1
|
Sari MHM, Cervi VF, Custódio VN, Prado VC, da Motta KP, Luchese C, Wilhelm EA, Ferreira LM, Cruz L. Blended ƙ-carrageenan and xanthan gum hydrogel containing ketoprofen-loaded nanoemulsions: Design, characterization, and evaluation in an animal model of rheumatoid arthritis. Drug Deliv Transl Res 2025:10.1007/s13346-024-01786-5. [PMID: 39821868 DOI: 10.1007/s13346-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/19/2025]
Abstract
This study reports the preparation of hydrogels (HG) made with xanthan gum (XG) and ƙ-carrageenan (KC) polysaccharides containing ketoprofen (KET)-loaded nanoemulsions (NK) and their evaluation in a rheumatoid arthritis (RA) model. The nano-based HGs exhibited nanometric-sized droplets (~ 100 nm), an acidic pH (5.10-6.83), drug content above 85%, a suitable spreadability factor, and pseudoplastic flow behavior. The most promising blend (HGCX 2:1) demonstrated sustained KET release, reaching 81.44 ± 6.11% after 5 h, and superior drug concentration in the skin layers (237.91 ± 41.0 µg/g). The formulation was selected due to its enhanced bioadhesiveness, with the HG-NK formulation showing the highest bioadhesion force and occlusion factor. RA was induced by complete Freund's adjuvant (CFA) intraplantar injection into the left hind paw of male and female Swiss mice. Treatments with HGs were applied to the animals' dorsal region for 7 days. Notably, HG-NK demonstrated remarkable efficacy, reversing mechanical sensitivity in male mice and significantly reducing thermal sensitivity in both genders. Moreover, HG-NK provided a significant reduction in paw edema (52-fold in males, 27-fold in females) and inflammatory markers, such as myeloperoxidase activity (32-fold in males, 14-fold in females) and lipid peroxidation (2.5-fold in males, twofold in females). The formulation also promoted greater permeation of KET across the skin. These findings underscore the significant reduction in inflammatory markers by the HG-NK formulation, highlighting its potent anti-inflammatory effects and potential as a promising therapeutic strategy for managing RA.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
- Departamento de Análises Clínicas, Universidade Federal Do Paraná, Curitiba, 80210-170, Brazil.
| | - Verônica Ferrari Cervi
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Vanessa Neuenschwander Custódio
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Vinicius Costa Prado
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Ketlyn Pereira da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Ethel Antunes Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Letícia Cruz
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
2
|
Martins CC, Nörnberg AB, Lima AS, Alves D, Luchese C, Fajardo AR, Wilhelm EA. Targeted delivery of a selenium-sulfa compound via cationic starch microparticles: Modulation of oxidative stress and pain pathways in fibromyalgia-like symptoms in mice. Int J Biol Macromol 2025; 286:138334. [PMID: 39638183 DOI: 10.1016/j.ijbiomac.2024.138334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Cationic starch microparticles (CStMPs) loaded with 4-amino-3 -(phenylselenyl)benzenesulfonamide (4-APSB) were prepared and investigated in a model of fibromyalgia (FM) induced by intermittent cold stress (ICS) in male and female Swiss mice. The CStMPs/4-APSB were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, zeta potential, and particle size measurements, providing information about their chemical composition, surface charge, morphology/microstructure, and size (1.50 ± 0.5 μm). Following ICS exposure, the animals were treated with free 4-APSB (1 mg/kg), CStMPs/4-APSB (containing 0.13 mg of 4-APSB per mg of microparticles), or CStMPs, from days 5 to 10. The results revealed the successful incorporation of 4-APBS in the CStMPs. Free 4-APSB and CStMPs/4-APSB reversed nociceptive- and depressive-related behaviors in male and female mice exposed to ICS, attenuating the hallmark symptoms of FM. Those treatments (free 4-APSB and CStMPs/4-APSB) normalized the monoamine oxidase (MAO)-A activity in the cerebral cortex and the oxidative damage, providing the correct functioning of the enzyme Ca2+ -ATPase in the cerebral cortex and hippocampus of mice exposed to ICS. The CStMPs/4-APSB modulated the oxidative stress markers, specifically in the spinal cord of mice - an anatomical region intricately linked to pain pathways.
Collapse
Affiliation(s)
- Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Andressa B Nörnberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Ariana Silveira Lima
- Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Martins CC, Reis AS, da Motta KP, Blödorn EB, Domingues W, do Sacramento M, Roehrs JA, Alves D, Campos VF, Mesko MF, Luchese C, Wilhelm EA. 4-amino-3-(phenylselanyl) benzenesulfonamide attenuates intermittent cold stress-induced fibromyalgia in mice: Targeting to the Nrf2-NFκB axis. Biochem Pharmacol 2024; 232:116651. [PMID: 39581532 DOI: 10.1016/j.bcp.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Stress is widely recognized as the primary environmental factor associated with chronic pain conditions, including fibromyalgia. A recent study demonstrated the potential antinociceptive effects of 4-amino-3-(phenylselanyl) benzenesulfonamide (4-APSB) in acute nociceptive animal models due to its antioxidant and anti-inflammatory properties. However, the efficacy of 4-APSB in managing chronic painful conditions, such as fibromyalgia, has not been explored so far. This study investigated the pharmacological effects of 4-APSB in an experimental model of fibromyalgia induced by intermittent cold stress (ICS). Male and female mice were divided into Control, ICS, 4-APSB, and ICS + 4-APSB. After the ICS, the animals were treated with 4-APSB (1 mg kg-1) or vehicle by the intragastric route until the tenth day. The behavioral tasks were performed on days 5, 8, and 10. The findings showed a negative correlation between paw withdrawal threshold and Nrf2 or NFκB mRNA expression levels caused by ICS exposure. The 4-APSB suppressed the nociceptive signs and a depressive like-phenotype in male and female mice exposed to ICS. 4-APBS normalized the elevated levels of TBARS and the up-regulation of Nrf2 and NFκB expression in the cerebral cortex of ICS-exposed mice. This compound also modulated the oxidative stress in the spinal cord of female mice. The 4-APSB attenuated the inhibition of Na+, K+ - ATPase activity in the central nervous system (CNS) of female mice exposed to ICS. 4-APSB attenuated behavioral and redox imbalance triggered by the ICS model in male and female mice, suggesting its beneficial effects for treating fibromyalgia in both sexes.
Collapse
Affiliation(s)
- Carolina C Martins
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Angélica S Reis
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Ketlyn P da Motta
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Eduardo B Blödorn
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - William Domingues
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Manoela do Sacramento
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil; Federal Institute of Education, Science and Technology Sul-rio-grandense, IFSul -CEP, 96015-360 Pelotas, RS, Brazil
| | - Diego Alves
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Vinicius F Campos
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Márcia F Mesko
- Contaminant Control Laboratory in Biomaterials (LCCBio), Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
4
|
da Motta K, Martins CC, da Rocha VME, Soares MP, Mesko MF, Luchese C, Wilhelm EA. Insights into Vincristine-Induced Peripheral Neuropathy in Aged Rats: Wallerian Degeneration, Oxidative Damage, and Alterations in ATPase Enzymes. ACS Chem Neurosci 2024; 15:3954-3969. [PMID: 39207203 PMCID: PMC11587511 DOI: 10.1021/acschemneuro.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to elucidate vincristine (VCR)-induced peripheral neuropathy in aged rats, a poorly understood neurotoxicity. Both young and old Wistar rats were administered VCR (0.1 mg/kg, intraperitoneally (i.p.)) and compared to age-matched controls (0.9% saline; 10 mg/mL, i.p.). Mechanical (MN) and thermal nociceptive (TN) responses were assessed on days 0, 6, 11, and 17. Locomotor response, cognitive ability, and anxious-like behavior were evaluated on days 14, 15, and 16. Results showed MN and TN responses in both young and old VCR-exposed rats. In old rats, VCR exacerbated MN (on days 6, 11, and 17) and TN (on days 6 and 17) responses. VCR also induced cognitive impairments and anxiety-like behavior. Histological analysis revealed Wallerian degeneration in the spinal cords of VCR-exposed rats accompanied by macrophage migration. Furthermore, VCR increased Ca2+-ATPase activity while inhibiting Na+, K+-ATPase activity in young and old rats. VCR altered the homeostasis of Mg2+-ATPase activity. Lipid peroxidation and nitrite and nitrate levels increased in young and old rats exposed to VCR. This study provides valuable insights into VCR's mechanistic pathways in aged rats, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Ketlyn
P. da Motta
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Carolina C. Martins
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Vanessa M. E. da Rocha
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Mauro P. Soares
- Regional
Diagnostic Laboratory Faculty of Veterinary Medicine, Federal University of Pelotas (UFPel), CEP, 96010-900 Pelotas, RS, Brazil
| | - Marcia F. Mesko
- Contaminant
Control Laboratory in Biomaterials (LCCBio), Federal University of Pelotas (UFPel), CEP, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Ethel A. Wilhelm
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
5
|
Reis AS, Paltian JJ, Domingues WB, Novo DLR, Bolea-Fernandez E, Van Acker T, Campos VF, Luchese C, Vanhaecke F, Mesko MF, Wilhelm EA. Platinum Deposition in the Central Nervous System: A Novel Insight into Oxaliplatin-induced Peripheral Neuropathy in Young and Old Mice. Mol Neurobiol 2024:10.1007/s12035-024-04430-y. [PMID: 39320565 DOI: 10.1007/s12035-024-04430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 09/26/2024]
Abstract
Numerous factors can contribute to the incidence or exacerbation of peripheral neuropathy induced by oxaliplatin (OXA). Recently, platinum accumulation in the spinal cord of mice after OXA exposure, despite the efficient defenses of the central nervous system, has been demonstrated by our research group, expanding the knowledge about its toxicity. One hypothesis is platinum accumulation in the spinal cord causes oxidative damage to neurons and impairs mitochondrial function. Thus, the main aim of this study was to investigate the relationship between aging and OXA-induced neuropathic pain and its comorbidities, including anxious behavior and cognitive impairment. By using an OXA-induced peripheral neuropathy model, platinum and bioelement concentrations and their influence on oxidative damage, neuroprotection, and neuroplasticity pathways were evaluated in Swiss mice, and our findings showed that treatment with OXA exacerbated pain and anxious behavior, albeit not age-induced cognitive impairment. Platinum deposition in the spinal cord and, for the first time, in the brain of mice exposed to OXA, regardless of age, was identified. We found that alterations in bioelement concentration, oxidative damage, neuroprotection, and neuroplasticity pathways induced by aging contribute to OXA-induced peripheral neuropathy. Our results strive to supply a basis for therapeutic interventions for OXA-induced peripheral neuropathy considering age specificities.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Jaini J Paltian
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - William B Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Diogo L R Novo
- Programa de Pós-Graduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Eduardo Bolea-Fernandez
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Thibaut Van Acker
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Vinicius F Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Marcia F Mesko
- Programa de Pós-Graduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
6
|
Mosneag IE, Flaherty SM, Wykes RC, Allan SM. Stroke and Translational Research - Review of Experimental Models with a Focus on Awake Ischaemic Induction and Anaesthesia. Neuroscience 2024; 550:89-101. [PMID: 38065289 DOI: 10.1016/j.neuroscience.2023.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.
