1
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
2
|
He M, Wei W, Zhang Y, Xiang Z, Peng D, Kasimumali A, Rong S. Gut microbial metabolites SCFAs and chronic kidney disease. J Transl Med 2024; 22:172. [PMID: 38369469 PMCID: PMC10874542 DOI: 10.1186/s12967-024-04974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024] Open
Abstract
The global incidence of Chronic Kidney Disease (CKD) is steadily escalating, with discernible linkage to the intricate terrain of intestinal microecology. The intestinal microbiota orchestrates a dynamic equilibrium in the organism, metabolizing dietary-derived compounds, a process which profoundly impacts human health. Among these compounds, short-chain fatty acids (SCFAs), which result from microbial metabolic processes, play a versatile role in influencing host energy homeostasis, immune function, and intermicrobial signaling, etc. SCFAs emerge as pivotal risk factors influencing CKD's development and prognosis. This paper review elucidates the impact of gut microbial metabolites, specifically SCFAs, on CKD, highlighting their role in modulating host inflammatory responses, oxidative stress, cellular autophagy, the immune milieu, and signaling cascades. An in-depth comprehension of the interplay between SCFAs and kidney disease pathogenesis may pave the way for their utilization as biomarkers for CKD progression and prognosis or as novel adjunctive therapeutic strategies.
Collapse
Affiliation(s)
- Meng He
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenqian Wei
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhouxia Xiang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dan Peng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ayijiaken Kasimumali
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
3
|
Kaya‐Sezginer E, Yilmaz‐Oral D, Kırlangıç OF, Yilmaz S, Özen FZ, Aşan M, Gur S. Sodium butyrate ameliorates erectile dysfunction through fibrosis in a rat model of partial bladder outlet obstruction. Andrology 2022; 10:1441-1453. [DOI: 10.1111/andr.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ecem Kaya‐Sezginer
- Faculty of Pharmacy, Department of Biochemistry Ankara University Ankara Turkey
| | - Didem Yilmaz‐Oral
- Faculty of Pharmacy, Department of Pharmacology Cukurova University Adana Turkey
| | | | - Sercan Yilmaz
- Gulhane Training and Research Hospital, Department of Urology Health Sciences University Ankara Turkey
| | - Fatma Zeynep Özen
- Faculty of Medicine, Department of Pathology Amasya University Amasya Turkey
| | - Melih Aşan
- Institute of Biotechnology Ankara University Ankara Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Pharmacology Ankara University Ankara Turkey
| |
Collapse
|
4
|
Nmagu D, Singh SK, Lee KH. Creation of monoclonal antibody expressing CHO cell lines grown with sodium butyrate and characterization of resulting antibody glycosylation. Methods Enzymol 2021; 660:267-295. [PMID: 34742393 DOI: 10.1016/bs.mie.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cells are the primary mammalian cell lines utilized to produce monoclonal antibodies (mAbs). The upsurge in biosimilar development and the proven health benefits of mAb treatments reinforces the need for innovative methods to generate robust CHO clones and enhance production, while maintaining desired product quality attributes. Among various product titer-enhancing approaches, the use of histone deacetylase inhibitors (HDACis) such as sodium butyrate (NaBu) has yielded promising results. The titer-enhancing effect of HDACi treatment has generally been observed in lower producer cell lines but those studies are typically done on individual clones. Here, we describe a cell line development (CLD) platform approach for creating clones with varying productivities. We then describe a method for selecting an optimal NaBu concentration to evaluate potential titer-enhancing capabilities in a fed-batch study. Finally, a method for purifying the mAb using protein A chromatography, followed by glycosylation analysis using mass spectrometry, is described. The proposed workflow can be applied for a robust CLD process optimization to generate robust clones, enhance product expression, and improve product quality attributes.
Collapse
Affiliation(s)
- Douglas Nmagu
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sumit K Singh
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
5
|
Russo R, Santarcangelo C, Badolati N, Sommella E, De Filippis A, Dacrema M, Campiglia P, Stornaiuolo M, Daglia M. In vivo bioavailability and in vitro toxicological evaluation of the new butyric acid releaser N-(1-carbamoyl-2-phenyl-ethyl) butyramide. Biomed Pharmacother 2021; 137:111385. [PMID: 33761606 DOI: 10.1016/j.biopha.2021.111385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
A large body of evidence suggests that supplementation of butyric acid exerts beneficial intestinal and extra-intestinal effects. Unfortunately, unpleasant sensorial properties and unfavourable physico-chemical properties strongly limit its use in food supplements and foods for medicinal purposes. N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) is a new butyric acid releaser in solid form with neutral sensorial properties. The aim of this investigation is to provide preliminary information on its pharmacokinetic and toxicological properties through the study of a) in vivo bioavailability of FBA administered by oral gavage to male and female Swiss CD1 mice in comparison with sodium butyrate, b) the influence of digestion on FBA stability through an in vitro simulated oro-gastro-duodenal digestion process, and c) in vitro toxicological profile by means of the Ames Test and Micronucleus Test. The results reveal that FBA is a good butyric acid releaser, being able to increase butyrate serum concentration in a dose and time dependent manner in both male and female mice with a pharmacokinetic profile similar to that obtained from sodium butyrate as such. These data are confirmed by investigating the influence of digestion on FBA, which undergoes extensive hydrolysis following oro-gastro-duodenal digestion, especially in duodenal conditions, with a residual concentration of less than 10% of the initial FBA concentration. Finally, in the Ames and Micronucleus Tests, FBA does not show any in vitro genotoxicity as it is non mutagenic in the Ames Test and results to be unable to induce chromosome breaks in the Micronucleus Test. In conclusion, FBA is a new butyric acid releaser that can overcome the disadvantages of butyric acid while maintaining the same pharmacokinetic properties and safety profile, as shown by the results of the preliminary in vitro toxicological studies performed in this investigation.
