1
|
Bencze D, Marián M, Szőllősi Á, Simor P, Racsmány M. Increase in slow frequency and decrease in alpha and beta power during post-learning rest predict long-term memory success. Cortex 2024; 183:167-182. [PMID: 39662242 DOI: 10.1016/j.cortex.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Formation of episodic memories is linked to cortico-hippocampal interactions during learning, practice, and post-learning rest, although the role of cortical activity itself in such processes remains elusive. Behaviorally, long-term retention of episodic memories has been shown to be aided by several different practice strategies involving memory reencounters, such as repeated retrieval and repeated study. In a two-session resting state electroencephalography (EEG) experiment, using data from 68 participants, we investigated the electrophysiological predictors of long-term memory success in situations where such reencounters occurred after learning. Participants learned word pairs which were subsequently practiced either by cued recall or repeated studying in a between-subjects design. Participants' cortical activity was recorded before learning (baseline) and after practice during 15-min resting periods. Long-term memory retention after a 7-day period was measured. To assess cortical activity, we analyzed the change in spectral power from the pre-learning baseline to the post-practice resting state recordings. From baseline to post-practice, changes in alpha and beta power were negatively, while slow frequency power change was positively associated with long-term memory performance, regardless of practice strategy. These results are in line with previous observations pointing to the role of specific frequency bands in memory formation and extend them to situations where memory reencounters occur after learning. Our results also highlight that the effectiveness of practice by repeated testing seems to be independent from the beneficial neural mechanisms mirrored by EEG frequency power changes.
Collapse
Affiliation(s)
- Dorottya Bencze
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Miklós Marián
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary.
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Wang H, Huang M, Yang S, Xu J, Li J, Qin H, Liang S, Teng T, Yang C, Gong M, He Y, Li X, Wang H, Liao X, Chen X, Yang Z, Zhang K. Mapping multi-regional functional connectivity of astrocyte-neuronal networks during behaviors. NEUROPHOTONICS 2024; 11:045010. [PMID: 39554692 PMCID: PMC11566604 DOI: 10.1117/1.nph.11.4.045010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Significance Diverse behaviors rely on coordinated activity and multi-regional functional connectivity within astrocyte-neuronal networks. However, current techniques for simultaneously measuring astrocytic and neuronal activities across multiple brain regions during behaviors remain limited. Aim We propose a multi-fiber solution that can simultaneously record activities of astrocyte-neuronal networks across multiple regions during behaviors. Approach We employed cell-specific dual-color genetically encoded calcium indicators (GECIs) and multi-fiber photometry to simultaneously measure astrocytic and neuronal Ca2+ transients across multiple brain regions in freely behaving animals. Results Our findings demonstrate that both movements and sensory stimuli induce synchronized and highly correlated Ca2+ transients in astrocytes and neurons of freely behaving mice. In addition, we recorded astrocytic and neuronal Ca2+ transients from multiple brain regions during mouse behaviors. Our observations reveal heightened synchronization of astrocytic and neuronal Ca2+ transients across different brain regions during movements or sensory stimuli, indicating enhanced functional connectivity within brain-wide astrocyte-neuronal networks. Conclusions Multi-fiber photometry, combined with cell-specific dual-color GECIs, represents a powerful approach for investigating astrocytic and neuronal activities across different brain regions during behaviors. This technique serves as a versatile tool for analyzing the multi-regional functional connectivity map of astrocyte-neuronal networks associated with specific behaviors.
Collapse
Affiliation(s)
- Haoyu Wang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Mingzhu Huang
- Chongqing University, College of Bioengineering, Chongqing, China
| | - Shaofan Yang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Jiameng Xu
- Tiangong University, The School of Control Science and Engineering, Tianjin, China
| | - Jin Li
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Shanshan Liang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Teng Teng
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Chuanyan Yang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Mingyue Gong
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Yong He
- Peking university, School of Electronics, Beijing, China
| | - Xingyi Li
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Huiquan Wang
- Tiangong University, The School of Control Science and Engineering, Tianjin, China
| | - Xiang Liao
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Xiaowei Chen
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Zhiqi Yang
- Gansu Provincial Central Hospital, Department of Neurology, Lanzhou, China
| | - Kuan Zhang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| |
Collapse
|
3
|
Mohamadpour H, Farkhondeh Tale Navi F, Heysieattalab S, Irak M, Vahabie AH, Nikzad B. How is social dominance related to our short-term memory? An EEG/ERP investigation of encoding and retrieval during a working memory task. Heliyon 2024; 10:e37389. [PMID: 39296172 PMCID: PMC11408820 DOI: 10.1016/j.heliyon.2024.e37389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Social hierarchies exist in all societies and impact cognitive functions, brain mechanisms, social interactions, and behaviors. High status individuals often exhibit enhanced working memory (WM) performance compared to lower status individuals. This study examined whether individual differences in social dominance, as a predictor of future status, relate to WM abilities. Five hundred and twenty-five students completed the Personality Research Form dominance subscale questionnaire. From this sample, students with the highest and lowest scores were invited to participate in the study. Sixty-four participants volunteered to take part and were subsequently categorized into high- and low-dominance groups based on their dominance subscale questionnaire (PRF_d) scores. They performed a Sternberg WM task with set sizes of 1, 4, or 7 letters while their EEG was recorded. Event-related potential (ERP) and power spectral analysis revealed significantly reduced P3b amplitude and higher event-related synchronization (ERS) of theta and beta during encoding and retrieval phases in the high-than low-dominance group. Despite these neural processing differences, behavioral performance was equivalent between groups, potentially reflecting comparable cognitive load demands of the task across dominance levels. Further, there were similar P3b patterns for each set-size within groups. These findings provide initial evidence that individual differences in social dominance trait correlate with WM functioning, as indexed by neural processing efficiency during WM performance.
Collapse
Affiliation(s)
- Hadi Mohamadpour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Metehan Irak
- Department of Psychology, Bahçeşehir University, Istanbul, Turkey
| | - Abdol-Hossein Vahabie
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Behzad Nikzad
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
- Neurobioscience Division, Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Rosenblum HL, Kim S, Stout JJ, Klintsova A, Griffin AL. Deliberative Behaviors and Prefrontal-Hippocampal Coupling are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605480. [PMID: 39131304 PMCID: PMC11312474 DOI: 10.1101/2024.07.28.605480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC), thalamic nucleus reuniens, and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as AE and sham intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared to the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Anna Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Stout JJ, George AE, Kim S, Hallock HL, Griffin AL. Using synchronized brain rhythms to bias memory-guided decisions. eLife 2024; 12:RP92033. [PMID: 39037771 PMCID: PMC11262798 DOI: 10.7554/elife.92033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.
Collapse
Affiliation(s)
- John J Stout
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | | | - Suhyeong Kim
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | | | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| |
Collapse
|
6
|
Tan GSL, Tam CL. Impulsivity, Gambling-Related Cognitions, Cognitive Reappraisal and Gambling Behaviour in a Malaysian Sample. J Gambl Stud 2024; 40:475-492. [PMID: 37544960 PMCID: PMC11272694 DOI: 10.1007/s10899-023-10246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
The relationships between cognitive reappraisal and problem gambling have been widely studied in different contexts. However, previous research findings remain inconsistent. This discrepancy might be attributed to the effects of interactions between cognitive reappraisal and other risk factors for problem gambling. Using moderation models, this study examined the association between impulsivity, gambling-related cognitive distortions, cognitive reappraisal and problem gambling in a sample of Malaysian gamblers. A total of 149 community gamblers (103 males, 46 females; mean age = 32.18) completed an online questionnaire. Problem gambling was measured with the South Oaks Gambling Screen (SOGS); cognitive reappraisal was measured using the Emotion Regulation Questionnaire-Cognitive Reappraisal Subscale (ERQ-CR); impulsivity was measured with the Short-UPPS-P Impulsive Behaviour Scale (SUPPS-P); and gambling-related cognitive distortions were measured using the Gambling Related Cognitions Scale (GRCS). The results revealed impulsivity and gambling-related cognitive distortions as significant predictors of problem gambling. At high levels, impulsivity and cognitive distortions are significant moderator variables that strengthen the association between cognitive reappraisal and problem gambling. These findings demonstrate that reappraisal skills could exacerbate problem gambling severity amongst impulsive or self-deceptive gamblers. Future research with larger and more representative samples is needed to validate and generalise these findings.