Collapse
Affiliation(s)
- Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom.
| | - Samuel M Flaherty
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Robert C Wykes
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Prescott K, Cothren TO, Holsten JT, Evonko CJ, Doyle EC, Bullock FE, Marron PT, Staton JG, Hatvany LS, Flack JW, Beuschel SL, MacQueen DA, Peterson TC. Increased sensitivity in detection of deficits following two commonly used animal models of stroke. Behav Brain Res 2024; 467:114991. [PMID: 38614209 DOI: 10.1016/j.bbr.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Stroke is a leading cause of death and disability in the United States. Most strokes are ischemic, resulting in both cognitive and motor impairments. Animal models of ischemic stroke such as the distal middle cerebral artery occlusion (dMCAO) and photothrombotic stroke (PTS) procedures have become invaluable tools, with their own advantages and disadvantages. The dMCAO model is clinically relevant as it occludes the artery most affected in humans, but yields variability in the infarct location as well as the behavioral and cognitive phenotypes disrupted. The PTS model has the advantage of allowing for targeted location of infarct, but is less clinically relevant. The present study evaluates phenotype disruption over time in mice subjected to either dMCAO, PTS, or a sham surgery. Post-surgery, animals were tested over 28 days on standard motor tasks (grid walk, cylinder, tapered beam, and rotating beam), as well as a novel odor-based operant task; the 5:1 Odor Discrimination Task (ODT). Results demonstrate a significantly greater disturbance of motor control with PTS as compared with Sham and dMCAO. Disruption of the PTS group was detected up to 28 days post-stroke on the grid walk, and up to 7 days on the rotating and tapered beam tasks. PTS also led to significant short-term disruption of ODT performance (1-day post-surgery), exclusively in males, which appeared to be driven by motoric disruption of the lick response. Together, this data provides critical insights into the selection and optimization of animal models for ischemic stroke research. Notably, the PTS procedure was best suited for producing disruptions of motor behavior that can be detected with common behavioral assays and are relatively enduring, as is observed in human stroke.
Collapse
Affiliation(s)
- Kimberly Prescott
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Taitum O Cothren
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - John T Holsten
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Christopher J Evonko
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Elan C Doyle
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Faith E Bullock
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Paul T Marron
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Julia G Staton
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Laura S Hatvany
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Justin W Flack
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Stacie L Beuschel
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - David A MacQueen
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Todd C Peterson
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| |
Collapse
|
8
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
9
|
Zhang Y, Gao S, Xia S, Yang H, Bao X, Zhang Q, Xu Y. Linarin ameliorates ischemia-reperfusion injury by the inhibition of endoplasmic reticulum stress targeting AKR1B1. Brain Res Bull 2024; 207:110868. [PMID: 38181967 DOI: 10.1016/j.brainresbull.2024.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Due to various factors, there is still a lack of effective neuroprotective agents for ischemic stroke in clinical practice. Neuroinflammation and neuronal apoptosis mediated by endoplasmic reticulum stress are some of the important pathological mechanisms in ischemic stroke. Linarin has been reported to have anti-inflammation, antioxidant, and anti-apoptotic effects in myocardial ischemia, osteoarthritis, and kidney disease. Whether it exerts neuroprotective functions in ischemic stroke has not been investigated. The results showed that linarin could reduce the infarct volume in cerebral ischemia animal models, improve the neurological function scores and suppress the expression of inflammatory factors mediating the NF-κB. Meanwhile, it could protect the neurons from OGD/R-induced-apoptosis, which was related to the PERK-eIF2α pathway. Our results suggested linarin could inhibit neuronal inflammation and apoptosis induced by endoplasmic reticulum stress. Furthermore, the neuroprotective effect of linarin may be related to the inhibition of AKR1B1. Our study offers new insight into protecting against ischemia-reperfusion injury by linarin treatment in stroke.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| |
Collapse
|
10
|
Cai D, Fraunfelder M, Fujise K, Chen SY. ADAR1 exacerbates ischemic brain injury via astrocyte-mediated neuron apoptosis. Redox Biol 2023; 67:102903. [PMID: 37801857 PMCID: PMC10570147 DOI: 10.1016/j.redox.2023.102903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Astrocytes affect stroke outcomes by acquiring functionally dominant phenotypes. Understanding molecular mechanisms dictating astrocyte functional status after brain ischemia/reperfusion may reveal new therapeutic strategies. Adenosine deaminase acting on RNA (ADAR1), an RNA editing enzyme, is not normally expressed in astrocytes, but highly induced in astrocytes in ischemic stroke lesions. The expression of ADAR1 steeply increased from day 1 to day 7 after middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. ADAR1 deficiency markedly ameliorated the volume of the cerebral infarction and neurological deficits as shown by the rotarod and cylinder tests, which was due to the reduction of the numbers of activated astrocytes and microglia. Surprisingly, ADAR1 was mainly expressed in astrocytes while only marginally in microglia. In primary cultured astrocytes, ADAR1 promoted astrocyte proliferation via phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, ADAR1 deficiency inhibited brain cell apoptosis in mice with MCAO as well as in activated astrocyte-conditioned medium-induced neurons in vitro. It appeared that ADAR1 induces neuron apoptosis by secretion of IL-1β, IL-6 and TNF-α from astrocytes through the production of reactive oxygen species. These results indicated that ADAR1 is a novel regulator promoting the proliferation of the activated astrocytes following ischemic stroke, which produce various inflammatory cytokines, leading to neuron apoptosis and worsened ischemic stroke outcome.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mikayla Fraunfelder
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
11
|
Ommati MM, Mobasheri A, Niknahad H, Rezaei M, Alidaee S, Arjmand A, Mazloomi S, Abdoli N, Sadeghian I, Sabouri S, Saeed M, Mousavi K, Najibi A, Heidari R. Low-dose ketamine improves animals' locomotor activity and decreases brain oxidative stress and inflammation in ammonia-induced neurotoxicity. J Biochem Mol Toxicol 2023; 37:e23468. [PMID: 37491939 DOI: 10.1002/jbt.23468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1β was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Arjmand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mohsen Saeed
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Niknahad H, Mobasheri A, Arjmand A, Rafiei E, Alidaee S, Razavi H, Bagheri S, Rezaei H, Sabouri S, Najibi A, Khodaei F, Kashani SMA, Ommati MM, Heidari R. Hepatic encephalopathy complications are diminished by piracetam via the interaction between mitochondrial function, oxidative stress, inflammatory response, and locomotor activity. Heliyon 2023; 9:e20557. [PMID: 37810869 PMCID: PMC10551565 DOI: 10.1016/j.heliyon.2023.e20557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background of the study: Hepatic encephalopathy (HE) is a complication in which brain ammonia (NH4+) levels reach critically high concentrations because of liver failure. HE could lead to a range of neurological complications from locomotor and behavioral disturbances to coma. Several tactics have been established for subsiding blood and brain NH4+. However, there is no precise intervention to mitigate the direct neurological complications of NH4+. Purpose It has been found that oxidative stress, mitochondrial damage, and neuro-inflammation play a fundamental role in NH4+ neurotoxicity. Piracetam is a drug used clinically in neurological complications such as stroke and head trauma. Piracetam could significantly diminish oxidative stress and improve brain mitochondrial function. Research methods In the current study, piracetam (100 and 500 mg/kg, oral) was used in a mice model of HE induced by thioacetamide (TA, 800 mg/kg, single dose, i.p). Results Significant disturbances in animals' locomotor activity, along with increased oxidative stress biomarkers, including reactive oxygen species formation, protein carbonylation, lipid peroxidation, depleted tissue glutathione, and decreased antioxidant capacity, were evident in the brain of TA-treated mice. Meanwhile, mitochondrial permeabilization, mitochondrial depolarization, suppression of dehydrogenases activity, and decreased ATP levels were found in the brain of the TA group. The level of pro-inflammatory cytokines was also significantly high in the brain of HE animals. Conclusion It was found that piracetam significantly enhanced mice's locomotor activity, blunted oxidative stress biomarkers, decreased inflammatory cytokines, and improved mitochondrial indices in hyperammonemic mice. These data suggest piracetam as a neuroprotective agent which could be repurposed for the management of HE.