Collapse
Affiliation(s)
- Roberto Russo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr 2020; 62:1-12. [PMID: 33261516 DOI: 10.1080/10408398.2020.1854675] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids with carbon atom numbers less than 6, which are important metabolites of gut microbiome. Existing research shows that SCFAs play a vital role in the health and disease of the host. First, SCFAs are the key energy source for colon and ileum cells, and affect the intestinal epithelial barrier and defense functions by regulating related gene expression. Second, SCFAs regulate the function of innate immune cells to participate in the immune system, such as macrophages, neutrophils and dendritic cells. Third, SCFAs can also regulate the differentiation of T cells and B cells and the antigen-specific adaptive immunity mediated by them. Besides, SCFAs are raw materials for sugar and lipid synthesis, which provides a theoretical basis for studying the potential role of SCFAs in regulating energy homeostasis and metabolism. There are also studies showing that SCFAs inhibit tumor cell proliferation and promote apoptosis. In this article, we summarized in detail the role of SCFAs in immunity, inflammation and metabolism, and briefly introduced the role of SCFAs in tumor cell survival. It provides a systematic theoretical basis for the study of SCFAs as potential drugs to promote human health.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Nooromid M, Chen EB, Xiong L, Shapiro K, Jiang Q, Demsas F, Eskandari M, Priyadarshini M, Chang EB, Layden BT, Ho KJ. Microbe-Derived Butyrate and Its Receptor, Free Fatty Acid Receptor 3, But Not Free Fatty Acid Receptor 2, Mitigate Neointimal Hyperplasia Susceptibility After Arterial Injury. J Am Heart Assoc 2020; 9:e016235. [PMID: 32580613 PMCID: PMC7670501 DOI: 10.1161/jaha.120.016235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Arterial restenosis after vascular surgery is a common cause of midterm restenosis and treatment failure. Herein, we aim to investigate the role of microbe‐derived butyrate, FFAR2 (free fatty acid receptor 2), and FFAR3 (free fatty acid receptor 3) in mitigating neointimal hyperplasia development in remodeling murine arteries after injury. Methods and Results C57BL/6 mice treated with oral vancomycin before unilateral femoral wire injury to deplete gut microbiota had significantly diminished serum and stool butyrate and more neointimal hyperplasia development after arterial injury, which was reversed by concomitant butyrate supplementation. Deficiency of FFAR3 but not FFAR2, both receptors for butyrate, exacerbated neointimal hyperplasia development after injury. FFAR3 deficiency was also associated with delayed recovery of the endothelial layer in vivo. FFAR3 gene expression was observed in multiple peripheral arteries, and expression was increased after arterial injury. Treatment of endothelial but not vascular smooth muscle cells with the pharmacologic FFAR3 agonist 1‐methylcyclopropane carboxylate stimulated cellular migration and proliferation in scratch assays. Conclusions Our results support a protective role for butyrate and FFAR3 in the development of neointimal hyperplasia after arterial injury and delineate activation of the butyrate‐FFAR3 pathway as a valuable strategy for the prevention and treatment of neointimal hyperplasia.
Collapse
Affiliation(s)
- Michael Nooromid
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Edmund B Chen
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Liqun Xiong
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Katherine Shapiro
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Qun Jiang
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Falen Demsas
- Geisel School of Medicine at Dartmouth Hanover NH
| | - Maeve Eskandari
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Medha Priyadarshini
- Department of Medicine University of Illinois at Chicago and Jesse Brown VA Medical Center Chicago IL
| | - Eugene B Chang
- Section of Gastroenterology Department of Medicine University of Chicago, Chicago, IL
| | - Brian T Layden
- Department of Medicine University of Illinois at Chicago and Jesse Brown VA Medical Center Chicago IL
| | - Karen J Ho
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| |
Collapse
|
9
|
Frame LA, Costa E, Jackson SA. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr Rev 2020; 78:798-812. [DOI: 10.1093/nutrit/nuz106] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Context
The ability to measure the gut microbiome led to a surge in understanding and knowledge of its role in health and disease. The diet is a source of fuel for and influencer of composition of the microbiome.
Objective
To assess the understanding of the interactions between nutrition and the gut microbiome in healthy adults.
Data Sources
PubMed and Google Scholar searches were conducted in March and August 2018 and were limited to the following: English, 2010–2018, healthy adults, and reviews.
Data Extraction
A total of 86 articles were independently screened for duplicates and relevance, based on preidentified inclusion criteria.
Data Analysis
Research has focused on dietary fiber – microbiota fuel. The benefits of fiber center on short-chain fatty acids, which are required by colonocytes, improve absorption, and reduce intestinal transit time. Contrastingly, protein promotes microbial protein metabolism and potentially harmful by-products that can stagnate in the gut. The microbiota utilize and produce micronutrients; the bidirectional relationship between micronutrition and the gut microbiome is emerging.
Conclusions
Nutrition has profound effects on microbial composition, in turn affecting wide-ranging metabolic, hormonal, and neurological processes. There is no consensus on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet.