Collapse
Affiliation(s)
- Gillian Shu Lin Tan
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia.
| | - Cai Lian Tam
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
7
|
Mercier O, Quilichini PP, Magalon K, Gil F, Ghestem A, Richard F, Boudier T, Cayre M, Durbec P. Transient demyelination causes long-term cognitive impairment, myelin alteration and network synchrony defects. Glia 2024; 72:960-981. [PMID: 38363046 DOI: 10.1002/glia.24513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.
Collapse
Affiliation(s)
- Océane Mercier
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale P Quilichini
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Karine Magalon
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Florian Gil
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Antoine Ghestem
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Richard
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Thomas Boudier
- Aix Marseille Univ, Turing Centre for Living Systems, Marseille, France
| | - Myriam Cayre
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale Durbec
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| |
Collapse
|
8
|
Han S, Ren J, Li Z, Wen J, Jiang B, Wei X. Deactivation of dorsal CA1 pyramidal neurons projecting to medial prefrontal cortex contributes to neuropathic pain and short-term memory impairment. Pain 2024; 165:1044-1059. [PMID: 37889600 DOI: 10.1097/j.pain.0000000000003100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Neuropathic pain after peripheral nerve injury is a multidimensional experience that includes sensory, affective, and cognitive components that interact with one another. Hypoexcitation of the medial prefrontal cortex (mPFC) was observed in mice with peripheral nerve injury, but the changes in neural inputs onto the mPFC have not been completely explored. Here, we report that the neural terminals from the dorsal hippocampus CA1 (dCA1) form excitatory connection with layer 5 pyramidal neurons in the prelimbic area (PrL) of the mPFC. Spared nerve injury (SNI) induced a reduction in the intrinsic excitability of dCA1 pyramidal neurons innervating the PrL and impairment in excitatory synaptic transmission onto dCA1 pyramidal cells. Specifically, activating the neural circuit from dCA1 to mPFC alleviated neuropathic pain behaviors and improved novel object recognition ability in SNI mice, whereas deactivating this pathway in naïve animals recapitulated tactile allodynia and memory deficits. These results indicated that hypoactivity in dCA1 pyramidal cells after SNI in turn deactivated layer 5 pyramidal neurons in PrL and ultimately caused pain hypersensitivity and memory deficits.
Collapse
Affiliation(s)
- Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiale Ren
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junjian Wen
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Stout JJ, George AE, Kim S, Hallock HL, Griffin AL. Using synchronized brain rhythms to bias memory-guided decisions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535279. [PMID: 37034665 PMCID: PMC10081324 DOI: 10.1101/2023.04.02.535279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain machine interface that initiated task trials based on the magnitude of prefrontal hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain machine interfacing.
Collapse
|
10
|
Aghamiri H, Jafari-Sabet M, Hoormand M. Ameliorative Effect of Cannabidiol on Topiramate-Induced Memory Loss: The Role of Hippocampal and Prefrontal Cortical NMDA Receptors and CREB/BDNF Signaling Pathways in Rats. Neurochem Res 2024; 49:363-378. [PMID: 37814133 DOI: 10.1007/s11064-023-04041-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Hoormand
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Vasudevan K, Hassell JE, Maren S. Hippocampal Engrams and Contextual Memory. ADVANCES IN NEUROBIOLOGY 2024; 38:45-66. [PMID: 39008010 DOI: 10.1007/978-3-031-62983-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.
Collapse
Affiliation(s)
- Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Barnard IL, Onofrychuk TJ, Toderash AD, Patel VN, Glass AE, Adrian JC, Laprairie RB, Howland JG. High-THC Cannabis Smoke Impairs Incidental Memory Capacity in Spontaneous Tests of Novelty Preference for Objects and Odors in Male Rats. eNeuro 2023; 10:ENEURO.0115-23.2023. [PMID: 37973381 PMCID: PMC10714893 DOI: 10.1523/eneuro.0115-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Working memory is an executive function that orchestrates the use of limited amounts of information, referred to as working memory capacity, in cognitive functions. Cannabis exposure impairs working memory in humans; however, it is unclear whether Cannabis facilitates or impairs rodent working memory and working memory capacity. The conflicting literature in rodent models may be at least partly because of the use of drug exposure paradigms that do not closely mirror patterns of human Cannabis use. Here, we used an incidental memory capacity paradigm where a novelty preference is assessed after a short delay in spontaneous recognition-based tests. Either object or odor-based stimuli were used in test variations with sets of identical [identical stimuli test (IST)] and different [different stimuli test (DST)] stimuli (three or six) for low-memory and high-memory loads, respectively. Additionally, we developed a human-machine hybrid behavioral quantification approach which supplements stopwatch-based scoring with supervised machine learning-based classification. After validating the spontaneous IST and DST in male rats, 6-item test versions with the hybrid quantification method were used to evaluate the impact of acute exposure to high-Δ9-tetrahydrocannabinol (THC) or high-CBD Cannabis smoke on novelty preference. Under control conditions, male rats showed novelty preference in all test variations. We found that high-THC, but not high-CBD, Cannabis smoke exposure impaired novelty preference for objects under a high-memory load. Odor-based recognition deficits were seen under both low-memory and high-memory loads only following high-THC smoke exposure. Ultimately, these data show that Cannabis smoke exposure impacts incidental memory capacity of male rats in a memory load-dependent, and stimuli-specific manner.
Collapse
Affiliation(s)
- Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Aaron D Toderash
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5C9, Canada
| | - Vyom N Patel
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5C9, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Jesse C Adrian
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| |
Collapse
|
13
|
van Ruitenbeek P, Franzen L, Mason NL, Stiers P, Ramaekers JG. Methylphenidate as a treatment option for substance use disorder: a transdiagnostic perspective. Front Psychiatry 2023; 14:1208120. [PMID: 37599874 PMCID: PMC10435872 DOI: 10.3389/fpsyt.2023.1208120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
A transition in viewing mental disorders from conditions defined as a set of unique characteristics to one of the quantitative variations on a collection of dimensions allows overlap between disorders. The overlap can be utilized to extend to treatment approaches. Here, we consider the overlap between attention-deficit/hyperactivity disorder and substance use disorder to probe the suitability to use methylphenidate as a treatment for substance use disorder. Both disorders are characterized by maladaptive goal-directed behavior, impaired cognitive control, hyperactive phasic dopaminergic neurotransmission in the striatum, prefrontal hypoactivation, and reduced frontal cortex gray matter volume/density. In addition, methylphenidate has been shown to improve cognitive control and normalize associated brain activation in substance use disorder patients and clinical trials have found methylphenidate to improve clinical outcomes. Despite the theoretical basis and promising, but preliminary, outcomes, many questions remain unanswered. Most prominent is whether all patients who are addicted to different substances may equally profit from methylphenidate treatment.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
14
|
Festa F, Medori S, Macrì M. Move Your Body, Boost Your Brain: The Positive Impact of Physical Activity on Cognition across All Age Groups. Biomedicines 2023; 11:1765. [PMID: 37371860 DOI: 10.3390/biomedicines11061765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
While the physical improvements from exercise have been well documented over the years, the impact of physical activity on mental health has recently become an object of interest. Physical exercise improves cognition, particularly attention, memory, and executive functions. However, the mechanisms underlying these effects have yet to be fully understood. Consequently, we conducted a narrative literature review concerning the association between acute and chronic physical activity and cognition to provide an overview of exercise-induced benefits during the lifetime of a person. Most previous papers mainly reported exercise-related greater expression of neurotransmitter and neurotrophic factors. Recently, structural and functional magnetic resonance imaging techniques allowed for the detection of increased grey matter volumes for specific brain regions and substantial modifications in the default mode, frontoparietal, and dorsal attention networks following exercise. Here, we highlighted that physical activity induced significant changes in functional brain activation and cognitive performance in every age group and could counteract psychological disorders and neural decline. No particular age group gained better benefits from exercise, and a specific exercise type could generate better cognitive improvements for a selected target subject. Further research should develop appropriate intervention programs concerning age and comorbidity to achieve the most significant cognitive outcomes.