Collapse
Affiliation(s)
- Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, And Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland
- University Medical Center Utrecht, Departments of Orthopedics Rheumatology and Clinical Immunology, 3508, GA, Utrecht, the Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania
| | - Abdollah Arjmand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Razavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mohammad Amin Kashani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
da Motta KP, Martins CC, Macedo VM, Dos Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. The Antinociceptive Responses of MTDZ to Paclitaxel-Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches. Pharmaceuticals (Basel) 2023; 16:1217. [PMID: 37765025 PMCID: PMC10534544 DOI: 10.3390/ph16091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The efficacy of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ) in mitigating paclitaxel (PTX)-induced peripheral neuropathy was investigated in male and female Swiss mice. The study examined the effects of MTDZ on various pathways, including transient receptor potential cation channel subfamily V member 1 (TRPV1), glutamatergic, nitrergic, guanylate cyclase (cGMP), serotonergic, and opioidergic. Mice received intraperitoneal PTX (2 mg/kg) or vehicle on days 1, 2, and 3, followed by oral MTDZ (1 mg/kg) or vehicle from days 3 to 14. Mechanical and thermal sensitivities were assessed using Von Frey and hot plate tests on days 8, 11, and 14. The open field test evaluated locomotion and exploration on day 12. On day 15, nitrite and nitrate (NOx) levels and Ca2+-ATPase activity in the cerebral cortex and spinal cord were measured after euthanizing the animals. MTDZ administration reversed the heightened mechanical and thermal sensitivities induced by PTX in male and female mice without affecting locomotion or exploration. MTDZ also modulated multiple pathways, including glutamatergic, NO/L-arginine/cGMP, serotonergic (5-HT1A/1B), opioid, and TRPV1 pathways. Additionally, MTDZ reduced NOx levels and modulated Ca2+-ATPase activity. In conclusion, MTDZ effectively alleviated PTX-induced peripheral neuropathy and demonstrated multi-targeted modulation of pain-related pathways. Its ability to modulate multiple pathways, reduce NOx levels, and modulate Ca2+-ATPase activity makes it a potential pharmacological candidate for peripheral neuropathy, acute nociceptive, and inflammatory conditions. Further research is needed to explore its therapeutic potential in these areas.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Carolina C Martins
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Vanessa M Macedo
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Beatriz F Dos Santos
- Organic Catalysis and Biocatalysis Laboratory, LACOB, Federal University of Grande Dourados, UFGD, P.O. Box 533, Dourados 79804-970, MS, Brazil
| | - Nelson Luís De C Domingues
- Organic Catalysis and Biocatalysis Laboratory, LACOB, Federal University of Grande Dourados, UFGD, P.O. Box 533, Dourados 79804-970, MS, Brazil
| | - Cristiane Luchese
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| |
Collapse
|
14
|
Alamri FF, Karamyan ST, Karamyan VT. A Low-Budget Photothrombotic Rodent Stroke Model. Methods Mol Biol 2023; 2616:21-28. [PMID: 36715924 DOI: 10.1007/978-1-0716-2926-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of animal stroke models have been developed and used over the years to study the pathological mechanisms of this disorder and develop new therapies. Among them, the photothrombotic model of ischemic stroke has been central in various studies focusing on understanding of the basic biology of neural repair, identification and validation of key molecular targets involved in post-stroke recovery, and preclinical testing of various therapeutic approaches. To facilitate uniformity among various experimental groups using this expert-recommended mouse model of choice for stroke recovery studies, in this chapter we describe in detail a low-budget technique to induce photothrombosis in the mouse primary motor cortex. Additionally, we provide tips for conducting this procedure in other cerebral cortical regions of the mouse brain and in rats.
Collapse
Affiliation(s)
- Faisal F Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
15
|
Syeara N, Bagchi S, Al Shoyaib A, Karamyan ST, Alamri FF, Karamyan VT. The Finer Aspects of Grid-Walking and Cylinder Tests for Experimental Stroke Recovery Studies in Mice. Methods Mol Biol 2023; 2616:345-353. [PMID: 36715944 DOI: 10.1007/978-1-0716-2926-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The choice of behavioral tests and their proper execution is critically important for experimental and preclinical therapeutic stroke recovery studies, where improvement of impaired neurological function(s) is the main outcome measure. Two tests that focus on spontaneous motor behaviors of the forelimb during gait and exploratory rearing and are expert recommended for stroke recovery studies in mice are grid-walking and cylinder tasks. Both tests have been widely used in various experimental stroke studies to evaluate acute and chronic motor impairment. To facilitate adoption of these tests and consistency of use between different research laboratories, this chapter describes a simple and rigorous protocol and our schemes to successfully perform both tasks in mice and evaluate motor dysfunction and recovery after stroke. In addition, we provide practical tips to minimize experimental bias and acquire data for analyses.
Collapse
Affiliation(s)
- Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Faisal F Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA. .,Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
16
|
Adiponectin Promotes Neurogenesis After Transient Cerebral Ischemia Through STAT3 Mediated BDNF Upregulation in Astrocytes. Neurochem Res 2023; 48:641-657. [PMID: 36315369 DOI: 10.1007/s11064-022-03790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023]
Abstract
Newborn neurons from the subventricular zone (SVZ) are essential to functional recovery following ischemic stroke. However, the number of newly generated neurons after stroke is far from enough to support a potent recovery. Adiponectin could increase neurogenesis in the dentate gyrus of hippocampus in neurodegenerative diseases. However, the effect of adiponectin on the neurogenesis from SVZ and the functional recovery after ischemic stroke was unknown, and the underlying mechanism was not specified either. The middle cerebral artery occlusion model of mice was adopted and adiponectin was administrated once a day from day 3 to 7 of reperfusion. The levels of BDNF and p-STAT3 were detected by western blotting on day 7 of reperfusion. The virus-encoded BDNF shRNA with GFAP promoter and a STAT3 inhibitor Stattic were used, respectively. Neurogenesis was evidenced by the expression of doublecortin and 5-bromo-2'-deoxyuridine (BrdU) labelling and brain atrophy was revealed by Nissl staining on day 28 of reperfusion. Neurological functional recovery was assessed by the adhesive removal test and the forepaw grip strength. We found that adiponectin increased both the doublecortin-positive cells and NeuN/BrdU double-positive cells around the injured area on day 28 of reperfusion, along with the improved long-term neurological recovery. Mechanistically, adiponectin increased the protein levels of p-STAT3 and BDNF in astrocytes on day 7 of reperfusion, while silencing BDNF diminished the adiponectin-induced neurogenesis and functional recovery. Moreover, inhibition of STAT3 not only prevented the increase of BDNF but also the improved neurogenesis and functional recovery after stroke. In conclusion, adiponectin enhances neurogenesis and functional recovery after ischemic stroke via STAT3/BDNF pathway in astrocytes.
Collapse
|
17
|
Steubing RD, Szepanowski F, David C, Mohamud Yusuf A, Mencl S, Mausberg AK, Langer HF, Sauter M, Deuschl C, Forsting M, Fender AC, Hermann DM, Casas AI, Langhauser F, Kleinschnitz C. Platelet depletion does not alter long-term functional outcome after cerebral ischaemia in mice. Brain Behav Immun Health 2022; 24:100493. [PMID: 35928516 PMCID: PMC9343933 DOI: 10.1016/j.bbih.2022.100493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage. However, the functional role of platelets during long-term stroke recovery has not been elucidated so far. Thus, we here examined the impact of platelet depletion on post-stroke recovery after transient middle cerebral artery occlusion (tMCAO) in adult male mice. Platelet depleting antibodies or isotype control were applied from day 3–28 after tMCAO in mice matched for infarct size. Long-term functional recovery was assessed over the course of 28 days by behavioural testing encompassing motor and sensorimotorical functions, as well as anxiety-like or spontaneous behaviour. Whole brain flow cytometry and light sheet fluorescent microscopy were used to identify resident and infiltrated immune cell types, and to determine the effects of platelet depletion on the cerebral vascular architecture, respectively. We found that delayed platelet depletion does not improve long-term functional outcome in the tMCAO stroke model. Immune cell abundance, the extent of thrombosis and the organisation of the cerebral vasculature were also comparable between platelet-depleted and control mice. Our study demonstrates that, despite their critical role in the acute stroke setting, platelets appear to contribute only marginally to tissue reorganisation and functional recovery at later stroke stages. Stable and safe global platelet depletion can be achieved for a prolonged period. Platelets only play a minor role in neurological recovery during the chronic phase. Platelet depletion after infarct maturation does not alter inflammatory response. Cerebral architecture after stroke is not influenced by delayed platelet depletion.