Collapse
Affiliation(s)
- Leigh A Frame
- The George Washington School of Medicine and Health Sciences, Washington, USA
| | - Elise Costa
- The George Washington School of Medicine and Health Sciences, Washington, USA
| | - Scott A Jackson
- The George Washington School of Medicine and Health Sciences, Washington, USA
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
10
|
Magrin GL, Di Summa F, Strauss FJ, Panahipour L, Mildner M, Magalhães Benfatti CA, Gruber R. Butyrate Decreases ICAM-1 Expression in Human Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21051679. [PMID: 32121422 PMCID: PMC7084181 DOI: 10.3390/ijms21051679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Short-chain fatty acids (SCFA) are bacterial metabolites that can be found in periodontal pockets. The expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) within the epithelium pocket is considered to be a key event for the selective transmigration of leucocytes towards the gingival sulcus. However, the impact of SCFA on ICAM-1 expression by oral epithelial cells remains unclear. We therefore exposed the oral squamous carcinoma cell line HSC-2, primary oral epithelial cells and human gingival fibroblasts to SCFA, namely acetate, propionate and butyrate, and stimulated with known inducers of ICAM-1 such as interleukin-1-beta (IL1β) and tumor necrosis factor-alfa (TNFα). We report here that butyrate but not acetate or propionate significantly suppressed the cytokine-induced ICAM-1 expression in HSC-2 epithelial cells and primary epithelial cells. The G-protein coupled receptor-43 (GPR43/ FFAR2) agonist but not the histone deacetylase inhibitor, trichostatin A, mimicked the butyrate effects. Butyrate also attenuated the nuclear translocation of p65 into the nucleus on HSC-2 cells. The decrease of ICAM-1 was independent of Nrf2/HO-1 signaling and phosphorylation of JNK and p38. Nevertheless, butyrate could not reverse an ongoing cytokine-induced ICAM-1 expression in HSC-2 cells. Overall, these observations suggest that butyrate can attenuate cytokine-induced ICAM-1 expression in cells with epithelial origin.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Francesca Di Summa
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
- Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Layla Panahipour
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria;
| | - Cesar Augusto Magalhães Benfatti
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Periodontology, University Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
11
|
Dietary Synbiotic Supplementation Protects Barrier Integrity of Hepatocytes and Liver Sinusoidal Endothelium in a Mouse Model of Chronic-Binge Ethanol Exposure. Nutrients 2020; 12:nu12020373. [PMID: 32023885 PMCID: PMC7071303 DOI: 10.3390/nu12020373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol overconsumption disrupts the gut microbiota and intestinal barrier, which decreases the production of beneficial microbial metabolic byproducts and allows for translocation of pathogenic bacterial-derived byproducts into the portal-hepatic circulation. As ethanol is known to damage liver sinusoidal endothelial cells (LSEC), here we evaluated dietary supplementation with a previously studied synbiotic on gut microbial composition, and hepatocyte and LSEC integrity in mice exposed to ethanol. We tested a chronic-binge ethanol feeding mouse model in which C57BL/6 female mice were fed ethanol (5% vol/vol) for 10 days and provided a single ethanol gavage (5 g/kg body weight) on day 11, 6 h before euthanasia. An ethanol-treatment group also received oral supplementation daily with a synbiotic; and an ethanol-control group received saline. Control mice were pair-fed and isocalorically substituted maltose dextran for ethanol over the entire exposure period; they received a saline gavage daily. Ethanol exposure decreased gut microbial abundance and diversity. This was linked with diminished expression of adherens junction proteins in hepatocytes and dysregulated expression of receptors for advanced glycation end-products; and this coincided with reduced expression of endothelial barrier proteins. Synbiotic supplementation mitigated these effects. These results demonstrate synbiotic supplementation, as a means to modulate ethanol-induced gut dysbiosis, is effective in attenuating injury to hepatocyte and liver endothelial barrier integrity, highlighting a link between the gut microbiome and early stages of acute liver injury in ethanol-exposed mice.
Collapse
|
12
|
Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci Rep 2019; 9:19603. [PMID: 31862976 PMCID: PMC6925246 DOI: 10.1038/s41598-019-56132-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and gut hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is a rat irritable bowel syndrome (IBS) model. As butyrate is known to suppress the release of proinflammatory cytokine, we hypothesized that butyrate alleviates these colonic changes in IBS models. The visceral pain was assessed by electrophysiologically measuring the threshold of abdominal muscle contractions in response to colonic distention. Colonic permeability was determined by measuring the absorbance of Evans blue in colonic tissue. Colonic instillation of sodium butyrate (SB; 0.37-2.9 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral allodynia and colonic hyperpermeability dose-dependently. Additionally, the visceral changes induced by repeated WAS (1 h for 3 days) or CRF (50 µg/kg) were also blocked by SB. These effects of SB in the LPS model were eliminated by compound C, an AMPK inhibitor, or GW9662, a PPAR-γ antagonist, NG-nitro-L-arginine methyl ester, a NO synthesis inhibitor, naloxone or sulpiride. SB attenuated visceral allodynia and colonic hyperpermeability in animal IBS models. These actions may be AMPK and PPAR-γ dependent and also mediated by the NO, opioid and central dopamine D2 pathways. Butyrate may be effective for the treatment of IBS.
Collapse
|
13
|
|
14
|
Rufino MN, Aleixo GFP, Trombine-Batista IE, Giuffrida R, Keller R, Bremer-Neto H. Systematic review and meta-analysis of preclinical trials demonstrate robust beneficial effects of prebiotics in induced inflammatory bowel disease. J Nutr Biochem 2018; 62:1-8. [PMID: 30053633 DOI: 10.1016/j.jnutbio.2018.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | - Hermann Bremer-Neto
- Department of Functional Sciences, Faculty of Medicine, University of West Paulista.