Collapse
Affiliation(s)
- Felice Festa
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Medori
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Monica Macrì
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
15
|
Watanabe Y, Dezawa S, Takei H, Nagasaka K, Takashima I. Hippocampal-prefrontal long-term potentiation-like plasticity with transcranial direct current stimulation in rats. Neurobiol Learn Mem 2023; 201:107750. [PMID: 37023973 DOI: 10.1016/j.nlm.2023.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been explored as a new treatment method for improving cognitive and motor functions. However, the neuronal mechanisms of tDCS in modulating brain functions, especially cognitive and memory functions, are not well understood. In the present study, we assessed whether tDCS could promote neuronal plasticity between the hippocampus and prefrontal cortex in rats. This is important because the hippocampus-prefrontal pathway is a key pathway in cognitive and memory functions and is involved in various psychiatric and neurodegenerative disorders. Specifically, the effect of anodal or cathodal tDCS on the medial prefrontal cortex was investigated in rats by measuring the medial prefrontal cortex response to electrical stimulation applied to the CA1 region of the hippocampus. Following anodal tDCS, the evoked prefrontal response was potentiated compared to that in the pre-tDCS condition. However, the evoked prefrontal response did not show any significant changes following cathodal tDCS. Furthermore, the plastic change of the prefrontal response following anodal tDCS was only induced when hippocampal stimulation was continuously applied during tDCS. Anodal tDCS without hippocampal activation showed little or no changes. These results indicate that combining anodal tDCS of the prefrontal cortex with hippocampal activation induces long-term potentiation (LTP)-like plasticity in the hippocampus-prefrontal pathway. This LTP-like plasticity can facilitate smooth information transmission between the hippocampus and the prefrontal cortex and may lead to improvements in cognitive and memory function.
Collapse
Affiliation(s)
- Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan.
| | - Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Faculty of Medical and Health Sciences, Tsukuba International University, 6-8-33, Manabe, Tsuchiura 300-0051, Japan
| | - Hiroyuki Takei
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| |
Collapse
|
16
|
Heck DH, Fox MB, Correia Chapman B, McAfee SS, Liu Y. Cerebellar control of thalamocortical circuits for cognitive function: A review of pathways and a proposed mechanism. Front Syst Neurosci 2023; 17:1126508. [PMID: 37064161 PMCID: PMC10097962 DOI: 10.3389/fnsys.2023.1126508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
There is general agreement that cerebrocerebellar interactions via cerebellothalamocortical pathways are essential for a cerebellar cognitive and motor functions. Cerebellothalamic projections were long believed target mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which project to cortical motor and premotor areas. Here we review new insights from detailed tracing studies, which show that projections from the cerebellum to the thalamus are widespread and reach almost every thalamic subnucleus, including nuclei involved in cognitive functions. These new insights into cerebellothalamic pathways beyond the motor thalamus are consistent with the increasing evidence of cerebellar cognitive function. However, the function of cerebellothalamic pathways and how they are involved in the various motor and cognitive functions of the cerebellum is still unknown. We briefly review literature on the role of the thalamus in coordinating the coherence of neuronal oscillations in the neocortex. The coherence of oscillations, which measures the stability of the phase relationship between two oscillations of the same frequency, is considered an indicator of increased functional connectivity between two structures showing coherent oscillations. Through thalamocortical interactions coherence patterns dynamically create and dissolve functional cerebral cortical networks in a task dependent manner. Finally, we review evidence for an involvement of the cerebellum in coordinating coherence of oscillations between cerebral cortical structures. We conclude that cerebellothalamic pathways provide the necessary anatomical substrate for a proposed role of the cerebellum in coordinating neuronal communication between cerebral cortical areas by coordinating the coherence of oscillations.
Collapse
Affiliation(s)
- Detlef H. Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Mia B. Fox
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany Correia Chapman
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Samuel S. McAfee
- St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
17
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
18
|
Liu Y, McAfee SS, Van Der Heijden ME, Dhamala M, Sillitoe RV, Heck DH. Causal Evidence for a Role of Cerebellar Lobulus Simplex in Prefrontal-Hippocampal Interaction in Spatial Working Memory Decision-Making. CEREBELLUM (LONDON, ENGLAND) 2022; 21:762-775. [PMID: 35218525 PMCID: PMC10230449 DOI: 10.1007/s12311-022-01383-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4-12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome-related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee HSC, Memphis, TN, USA
| | - Samuel S McAfee
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Meike E Van Der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee HSC, Memphis, TN, USA.
| |
Collapse
|
19
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status. Learn Mem 2022; 29:234-245. [PMID: 36206395 PMCID: PMC9488023 DOI: 10.1101/lm.053509.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Spatial memory, mediated primarily by the hippocampus, is responsible for orientation in space and retrieval of information regarding location of objects and places in an animal's environment. Since the hippocampus is dense with steroid hormone receptors and is capable of robust neuroplasticity, it is not surprising that changes in spatial memory performance occur following a variety of endocrine alterations. Here, we review cognitive changes in both spatial and nonspatial memory tasks following manipulations of the hypothalamic-pituitary-adrenal and gonadal axes and after exposure to endocrine disruptors in rodents. Chronic stress impairs male performance on numerous behavioral cognitive tasks and enhances or does not impact female cognitive function. Sex-dependent changes in cognition following stress are influenced by both organizational and activational effects of estrogen and vary depending on the developmental age of the stress exposure, but responses to gonadal hormones in adulthood are more similar than different in the sexes. Also discussed are possible underlying neural mechanisms for these steroid hormone-dependent, cognitive effects. Bisphenol A (BPA), an endocrine disruptor, given at low levels during adolescent development, impairs spatial memory in adolescent male and female rats and object recognition memory in adulthood. BPA's negative effects on memory may be mediated through alterations in dendritic spine density in areas that mediate these cognitive tasks. In summary, this review discusses the evidence that endocrine status of an animal (presence or absence of stress hormones, gonadal hormones, or endocrine disruptors) impacts cognitive function and, at times, in a sex-specific manner.
Collapse
Affiliation(s)
- Rachel Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
| | - Maya Frankfurt
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hofstra University, Hempstead, New York 11549, USA
| | - Victoria Luine
- Department of Psychology, Hunter College of City University of New York, New York, New York 10065, USA
| |
Collapse
|
21
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
22
|
Song S, Kong X, Wang B, Sanchez-Ramos J. Administration of Δ 9-Tetrahydrocannabinol Following Controlled Cortical Impact Restores Hippocampal-Dependent Working Memory and Locomotor Function. Cannabis Cannabinoid Res 2022; 7:424-435. [PMID: 34747647 PMCID: PMC9418466 DOI: 10.1089/can.2021.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypothesis: Administration of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) will enhance brain repair and improve short-term spatial working memory in mice following controlled cortical impact (CCI) by upregulating granulocyte colony-stimulating factor (G-CSF) and other neurotrophic factors (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF]) in hippocampus (HP), cerebral cortex, and striatum. Materials and Methods: C57BL/6J mice underwent CCI and were treated for 3 days with Δ9-THC 3 mg/kg intraperitoneally (i.p.). Short-term working memory was determined using the spontaneous alternations test during exploratory behavior in a Y-maze. Locomotor function was measured as latency to fall from a rotating drum (rotometry). These behaviors were recorded at baseline and 3, 7, and 14 days after CCI. Groups of mice were euthanized at 7 and 14 days. Extent of microgliosis, astrocytosis, and G-CSF, BDNF, and GDNF expression were measured at 7 and 14 days in cerebral cortex, striatum, and HP on the side of the trauma. Levels of the most abundant endocannabinoid (2-arachidonoyl-glycerol [2-AG]) was also measured at these times. Results: Δ9-THC-treated mice exhibited marked improvement in performance on the Y-maze indicating that treatment with the phytocannabinoid could reverse the deficit in working memory caused by the CCI. Δ9-THC-treated mice ran on the rotarod longer than vehicle-treated mice and recovered to normal rotarod performance levels at 2 weeks. Δ9-THC-treated mice, compared with vehicle-treated animals, exhibited significant upregulation of G-CSF as well as BDNF and GDNF in the cerebral cortex, striatum, and HP. Levels of 2-AG were also increased in the Δ9-THC-treated mice. Conclusion: Administration of the phytocannabinoid Δ9-THC promotes significant functional recovery from traumatic brain injury (TBI) in the realms of working memory and locomotor function. This beneficial effect is associated with upregulation of brain 2-AG, G-CSF, BDNF, and GDNF. The latter three neurotrophic factors have been previously shown to mediate brain self-repair following TBI and stroke.
