1
|
Munarriz‐Cuezva E, Meana JJ. Poly (I:C)-induced maternal immune activation generates impairment of reversal learning performance in offspring. J Neurochem 2025; 169:e16212. [PMID: 39183542 PMCID: PMC11657921 DOI: 10.1111/jnc.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Maternal immune activation (MIA) induces a variety of behavioral and brain abnormalities in offspring of rodent models, compatible with neurodevelopmental disorders, such as schizophrenia or autism. However, it remains controversial whether MIA impairs reversal learning, a basic expression of cognitive flexibility that seems to be altered in schizophrenia. In the present study, MIA was induced by administration of a single dose of polyriboinosinic-polyribocytidylic acid (Poly (I:C) (5 mg/kg i.p.)) or saline to mouse pregnant dams in gestational day (GD) 9.5. Immune activation was monitored through changes in weight and temperature. The offspring were evaluated when they reached adulthood (8 weeks) using a touchscreen-based system to investigate the effects of Poly (I:C) on discrimination and reversal learning performance. After an initial pre-training, mice were trained to discriminate between two different stimuli, of which only one was rewarded (acquisition phase). When the correct response reached above 80% values for two consecutive days, the images were reversed (reversal phase) to assess the adaptation capacity to a changing environment. Maternal Poly (I:C) treatment did not interfere with the learning process but induced deficits in reversal learning compared to control saline animals. Thus, the accuracy in the reversal phase was lower, and Poly (I:C) animals required more sessions to complete it, suggesting impairments in cognitive flexibility. This study advances the knowledge of how MIA affects behavior, especially cognitive domains that are impaired in schizophrenia. The findings support the validity of the Poly (I:C)-based MIA model as a tool to develop pharmacological treatments targeting cognitive deficits associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eva Munarriz‐Cuezva
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque CountryLeioaBizkaiaSpain
- Centro de Investigación Biomédica en Red de Salud MentalLeioaBizkaiaSpain
| | - Jose Javier Meana
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque CountryLeioaBizkaiaSpain
- Centro de Investigación Biomédica en Red de Salud MentalLeioaBizkaiaSpain
- Biobizkaia Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
2
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Takahashi A. Associations of the immune system in aggression traits and the role of microglia as mediators. Neuropharmacology 2024; 256:110021. [PMID: 38825308 DOI: 10.1016/j.neuropharm.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is an important relationship between the immune system and aggressive behavior. Aggressive encounters acutely increase the levels of proinflammatory cytokines, and there are positive correlations between aggressive traits and peripheral proinflammatory cytokines. Endotoxin lipopolysaccharide (LPS) treatment, which results in peripheral immune activation, decreases aggressive behavior as one of the sickness behavioral symptoms. In contrast, certain brain infections and chronic interferon treatment are associated with increased aggression. Indeed, the effects of proinflammatory cytokines on the brain in aggressive behavior are bidirectional, depending on the type and dose of cytokine, target brain region, and type of aggression. Some studies have suggested that microglial activation and neuroinflammation influence intermale aggression in rodent models. In addition, pathological conditions as well as physiological levels of cytokines produced by microglia play an important role in social and aggressive behavior in adult animals. Furthermore, microglial function in early development is necessary for the establishment of the social brain and the expression of juvenile social behaviors, including play fighting. Overall, this review discusses the important link between the immune system and aggressive traits and the role of microglia as mediators of this link.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Institute of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
4
|
Schwartzer JJ, Church JS, Russo JN, Ragoonaden S. Offspring behavioral outcomes following maternal allergic asthma in the IL-4-deficient mouse. J Neuroimmunol 2024; 390:578341. [PMID: 38613873 PMCID: PMC11088503 DOI: 10.1016/j.jneuroim.2024.578341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Maternal allergic asthma (MAA) during pregnancy has been associated with increased risk of neurodevelopmental disorders in humans, and rodent studies have demonstrated that inducing a T helper-2-mediated allergic response during pregnancy leads to an offspring behavioral phenotype characterized by decreased social interaction and increased stereotypies. The interleukin (IL)-4 cytokine is hypothesized to mediate the neurobehavioral impact of MAA on offspring. Utilizing IL-4 knockout mice, this study assessed whether MAA without IL-4 signaling would still impart behavioral deficits. C57 and IL-4 knockout female mice were sensitized to ovalbumin, exposed to repeated MAA inductions, and their offspring performed social, cognitive, and motor tasks. Only C57 offspring of MAA dams displayed social and cognitive deficits, while IL-4 knockout mice showed altered motor activity compared with C57 mice. These findings highlight a key role for IL-4 signaling in MAA-induced behavioral deficits and more broadly in normal brain development.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA.