Collapse
|
18
|
Munier JJ, Pank JT, Severino A, Wang H, Zhang P, Vergnes L, Reue K. Simultaneous monitoring of mouse grip strength, force profile, and cumulative force profile distinguishes muscle physiology following surgical, pharmacologic and diet interventions. Sci Rep 2022; 12:16428. [PMID: 36180720 PMCID: PMC9525296 DOI: 10.1038/s41598-022-20665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
Grip strength is a valuable preclinical assay to study muscle physiology in disease and aging by directly determining changes in muscle force generation in active laboratory mice. Existing methods to statistically evaluate grip strength, however, have limitations in the power and scope of the physiological features that are assessed. We therefore designed a microcontroller whose serial measure of resistance-based force enables the simultaneous readout of (1) peak grip strength, (2) force profile (the non-linear progress of force exerted throughout a standard grip strength trial), and (3) cumulative force profile (the integral of force with respect to time of a single grip strength trial). We hypothesized that muscle pathologies of different etiologies have distinct effects on these parameters. To test this, we used our apparatus to assess the three muscle parameters in mice with impaired muscle function resulting from surgically induced peripheral pain, genetic peripheral neuropathy, adverse muscle effects induced by statin drug, and metabolic alterations induced by a high-fat diet. Both surgically induced peripheral nerve injury and statin-associated muscle damage diminished grip strength and force profile, without affecting cumulative force profile. Conversely, genetic peripheral neuropathy resulting from lipin 1 deficiency led to a marked reduction to all three parameters. A chronic high-fat diet led to reduced grip strength and force profile when normalized to body weight. In high-fat fed mice that were exerted aerobically and allowed to recover for 30 min, male mice exhibited impaired force profile parameters, which female mice were more resilient. Thus, simultaneous analysis of peak grip strength, force profile and cumulative force profile distinguishes the muscle impairments that result from distinct perturbations and may reflect distinct motor unit recruitment strategies.
Collapse
Affiliation(s)
- Joseph J Munier
- Department of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA, 90034, USA
| | - Justin T Pank
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Amie Severino
- Department of Psychiatry and Biobehavioral Disease, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Peixiang Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Liu X, Xiao G, Wang Y, Shang T, Li Z, Wang H, Pu L, He S, Shao R, Orgah JO, Zhu Y. Qishen Yiqi Dropping Pill facilitates post-stroke recovery of motion and memory loss by modulating ICAM-1-mediated neuroinflammation. Biomed Pharmacother 2022; 153:113325. [DOI: 10.1016/j.biopha.2022.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
|
20
|
Regulation of Microglia-Activation-Mediated Neuroinflammation to Ameliorate Ischemia-Reperfusion Injury via the STAT5-NF-κB Pathway in Ischemic Stroke. Brain Sci 2022; 12:brainsci12091153. [PMID: 36138889 PMCID: PMC9496994 DOI: 10.3390/brainsci12091153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory reaction after ischemia-reperfusion contributes significantly to a worsened prognosis, and microglia activation is the main resource of inflammation in the nervous system. Targeting STAT5 has been shown to be a highly effective anti-inflammatory therapy; however, the mechanism by which the STAT5 signaling pathway regulates neuroinflammation following brain injury induced by ischemia-reperfusion remains unclear. Dauricine is an effective agent in anti-inflammation and neuroprotection, but the mechanism by which dauricine acts in ischemia-reperfusion remained unknown. This study is the first to find that the anti-inflammation mechanism of dauricine mainly occurs through the STAT5-NF-κB pathway and that it might act as a STAT5 inhibitor. Dauricine suppresses the inflammation caused by cytokines Eotaxin, KC, TNF-α, IL-1α, IL-1β, IL-6, IL-12β, and IL-17α, as well as inhibiting microglia activation. The STAT5b mutant at Tyr-699 reverses the protective effect of dauricine on the oxygen-glucose deprivation-reperfusion injury of neurons and reactivates the P-NF-κB expression in microglia. These results suggest that dauricine might be able to suppress the neuroinflammation and protect the neurons from the injury of post-ischemia-reperfusion injury via mediating the microglia activation through the STAT5-NF-κB pathway. As a potential therapeutic target for neuroinflammation, STAT5 needs to be given further attention regarding its role in ischemic stroke.
Collapse
|
21
|
7-Chloro-4-(Phenylselanyl) Quinoline Is a Novel Multitarget Therapy to Combat Peripheral Neuropathy and Comorbidities Induced by Paclitaxel in Mice. Mol Neurobiol 2022; 59:6567-6589. [DOI: 10.1007/s12035-022-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
22
|
Martins CC, Reis AS, Cristiane Luchese KPDM, Wilhelm EA. Mechanistic pathways of fibromyalgia induced by intermittent cold stress in mice is sex-dependently. Brain Res Bull 2022; 187:11-23. [PMID: 35753533 DOI: 10.1016/j.brainresbull.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Fibromyalgia results from a complex interplay of biochemical and neurobiological elements mediated sensitization of nociceptive pathways. Despite the symptoms of fibromyalgia negatively affect the quality of life of patients, the pathophysiology of this disease remains inconclusive, which difficult the development of an appropriate treatment. The present study investigated the involvement of the serotonergic receptors, the N-methyl-D-aspartate (NMDA)/ nitric oxide (NO)/ cyclic guanosine monophosphate (cGMP) pathway and the oxidative stress in an animal model of fibromyalgia induced by intermittent cold stress (ICS), considering the specificities of male and female Swiss mice. The ICS exposure increased mechanical and thermal sensitivities, and decreased muscle strength in mice of both sexes. Female mice exhibited a longer-lasting mechanical sensitivity than male mice exposed to ICS along with an enhancement of the Na+, K+-ATPase activity in the spinal cord and cerebral cortex. Conversely, an inhibition in the Na+, K+-ATPase and glutathione peroxidase activities accompanied by an increase in the reactive species levels in the cerebral cortex of male mice were observed. The treatment with different serotonergic antagonists (pindolol, ketanserin and ondasetron) reversed the mechanical sensitivity in mice of both sexes, after the ICS exposure. The administration of MK-801, L-arginine and methylene blue also blocked the mechanical sensitivity in female mice exposed to ICS. Except L-arginine, MK-801 and methylene blue also attenuated this nociceptive signal in male mice, after ICS exposure. In conclusion, the modulation of serotonergic receptors, the NMDA/NO/cGMP pathway, and the oxidative stress seems contribute to nociceptive behaviors induced by ICS exposure sex-dependent.
Collapse
Affiliation(s)
- Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, Programa de Pós-Graduação em Bioquímica e Bioprospecção, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Angélica S Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, Programa de Pós-Graduação em Bioquímica e Bioprospecção, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Ketlyn P da Motta Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, Programa de Pós-Graduação em Bioquímica e Bioprospecção, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, Programa de Pós-Graduação em Bioquímica e Bioprospecção, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
23
|
Pu Z, Bao X, Xia S, Shao P, Xu Y. Serpine1 Regulates Peripheral Neutrophil Recruitment and Acts as Potential Target in Ischemic Stroke. J Inflamm Res 2022; 15:2649-2663. [PMID: 35494316 PMCID: PMC9049872 DOI: 10.2147/jir.s361072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Peripheral neutrophil infiltration can exacerbate ischemia–reperfusion injury. We focused on the relationship between various peripheral immune cells and cerebral ischemia–reperfusion (I/R) injury. Methods In this study, we investigated the effects of dauricine on neuronal injury induced by ischemia–reperfusion and peripheral immune cells after ischemic stroke in mouse model, and we explored the undefined mechanisms of regulating peripheral immune cells through RNA sequencing and various biochemical verification in vitro and in vivo. Results We found that dauricine improved the neurological deficits of I/R injury, reduced the infarct volume, and improved the neurological scores. Furthermore, dauricine reduced the infiltration of neutrophils into the brain after MCAO-R and increased peripheral neutrophils but unchanged the permeability of the endotheliocyte Transwell system in an in vitro blood-brain barrier (BBB) model. RNA sequencing showed that chemotaxis factors, such as CXCL3, CXCL11, CCL20, CCL22, IL12a, IL23a, and serpine1, might play a crucial role. Overexpression of serpine1 reversed LPS-induced migration of neutrophils. Dauricine can directly bind with serpine1 in ligand–receptor docking performed with the Autodock and analyzed with PyMOL. Conclusion We identified chemotaxis factor serpine1 played a crucial role in peripheral neutrophil infiltration, which may contribute to reduce the neuronal injury induced by ischemia–reperfusion. These findings reveal that serpine1 may act as a potential treatment target in the acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Zhijun Pu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
- Correspondence: Yun Xu, Email
| |
Collapse
|
24
|
Sacramento M, Reis AS, Martins CC, Luchese C, Wilhelm EA, Alves D. Synthesis and Evaluation of Antioxidant, Anti-Edematogenic and Antinociceptive Properties of Selenium-Sulfa Compounds. ChemMedChem 2022; 17:e202100507. [PMID: 34854233 DOI: 10.1002/cmdc.202100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Indexed: 01/10/2023]
Abstract
Herein we describe results for the synthesis and synthetic application of 4-amino-3-(arylselenyl)benzenesulfonamides, and preliminary evaluation of antioxidant, anti-edematogenic and antinociceptive properties. This class of compounds was synthesized in good yields by a reaction of commercially available sulfanilamide and diorganyl diselenides in the presence of 10 mol% of I2 . Furthermore, the synthesized compound 4-amino-3-(phenylselenyl)benzenesulfonamide (3 a) was evaluated on complete Freund's adjuvant (CFA)-induced acute inflammatory pain. Dose- and time-response curves of antinociceptive effect of compound 3 a were performed using this experimental model. Also, the effect of compound 3 a was monitored in a hot-plate test to evaluate the acute non-inflammatory antinociception. The open-field test was performed to evaluate the locomotor and exploratory behaviors of mice. Oxidative stress markers, such as glutathione peroxidase activity; reactive species, non-protein thiols, and lipid peroxidation levels were performed to investigate the antioxidant action of compound 3 a. Our findings suggest that the antioxidant effect of compound 3 a may contribute to reducing the nociception and suppress the signaling pathways of inflammation on the local injury induced by CFA. Thus, compound 3 a reduced the paw edema as well as the hyperalgesic behavior in mice, being a promising therapeutic agent for the treatment of painful conditions.