Collapse
Affiliation(s)
- Shijie Song
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Xiaoyuan Kong
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
| | - Bangmei Wang
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Juan Sanchez-Ramos
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
23
|
Boch L, Morvan T, Neige T, Kobakhidze N, Panzer E, Cosquer B, de Vasconcelos AP, Stephan A, Cassel JC. Inhibition of the ventral midline thalamus does not alter encoding, short-term holding or retrieval of spatial information in rats performing a water-escape working memory task. Behav Brain Res 2022; 432:113979. [PMID: 35760217 DOI: 10.1016/j.bbr.2022.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Working memory (WM) is a function operating in three successive phases: encoding (sample trial), holding (delay), and retrieval (test trial) of information. Studies point to a possible implication of the thalamic reuniens nucleus (Re) in spatial WM (SWM). In which of the aforementioned 3 phases the Re has a function is largely unknown. Recently, in a delayed SWM water-escape task, we found that performance during the retrieval trial correlated positively with c-Fos expression in the Re nucleus, suggesting participation in retrieval. Here, we used the same task and muscimol (Musc) inhibition or DREADD(hM4Di)-mediated inhibition of the Re during information encoding, right thereafter (thereby affecting the holding phase), or during the retrieval trial. A 6-hour delay separated encoding from retrieval. Concerning SWM, Musc in the Re nucleus did not alter performance, be it during or after encoding, or during evaluation. CNO administered before encoding in DREADD-expressing rats was also ineffective, although CNO-induced inhibition disrupted set shifting performance, as found previously (Quet et al., Brain Struct Function 225, 2020), thereby validating DREADD efficiency. These findings are the first that do not support an implication of the Re nucleus in SWM. As most previous studies used T-maze alternation tasks, which carry high proactive interference risks, an important question to resolve now is whether these nuclei are required in (T-maze alternation) tasks using very short information-holding delays (seconds to minutes), and less so in other short-term spatial memory tasks with longer information holding intervals (hours) and therefore reduced interference risks.
Collapse
Affiliation(s)
- Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Thomas Morvan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Thibaut Neige
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Nina Kobakhidze
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| |
Collapse
|
24
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
25
|
Viena TD, Rasch GE, Allen TA. Dual medial prefrontal cortex and hippocampus projecting neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2022; 227:1857-1869. [PMID: 35279742 PMCID: PMC11229420 DOI: 10.1007/s00429-022-02478-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
Abstract
The paraventricular nucleus (PVT) of the midline thalamus is a critical higher-order cortico-thalamo-cortical integration site that plays a critical role in various behaviors including reward seeking, cue saliency, and emotional memory. Anatomical studies have shown that PVT projects to both medial prefrontal cortex (mPFC) and hippocampus (HC). However, dual mPFC-HC projecting neurons which could serve a role in synchronizing mPFC and HC activity during PVT-dependent behaviors, have not been explored. Here we used a dual retrograde adenoassociated virus (AAV) tracing approach to characterize the location and proportion of different projection populations that send collaterals to mPFC and/or ventral hippocampus (vHC) in rats. Additionally, we examined the distribution of calcium binding proteins calretinin (CR) and calbindin (CB) with respect to these projection populations in PVT. We found that PVT contains separate populations of cells that project to mPFC, vHC, and those that innervate both regions. Interestingly, dual mPFC-HC projecting cells expressed neither CR nor CB. Topographically, CB+ and CR+ containing cells clustered around dual projecting neurons in PVT. These results are consistent with the features of dual mPFC-vHC projecting cells in the nucleus reuniens (RE) and suggestive of a functional mPFC-PVT-vHC system that may support mPFC-vHC interactions in PVT-dependent behaviors.
Collapse
Affiliation(s)
- Tatiana D Viena
- Department of Psychology, Cognitive Neuroscience Program, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Gabriela E Rasch
- Department of Psychology, Cognitive Neuroscience Program, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy A Allen
- Department of Psychology, Cognitive Neuroscience Program, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
- Deparment of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
26
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Ventral midline thalamus activation is correlated with memory performance in a delayed spatial matching-to-sample task: A c-Fos imaging approach in the rat. Behav Brain Res 2022; 418:113670. [PMID: 34798168 DOI: 10.1016/j.bbr.2021.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bi-directionally connected with the hippocampus and the medial prefrontal cortex. They participate in a variety of cognitive functions, including information holding for seconds to minutes in working memory tasks. What about longer delays? To address this question, we used a spatial working memory task in which rats had to reach a platform submerged in water. The platform location was changed every 2-trial session and rats had to use allothetic cues to find it. Control rats received training in a typical response-memory task. We interposed a 6 h interval between instruction (locate platform) and evaluation (return to platform) trials in both tasks. After the last session, rats were killed for c-Fos imaging. A home-cage group was used as additional control of baseline levels of c-Fos expression. C-Fos expression was increased to comparable levels in the Re (not Rh) of both spatial memory and response-memory rats as compared to their home cage counterparts. However, in spatial memory rats, not in their response-memory controls, task performance was correlated with c-Fos expression in the Re: the higher this expression, the better the performance. Furthermore, we noticed an activation of hippocampal region CA1 and of the anteroventral nucleus of the rostral thalamus. This activation was specific to spatial memory. The data point to a possible performance-determinant participation of the Re nucleus in the delayed engagement of spatial information encoded in a temporary memory.
Collapse
|
28
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2022; 15:781527. [PMID: 35087384 PMCID: PMC8787113 DOI: 10.3389/fnsys.2021.781527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.
Collapse
Affiliation(s)
- Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Detlef H. Heck,
| |
Collapse
|
29
|
Spatial working memory is disparately interrelated with social status through different developmental stages in rats. Behav Brain Res 2022; 416:113547. [PMID: 34437940 DOI: 10.1016/j.bbr.2021.113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 02/02/2023]
Abstract
Social life necessitates cognitive competence to meet the dynamic demands of social development. The formation of dominance hierarchy is a general phenomenon in social groups. As an essential element of executive and cognitive function, working memory could influence and be influenced by social status in a dominance hierarchy. However, the direction and degree of the association between them through different developmental stages remain unclear. To address this issue and clarify the "cause or consequence" problem, we investigated the spatial working memory performance in a Y-maze and Morris water maze in home-caged sibling Wistar rats (N = 26 cages, three rats/cage) through three stages of their life: before (week 7), during (week 10), and after (week 20) assumed timings of the social dominance hierarchy formation (SDHF). We used the social dominance tube test during the assumed time of hierarchy formation (weeks 9-11) to measure the relative dominance status in each cage. Here, we found that higher working memory index before SDHF could be predictive of later acquisition of higher social status. Working memory performance declined for all animals during SDHF, in which agonistic conflicts are increased. However, living within an established hierarchical social network for several weeks deteriorated the working memory performance of dominant and middle-ranked animals, while the performance of subordinates improved and got significantly better than higher-ranked animals. In conclusion, while working memory and social status were correlated positively before dominance hierarchy formation, there was a trade-off between them after the formation of it. In contrast to the common view, these results highlight the adverse effect of higher social status on cognitive behavior.