| | - Jamie S Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jenna N Russo
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Shanthini Ragoonaden
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| |
Collapse
|
5
|
Melo LM, de Barros WA, de Fátima Â, Giusti FCV, Giusti-Paiva A. Exposure to the psychedelic substance 25 H-NBOMe disrupts maternal care in lactating rats and subsequently impairs the social play behavior of the offspring. Behav Brain Res 2024; 465:114924. [PMID: 38423256 DOI: 10.1016/j.bbr.2024.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Given the critical role of maternal care in the neurodevelopment of offspring, this study aimed to investigate the effects of the psychedelic substance 25 H-NBOMe on maternal behavior in lactating rats and its subsequent impact on the social and neurodevelopmental behavior of the offspring. We administered two different dosages of 25 H-NBOMe (0.3 mg/kg and 1.0 mg/kg; i,p,) to lactating rats and observed changes in maternal behaviors, such as nest-building and pup retrieval, and in offspring behaviors, including social play. Behavioral assessments were complemented by physiological measurements to rule out general health or nutritional decline. 25 H-NBOMe significantly disrupted maternal behaviors, including nest-building and pup retrieval, without affecting the weight of dams or offspring. Offspring of exposed dams exhibited reduced social play behavior. Higher doses led to more pronounced disruptions, while lower doses, despite not visibly affecting maternal behavior, still impacted offspring behavior, suggesting potential direct effects of 25 H-NBOMe. The study highlights the potential risks associated with the use of 25 H-NBOMe during lactation, emphasizing its detrimental impact on maternal care and offspring development. These findings contribute to understanding the neurobiological effects of psychedelic substances during critical developmental periods and underscore the importance of avoiding their use.
Collapse
Affiliation(s)
- Lidia M Melo
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Wellington A de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
8
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Croen LA, Ames JL, Qian Y, Alexeeff S, Ashwood P, Gunderson EP, Wu YW, Boghossian AS, Yolken R, Van de Water J, Weiss LA. Inflammatory Conditions During Pregnancy and Risk of Autism and Other Neurodevelopmental Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:39-50. [PMID: 38045769 PMCID: PMC10689278 DOI: 10.1016/j.bpsgos.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
Background Maternal inflammation can result from immune dysregulation and metabolic perturbations during pregnancy. Whether conditions associated with inflammation during pregnancy increase the likelihood of autism spectrum disorder (ASD) or other neurodevelopmental disorders (DDs) is not well understood. Methods We conducted a case-control study among children born in California from 2011 to 2016 to investigate maternal immune-mediated and cardiometabolic conditions during pregnancy and risk of ASD (n = 311) and DDs (n = 1291) compared with children from the general population (n = 967). Data on maternal conditions and covariates were retrieved from electronic health records. Maternal genetic data were used to assess a causal relationship. Results Using multivariable logistic regression, we found that mothers with asthma were more likely to deliver infants later diagnosed with ASD (odds ratio [OR] = 1.62, 95% CI: 1.15-2.29) or DDs (OR = 1.30, 95% CI: 1.02-1.64). Maternal obesity was also associated with child ASD (OR = 1.51, 95% CI: 1.07-2.13). Mothers with both asthma and extreme obesity had the greatest odds of delivering an infant later diagnosed with ASD (OR = 16.9, 95% CI: 5.13-55.71). These increased ASD odds were observed among female children only. Polygenic risk scores for obesity, asthma, and their combination showed no association with ASD risk. Mendelian randomization did not support a causal relationship between maternal conditions and ASD. Conclusions Inflammatory conditions during pregnancy are associated with risk for neurodevelopmental disorders in children. These risks do not seem to be due to shared genetic risk; rather, inflammatory conditions may share nongenetic risk factors with neurodevelopmental disorders. Children whose mothers have both asthma and obesity during pregnancy may benefit from earlier screening and intervention.