Collapse
Affiliation(s)
- Manoela Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angélica S Reis
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
25
|
Interface of Aging and Acute Peripheral Neuropathy Induced by Oxaliplatin in Mice: Target-Directed Approaches for Na +, K +-ATPase, Oxidative Stress, and 7-Chloro-4-(phenylselanyl) quinoline Therapy. Mol Neurobiol 2022; 59:1766-1780. [PMID: 35023057 DOI: 10.1007/s12035-021-02659-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Almost 90% of patients develop pain immediately after oxaliplatin (OXA) treatment. Here, the impact of aging on OXA-induced acute peripheral neuropathy and the potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) as a new therapeutic strategy were evaluated. In Swiss mice, the oxidative damage and its influence on Mg2+-ATPase and Na+, K+-ATPase activities were investigated. The relationship between the reactive oxygen species (ROS) and nitrate and nitrite (NOx) levels, the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD) with the development of OXA-induced acute peripheral neuropathy was also studied. In this study, it was evidenced that OXA-induced acute peripheral neuropathy was exacerbated by aging through increased oxidative damage as well as Na+, K+-ATPase, and Mg+2-ATPase inhibition. 4-PSQ reversed hypersensitivity induced by OXA and aging-aggravated by reducing ROS and NOx levels, through modulation of GPx and SOD activities. 4-PSQ partially reestablish Na+, K+-ATPase activity, but not Mg 2+-ATPase activity. Locomotor and exploratory activities were not affected. This study is the first of its kind, providing new insight into the aging impact on mechanisms involved in OXA-induced acute peripheral neuropathy. Also, it provides evidence on promising 4-PSQ effects on this condition, mainly on aging.
Collapse
|
26
|
Nornberg AB, Martins CC, Cervi VF, Sari MHM, Cruz L, Luchese C, Wilhelm EA, Fajardo AR. Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment. Int J Pharm 2022; 611:121285. [PMID: 34774696 DOI: 10.1016/j.ijpharm.2021.121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is a common drug used for rheumatoid arthritis (RA) treatment; however, a series of adverse effects associated with its oral or subcutaneous administration is reported. Transdermal delivery of MTX is an alternative to abate these issues, and the use of drug delivery systems (DDS) based on polymeric films presents an impressive potential for this finality. Based on this, in this study, we report the preparation of films made by cationic starch (CSt), poly(vinyl alcohol) (PVA), and chondroitin sulfate (ChS) to incorporate and release MTX, as well as the in vivo evaluation in model of rheumatoid arthritis in mice. CSt/PVA and CSt/PVA/ChS-based films (with and without MTX) were prepared using a simple protocol under mild conditions. The films loaded with 5 w/w-% of MTX exhibited appreciable drug loading efficiency and distribution. The MTX permeation through the layers of porcine skin demonstrated that most of the drug permeated was detected in the medium, suggesting that the formulation can provide a systemic absorption of the MTX. In vivo studies performed in an arthritis-induced model in mice demonstrated that the MTX-loaded films were able to treat and attenuate the symptoms and the biochemical alterations related to RA (inflammatory process, oxidative stress, and nociceptive behaviors). Besides, the pharmacological activity of MTX transdermally delivery by the CSt/PVA and CSt/PVA/ChS films was comparable to the MTX orally administered. Based on these results, it can be inferred that both films are prominent materials for incorporation and transdermal delivery of MTX in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Andressa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil
| | - Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Verônica F Cervi
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Marcel H M Sari
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil.
| |
Collapse
|
27
|
da Motta KP, Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. Target enzymes in oxaliplatin-induced peripheral neuropathy in Swiss mice: A new acetylcholinesterase inhibitor as therapeutic strategy. Chem Biol Interact 2021; 352:109772. [PMID: 34896366 DOI: 10.1016/j.cbi.2021.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Beatriz F Santos
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Nelson Luís De C Domingues
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
28
|
Wilhelm EA, Soares PS, Reis AS, Motta KP, Lemos BB, Domingues WB, Blödorn EB, Araujo DR, Barcellos AM, Perin G, Soares MP, Campos VF, Luchese C. Se-[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl] 4-Chlorobenzoselenolate Attenuates Inflammatory Response, Nociception, and Affective Disorders Related to Rheumatoid Arthritis in Mice. ACS Chem Neurosci 2021; 12:3760-3771. [PMID: 34553902 DOI: 10.1021/acschemneuro.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite major advances, not all patients achieve rheumatoid arthritis (RA) remission, thus highlighting a pressing need for new therapeutic treatments. Given this scenario, this study sought to evaluate Se-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl] 4-chlorobenzoselenolate (Se-DMC) potential on a complete Freund's adjuvant (CFA)-induced unilateral arthritis model. The effects of Se-DMC (5 mg/kg; oral dose) and meloxicam (5 mg/kg; oral dose), both administered to animals daily for 14 days, on paw edema, mechanical sensitivity, neurobehavioral deficits (anxiogenic- and depressive-like behaviors), Na+/K+-ATPase activity, oxidative stress, and inflammation were evaluated in male Swiss mice exposed to CFA (intraplantar injection of 0.1 mL; 10 mg/mL). Se-DMC reduced the paw withdrawal threshold and CFA-induced paw edema. Histopathological results revealed the antiedematogenic potential of the compound, which was evidenced by lower quantities of dilated lymphatic vessels compared with the CFA group. Se-DMC reduced mRNA relative expression levels of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the hippocampus and paw of CFA mice. The CFA-induced anxiogenic- and depressive-like behaviors were reversed by Se-DMC to the control levels in the elevated plus-maze and tail suspension tests. Se-DMC reduced the paw reactive species levels and restored the superoxide dismutase (hippocampus and paw) and Na+/K+-ATPase (hippocampus) activities previously increased by CFA. Moreover, CFA administration inhibited serum creatinine kinase activity, albeit the Se-DMC effects did not appear to involve the modulation of this enzyme and were equal to or greater than meloxicam. Se-DMC attenuates CFA-induced inflammatory response, nociception, and neurobehavioral deficits in mice.