Collapse
|
30
|
Melatonin Ameliorates Valproic Acid-Induced Neurogenesis Impairment: The Role of Oxidative Stress in Adult Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9997582. [PMID: 34804374 PMCID: PMC8604576 DOI: 10.1155/2021/9997582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Background Valproic acid (anticonvulsant medication) has been found to inhibit histone deacetylase activity and suppress hippocampal neurogenesis, which causes memory impairment in both humans and rodents. The neurohormone melatonin, which regulates mammalian seasonal and circadian physiology, has recently been shown to have neuroprotective properties, counteracting memory impairment associated with VPA-caused hippocampal neurogenesis reduction. This study is aimed at investigating the molecular mechanisms of melatonin associated with VPA-induced hippocampal neurogenesis and memory impairment. Methods Male Spraque-Dawley rats received VPA (300 mg/kg) twice daily or melatonin (8 mg/kg/day) or some rats were given melatonin for 14 days during VPA administration. Results The VPA-treated rats showed a significant increase in malondialdehyde (MDA) levels in the hippocampus and p21-positive cells in the subgranular zone (SGZ) of the dentate gyrus (DG) but decreased superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities. Moreover, VPA significantly decreased levels of nestin, Notchl, nuclear factor erythroid 2-related factor 2 (Nrf2), doublecortin (DCX), sex determining region Y-box 2 (SOX2), and brain-derived neurotrophic factor (BDNF). Conclusions We found that melatonin was able to counteract these neurotoxic effects, acting as a neuroprotectant in VPA-induced memory hippocampal neurogenesis impairment by preventing intracellular oxidative stress and increasing antioxidant activity.
Collapse
|
31
|
Robinson JL, Zhou X, Bird RT, Leavitt MJ, Nichols SJ, Blaine SK, Deshpande G. Neurofunctional Segmentation Shifts in the Hippocampus. Front Hum Neurosci 2021; 15:729836. [PMID: 34790106 PMCID: PMC8592061 DOI: 10.3389/fnhum.2021.729836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is one of the most phylogenetically preserved structures in the mammalian brain. Engaged in a host of diverse cognitive processes, there has been increasing interest in understanding how the hippocampus dynamically supports these functions. One of the lingering questions is how to reconcile the seemingly disparate cytoarchitectonic organization, which favors a dorsal-ventral layering, with the neurofunctional topography, which has strong support for longitudinal axis (anterior-posterior) and medial-lateral orientation. More recently, meta-analytically driven (e.g., big data) approaches have been employed, however, the question remains whether they are sensitive to important task-specific features such as context, cognitive processes recruited, or the type of stimulus being presented. Here, we used hierarchical clustering on functional magnetic resonance imaging (fMRI) data acquired from healthy individuals at 7T using a battery of tasks that engage the hippocampus to determine whether stimulus or task features influence cluster profiles in the left and right hippocampus. Our data suggest that resting state clustering appears to favor the cytoarchitectonic organization, while task-based clustering favors the neurofunctional clustering. Furthermore, encoding tasks were more sensitive to stimulus type than were recognition tasks. Interestingly, a face-name paired associate task had nearly identical clustering profiles for both the encoding and recognition conditions of the task, which were qualitatively morphometrically different than simple encoding of words or faces. Finally, corroborating previous research, the left hippocampus had more stable cluster profiles compared to the right hippocampus. Together, our data suggest that task-based and resting state cluster profiles are different and may account for the disparity or inconsistency in results across studies.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Xinyu Zhou
- Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Quora Inc., Mountain View, CA, United States
| | - Ryan T Bird
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Mackenzie J Leavitt
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Sara K Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Gopikrishna Deshpande
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States.,Key Lab for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Center for Brain Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
32
|
Entrainment of Astrocytic and Neuronal Ca 2+ Population Dynamics During Information Processing of Working Memory in Mice. Neurosci Bull 2021; 38:474-488. [PMID: 34699030 PMCID: PMC9106780 DOI: 10.1007/s12264-021-00782-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
Astrocytes are increasingly recognized to play an active role in learning and memory, but whether neural inputs can trigger event-specific astrocytic Ca2+ dynamics in real time to participate in working memory remains unclear due to the difficulties in directly monitoring astrocytic Ca2+ dynamics in animals performing tasks. Here, using fiber photometry, we showed that population astrocytic Ca2+ dynamics in the hippocampus were gated by sensory inputs (centered at the turning point of the T-maze) and modified by the reward delivery during the encoding and retrieval phases. Notably, there was a strong inter-locked and antagonistic relationship between the astrocytic and neuronal Ca2+ dynamics with a 3-s phase difference. Furthermore, there was a robust synchronization of astrocytic Ca2+ at the population level among the hippocampus, medial prefrontal cortex, and striatum. The inter-locked, bidirectional communication between astrocytes and neurons at the population level may contribute to the modulation of information processing in working memory.
Collapse
|
33
|
Johnson SA, Zequeira S, Turner SM, Maurer AP, Bizon JL, Burke SN. Rodent mnemonic similarity task performance requires the prefrontal cortex. Hippocampus 2021; 31:701-716. [PMID: 33606338 PMCID: PMC9343235 DOI: 10.1002/hipo.23316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 11/07/2023]
Abstract
Mnemonic similarity task performance, in which a known target stimulus must be distinguished from similar lures, is supported by the hippocampus and perirhinal cortex. Impairments on this task are known to manifest with advancing age. Interestingly, disrupting hippocampal activity leads to mnemonic discrimination impairments when lures are novel, but not when they are familiar. This observation suggests that other brain structures support discrimination abilities as stimuli are learned. The prefrontal cortex (PFC) is critical for retrieval of remote events and executive functions, such as working memory, and is also particularly vulnerable to dysfunction in aging. Importantly, the medial PFC is reciprocally connected to the perirhinal cortex and neuron firing in this region coordinates communication between lateral entorhinal and perirhinal cortices to presumably modulate hippocampal activity. This anatomical organization and function of the medial PFC suggests that it contributes to mnemonic discrimination; however, this notion has not been empirically tested. In the current study, rats were trained on a LEGO object-based mnemonic similarity task adapted for rodents, and surgically implanted with guide cannulae targeting prelimbic and infralimbic regions of the medial PFC. Prior to mnemonic discrimination tests, rats received PFC infusions of the GABAA agonist muscimol. Analyses of expression of the neuronal activity-dependent immediate-early gene Arc in medial PFC and adjacent cortical regions confirmed muscimol infusions led to neuronal inactivation in the infralimbic and prelimbic cortices. Moreover, muscimol infusions in PFC impaired mnemonic discrimination performance relative to the vehicle control across all testing blocks when lures shared 50-90% feature overlap with the target. Thus, in contrast hippocampal infusions, PFC inactivation impaired target-lure discrimination regardless of the novelty or familiarity of the lures. These findings indicate the PFC plays a critical role in mnemonic similarity task performance, but the time course of PFC involvement is dissociable from that of the hippocampus.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sabrina Zequeira
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sean M. Turner
- Department of Clinical Health Psychology, University of Florida, Gainesville, Florida
| | - Andrew P. Maurer
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jennifer L. Bizon
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sara N. Burke
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
34
|
Griffin AL. The nucleus reuniens orchestrates prefrontal-hippocampal synchrony during spatial working memory. Neurosci Biobehav Rev 2021; 128:415-420. [PMID: 34217746 DOI: 10.1016/j.neubiorev.2021.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Spatial working memory, the ability to temporarily maintain an internal representation of spatial information for use in guiding upcoming decisions, has been shown to be dependent upon a network of brain structures that includes the hippocampus, a region known to be critical for spatial navigation and episodic memory, and the prefrontal cortex (PFC), a region known to be critical for executive function and goal directed behavior. Oscillatory synchronization between the hippocampus and the prefrontal cortex (PFC) is known to increase in situations of high working memory demand. Most of our knowledge about the anatomical connectivity between the PFC and hippocampus comes from the rodent literature. Thus, most of the findings that will be discussed here model human working memory using spatial working memory-dependent maze navigation tasks in rodents. It has been demonstrated that the ventral midline thalamic nucleus reuniens (Re) is reciprocally connected to both the infralimbic and prelimbic subregions of the PFC, collectively referred to as the medial PFC (mPFC), and the hippocampus. Given that the Re serves as a major anatomical route between the mPFC and hippocampus, it is perhaps not surprising that Re has been shown to be critical for spatial working memory. This review will describe the latest findings and ideas on how the Re contributes to prefrontal-hippocampal synchronization and spatial working memory in rodents. The review will conclude with possible future directions that will advance the understanding of the mechanisms that enable the Re to orchestrate long range synchrony in the prefrontal-hippocampal network.
