higher TSPO binding was observed in low-CRP depression compared with controls (d = 0.53; t54 = 1.96, p = .03). These effect sizes are comparable to prior major depressive disorder case-control TSPO PET data. No significant correlations were observed between TSPO and CRP measures. Conclusions Consistent with previous findings, there is a modest increase in TSPO binding in depressed patients compared with healthy control subjects. The lack of a significant correlation between brain TSPO binding and blood CRP concentration or body mass index poses questions about the interactions between central and peripheral immune responses in the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manfred G Kitzbichler
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria A Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
44
|
Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network. Pharmaceuticals (Basel) 2021; 14:ph14010065. [PMID: 33466877 PMCID: PMC7830381 DOI: 10.3390/ph14010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The neuroimmune and neuroendocrine systems are two critical biological systems in the pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with depression and that these two systems bidirectionally regulate one another through neural, immunological, and humoral intersystem interactions. The neuroendocrine-immune network poses difficulties associated with the development of antidepressant agents directed toward these biological systems for the effective treatment of depression. On the other hand, multidrug and multitarget Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medications for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical studies conducted using depressive animal models. Some CHM herbal constituents and formulas are highlighted as examples, and their mechanisms of action at both the molecular and systems levels are discussed. Furthermore, we discuss the crosstalk of these two biological systems and the systems pharmacology approach for understanding the system-wide mechanism of action of CHM on the neuroendocrine-immune network in depression treatment. The holistic, multidrug, and multitarget nature of CHM represents an excellent example of systems medicine in the effective treatment of depression.
Collapse
|