Collapse
Affiliation(s)
- Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Jennifer L. Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Yinge Qian
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and the MIND Institute, University of California, Davis, Davis, California
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Yvonne W. Wu
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Andrew S. Boghossian
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Robert Yolken
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Judy Van de Water
- Division of Rheumatology/Allergy/Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, California
| | - Lauren A. Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
10
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
11
|
Guedes JR, Ferreira PA, Costa J, Laranjo M, Pinto MJ, Reis T, Cardoso AM, Lebre C, Casquinha M, Gomes M, Shkatova V, Pereira M, Beltrão N, Hanuscheck N, Greenhalgh AD, Vogelaar CF, Carvalho AL, Zipp F, Cardoso AL, Peça J. IL-4 shapes microglia-dependent pruning of the cerebellum during postnatal development. Neuron 2023; 111:3435-3449.e8. [PMID: 37918358 DOI: 10.1016/j.neuron.2023.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Interleukin-4 (IL-4) is a type 2 cytokine with pleiotropic functions in adaptive immunity, allergies, and cognitive processes. Here, we show that low levels of IL-4 in the early postnatal stage delineate a critical period in which microglia extensively prune cerebellar neurons. Elevating the levels of this cytokine via peripheral injection, or using a mouse model of allergic asthma, leads to defective pruning, permanent increase in cerebellar granule cells, and circuit alterations. These animals also show a hyperkinetic and impulsive-like phenotype, reminiscent of attention-deficit hyperactivity disorder (ADHD). These alterations are blocked in Il4rαfl/fl::Cx3cr1-CreER mice, which are deficient in IL-4 receptor signaling in microglia. These findings demonstrate a previously unknown role for IL-4 during a neuroimmune critical period of cerebellar maturation and provide a first putative mechanism for the comorbidity between allergic disease and ADHD observed in humans.
Collapse
Affiliation(s)
- Joana R Guedes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Pedro A Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Program in Biosciences, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Jéssica Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Mariana Laranjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria J Pinto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Tiago Reis
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Maria Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carolina Lebre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria Casquinha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcos Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Viktoriya Shkatova
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marta Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nuno Beltrão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nicholas Hanuscheck
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christina Francisca Vogelaar
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany.
| | - Ana Luísa Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
12
|
Zhu X, Wang CL, Yu JF, Weng J, Han B, Liu Y, Tang X, Pan B. Identification of immune-related biomarkers in peripheral blood of schizophrenia using bioinformatic methods and machine learning algorithms. Front Cell Neurosci 2023; 17:1256184. [PMID: 37841288 PMCID: PMC10568181 DOI: 10.3389/fncel.2023.1256184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Schizophrenia is a group of severe neurodevelopmental disorders. Identification of peripheral diagnostic biomarkers is an effective approach to improving diagnosis of schizophrenia. In this study, four datasets of schizophrenia patients' blood or serum samples were downloaded from the GEO database and merged and de-batched for the analyses of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WCGNA). The WGCNA analysis showed that the cyan module, among 9 modules, was significantly related to schizophrenia, which subsequently yielded 317 schizophrenia-related key genes by comparing with the DEGs. The enrichment analyses on these key genes indicated a strong correlation with immune-related processes. The CIBERSORT algorithm was adopted to analyze immune cell infiltration, which revealed differences in eosinophils, M0 macrophages, resting mast cells, and gamma delta T cells. Furthermore, by comparing with the immune genes obtained from online databases, 95 immune-related key genes for schizophrenia were screened out. Moreover, machine learning algorithms including Random Forest, LASSO, and SVM-RFE were used to further screen immune-related hub genes of schizophrenia. Finally, CLIC3 was found as an immune-related hub gene of schizophrenia by the three machine learning algorithms. A schizophrenia rat model was established to validate CLIC3 expression and found that CLIC3 levels were reduced in the model rat plasma and brains in a brain-regional dependent manner, but can be reversed by an antipsychotic drug risperidone. In conclusion, using various bioinformatic and biological methods, this study found an immune-related hub gene of schizophrenia - CLIC3 that might be a potential diagnostic biomarker and therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | | | - Jian-feng Yu