Collapse
Affiliation(s)
- Ethel A. Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Paola S. Soares
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Angélica S. Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Ketlyn P. Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Briana B. Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - William B. Domingues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Eduardo B. Blödorn
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Mauro P. Soares
- Laboratório Regional de Diagnóstico, Faculdade de Veterinária, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Vinicius F. Campos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| |
Collapse
|
29
|
Meng H, Fan L, Zhang CJ, Zhu L, Liu P, Chen J, Bao X, Pu Z, Zhu MS, Xu Y. Synthetic VSMCs induce BBB disruption mediated by MYPT1 in ischemic stroke. iScience 2021; 24:103047. [PMID: 34553133 PMCID: PMC8441154 DOI: 10.1016/j.isci.2021.103047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have been widely recognized as key players in regulating blood-brain barrier (BBB) function, and their roles are unclear in ischemic stroke. Myosin phosphatase target subunit 1 (MYPT1) is essential for VSMC contraction and maintaining healthy vasculature. We generated VSMC-specific MYPT1 knockout (MYPT1SMKO) mice and cultured VSMCs infected with Lv-shMYPT1 to explore phenotypic switching of VSMCs and the accompanied impacts on BBB integrity. We found that MYPT1 deficiency induced phenotypic switching of synthetic VSMCs, which aggravated BBB disruption. Proteomic analysis identified evolutionarily conserved signaling intermediates in Toll pathways (ECSIT) as a downstream molecule that promotes activation of synthetic VSMCs and contributed to IL-6 expression. Knocking down ECSIT rescued phenotypic switching of VSMCs and BBB disruption. Additionally, inhibition of IL-6 decreased BBB permeability. These findings reveal that MYPT1 deficiency activated phenotypic switching of synthetic VSMCs and induced BBB disruption through ECSIT-IL-6 signaling after ischemic stroke. MYPT1 deficiency induces activation of synthetic VSMCs and aggravates BBB disruption Synthetic VSMCs release more IL-6 to destroy BBB in a contact-independent way MYPT1-ECSIT-IL-6 signaling pathway regulates synthetic VSMC-mediated BBB disruption
Collapse
Affiliation(s)
- Hailan Meng
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Lizhen Fan
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Cun-Jin Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Liwen Zhu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Pinyi Liu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Jian Chen
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhijun Pu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Min-Sheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China.,Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Yun Xu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
30
|
Wang HK, Chen JS, Hsu CY, Su YT, Sung TC, Liang CL, Kwan AL, Wu CC. A Novel NGF Receptor Agonist B355252 Ameliorates Neuronal Loss and Inflammatory Responses in a Rat Model of Cerebral Ischemia. J Inflamm Res 2021; 14:2363-2376. [PMID: 34103967 PMCID: PMC8179829 DOI: 10.2147/jir.s303833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Cerebral ischemia is a leading cause of disability and death worldwide. However, an effective therapeutic approach for the condition remains undiscovered. The previously proposed growth factor-based therapy has been inefficient due to its inability to pass through the blood–brain barrier. B355252, a newly developed small molecule, exhibited a potential neuroprotective effect in vivo. However, its exact efficacy in cerebral ischemia remains unclear. Methods We adopt an endothelin-1 stereotaxic intracranial injection to induced cerebral ischemia in rat. We further conducted 2,3,5-triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA), and behavioral tests to evaluate the efficacy of B355252 in neuroprotection, anti-inflammation, and behavioral outcome improvements. Results We identified that B355252 could protect ischemic neurons from neuronal loss by attenuating DNA damage, reducing ROS production and the LDH level, and preventing neuronal apoptosis. Moreover, inflammatory responses in astrocytic and microglial gliosis, as well as IL-1β and TNF-α levels, were ameliorated. Consequently, the behavioral outcomes of ischemic rats in neurologic responses and fore paw function recovery were improved. Discussion Overall, our study verified the in vivo therapeutic potential of B355252. The study findings further support its application in the development of a therapeutic approach for stroke.
Collapse
Affiliation(s)
- Hao-Kuang Wang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Sheng Chen
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Yu Hsu
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ching Sung
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Loong Liang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Delayed Exercise-induced Upregulation of Angiogenic Proteins and Recovery of Motor Function after Photothrombotic Stroke in Mice. Neuroscience 2021; 461:57-71. [PMID: 33667592 DOI: 10.1016/j.neuroscience.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
Treatments promoting post-stroke functional recovery continue to be an unmet therapeutic problem with physical rehabilitation being the most reproduced intervention in preclinical and clinical studies. Unfortunately, physiotherapy is typically effective at high intensity and early after stroke - requirements that are hardly attainable by stroke survivors. The aim of this study was to directly evaluate and compare the dose-dependent effect of delayed physical rehabilitation (daily 5 h or overnight voluntary wheel running; initiated on post-stroke day 7 and continuing through day 21) on recovery of motor function in the mouse photothrombotic model of ischemic stroke and correlate it with angiogenic potential of the brain. Our observations indicate that overnight but not 5 h access to running wheels facilitates recovery of motor function in mice in grid-walking test. Western blotting and immunofluorescence microscopy experiments evaluating the expression of angiogenesis-associated proteins VEGFR2, doppel and PDGFRβ in the peri-infarct and corresponding contralateral motor cortices indicate substantial upregulation of these proteins (≥2-fold) in the infarct core and surrounding cerebral cortex in the overnight running mice on post-stroke day 21. These findings indicate that there is a dose-dependent relationship between the extent of voluntary exercise, motor recovery and expression of angiogenesis-associated proteins in this expert-recommended mouse ischemic stroke model. Notably, our observations also point out to enhanced angiogenesis and presence of pericytes within the infarct core region during the chronic phase of stroke, suggesting a potential contribution of this tissue area in the mechanisms governing post-stroke functional recovery.
Collapse
|
32
|
Al Shoyaib A, Alamri FF, Syeara N, Jayaraman S, Karamyan ST, Arumugam TV, Karamyan VT. The Effect of Histone Deacetylase Inhibitors Panobinostat or Entinostat on Motor Recovery in Mice After Ischemic Stroke. Neuromolecular Med 2021; 23:471-484. [PMID: 33590407 DOI: 10.1007/s12017-021-08647-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Using rigorous and clinically relevant experimental design and analysis standards, in this study, we investigated the potential of histone deacetylase (HDAC) inhibitors panobinostat and entinostat to enhance recovery of motor function after photothrombotic stroke in male mice. Panobinostat, a pan-HDAC inhibitor, is a FDA-approved drug for certain cancers, whereas entinostat is a class-I HDAC inhibitor in late stage of clinical investigation. The drugs were administered every other day (panobinostat-3 or 10 mg/kg; entinostat-1.7 or 5 mg/kg) starting from day 5 to 15 after stroke. To imitate the current standard of care in stroke survivors, i.e., physical rehabilitation, the animals run on wheels (2 h daily) from post-stroke day 9 to 41. The predetermined primary end point was motor recovery measured in two tasks of spontaneous motor behaviors in grid-walking and cylinder tests. In addition, we evaluated the running distance and speed throughout the study, and the number of parvalbumin-positive neurons in medial agranular cortex (AGm) and infarct volumes at the end of the study. Both sensorimotor tests revealed that combination of physical exercise with either drug did not substantially affect motor recovery in mice after stroke. This was accompanied by negligible changes of parvalbumin-positive neurons recorded in AGm and comparable infarct volumes among experimental groups, while dose-dependent increase in acetylated histone 3 was observed in peri-infarct cortex of drug-treated animals. Our observations suggest that add-on panobinostat or entinostat therapy coupled with limited physical rehabilitation is unlikely to offer therapeutic modality for stroke survivors who have motor dysfunction.
Collapse
Affiliation(s)
- Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA.,College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, USA.
| |
Collapse
|
33
|
Abstract
Current experimental stroke research has evolved to focus on detailed understanding of the brain’s self-protective and restorative mechanisms, and harness this knowledge for development of new therapies. In this context, the role of peptidases and neuropeptides is of growing interest. In this focused review, peptidase neurolysin (Nln) and its extracellular peptide substrates are briefly discussed in relation to pathophysiology of ischemic stroke. Upregulation of Nln following stroke is viewed as a compensatory cerebroprotective mechanism in the acute phase of stroke, because the main neuropeptides inactivated by Nln are neuro/cerebrotoxic (bradykinin, substance P, neurotensin, angiotensin II, hemopressin), whereas the peptides generated by Nln are neuro/cerebroprotective (angiotensin-(1–7), Leu-/Met-enkephalins). This notion is confirmed by experimental studies documenting aggravation of stroke outcomes in mice after inhibition of Nln following stroke, and dramatic improvement of stroke outcomes in mice overexpressing Nln in the brain. The role of Nln in the (sub)chronic phase of stroke is less clear and it is likely, that this peptidase does not have a major role in neural repair mechanisms. This is because, the substrates of Nln are less uniform in modulating neurorestorative mechanisms in one direction, some appearing to have neural repair enhancing/stimulating potential, whereas others doing the opposite. Future studies focusing on the role of Nln in pathophysiology of stroke should determine its potential as a cerebroprotective target for stroke therapy, because its unique ability to modulate multiple neuropeptide systems critically involved in brain injury mechanisms is likely advantageous over modulation of one pathogenic pathway for stroke pharmacotherapy.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
34
|
Alamri FF, Al Shoyaib A, Syeara N, Paul A, Jayaraman S, Karamyan ST, Arumugam TV, Karamyan VT. Delayed atomoxetine or fluoxetine treatment coupled with limited voluntary running promotes motor recovery in mice after ischemic stroke. Neural Regen Res 2021; 16:1244-1251. [PMID: 33318401 PMCID: PMC8284259 DOI: 10.4103/1673-5374.301031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently, there is an unmet need for treatments promoting post-stroke functional recovery. The aim of this study was to evaluate and compare the dose-dependent effect of delayed atomoxetine or fluoxetine therapy (starting on post-stroke day 5), coupled with limited physical exercise (2 hours daily voluntary wheel running; post-stroke days 9 to 42), on motor recovery of adult male mice after photothrombotic stroke. These drugs are selective norepinephrine or serotonin reuptake inhibitors indicated for disorders unrelated to stroke. The predetermined primary end-point for this study was motor function measured in two tasks of spontaneous motor behaviors in grid-walking and cylinder tests. Additionally, we quantified the running distance and speed throughout the study, the number of parvalbumin-positive neurons in the medial agranular cortex and infarct volumes. Both sensorimotor tests revealed that neither limited physical exercise nor a drug treatment alone significantly facilitated motor recovery in mice after stroke. However, combination of physical exercise with either of the drugs promoted restoration of motor function by day 42 post-stroke, with atomoxetine being a more potent drug. This was accompanied by a significant decrease in parvalbumin-positive inhibitory interneurons in the ipsilateral medial agranular cortex of mice with recovering motor function, while infarct volumes were comparable among experimental groups. If further validated in larger studies, our observations suggest that add-on atomoxetine or fluoxetine therapy coupled with limited, structured physical rehabilitation could offer therapeutic modality for stroke survivors who have difficulty to engage in early, high-intensity physiotherapy. Furthermore, in light of the recently completed Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) and Efficacy oF Fluoxetine-a randomisEd Controlled Trial in Stroke (EFFECTS) trials, our observations call for newly designed studies where fluoxetine or atomoxetine pharmacotherapy is evaluated in combination with structured physical rehabilitation rather than alone. This study was approved by the Texas Tech University Health Sciences Center Institutional Animal Care and Use Committee (protocol # 16019).