Collapse
Affiliation(s)
- Amy L Griffin
- University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
35
|
Schmidt B, Redish AD. Disrupting the medial prefrontal cortex with designer receptors exclusively activated by designer drug alters hippocampal sharp-wave ripples and their associated cognitive processes. Hippocampus 2021; 31:1051-1067. [PMID: 34107138 DOI: 10.1002/hipo.23367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/09/2022]
Abstract
The hippocampus and medial prefrontal cortex (mPFC) interact during a myriad of cognitive processes including decision-making and long-term memory consolidation. Exactly how the mPFC and hippocampus interact during goal-directed decision-making remains to be fully elucidated. During periods of rest, bursts of high-frequency oscillations, termed sharp-wave ripple (SWR), appear in the local field potential. Impairing SWRs on the maze or during post-learning rest can interfere with memory-guided decision-making and memory consolidation. We hypothesize that the hippocampus and mPFC bidirectionally interact during SWRs to support memory consolidation and decision-making. Rats were trained on the neuroeconomic spatial decision-making task, Restaurant Row, to make serial stay-skip decisions where the amount of effort (delay to reward) varied upon entry to each restaurant. Hippocampal cells and SWRs were recorded in rats with the mPFC transduced with inhibitory DREADDs. We found that disrupting the mPFC impaired consolidating SWRs in the hippocampus. Hippocampal SWR rates depended on the internalized value of the reward (derived from individual flavor preferences), a parameter important in decision-making, and disrupting the mPFC changed this relationship. Additionally, we found a dissociation between SWRs that occurred while rats were on the maze dependent upon whether those SWRs occurred while the rat was anticipating food reward or during post-reward consumption.
Collapse
Affiliation(s)
- Brandy Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Cassel JC, Ferraris M, Quilichini P, Cholvin T, Boch L, Stephan A, Pereira de Vasconcelos A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci Biobehav Rev 2021; 126:338-360. [PMID: 33766671 DOI: 10.1016/j.neubiorev.2021.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Maëva Ferraris
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Pascale Quilichini
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Thibault Cholvin
- Institute for Physiology I, University Clinics Freiburg, 79104 Freiburg, Germany
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
37
|
Rahman F, Nanu R, Schneider NA, Katz D, Lisman J, Pi HJ. Optogenetic perturbation of projections from thalamic nucleus reuniens to hippocampus disrupts spatial working memory retrieval more than encoding. Neurobiol Learn Mem 2021; 179:107396. [PMID: 33524571 DOI: 10.1016/j.nlm.2021.107396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Working memory deficits are key cognitive symptoms of schizophrenia. Elevated delta oscillations, which are uniquely associated with the presence of the illness, may be the proximal cause of these deficits. Spatial working memory (SWM) is impaired by elevated delta oscillations projecting from thalamic nucleus reuniens (RE) to the hippocampus (HPC); these findings imply a role of the RE-HPC circuit in working memory deficits in schizophrenia, but questions remain as to whether the affected process is the encoding of working memory, recall, or both. Here, we answered this question by optogenetically inducing delta oscillations in the HPC terminals of RE axons in mice during either the encoding or retrieval phase (or both) of an SWM task. METHODS We transduced cells in RE to express channelrhodopsin-2 through bilateral injection of adeno-associated virus, and bilaterally implanted optical fibers dorsal to the hippocampus (HPC). While mice performed a spatial memory task on a Y-maze, the RE-HPC projections were optogenetically stimulated at delta frequency during distinct phases of the task. RESULTS Full-trial stimulation successfully impaired SWM performance, replicating the results of the previous study in a mouse model. Task-phase-specific stimulation significantly impaired performance during retrieval but not encoding. CONCLUSIONS Our results indicate that perturbations in the RE-HPC circuit specifically impair the retrieval phase of working memory. This finding supports the hypothesis that abnormal delta frequency bursting in the thalamus could have a causal role in producing the WM deficits seen in schizophrenia.
Collapse
Affiliation(s)
- Faiyaz Rahman
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Roshan Nanu
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Nathan A Schneider
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Donald Katz
- Volen Center for Complex Systems, Neuroscience Program, Department of Psychology, Brandeis University, Waltham, MA 02453, USA; Volen Center for Complex Systems, Neuroscience Program, Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - John Lisman
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Hyun-Jae Pi
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
38
|
A selective role for the
mPFC
during choice and deliberation, but not spatial memory retention over short delays. Hippocampus 2021; 31:690-700. [DOI: 10.1002/hipo.23306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
|
39
|
Linley SB, Athanason AC, Rojas AK, Vertes RP. Role of the reuniens and rhomboid thalamic nuclei in anxiety‐like avoidance behavior in the rat. Hippocampus 2021; 31:756-769. [DOI: 10.1002/hipo.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/08/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | | | - Amanda K.P. Rojas
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
| | - Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
40
|
Viena TD, Rasch GE, Silva D, Allen TA. Calretinin and calbindin architecture of the midline thalamus associated with prefrontal–hippocampal circuitry. Hippocampus 2020; 31:770-789. [DOI: 10.1002/hipo.23271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana D. Viena
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
| | - Gabriela E. Rasch
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
| | - Daniela Silva
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
| | - Timothy A. Allen
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
- Department of Environmental Health Sciences Robert Stempel College of Public Health, Florida International University Miami Florida USA
| |
Collapse
|
41
|
Moisenovich MM, Silachev DN, Moysenovich AM, Arkhipova AY, Shaitan KV, Bogush VG, Debabov VG, Latanov AV, Pevzner IB, Zorova LD, Babenko VA, Plotnikov EY, Zorov DB. Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced Ischemia. Front Cell Dev Biol 2020; 8:823. [PMID: 33015039 PMCID: PMC7505932 DOI: 10.3389/fcell.2020.00823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
The existence of niches of stem cells residence in the ventricular-subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration. In this study, we explored the neuroprotective activity of the recombinant analog of Nephila clavipes spidroin 1 rS1/9 after its introduction into the ischemia-damaged brain. We used nestin-green fluorescent protein (GFP) transgenic reporter mouse line, in which neural stem/progenitor cells are easily visualized and quantified by the expression of GFP, to determine the alterations in the dentate gyrus (DG) after focal ischemia in the prefrontal cortex. Changes in the proliferation of neural stem/progenitor cells during the first weeks following photothrombosis-induced brain ischemia and in vitro effects of spidroin rS1/9 in rat primary neuronal cultures were the subject of the study. The introduction of microparticles of the recombinant protein rS1/9 into the area of ischemic damage to the prefrontal cortex leads to a higher proliferation rate and increased survival of progenitor cells in the DG of the hippocampus which functions as a niche of brain stem cells located at a distance from the injury zone. rS1/9 also increased the levels of a mitochondrial probe in DG cells, which may report on either an increased number of mitochondria and/or of the mitochondrial membrane potential in progenitor cells. Apparently, the stimulation of progenitor cells was caused by formed biologically active products stemming from rS1/9 biodegradation which can also have an effect upon the growth of primary cortical neurons, their adhesion, neurite growth, and the formation of a neuronal network. The high biological activity of rS1/9 suggests it as an excellent material for therapeutic usage aimed at enhancing brain plasticity by interacting with stem cell niches. Substances formed from rS1/9 can also be used to enhance primary neuroprotection resulting in reduced cell death in the injury area.