| |
Collapse
|
15
|
Bo W, Zhou J, Wang K. Sodium butyrate abolishes the degradation of type II collagen in human chondrocytes. Biomed Pharmacother 2018; 102:1099-1104. [DOI: 10.1016/j.biopha.2018.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
|
16
|
Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol 2018; 831:52-59. [PMID: 29750914 DOI: 10.1016/j.ejphar.2018.05.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
In the gastro-intestinal tract, short chain fatty acids (SCFAs) have protective effects on epithelial cells. However, their effects on inflammatory cytokine production by endothelial and immune cells and the recruitment of immune cells and their trans-migration across the endothelial layer remain controversial. Both cell types are associated with the initiation and development of inflammatory diseases, such as atherosclerosis and sepsis. SCFAs modulate immune and inflammatory responses via activation of free fatty acid (FFA) receptors type 2 and 3 (FFA2 and FFA3 receptors), G protein-coupled receptor 109A (GPR109A) and inhibition of histone deacetylases (HDACs). This review will focus on the effects of SCFAs on lipopolysaccharide (LPS)- or tumor necrosis factor-alpha (TNFα)-induced inflammatory response on endothelial and immune cells function, and an overview is presented on the underlying mechanisms of the effects of SCFAs on both immune and endothelial cells, including HDACs, FFA2 and FFA3 receptors and GPR109A regulation of nuclear factor-kappa B (NF-κB) activation and mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Meng Li
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research, Immunology, Utrecht, The Netherlands
| | - Gerry T M Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research, Immunology, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Lima GC, Vieira VCC, Cazarin CBB, Ribeiro RDR, Junior SB, de Albuquerque CL, Vidal RO, Netto CC, Yamada ÁT, Augusto F, Maróstica Junior MR. Fructooligosaccharide intake promotes epigenetic changes in the intestinal mucosa in growing and ageing rats. Eur J Nutr 2017; 57:1499-1510. [PMID: 28324207 DOI: 10.1007/s00394-017-1435-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/06/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE The aim of this study was to investigate the relationship between fructooligosaccharide (FOS) intake at different life stages of Wistar rats and its stimulatory effects on intestinal parameters. METHODS Recently weaned and ageing female rats were divided into growing and ageing treatments, which were fed diets that partially replaced sucrose with FOS for 12 weeks. RESULTS Dietary FOS intake induced a significant increase in the numbers of Bifidobacterium and Lactobacillus in growing rats. FOS intake was associated with increased butyric acid levels and a reduced pH of the caecal contents at both ages. Differential gene expression patterns were observed by microarray analysis of growing and ageing animals fed the FOS diet. A total of 133 genes showed detectable changes in expression in the growing rats, while there were only 19 gene expression changes in ageing rats fed with FOS. CONCLUSION These results suggest that dietary FOS intake may be beneficial for some parameters of intestinal health in growing rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramon Oliveira Vidal
- Sainte-Justine University Hospital Center, Université de Montreal, Montreal, Canada
| | - Claudia Cardoso Netto
- Department of Biochemistry, Biological Sciences and Health Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fabio Augusto
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Mário Roberto Maróstica Junior
- School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil. .,Laboratório de Nutrição e Metabolismo-Departamento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, R. Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
18
|
Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol 2016; 22:2219-2241. [PMID: 26900286 PMCID: PMC4734998 DOI: 10.3748/wjg.v22.i7.2219] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/05/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023] Open
Abstract
In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required.
Collapse
|
19
|
Moen B, Berget I, Rud I, Hole AS, Kjos NP, Sahlstrøm S. Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs. Food Funct 2016; 7:1024-32. [DOI: 10.1039/c5fo01452b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of extrusion of barley and oat on the fecal microbiota and the formation of SCFA was evaluated using growing pigs as model system. The pigs were fed a diet containing either whole grain barley (BU), oat groat (OU), or their respective extruded samples (BE and OE).
Collapse
Affiliation(s)
- Birgitte Moen
- Nofima
- The Norwegian Institute of Food
- Fisheries and Aquaculture Research
- N-1430 Aas
- Norway
| | - Ingunn Berget
- Nofima
- The Norwegian Institute of Food
- Fisheries and Aquaculture Research
- N-1430 Aas
- Norway
| | - Ida Rud
- Nofima
- The Norwegian Institute of Food
- Fisheries and Aquaculture Research
- N-1430 Aas
- Norway
| | - Anastasia S. Hole
- Nofima
- The Norwegian Institute of Food
- Fisheries and Aquaculture Research
- N-1430 Aas
- Norway
| | - Nils Petter Kjos
- Department of Animal and Aquaculture Sciences
- Norwegian University of Life Sciences
- N-1432 Aas
- Norway
| | - Stefan Sahlstrøm
- Nofima
- The Norwegian Institute of Food
- Fisheries and Aquaculture Research
- N-1430 Aas
- Norway
| |
Collapse
|
20
|
Li J, Hou Y, Yi D, Zhang J, Wang L, Qiu H, Ding B, Gong J. Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1784-93. [PMID: 26580447 PMCID: PMC4647088 DOI: 10.5713/ajas.15.0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/09/2015] [Accepted: 05/27/2015] [Indexed: 11/27/2022]
Abstract
This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a 2×2 factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or 500 μg/kg body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of 500 μg/kg BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-1β (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin E2 (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.
Collapse
Affiliation(s)
- Jiaolong Li
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jun Zhang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyi Qiu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Binying Ding
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China ; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Joshua Gong
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
21
|
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), which are produced by the fermentation of dietary fiber by intestinal microbiota, may positively influence immune responses and protect against gut inflammation. SCFAs bind to G protein-coupled receptor 43 (GPR43). Here, we show that SCFA-GPR43 interactions profoundly affect the gut inflammatory response. METHODS Colitis was induced by adding dextran sulfate sodium to the drinking water of GPR43 knockout (-/-) and wild-type mice. RESULTS Dextran sulfate sodium-treated GPR43 mice exhibited weight loss, increased disease activity index (a combined measure of weight loss, rectal bleeding, and stool consistency), decreased hematocrit, and colon shortening, resulting in significantly worse colonic inflammation than in wild-type mice. Tumor necrosis factor alpha and interleukin 17 protein levels in the colonic mucosa of GPR43 mice were significantly higher than in wild-type mice. Treatment of wild-type mice with 150 mM acetate in their drinking water markedly improved these disease indices, with an increase in colon length and decrease in the disease activity index; however, it had no effect on GPR43 mice. Mononuclear cell production of tumor necrosis factor alpha after lipopolysaccharide stimulation was suppressed by acetate. This effect was inhibited by anti-GPR43 antibody. CONCLUSIONS SCFA-GPR43 interactions modulate colitis by regulating inflammatory cytokine production in mononuclear cells.
Collapse
|
22
|
Butyric acid in functional constipation. GASTROENTEROLOGY REVIEW 2013; 8:295-8. [PMID: 24868272 PMCID: PMC4027827 DOI: 10.5114/pg.2013.38731] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Butyric acid, a short-chain fatty acid, is a major energy source for colonocytes. It occurs in small quantities in some foods, and in the human body, it is produced in the large intestine by intestinalkacteria. This production can be reduced in some cases, for which butyric acid supplementation may be useful. So far, the use of butyric acid in the treatment of gastrointestinal disorders has been limited because of its specific characteristics such as its rancid smell and rapid absorption in the upper gastrointestinal tract. In the Polish market, sodium butyrate has been recently made available, produced by the modern technology of microencapsulation, which allows the active substance to reach the small and large intestines, where butyrate easily dissociates into butyric acid. This article presents the potential beneficial mechanisms of action of butyric acid in defecation disorders, which are primarily associated with reductions in pain during defecation and inflammation in the gut, among others.