- Tongzhou District Hospital of TCM, Nantong, China
| | - Jianjun Weng
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Bing Han
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University Medical College, Yangzhou, China
| | - Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
13
|
Achterberg EJM, Vanderschuren LJMJ. The neurobiology of social play behaviour: Past, present and future. Neurosci Biobehav Rev 2023; 152:105319. [PMID: 37454882 DOI: 10.1016/j.neubiorev.2023.105319] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Social play behaviour is a highly energetic and rewarding activity that is of great importance for the development of brain and behaviour. Social play is abundant during the juvenile and early adolescent phases of life, and it occurs in most mammalian species, as well as in certain birds and reptiles. To date, the majority of research into the neural mechanisms of social play behaviour has been performed in male rats. In the present review we summarize studies on the neurobiology of social play behaviour in rats, including work on pharmacological and genetic models for autism spectrum disorders, early life manipulations and environmental factors that influence play in rats. We describe several recent developments that expand the field, and highlight outstanding questions that may guide future studies.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| | - Louk J M J Vanderschuren
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
14
|
Xin Y, Sun X, Ren L, Chen G, Chen Y, Ni Y, He B. Maternal preconceptional inflammation transgenerationally alters metabolic and behavioral phenotypes in offspring. Life Sci 2023; 321:121577. [PMID: 36933826 DOI: 10.1016/j.lfs.2023.121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
AIMS Evidence is accumulating that maternal inflammation induces phenotypic changes in the next generation. However, whether maternal preconceptional inflammation alters metabolic and behavioral phenotypes in offspring remains poorly understood. MAIN METHODS Female mice were injected with either lipopolysaccharide or saline to establish the inflammatory model and then allowed to mate with normal males. Offspring from both control and inflammatory dams were subsequently given chow diet and water ad libitum, without any challenge, for metabolic and behavioral tests. KEY FINDINGS Male offspring derived from inflammatory mothers (Inf-F1) maintained on the chow diet developed impaired glucose tolerance and hepatic ectopic fat deposition. Hepatic transcriptome sequencing showed the largest gene changes related to the metabolic pathway. Moreover, Inf-F1 mice exhibited anxiety- and depressive-like behaviors and were accompanied by higher serum corticosterone concentration and lower glucocorticoid receptor abundance in the hippocampus. SIGNIFICANCE The results expand the current knowledge of developmental programming of health and disease to include maternal preconceptional health and provide a basis for understanding metabolic and behavioral alterations in offspring linked to maternal inflammation.
Collapse
Affiliation(s)
- Yining Xin
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Li Ren
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guo Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingqi Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Jiang Z, Dong T, Wang Y, Tang L, Zhao C, Wen Y, Chen J. Gandouling alleviates cognitive dysfunction by regulates the p62/Nrf2 signaling pathway to reduce oxidative stress and autophagy in mice models of Wilson’s disease. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Walsh MJM, Pagni B, Monahan L, Delaney S, Smith CJ, Baxter L, Braden BB. Sex-related brain connectivity correlates of compensation in adults with autism: insights into female protection. Cereb Cortex 2022; 33:316-329. [PMID: 35212373 PMCID: PMC9837609 DOI: 10.1093/cercor/bhac069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/19/2023] Open
Abstract
The male preponderance in autism spectrum disorder (ASD) led to the hypothesis that aspects of female biology are protective against ASD. Females with ASD (ASD-F) report more compensatory behaviors (i.e. "camouflaging") to overcome ASD-related social differences, which may be a mechanism of protection. No studies have examined sex-related brain pathways supporting camouflaging in ASD-F, despite its potential to inform mechanisms underlying the ASD sex bias. We used functional connectivity (FC) to investigate "sex-atypical" and "sex-typical" FC patterns linked to camouflaging in adults with ASD and examined multimodal coherence of findings via structural connectometry. Exploratory associations with cognitive/emotional functioning examined the adaptive nature of FC patterns. We found (i) "sex-atypical" FC patterns linked to camouflaging in the hypothalamus and precuneus and (ii) "sex-typical" patterns in the right anterior cingulate and anterior parahippocampus. Higher hypothalamic FC with a limbic reward cluster also correlated with better cognitive control/emotion recognition. Structural connectometry validated FC results with consistent brain pathways/effect patterns implicated in ASD-F. In summary, "male-typical" and "female-typical" brain connectivity patterns support camouflaging in ASD-F in circuits implicated in reward, emotion, and memory retrieval. "Sex-atypical" results are consistent with fetal steroidogenic/neuroinflammatory hypotheses. However, female genetics/biology may contribute to "female-typical" patterns implicated in camouflaging.