Collapse
Affiliation(s)
| | - Denis N. Silachev
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
- Histology, Embryology and Cytology Department, Peoples’ Friendship University of Russia, Moscow, Russia
| | | | | | | | - Vladimir G. Bogush
- National Research Center “Kurchatov Institute” – GOSNIIGENETIKA, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Vladimir G. Debabov
- National Research Center “Kurchatov Institute” – GOSNIIGENETIKA, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | | | - Irina B. Pevzner
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Ljubava D. Zorova
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Valentina A. Babenko
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Egor Y. Plotnikov
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry B. Zorov
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| |
Collapse
|
42
|
Stout JJ, Griffin AL. Representations of On-Going Behavior and Future Actions During a Spatial Working Memory Task by a High Firing-Rate Population of Medial Prefrontal Cortex Neurons. Front Behav Neurosci 2020; 14:151. [PMID: 33061897 PMCID: PMC7488206 DOI: 10.3389/fnbeh.2020.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Spatial working memory (SWM) requires the encoding, maintenance, and retrieval of spatially relevant information to guide decision-making. The medial prefrontal cortex (mPFC) has long been implicated in the ability of rodents to perform SWM tasks. While past studies have demonstrated that mPFC ensembles reflect past and future experiences, most findings are derived from tasks that have an experimental overlap between the encoding and retrieval of trajectory specific information. In this study, we recorded single units from the mPFC of rats as they performed a T-maze delayed non-match to position (DNMP) task. This task consists of an encoding dominant sample phase, a memory maintenance delay period, and retrieval dominant choice phase. Using a linear classifier, we investigated whether distinct ensembles collectively reflect various trajectory-dependent experiences. We find that a population of high-firing rate mPFC neurons both predict a future choice and reflect changes in trajectory-dependent behaviors. We then developed a modeling procedure that estimated the number of high and low-firing rate units required to dissociate between various experiences. We find that low firing rate ensembles weakly reflect the direction that rats were forced to turn on the sample phase. This was in contrast to the highly active population that could effectively predict both future decision-making on early stem traversals and trajectory-divergences at T-junction. Finally, we compared the ensemble size necessary to code a forced trajectory to the size required to predict a decision. We provide evidence to suggest that a larger number of highly active neurons are employed during decision-making processes when compared to rewarded forced behaviors. Together, our study provides important insight into how specific ensembles of mPFC units support upcoming choices and ongoing behavior during SWM.
Collapse
Affiliation(s)
- John J Stout
- Griffin Laboratory, Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Amy L Griffin
- Griffin Laboratory, Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
43
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
44
|
Avigan PD, Cammack K, Shapiro ML. Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex. Hippocampus 2020; 30:733-744. [PMID: 32077554 PMCID: PMC7731996 DOI: 10.1002/hipo.23198] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
When faced with changing contingencies, animals can use memory to flexibly guide actions, engaging both frontal and temporal lobe brain structures. Damage to the hippocampus (HPC) impairs episodic memory, and damage to the prefrontal cortex (PFC) impairs cognitive flexibility, but the circuit mechanisms by which these areas support flexible memory processing remain unclear. The present study investigated these mechanisms by temporarily inactivating the medial PFC (mPFC), the dorsal HPC (dHPC), and the ventral HPC (vHPC), individually and in combination, as rats learned spatial discriminations and reversals in a plus maze. Bilateral inactivation of either the dHPC or vHPC profoundly impaired spatial learning and memory, whereas bilateral mPFC inactivation primarily impaired reversal versus discrimination learning. Inactivation of unilateral mPFC together with the contralateral dHPC or vHPC impaired spatial discrimination and reversal learning, whereas ipsilateral inactivation did not. Flexible spatial learning thus depends on both the dHPC and vHPC and their functional interactions with the mPFC.
Collapse
Affiliation(s)
- Philip D. Avigan
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katharine Cammack
- Department of Psychology & Neuroscience Program, The University of the South, Sewanee, Tennessee
| | - Matthew L. Shapiro
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
45
|
Amiri S, Jafari-Sabet M, Keyhanfar F, Falak R, Shabani M, Rezayof A. Hippocampal and prefrontal cortical NMDA receptors mediate the interactive effects of olanzapine and lithium in memory retention in rats: the involvement of CAMKII-CREB signaling pathways. Psychopharmacology (Berl) 2020; 237:1383-1396. [PMID: 31984447 DOI: 10.1007/s00213-020-05465-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Treatment of bipolar disorder (BPD) with lithium and olanzapine concurrent administration is a major medicine issue with the elusive neurobiological mechanisms underlying the cognitive function. OBJECTIVE To clarify the precise mechanisms involved, the possible role of the hippocampus (HPC) and prefrontal cortical (PFC) NMDA receptors and CAMKII-CREB signaling pathway in the interactive effects of lithium and olanzapine in memory consolidation was evaluated. The dorsal hippocampal CA1 regions of adult male Wistar rats were bilaterally cannulated and a step-through inhibitory avoidance apparatus was used to assess memory consolidation. The changes in p-CAMKII/CAMKII and p-CREB/CREB ratio in the HPC and the PFC were measured by Western blot analysis. RESULTS Post-training administration of lithium (20, 30, and 40 mg/kg, i.p.) dose-dependently decreased memory consolidation whereas post-training administration olanzapine (2 and 5 mg/kg, i.p.) increased memory consolidation. Post-training administration of certain doses of olanzapine (1, 2, and 5 mg/kg, i.p.) dose-dependently improved lithium-induced memory impairment. Post-training administration of ineffective doses of the NMDA (10-5 and 10-4 μg/rat, intra-CA1) plus an ineffective dose of olanzapine (1 mg/kg, i.p.) dose-dependently improved the lithium-induced memory impairment. Post-training microinjection of ineffective doses of the NMDA (10-5 and 10-4 μg/rat, intra-CA1) dose-dependently potentiated the memory improvement induced by olanzapine (1 mg/kg, i.p.) on lithium-induced memory impairment which was associated with the enhancement of the levels of p-CAMKII and p-CREB in the HPC and the PFC. Post-training microinjection of ineffective doses of the noncompetitive NMDA receptor antagonist, MK-801 (0.0625 and 0.0125 μg/rat, intra-CA1), dose-dependently decreased the memory improvement induced by olanzapine (5 mg/kg, i.p.) on lithium-induced memory impairment which was related to the reduced levels of HPC and PFC CAMKII-CREB. CONCLUSION The results strongly revealed that there is a functional interaction among lithium and olanzapine through the HPC and the PFC NMDA receptor mechanism in memory consolidation which is mediated with the CAMKII-CREB signaling pathway.