Collapse
|
23
|
Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective. J Biomed Res 2013; 28:47-52. [PMID: 24474963 PMCID: PMC3904174 DOI: 10.7555/jbr.27.20130055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclerosis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atherosclerotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
24
|
Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Nutrients 2013; 5:234-52. [PMID: 23344252 PMCID: PMC3571646 DOI: 10.3390/nu5010234] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 02/06/2023] Open
Abstract
It is well established that diet influences the health of an individual and that a diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. What has been unclear until recently is the large contribution of the gut microbiota to this effect. As well as providing basic nutritional requirements, the long-term diet of an animal modifies its gut microbiota. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared to Bacteroides, while the reverse is associated with a diet that contains a low proportion of plant-based foods. Furthermore, it is becoming increasingly clear that the effect of the microbial ecology of the gut goes beyond the local gut immune system and is implicated in immune-related disorders, such as IBS, diabetes and inflamm-ageing. In this review, we investigate the evidence that a balanced diet leads to a balanced, diverse microbiota with significant consequences for healthy ageing by focusing on conditions of interest.
Collapse
Affiliation(s)
- Ian B. Jeffery
- Department of Microbiology, University College Cork, College Road, Cork, Ireland; E-Mail:
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-(0)21-490-1306; Fax: +353-(0)21-490-3997
| | - Paul W. O’Toole
- Department of Microbiology, University College Cork, College Road, Cork, Ireland; E-Mail:
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
25
|
Stephens JH, Hewett PJ. Clinical trial assessing VSL#3 for the treatment of anterior resection syndrome. ANZ J Surg 2012; 82:420-7. [PMID: 22571474 DOI: 10.1111/j.1445-2197.2012.06082.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Restoration of bowel continuity after a temporary loop ileostomy following rectal resection often produces impaired bowel function. The purpose of this clinical trial was to assess the efficacy of a probiotic, VSL#3 (VSL Pharmaceuticals Inc., Gaithersburg, MD, USA), in improving bowel function following ileostomy closure. METHODS Between March 2005 and April 2008, a prospective, double-blind, placebo-controlled randomized trial of a probiotic preparation was conducted across four South Australian hospitals. Sixty-three patients who underwent a loop ileostomy reversal were randomized to receive 4-week treatment of either probiotic therapy (n= 31) or placebo (n= 32). Bowel symptomology was collected through a patient-completed bowel diary and the Gastrointestinal Quality of Life Index (GIQLI). RESULTS Completion rates of the 4-week therapy regime were similar for both groups: 18 active versus 20 placebos. There was no statistically significant difference in the number of patients who withdrew or had adverse events in the two treatment groups. Reasons for patient withdrawal from the study were similar for both groups. Repeated measures analysis of variance showed no statistically significant difference between the GIQLI scores for the two treatment groups. CONCLUSIONS The use of the probiotic preparation, VSL#3, did not alter the post-operative bowel function of patients undergoing loop ileostomy reversal.
Collapse
Affiliation(s)
- Jacqueline H Stephens
- Discipline of Surgery, The University of Adelaide, Queen Elizabeth Hospital-Division of Surgery, 28 Woodville Road, Woodville South, SA 5011, Australia.
| | | |
Collapse
|
26
|
Abstract
Irritable bowel syndrome (IBS) is a common health issue that is characterized by abdominal pain, abnormal bowel movements, and altered visceral perception. The complexity and variability in symptoms pose serious challenges in treating IBS. Current therapy for IBS is primarily focused on reducing the abdominal pain, thereby improving the quality of life to a significant extent. Although the use of fiber rich diet is widely recommended in treating IBS, some studies have questioned its use. Intra-colonic butyrate, a short-chain fatty acid, is primarily produced by the fermentation of dietary fibers in the colon. In the existing literature there are conflicting reports about the function of butyrate. In rats it is known to induce visceral hypersensitivity without altered pathology, whereas in humans it has been reported to reduce visceral pain. Understanding the molecular mechanisms responsible for this contrasting effect of butyrate is important before recommending fiber rich diet to IBS patients.
Collapse
Affiliation(s)
| | | | - Jyoti N. Sengupta
- Address for correspondence: Jyoti N. Sengupta, MSc, PhD. Associate Professor of Medicine Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA Tel: 414-456-4011 Fax: 414-456-6361
| |
Collapse
|
27
|
Ivanova A, Shilpi RY, Sachdeva R, Li G, Simm M. Native X-DING-CD4 protein secreted by HIV-1 resistant CD4+ T cells blocks activity of IL-8 promoter in human endothelial cells infected with enteric bacteria. Innate Immun 2011; 18:571-579. [PMID: 22031506 DOI: 10.1177/1753425911427065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Onsets of bacterial infections devastate the compromised immune system in AIDS patients. Damaged gut mucosa permits dissemination of bacterial toxins into deeper layers and hyper-activation of the immune system. We previously reported that the unfractionated supernatants of HIV-resistant CD4(+) T cells impeded the NF-κB/DNA binding in macrophages induced by either HIV-1 or LPS. The active component of this soluble material was identified as X-DING-CD4 (extracellular DING from CD4 T cells). We hypothesized that the anti-inflammatory effect of the X-DING-CD4 protein might extend to non-immune cells, for example endothelial cells, undergoing persistent endotoxin stimulation in the course of advanced HIV disease. To test this proposition, we evaluated the efficiency of NF-κB and Ap-1 binding to the IL-8 promoter in LPS-activated endothelial cells and control human macrophages exposed to native X-DING-CD4 protein. We found a deficiency of NF-κB- but not AP-1-DNA binding in the systems where cells were treated with native soluble X-DING-CD4 protein. The X-DING-CD4-mediated inhibition of the IL-8 promoter also resulted in a reduction of the soluble IL-8 protein in endothelial cells and human macrophages infected with a subset of enteric bacteria frequently causing diarrhea in progressive HIV disease. Bacterial endotoxin did not induce the endogenous X-DING-CD4 mRNA activity in human macrophages and transformed CD4(+)T cells, indicating that the reduction of LPS-mediated IL-8 promoter activation was not related to de novo X-DING-CD4 protein synthesis, but depended on function of the exogenous X-DING-CD4 protein. This study provides evidence that the X-DING-CD4 protein might be developed as a novel biotherapeutic to control LPS-mediated inflammation in advanced HIV disease.