Collapse
Affiliation(s)
- Melissa J M Walsh
- College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Broc Pagni
- College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Leanna Monahan
- College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Shanna Delaney
- College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - B Blair Braden
- College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
18
|
Reinl EL, Blanchard AC, Graham EL, Edwards SW, Dionisos CV, McCarthy MM. The immune cell profile of the developing rat brain. Brain Behav Immun 2022; 106:198-226. [PMID: 36049705 DOI: 10.1016/j.bbi.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus. Within the PIC pool, monocytes were most prevalent in all regions and time points, and shifted from being majority classical at E20 to non-classical by PN7. T cells increased over time, and shifted from majority cytotoxic to T-helper cells by PN7. This suggests the PIC profile transitions from reactive to adaptive and surveilling in the second postnatal week. NK cells and mast cells increased temporarily, and mast cells were restricted to the hippocampus and hypothalamus, suggesting they may play a specific role in the development of those regions. Mimicking a viral infection by administration of Poly I:C increased the influx of PICs into the neonatal brain, particularly of NK cells and in the case of males only, non-classical monocytes. This work provides a map for researchers as they study immune cell contributions to healthy and pathological brain development.
Collapse
Affiliation(s)
- Erin L Reinl
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Alexa C Blanchard
- University of Maryland School of Medicine, Program in Molecular Medicine and Medical Scientist Training Program, United States
| | - Emily L Graham
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Serena W Edwards
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Christie V Dionisos
- University of Maryland School of Medicine, Program in Neuroscience, United States
| | - Margaret M McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, United States; University of Maryland School of Medicine, Program in Neuroscience, United States
| |
Collapse
|
19
|
Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD. Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia. Biol Psychiatry 2022; 92:460-469. [PMID: 35773097 PMCID: PMC9888668 DOI: 10.1016/j.biopsych.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Simone E Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California.
| |
Collapse
|
20
|
Breach MR, Dye CN, Galan A, Lenz KM. Prenatal allergic inflammation in rats programs the developmental trajectory of dendritic spine patterning in brain regions associated with cognitive and social behavior. Brain Behav Immun 2022; 102:279-291. [PMID: 35245680 PMCID: PMC9070022 DOI: 10.1016/j.bbi.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
Allergic inflammation during pregnancy increases risk for a diagnosis of neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) in the offspring. Previously, we found a model of such inflammation, allergy-induced maternal immune activation (MIA), produced symptoms analogous to those associated with neurodevelopmental disorders in rats, including reduced juvenile play behavior, hyperactivity, and cognitive inflexibility. These behaviors were preceded by perinatal changes in microglia colonization and phenotype in multiple relevant brain regions. Given the role that microglia play in synaptic patterning as well as evidence for altered synaptic architecture in neurodevelopmental disorders, we investigated whether allergic MIA altered the dynamics of dendritic spine patterning throughout key regions of the rat forebrain across neurodevelopment. Adult virgin female rats were sensitized to the allergen, ovalbumin, with alum adjuvant, bred, and allergically challenged on gestational day 15. Brain tissue was collected from male and female offspring on postnatal days (P) 5, 15, 30, and 100-120 and processed for Golgi-Cox staining. Mean dendritic spine density was calculated for neurons in brain regions associated with cognition and social behavior, including the medial prefrontal cortex (mPFC), basal ganglia, septum, nucleus accumbens (NAc), and amygdala. Allergic MIA reduced dendritic spine density in the neonatal (P5) and juvenile (P15) mPFC, but these mPFC spine deficits were normalized by P30. Allergic inflammation reduced spine density in the septum of juvenile (P30) rats, with an interaction suggesting increased density in males and reduced density in females. MIA-induced reductions in spine density were also found in the female basal ganglia at P15, as well as in the NAc at P30. Conversely, MIA-induced increases were found in the NAc in adulthood. While amygdala dendritic spine density was generally unaffected throughout development, MIA reduced density in both medial and basolateral subregions in adult offspring. Correlational analyses revealed disruption to amygdala-related networks in the neonatal animals and cortico-striatal related networks in juvenile and adult animals in a sex-specific manner. Collectively, these data suggest that communication within and between these cognitive and social brain regions may be altered dynamically throughout development after prenatal exposure to allergic inflammation. They also provide a basis for future intervention studies targeted at rescuing spine and behavior changes via immunomodulatory treatments.