Collapse
Affiliation(s)
- Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Current address: College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical, Research Center, Jeddah, Saudi Arabia
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Anisha Paul
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences; Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
35
|
Chlorella vulgaris Ameliorates Oxidative Stress and Improves the Muscle Regenerative Capacity of Young and Old Sprague-Dawley Rats. Nutrients 2020; 12:nu12123752. [PMID: 33297295 PMCID: PMC7762232 DOI: 10.3390/nu12123752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy in ageing is a multifactorial degenerative process impacted by cellular ageing biology, which includes oxidative stress. Chlorella vulgaris is a coccoid green eukaryotic microalga rich in antioxidants. The aim of this study was to determine the effect of C. vulgaris in ameliorating oxidative stress, thus elucidating its mechanism in improving muscle mass, strength and function in young and old rats. Fifty-six male Sprague-Dawley (SD) rats aged 3 months (young) and 21 months (old) were divided into three groups: Group 1 (control) was given distilled water; Group 2 was treated with 150 mg/kg body weight (BW) of C. vulgaris; and Group 3 was treated with 300 mg/kg BW of C. vulgaris for three months. Grip and muscle strength and muscle integrity were determined on days 0, 30, 60, and 90 of treatment. Urine and blood were collected on days 0 and 90 of treatment for oxidative stress marker determination, while the gastrocnemius muscles were collected for muscle oxidative stress analysis. Increased grip strength of the front and hind paws was observed in young C. vulgaris-treated rats on days 30, 60, and 90 compared to the untreated control on the same days (p < 0.05). There was a significant increase in lean bone mineral content (BMC) in young rats treated with 300 mg/kg BW C. vulgaris compared to untreated rats on days 30 and 60. The fat mass was significantly decreased in young and old C. vulgaris-treated rats on day 90 compared to the untreated control. The total path was significantly increased for old rats treated with 300 mg/kg BW C. vulgaris on days 60 and 90 compared to day 0. Young and old C. vulgaris-treated rats demonstrated a significant decrease in urinary isoprostane F2t and plasma creatine kinase-MM (CKMM) compared to the control on day 90. A significant decrease in malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) levels were observed in young and old rats treated with C. vulgaris. C. vulgaris improved the muscle mass, strength, and function in young and old rats. This effect could be due to its potency in ameliorating oxidative stress in the skeletal muscle of young and old rats.
Collapse
|
36
|
Zhu J, Yang LK, Wang QH, Lin W, Feng Y, Xu YP, Chen WL, Xiong K, Wang YH. NDRG2 attenuates ischemia-induced astrocyte necroptosis via the repression of RIPK1. Mol Med Rep 2020; 22:3103-3110. [PMID: 32945444 PMCID: PMC7453600 DOI: 10.3892/mmr.2020.11421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia results in severe brain damage, and is a leading cause of death and long-term disability. Previous studies have investigated methods to activate astrocytes in order to promote repair in injured brain tissue and inhibit cell death. It has previously been shown that N-myc downstream-regulated gene 2 (NDRG2) was highly expressed in astrocytes and associated with cell activity, but the underlying mechanism is largely unknown. The present study generated NDRG2 conditional knockout (Ndrg2-/-) mice to investigate whether NDRG2 can block ischemia-induced astrocyte necroptosis by suppressing receptor interacting protein kinase 1 (RIPK1) expression. This study investigated astrocyte activity in cerebral ischemia, and identified that ischemic brain injuries could trigger RIP-dependent astrocyte necroptosis. The depletion of NDRG2 was found to accelerate permanent middle cerebral artery occlusion-induced necroptosis in the brain tissue of Ndrg2-/- mice, indicating that NDRG2 may act as a neuroprotector during cerebral ischemic injury. The present study suggested that NDRG2 attenuated astrocytic cell death via the suppression of RIPK1. The pharmacological inhibition of astrocyte necroptosis by necrostatin-1 provided neuroprotection against ischemic brain injuries after NDRG2 knockdown. Therefore, NDRG2 could be considered as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Li-Kun Yang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Hong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Wei Lin
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yi Feng
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ye-Ping Xu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei-Liang Chen
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
37
|
Reis AS, Paltian JJ, Domingues WB, Novo DLR, Costa GP, Alves D, Campos VF, Mesko MF, Luchese C, Wilhelm EA. Advances in the Understanding of Oxaliplatin-Induced Peripheral Neuropathy in Mice: 7-Chloro-4-(Phenylselanyl) Quinoline as a Promising Therapeutic Agent. Mol Neurobiol 2020; 57:5219-5234. [PMID: 32869182 DOI: 10.1007/s12035-020-02048-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
In this study, the deposition of platinum in oxaliplatin (OXA)-exposed mice and the effects of the oxidative damage on the central nervous system were investigated. The relationship between the reactive species (RS) levels as well as the expression and activity of enzymes, such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and acetylcholinesterase (AChE), in the development of peripheral neuropathy after OXA exposure, was evidenced. The effects of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) on OXA-induced peripheral neuropathy was also investigated. Swiss mice received OXA (10 mg kg-1) or vehicle by intraperitoneal route (days 0 and 2). Oral administration of 4-PSQ (1 mg kg-1) or vehicle was performed on days 2 to 14. Behavioural tasks started on day 9, after the first OXA administration. It was observed that 4-PSQ reduced the mechanical and thermal hypersensitivity induced by OXA. 4-PSQ and OXA did not affect locomotor and exploratory activities. The results revealed, for the first time, a high concentration of platinum in the spinal cord of mice exposed to OXA. 4-PSQ reversed the increased levels of RS in the spinal cord, cerebral cortex and hippocampus of mice exposed to OXA. The alterations in the activity and expression of the GPx, SOD, CAT and AChE induced by OXA exposure were normalized by 4-PSQ. Therefore, the 4-PSQ might be a good prototype for the development of a more effective drug for the treatment of OXA-induced peripheral neuropathy. The results obtained by the present study expanded the knowledge about the mechanisms involved in the physiopathology of peripheral neuropathy. Graphical abstract.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Jaini J Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - William B Domingues
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Diogo L R Novo
- Programa de Pósgraduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, CEP 96010-900, Brazil
| | - Gabriel P Costa
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Diego Alves
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Vinicius F Campos
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Marcia F Mesko
- Programa de Pósgraduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, CEP 96010-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil.
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
38
|
Fan L, Zhang CJ, Zhu L, Chen J, Zhang Z, Liu P, Cao X, Meng H, Xu Y. FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8 + T Cells During Ischemic Stroke. Transl Stroke Res 2020; 11:747-761. [PMID: 32036560 DOI: 10.1007/s12975-019-00749-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
CD8+ T cells are recognized as key players in exacerbation of ischemic stroke; however, the underlying mechanism in modulating the function of CD8+ T cells has not been completely elucidated. Here, we uncovered that FasL enhanced the cytotoxicity of CD8+ T cells to neurons after ischemic stroke. Inactivation of FasL specific on CD8+ T cells protected against brain damage and neuron loss. Proteomic analysis identified that PDPK1 functioned downstream of FasL signaling and inhibition of PDPK1 effectively reduced cytotoxicity of CD8+ T cells and improved ischemic neurological deficits. Taken together, these results highlight an intrinsic FasL-PDPK1 pathway regulating the cytotoxicity of CD8+ T cells in ischemic stroke.