Collapse
Affiliation(s)
- Anna Ivanova
- Protein Chemistry Laboratory, St. Luke's/Roosevelt Hospital, Columbia University, New York, NY 10019, USA
| | - Rasheda Y Shilpi
- Protein Chemistry Laboratory, St. Luke's/Roosevelt Hospital, Columbia University, New York, NY 10019, USA
| | - Rakhee Sachdeva
- Protein Chemistry Laboratory, St. Luke's/Roosevelt Hospital, Columbia University, New York, NY 10019, USA
| | - Guanhua Li
- Protein Chemistry Laboratory, St. Luke's/Roosevelt Hospital, Columbia University, New York, NY 10019, USA
| | - Malgorzata Simm
- Protein Chemistry Laboratory, St. Luke's/Roosevelt Hospital, Columbia University, New York, NY 10019, USA
| |
Collapse
|
28
|
Zhang WH, Jiang Y, Zhu QF, Gao F, Dai SF, Chen J, Zhou GH. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 2011; 52:292-301. [PMID: 21732874 DOI: 10.1080/00071668.2011.578121] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1. The experiment was conducted to investigate the effects of dietary sodium butyrate on the growth performance and immune response of broiler chickens. In experiment 1, 240 1-d-old chickens were allocated into 4 dietary groups (0, 0·25, 0·50 or 1·00 g sodium butyrate/kg) with 6 replicates each. In experiment 2, 120 1-d-old chickens were fed a control diet (without sodium butyrate) or 1·00 g sodium butyrate/kg diet. Half of the chickens fed on each diet were injected intra-peritoneally with 0·5 g/kg body weight of Escherichia coli lipopolysaccharide (LPS) at 16, 18 and 20 d of age. 2. There was no effect of dietary sodium butyrate on growth performance. On d 21, serum interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) were decreased in chickens given 1·00 g sodium butyrate/kg, serum superoxide dismutase (SOD) and catalase activities were significantly increased, and malondialdehyde (MDA) was decreased by dietary sodium butyrate at 0·50 or 1·00 g/kg. On d 42, serum IL-6 was markedly decreased by dietary sodium butyrate, while 1·00 g sodium butyrate/kg greatly reduced MDA and increased catalase. 3. LPS challenge significantly reduced the growth performance of chickens. Serum IL-1β, IL-6, TNF-α, corticosterone, alpha-1 acid glycoprotein (AGP) and prostaglandin E(2) (PGE(2)) were increased in LPS-challenged chickens. Dietary sodium butyrate supplementation maintained the body weight gain and feed intake. Sodium butyrate supplementation inhibited the increase in IL-6 and AGP in serum at 16 d of age and TNF-α, corticosterone, AGP and PGE(2) at 20 d of age. Similar inhibitory effects of sodium butyrate in serum glucose and total protein concentrations were also found at 20 d of age. 4. The results indicated that dietary sodium butyrate supplementation can improve the growth performance in chickens under stress and that this may be used to moderate the immune response and reduce tissue damage.
Collapse
Affiliation(s)
- W H Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, P.R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutr Res Rev 2011; 24:155-75. [DOI: 10.1017/s0954422411000047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The weaning transition is characterised by morphological, histological and microbial changes, often leading to weaning-associated disorders. These intestinal changes can partly be ascribed to the lack of luminal nutrition arising from the reduced feed intake common in pigs after weaning. It is increasingly becoming clear that changes in the supply with enteral nutrients may have major impacts on intestinal gene expression. Furthermore, the major dietary constituents, i.e. carbohydrates, fatty acids and amino acids, participate in the regulation of intestinal gene expression. However, nutrients may also escape digestion by mammalian enzymes in the upper gastrointestinal tract. These nutrients can be used by the microflora, resulting in the production of bacterial metabolites, for example, SCFA, which may affect intestinal gene expression indirectly. The present review provides an insight on possible effects of reduced feed intake on intestinal gene expression, as it may occur post-weaning. Detailed knowledge on effects of reduced feed intake on intestinal gene expression may help to understand weaning-associated intestinal dysfunctions and diseases. Examples are given of intestinal genes which may be altered in their expression due to supply with specific nutrients. In that way, gene expression could be modulated by dietary means, thereby acting as a potential therapeutic tool. This could be achieved, for example, by influencing genes coding for digestive or absorptive proteins, thus optimising digestive function and metabolism, but also with regard to immune response, or by influencing proliferative processes, thereby enhancing mucosal repair. This would be of special interest when designing a diet to overcome weaning-associated problems.
Collapse
|
30
|
Cromer WE, Mathis JM, Granger DN, Chaitanya GV, Alexander JS. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol 2011; 17:578-93. [PMID: 21350707 PMCID: PMC3040330 DOI: 10.3748/wjg.v17.i5.578] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines, growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.