Collapse
Affiliation(s)
- Michaela R. Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Northcutt KV, Leal-Medina TS, Yoon YS. Early postnatal hypothyroidism reduces juvenile play behavior, but prenatal hypothyroidism compensates for these effects. Physiol Behav 2021; 241:113594. [PMID: 34536436 DOI: 10.1016/j.physbeh.2021.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Perinatal hypothyroidism causes long-lasting effects on behavior, including hyperactivity, cognitive delays/deficits, and a reduction in anxiety. Although there is some evidence that hypothyroidism during fetal development in humans has been associated with later autism spectrum disorder diagnosis or autism-like traits, the relationships between early thyroid hormones and social behaviors are largely unknown. Previously, we found that a moderate dose of the hypothyroid-inducing drug methimazole during embryonic and postnatal development dramatically increased juvenile play in male and female rats. The goal of the current study was to determine the extent to which thyroid hormones act in prenatal or postnatal development to organize later social behaviors. Subjects were exposed to methimazole in the drinking water during prenatal (embryonic day 12 to birth), postnatal (birth to postnatal day 23), or pre- and postnatal development; control animals received regular drinking water throughout the experiment. They were tested for play behavior as juveniles (P30-32). We found an interaction between pre- and postnatal methimazole administration such that postnatal hypothyroidism decreased some play behaviors, whereas sustained pre- and postnatal hypothyroidism restored play to control levels. The effects were similar in males and females. To our knowledge, this is the first report of an interaction between pre- and postnatal hypothyroidism on later behavior. The complexity of the timing of these effects may help explain why epidemiological studies have not consistently found a relationship between gestational hypothyroidism and later behavior.
Collapse
Affiliation(s)
- Katharine V Northcutt
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA.
| | - Tanya S Leal-Medina
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA
| | - Ye S Yoon
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA
| |
Collapse
|
22
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
23
|
Vitor-Vieira F, Vilela FC, Giusti-Paiva A. Hyperactivation of the amygdala correlates with impaired social play behavior of prepubertal male rats in a maternal immune activation model. Behav Brain Res 2021; 414:113503. [PMID: 34331970 DOI: 10.1016/j.bbr.2021.113503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Maternal infection during pregnancy is an environmental risk factor for neurodevelopmental dysfunction, such as autism spectrum disorder (ASD). This study investigated the effect of maternal immune activation (MIA) on the behavior profile of prepubertal offspring and whether MIA alters the neuronal activation pattern of brain areas related to social play behavior. Pregnant Wistar rats received 500 μg/kg of lipopolysaccharide or saline solution on gestational day 16. Their offspring were tested using behavioral tasks to capture some of the core and associated ASD-like symptoms. Neuronal activation, indexed via c-fos expression after social play behavior, was evaluated in several brain areas. MIA had a number of adverse effects on dams and reduced the number of successful births and litter size. MIA induced sex-specific autistic-like features by a reduction in ultrasonic vocalizations in response to separation from the mother and nest, reduction in discrimination between neutral odors and their nest odor, moderate effect in stereotypies in the hole-board test, impaired risk assessment phenotype, and reduction in social play behavior without changes in locomotor activity only in prepubertal male offspring. A decrease in social play behavior may be associated with a decrease in the number of c-fos-positive cells in the prefrontal cortex and striatum, but hyperactivation of the basolateral and basomedial amygdala. Prenatal immune challenge results in ASD-like symptoms such as impaired risk assessment behavior, communication, and social interactions in male prepubertal offspring. Impaired social play behavior is correlated with neuronal hyperactivation in the amygdala.
Collapse
Affiliation(s)
- Fernando Vitor-Vieira
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Fabiana C Vilela
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil.
| |
Collapse
|