Collapse
Affiliation(s)
- Shiva Amiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
46
|
Abstract
This review highlights fifty years of progress in research on estradiol's role in regulating behavior(s). It was initially thought that estradiol was only involved in regulating estrus/menstrual cycles and concomitant sexual behavior, but it is now clear that estradiol also influences the higher order neural function of cognition. We provide a brief overview of estradiol's regulation of memory and some mechanisms which underlie its effects. Given systemically or directly into the hippocampus, to ovariectomized female rodents, estradiol or specific agonists, enhance learning and/or memory in a variety of rodent cognitive tasks. Acute (within minutes) or chronic (days) treatments enhance cognitive functions. Under the same treatment conditions, dendritic spine density on pyramidal neurons in the CA1 area of the hippocampus and medial prefrontal cortex increase which suggests that these changes are an important component of estrogen's ability to impact memory processes. Noradrenergic, dopaminergic and serotoninergic activity are also altered in these areas following estrogen treatments. Memory enhancements and increased spine density by estrogens are not limited to females but are also present in castrate males. In the next fifty years, neuroscientists need to determine how currently described neural changes mediate improved memory, how interactions among areas important for memory promote memory and the potential significance of neurally derived estrogens in normal cognitive processing. Answering these questions may provide significant advances for treatment of dementias as well as age and neuro-degenerative disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
47
|
Tractenberg SG, Orso R, Creutzberg KC, Malcon LMC, Lumertz FS, Wearick-Silva LE, Viola TW, Riva MA, Grassi-Oliveira R. Vulnerable and resilient cognitive performance related to early life stress: The potential mediating role of dopaminergic receptors in the medial prefrontal cortex of adult mice. Int J Dev Neurosci 2020; 80:13-27. [PMID: 31907967 DOI: 10.1002/jdn.10004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Exposure to early life stress (ELS) is known to have pronounced effects on the prefrontal cortex (PFC). However, not all individuals exposed to ELS manifest the same neurobiological and cognitive phenotypes when adults. Dopamine signaling could be a key factor in understanding the effects of stress on PFC-related cognitive function. OBJECTIVES We aimed to investigate the differential effects of ELS on cognitive performance of adult mice and the dopaminergic receptors expression in the PFC. METHODS BALB/c males were exposed to the maternal separation (MS) procedure and their cognitive performance on the eight-arm radial maze (8-RAM) were assessed during adulthood. For molecular-level assessments, we performed mRNA expression analyses for dopamine receptors-DRD1, DRD2, DRD3-and Hers1 expression in the medial PFC. RESULTS While MS produced an overall impairment on 8-RAM, the stressed animals could be divided in two groups based on their performance: those with impaired cognitive performance (vulnerable to maternal separation, V-MS) and those without any impairment (resilient to maternal separation, R-MS). V-MS animals showed increased DRD1 and DRD2 expression in comparison with other groups. Errors on 8-RAM were also positively correlated with DRD1 and DRD2 mRNA expression. CONCLUSIONS Our findings suggest a potential role of the dopaminergic system in the programming mechanisms of cognitive vulnerability and resilience related to ELS.
Collapse
Affiliation(s)
- Saulo G Tractenberg
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Kerstin C Creutzberg
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiza M C Malcon
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Francisco S Lumertz
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodrigo Grassi-Oliveira
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
48
|
Rubin BR, Milner TA, Pickel VM, Coleman CG, Marques-Lopes J, Van Kempen TA, Kazim SF, McEwen BS, Gray JD, Pereira AC. Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Exp Neurol 2019; 325:113075. [PMID: 31837319 DOI: 10.1016/j.expneurol.2019.113075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA), a chronic sleep disorder characterized by repetitive reduction or cessation of airflow during sleep, is widely prevalent and is associated with adverse neurocognitive sequelae including increased risk of Alzheimer's disease (AD). In humans, OSA is more common in elderly males. OSA is characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), and recent epidemiological studies point to CIH as the best predictor of neurocognitive sequelae associated with OSA. The sex- and age- specific effects of OSA-associated CIH on specific cell populations such as γ-aminobutyric acid (GABA)-ergic neurons in the hippocampus and the medial prefrontal cortex (mPFC), regions important for cognitive function, remain largely unknown. The present study examined the effect of 35 days of either moderate (10% oxygen) or severe (5% oxygen) CIH on GABAergic neurons in the mPFC and hippocampus of young and aged male and female mice as well as post-accelerated ovarian failure (AOF) female mice. In the mPFC and hippocampus, the number of GABA-labeled neurons increased in aged and young severe CIH males compared to controls but not in young moderate CIH males. This change was not representative of the individual GABAergic cell subpopulations, as the number of parvalbumin-labeled neurons decreased while the number of somatostatin-labeled neurons increased in the hippocampus of severe CIH young males only. In all female groups, the number of GABA-labeled cells was not different between CIH and controls. However, in the mPFC, CIH increased the number of parvalbumin-labeled neurons in young females and the number of somatostatin-labeled cells in AOF females but decreased the number of somatostatin-labeled cells in aged females. In the hippocampus, CIH decreased the number of somatostatin-labeled neurons in young females. CIH decreased the density of vesicular GABA transporter in the mPFC of AOF females only. These findings suggest sex-specific changes in GABAergic neurons in the hippocampus and mPFC with males showing an increase of this cell population as compared to their female counterparts following CIH. Age at exposure and severity of CIH also differentially affect the GABAergic cell population in mice.
Collapse
Affiliation(s)
- Batsheva R Rubin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Teresa A Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Christal G Coleman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Syed Faraz Kazim
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Ana C Pereira
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
49
|
Lee SL(T, Lew D, Wickenheisser V, Markus EJ. Interdependence between dorsal and ventral hippocampus during spatial navigation. Brain Behav 2019; 9:e01410. [PMID: 31571397 PMCID: PMC6790314 DOI: 10.1002/brb3.1410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The hippocampus is linked to the formation and retrieval of episodic memories and spatial navigation. In rats, it is an elongated structure divided into dorsal (septal) and ventral (temporal) regions paralleling the respective division in the posterior and anterior hippocampus in humans. The dorsal hippocampus has been suggested to be more important for spatial processing and the ventral to processing anxiety-based behaviors. Far less is known regarding the degree to which these different regions interact during information processing. The anatomical connectivity suggests a flow of information between the dorsal and ventral regions; conversely, there are also commissural connections to the contralateral hippocampus. The current study examined the extent to which information from the dorsal hippocampus interacts with processing in the ipsilateral and contralateral ventral hippocampus following the acquisition of a spatial task. METHODS Rats were well-trained on a spatial reference version of the water maze, followed by muscimol inactivation of different hippocampal subregions in a within-animal repeated design. Various combinations of bilateral, ipsilateral, and contralateral infusions were used. RESULTS Combined dorsal and ventral inactivation produced a severe impairment in spatial performance. Inactivation of only the dorsal or ventral regions resulted in intermediate impairment with performance levels falling between controls and combined inactivation. Performance was impaired during contralateral inactivation and was almost equivalent to bilateral dorsal and ventral hippocampus inactivation, while ipsilateral inactivation resulted in little impairment. CONCLUSIONS Taken together, results indicate that for spatial processing, the hippocampus functions as a single integrated structure along the longitudinal axis.
Collapse
Affiliation(s)
- Shang Lin (Tommy) Lee
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Dana Lew
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Victoria Wickenheisser
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Etan J. Markus
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
50
|
Xie H, Zhang M, Huo C, Xu G, Li Z, Fan Y. Tai Chi Chuan exercise related change in brain function as assessed by functional near-infrared spectroscopy. Sci Rep 2019; 9:13198. [PMID: 31519933 PMCID: PMC6744459 DOI: 10.1038/s41598-019-49401-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/23/2019] [Indexed: 01/27/2023] Open
Abstract
Early studies have shown that Tai Chi Chuan (TCC) contributes to the rehabilitation of cognitive disorders and increases blood oxygen concentration levels in the parietal and occipital brain areas; however, the mechanism of TCC training on brain function remains poorly understood. This study hypothesize that TCC has altered brain function and aims to explore the effects of TCC on functional connection and effective connection of the prefrontal cortex (PFC), motor cortex (MC), and occipital cortex (OC). The participants were 23 experienced Chen-style TCC practitioners (TCC group), and 32 demographically matched TCC-naive healthy controls (control group). Functional and effective connections were calculated using wavelet-based coherence analysis and dynamic Bayesian inference method, respectively. Results showed that beyond the intensity of activity in a particular cortical region induced by TCC, significant differences in brain activity and dynamic configuration of connectivity were observed between the TCC and control groups during resting and movement states. These findings suggested that TCC training improved the connection of PFC, MC and OC in myogenic activity, sympathetic nervous system, and endothelial cell metabolic activities; enhanced brain functional connections and relayed the ability of TCC to improve cognition and the anti-memory decline potential.
Collapse
Affiliation(s)
- Hui Xie
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Gongcheng Xu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China.
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China.
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China.
| |
Collapse
|