Collapse
|
31
|
Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 2010; 22:849-55. [PMID: 21167700 DOI: 10.1016/j.jnutbio.2010.07.009] [Citation(s) in RCA: 466] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/17/2022]
Abstract
Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor α (TNF-α) and cytokine-induced neutrophil chemoattractant-2 (CINC-2αβ)] by rat neutrophils. The involvement of nuclear factor κB (NF-κB) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-α, CINC-2αβ and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-κB activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Marco A R Vinolo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil 05508-900.
| | | | | | | | | | | |
Collapse
|
32
|
Vanhoutvin SALW, Troost FJ, Kilkens TOC, Lindsey PJ, Hamer HM, Jonkers DMAE, Venema K, Brummer RJM. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol Motil 2009; 21:952-e76. [PMID: 19460106 DOI: 10.1111/j.1365-2982.2009.01324.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fermentation of dietary fibres by colonic microbes leads to the production of short chain fatty acids (mainly propionate, butyrate and acetate), which are utilized by the colonic mucosa. Previous studies showed positive effects of butyrate on parameters of oxidative stress, inflammation and apoptosis. Recent studies in rats, however, showed that butyrate increased visceral sensitivity. The aim of this study was to determine the effects of physiologically relevant concentrations of butyrate on visceral perception in healthy human subjects. Eleven healthy volunteers participated in this randomized double-blind, placebo controlled cross-over study. The study consisted of three periods of 1 week each, in which the volunteers daily self-administered rectal enemas containing 100, 50 mmol L(-1) butyrate, or placebo (saline) prior to sleeping. A rectal barostat measurement was performed at the start and the end of each test period for the measurement of pain, urge and discomfort. Butyrate treatment resulted in a dose-dependent reduction of pain, urge and discomfort throughout the entire pressure range of the protocol. At a pressure of 4 mmHg, 50 and 100 mmol L(-1) butyrate concentrations resulted in a 23.9% and 42.1% reduction of pain scores, respectively, and the discomfort scores decreased by 44.2% and 69.0% respectively. At a pressure of 67 mmHg, 50 and 100 mmol L(-1) of butyrate decreased the pain scores by 23.8% and 42%, respectively, and discomfort scores 1.9% and 5.2% respectively. Colonic administration of butyrate, at physiologically relevant concentrations, dose-dependently decreases visceral sensitivity in healthy volunteers.
Collapse
|
33
|
Gawlitzek M, Estacio M, Fürch T, Kiss R. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng 2009; 103:1164-75. [PMID: 19418565 DOI: 10.1002/bit.22348] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of different cell culture conditions on N-glycosylation site-occupancy has been elucidated for two different recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells, recombinant human tissue plasminogen activator (t-PA) and a recombinant enzyme (glycoprotein 2-GP2). Both molecules contain a N-glycosylation site that is variably occupied. Different environmental factors that affect the site-occupancy (the degree of occupied sites) of these molecules were identified. Supplementing the culture medium with additional manganese or iron increased the fraction of fully occupied t-PA (type I t-PA) by approximately 2.5-4%. Decreasing the cultivation temperature from 37 to 33 degrees C or 31 degrees C gradually increased site-occupancy of t-PA up to 4%. The addition of a specific productivity enhancer, butyrate, further increased site-occupancy by an additional 1% under each cultivation temperature tested. In addition, the thyroid hormones triiodothyronine and thyroxine increased site-occupancy of t-PA compared to control conditions by about 2%. In contrast, the addition of relevant nucleoside precursor molecules involved in N-glycan biosynthesis (e.g., uridine, guanosine, mannose) either had no effect or slightly reduced site-occupancy. For the recombinant enzyme (GP2), it was discovered that culture pH and the timing of butyrate addition can be used to control N-glycan site-occupancy within a specific range. An increase in culture pH correlated with a decrease in site-occupancy. Similarly, delaying the timing for butyrate addition also decreased site-occupancy of this molecule. These results highlight the importance of understanding how cell culture conditions and media components can affect the product quality of recombinant glycoproteins expressed in mammalian cell cultures. Furthermore, the identification of relevant factors will enable one to control product quality attributes, specifically N-glycan site-occupancy, within a specific range when applied appropriately.
Collapse
Affiliation(s)
- Martin Gawlitzek
- Manufacturing Sciences & Technology, Genentech, Inc., One DNA Way, South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
34
|
Schwab M, Reynders V, Steinhilber D, Stein J. Combined treatment of Caco-2 cells with butyrate and mesalazine inhibits cell proliferation and reduces Survivin protein level. Cancer Lett 2008; 273:98-106. [PMID: 18774638 DOI: 10.1016/j.canlet.2008.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/28/2008] [Accepted: 07/28/2008] [Indexed: 01/16/2023]
Abstract
There is epidemiological evidence, that mesalazine can inhibit colon cancer development by affecting proliferation and apoptosis. Several studies suggest that supplementary intake of butyrate may yield to improved efficacy of mesalazine. However, the underlying molecular mechanisms of such interaction remain unknown. This study addressed the combinatory effect of both substances on the growth of Caco-2 cells. Challenging of cells with mesalazine and butyrate provoked a time-dependent decrease in both cell counts and proliferation. Co-treatment with the substances could further intensify these effects. The growth-inhibitory action of mesalazine and butyrate was accompanied by a significant increase in caspase-3 activity, cleavage of PARP and caspase-8, while decreasing the expression of Xiap and Survivin simultaneously. Co-incubation of both substances exaggerated effects on all examined apoptosis-regulatory proteins except for Xiap. Our data demonstrate that co-treatment of mesalazine and butyrate evoked additive effects on inhibition of cell growth and induction of apoptosis in Caco-2 cells.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Division of Gastroenterology, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
35
|
|
36
|