Collapse
Affiliation(s)
- Lizhen Fan
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Cun-Jin Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Liwen Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Hailan Meng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China. .,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China. .,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China. .,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
39
|
Sifat AE, Nozohouri S, Villalba H, Al Shoyaib A, Vaidya B, Karamyan VT, Abbruscato T. Prenatal electronic cigarette exposure decreases brain glucose utilization and worsens outcome in offspring hypoxic-ischemic brain injury. J Neurochem 2020; 153:63-79. [PMID: 31883376 DOI: 10.1111/jnc.14947] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/01/2022]
Abstract
It has been shown that prenatal nicotine and tobacco smoke exposure can cause different neurobehavioral disorders in the offspring. We hypothesize that prenatal exposure to nicotine-containing electronic cigarette (e-Cig) vapor can predispose newborn to enhanced sensitivity to hypoxic-ischemic (HI) brain injury and impaired motor and cognitive functions. In this study, pregnant CD1 mice were exposed to e-Cig vapor (2.4% nicotine). Primary cortical neurons isolated from e-Cig exposed fetus were exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R) to mimic HI brain injury. Cell viability and glucose utilization were analyzed in these neurons. HI brain injury was induced in 8-9-day-old pups. Short-term brain injury was evaluated by triphenyltetrazolium chloride staining. Long-term motor and cognitive functions were evaluated by open field, novel object recognition, Morris water maze, and foot fault tests. Western blotting and immunofluorescence were done to characterize glucose transporters in offspring brain. We found that e-Cig exposed neurons demonstrated decreased cell viability and glucose utilization in OGD/R. Prenatally e-Cig exposed pups also had increased brain injury and edema 24 hr after HI brain injury. Further, in utero e-Cig exposed offspring with HI brain injury displayed impaired memory, learning, and motor coordination at adolescence. Additionally, the expression of glucose transporters decreased in e-Cig exposed offspring brain after HI brain injury. These results indicate that reduced glucose utilization can contribute to prenatal e-Cig exposure induced worsened HI brain injury in offspring. This study is instrumental in elucidating the possible deleterious effects of e-Cig use in the general population.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
40
|
Archie SR, Cucullo L. Harmful Effects of Smoking Cannabis: A Cerebrovascular and Neurological Perspective. Front Pharmacol 2019; 10:1481. [PMID: 31920665 PMCID: PMC6915047 DOI: 10.3389/fphar.2019.01481] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
Apart from being used as a medicine, cannabis or marijuana is the most widely abused recreational drug all over the world. The legalization and decriminalization of cannabis in Canada and various states of USA may be the underlying reason of the widespread popularity of it among young population. Various studies have reported about the relationship between cannabis use and different detrimental effects like cardiovascular, cerebrovascular, and neurological complications among different age groups. Specifically, the young population is getting adversely affected by this, harmful yet, readily accessible recreational drug. Although the mechanism behind cannabis mediated neurological and cerebrovascular complications has not been elucidated yet, the results of these studies have confirmed the association of these diseases with cannabis. Given the lack of comprehensive study relating these harmful complications with cannabis use, the aim of this narrative literature review article is to evaluate and summarize current studies on cannabis consumption and cerebrovascular/neurological diseases along with the leading toxicological mechanisms.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, United States.,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| |
Collapse
|
41
|
Motor deficit in the mouse ferric chloride-induced distal middle cerebral artery occlusion model of stroke. Behav Brain Res 2019; 380:112418. [PMID: 31812504 DOI: 10.1016/j.bbr.2019.112418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Ferric chloride-induced distal middle cerebral artery occlusion (MCAO) model of stroke was described in mice several years ago, however it lacked in-depth evaluation of the post-stroke functional outcomes in the animals. In this study, we reproduced the recently developed model and expanded its characterization by thorough evaluation of blood supply, cerebral infarction, and motor function in adult male and female mice up to 14 days after stroke. Our observations indicate near complete interruption of blood flow in the distal MCA shortly after application of 20 % ferric chloride over the artery through a cranial window, which remained occluded for at least 4 h. As expected, infarction of the brain tissue, documented by TTC and hematoxylin stains, was restricted to the cerebral cortex. We also systematically evaluated motor impairment of the animals in this model. For this, a series of studies were carried out in male and female mice up to 14 days after stroke, and motor function was assessed in cylinder and grid-walking tests in blinded manner. Contrary to our expectations, the results of both motor tests indicated minor, transient motor deficit in mice after stroke. Based on these observations, we conclude that the mouse ferric chloride-induced distal MCAO model is likely not suitable for proof-of-concept and preclinical studies where motor function is an important outcome measure.
Collapse
|
42
|
Abstract
Novel therapeutic intervention that aims to enhance the endogenous recovery potential of the brain during the subacute phase of stroke has produced promising results. The paradigm shift in treatment approaches presents new challenges to preclinical and clinical researchers alike, especially in the functional endpoints domain. Shortcomings of the "neuroprotection" era of stroke research are yet to be fully addressed. Proportional recovery observed in clinics, and potentially in animal models, requires a thorough reevaluation of the methods used to assess recovery. To this end, this review aims to give a detailed evaluation of functional outcome measures used in clinics and preclinical studies. Impairments observed in clinics and animal models will be discussed from a functional testing perspective. Approaches needed to bridge the gap between clinical and preclinical research, along with potential means to measure the moving target recovery, will be discussed. Concepts such as true recovery of function and compensation and methods that are suitable for distinguishing the two are examined. Often-neglected outcomes of stroke, such as emotional disturbances, are discussed to draw attention to the need for further research in this area.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY, USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Neurological Research Institute, White Plains, NY, USA
| |
Collapse
|
43
|
Jayaraman S, Al Shoyaib A, Kocot J, Villalba H, Alamri FF, Rashid M, Wangler NJ, Chowdhury EA, German N, Arumugam TV, Abbruscato TJ, Karamyan VT. Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. J Neurochem 2019; 153:120-137. [PMID: 31486527 DOI: 10.1111/jnc.14864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.
Collapse
Affiliation(s)
- Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Joanna Kocot
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Mamoon Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Naomi J Wangler
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Nadezhda German
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| |
Collapse
|
44
|
Vijayan M, Alamri FF, Al Shoyaib A, Karamyan VT, Reddy PH. Novel miRNA PC-5P-12969 in Ischemic Stroke. Mol Neurobiol 2019; 56:6976-6985. [PMID: 30953313 DOI: 10.1007/s12035-019-1562-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023]
Abstract
Circulating microRNAs (miRNAs) have been used effectively as peripheral biomarkers and mechanistic targets for human diseases such as stroke, Alzheimer's, and cancer. The purpose of our study is to determine noninvasive, blood-based early detectable biomarkers for ischemic stroke (IS). Based on our previous global miRNA sequencing study, four miRNAs were previously unreported (novel) in IS condition. Among these, miRNA PC-5P-12969 was exclusively expressed in the IS condition; otherwise, it was not expressed in normal condition, and therefore, we focused on miRNA PC-5P-12969 for further studies. In the present study, we investigated novel miRNA PC-5P-12969 for its expression levels using quantitative real-time PCR assay (qRT-PCR) in an in vitro, oxygen, and glucose deprivation/reoxygenation (OGD/R)-treated mouse primary hippocampal neuronal cells (HT22) and in an in vivo using a photothrombotic stroke model. In an in vitro study of stroke-induced HT22 cells, we found a two fold increase of PC-5P-12969 expression levels, in agreement with our original global miRNA study. In the cerebral cortex of photothrombotic stroke mice, we found significantly upregulated levels of PC-5P-12969 in 4 hours and 1 day post-stroke relative to the control mice. However, we did not find any change in the expression of PC-5P-12969 in the cerebellum (unaffected in IS) of both stroke and control mice. Based on findings from this study, together with our earlier original global microRNA study results, we conclude that PC-5P-12969 is a potential candidate of the peripheral marker and also a drug target for IS. This is the first study validating that the miRNA PC-5P-12969, might be a potential biomarker for IS.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA.
| |
Collapse
|
45
|
Zhang W, Yang B, Weng H, Liu T, Shi L, Yu P, So KF, Qu Y, Zhou L. Wheel Running Improves Motor Function and Spinal Cord Plasticity in Mice With Genetic Absence of the Corticospinal Tract. Front Cell Neurosci 2019; 13:106. [PMID: 30941019 PMCID: PMC6433830 DOI: 10.3389/fncel.2019.00106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Our previous studies showed that mutant mice with congenital absence of the corticospinal tract (CST) undergo spontaneous remodeling of motor networks to partially compensate for absent CST function. Here, we asked whether voluntary wheel running could further improve locomotor plasticity in CST-deficient mice. Adult mutant mice were randomly allocated to a “runners” group with free access to a wheel, or a “non-runners” group with no access to a wheel. In comparison with non-runners, there was a significant motor improvement including fine movement, grip strength, decreased footslip errors in runners after 8-week training, which was supported by the elevated amplitude of electromyography recording and increased neuromuscular junctions in the biceps. In runners, terminal ramifications of monoaminergic and rubrospinal descending axons were significantly increased in spinal segments after 12 weeks of exercise compared to non-runners. 5-ethynyl-2′-deoxyuridine (EDU) labeling showed that proliferating cells, 90% of which were Olig2-positive oligodendrocyte progenitors, were 4.8-fold more abundant in runners than in non-runners. In 8-week runners, RNAseq analysis of spinal samples identified 404 genes up-regulated and 398 genes down-regulated, and 69 differently expressed genes involved in signal transduction, among which the NF-κB, PI3K-Akt and cyclic AMP (cAMP) signaling were three top pathways. Twelve-week training induced a significant elevation of postsynaptic density protein 95 (PSD95), synaptophysin 38 and myelin basic protein (MBP), but not of brain derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and insulin like growth factor-1 (IGF-1). Thus, locomotor training activates multiple signaling pathways, contributes to neural plasticity and functional improvement, and might palliate locomotor deficits in patients.
Collapse
Affiliation(s)
- Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Huandi Weng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Tao Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Lingling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|