Schwab M, Reynders V, Loitsch S, Steinhilber D, Stein J, Schröder O. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. Mol Immunol 2007; 44:3625-32. [PMID: 17521736 DOI: 10.1016/j.molimm.2007.04.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 04/13/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND NF kappa B plays a major role in the control of immune responses and inflammation. Recently, butyrate has not only been demonstrated to suppress NF kappa B activation in colorectal cancer cells, but also to modulate the activity and expression of the Peroxisome-Proliferator-Activated-Receptor gamma (PPAR gamma) and the vitamin D receptor (VDR). Therefore, we investigated a putative involvement of both receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. RESULTS Treatment of HT-29 cells with butyrate attenuated basal p50 as well as TNFalpha- and LPS-induced p50 and p65 NF kappa B dimer activity in the nucleus as measured by transcription factor assay. Cytosolic expression of I kappa B alpha protein was reduced by butyrate, and TNFalpha but not by LPS. Challenge of cells with the VDR antagonist ZK191732 up-regulated basal NF kappa B activity by decreasing I kappa B alpha simultaneously, while basal signalling was not influenced by the PPAR gamma inhibitor GW9662. Pre-treatment with ZK191732 reduced the inhibitory effect of butyrate on NF kappa B activation caused by TNFalpha whereas no activation was noted in transfected dominant-negative PPAR gamma mutant vector cells. Adversely, the inhibitory effect of butyrate on NF kappa B activity induced by LPS was almost reversed in dominant-negative PPAR gamma mutant cells while pre-incubation of ZK191732 did not affect butyrate-mediated attenuation of LPS-induced NF kappa B signalling. CONCLUSION These findings provide evidence for the involvement of the nuclear hormone receptors PPAR gamma and VDR in butyrate-mediated inhibition of inducible NF kappa B activation dependent on the stimulated signalling pathway. Moreover, VDR appears to play an inhibitory role in the regulation of basal NF kappa B signalling.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Odièvre MH, Brun M, Krishnamoorthy R, Lapouméroulie C, Elion J. Sodium phenyl butyrate downregulates endothelin-1 expression in cultured human endothelial cells: relevance to sickle-cell disease. Am J Hematol 2007; 82:357-62. [PMID: 17373676 DOI: 10.1002/ajh.20709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As hydroxyurea (HU), sodium phenyl butyrate (SPB) is known to induce fetal hemoglobin (HbF) expression and thus shows potentials for sickle-cell disease (SCD) treatment. More recently, few studies suggested that endothelial cells (ECs), a major pathophysiological actor of SCD, are also a target of SPB. Here, we show that SPB, as HU, reduces endothelin-1 mRNA expression and peptide release by human ECs in culture. SPB increases VCAM-1 and ICAM-1 mRNAs and soluble ICAM-1 release. Both drugs have a cumulative effect on ICAM-1 expression. We conclude that SPB, as HU, also affects the expression of molecules important to the pathophysiology of SCD, in addition to its effect on HbF. Its potential as an alternative or adjuvant drug in SCD treatment warrants further investigations.
Collapse
|
38
|
Crowell CK, Qin Q, Grampp GE, Radcliffe RA, Rogers GN, Scheinman RI. Sodium butyrate alters erythropoietin glycosylation via multiple mechanisms. Biotechnol Bioeng 2007; 99:201-13. [PMID: 17570711 DOI: 10.1002/bit.21539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) produced in a human kidney fibrosarcoma cell line, HT1080, was used as a model to study the effects of sodium butyrate (SB) on protein glycosylation. Treatment with 2 mM SB resulted in complex changes with respect to sugar nucleotide pools including an increase in UDP-Gal and a decrease in UDP-GlcNac. In addition, polylactosamine structures present on rHuEPO increased after SB treatment. To determine if these phenotypic changes correlated with changes in mRNA abundance, we profiled mRNA levels over a 24-h period in the presence or absence of SB using oligonucleotide microarrays. By filtering our data through a functional glycomics gene list associated with the processes of glycan degradation, glycan synthesis, and sugar nucleotide synthesis and transport we identified 26 genes with significantly altered mRNA levels. We were able to correlate the changes in message in six of these genes with measurable phenotypic changes within our system including: neu1, b3gnt6, siat4b, b3gnt1, slc17a5, and galt. Interestingly, for the two genes: cmas and gale, our measurable phenotypic changes did not correlate with changes in mRNA expression. These data demonstrate both the utility and pit falls of coupling biochemical analysis with high throughput oligonucleotide microarrays to predict how changes in cell culture environments will impact glycoprotein oligosaccharide content.
Collapse
|
39
|
Dianzani C, Cavalli R, Zara GP, Gallicchio M, Lombardi G, Gasco MR, Panzanelli P, Fantozzi R. Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells. Br J Pharmacol 2006; 148:648-56. [PMID: 16702992 PMCID: PMC1751876 DOI: 10.1038/sj.bjp.0706761] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
1. Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. 2. Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP- and IL-1beta-stimulated cells in a concentration-response curve (10(-8)-10(-5) M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. 3. Chol-but SLN inhibited O2-* production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. 4. In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Torino 10125, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, Yoshiya K, Matsushima A, Sumi Y, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H. Altered gut flora and environment in patients with severe SIRS. ACTA ACUST UNITED AC 2006; 60:126-33. [PMID: 16456446 DOI: 10.1097/01.ta.0000197374.99755.fe] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The gut is considered an important target organ of injury after severe insult such as sepsis, trauma, and shock. The impact of bacterial translocation or mesenteric lymph on systemic inflammatory response and multiple organ damage has been investigated in animals, but dynamic changes in the gut flora and environment have not been fully clarified in critically ill patients. In the present study, we quantitatively evaluated changes in the gut microflora and environment in patients with severe systemic inflammatory response syndrome (SIRS). METHODS Twenty-five patients with severe SIRS, who fulfilled the criteria for SIRS, had a serum CRP level >10 mg/dL, and were treated in the intensive care unit for more than 2 days, were included in our study. SIRS was a result of sepsis in 18 patients, trauma in 6, and burn in 1. A fecal sample was used for quantitative evaluation of microflora (bacterial counts of 10 key groups including Bifidobacterium and Lactobacillus) by plate or tube technique and of the gut environment (pH and 9 organic acids by high speed liquid chromatography). Data obtained from patients were compared with corresponding data from healthy volunteers. RESULTS Analysis of fecal flora confirmed that patients with severe SIRS had significantly lower total anaerobic bacterial counts (especially 2-4 log fewer "beneficial" Bifidobacterium and Lactobacillus) and 2 log higher "pathogenic" Staphylococcus and Pseudomonas group counts than those of healthy volunteers. Concentrations of total organic acids (especially "beneficial" short-chain fatty acids such as acetic acid, propionic acid, and butyric acid) in the feces were significantly decreased in the patients, whereas pH was markedly increased. CONCLUSIONS The gut flora and environment are significantly altered in patients with severe SIRS. Abnormal gut flora and environment may affect systemic inflammatory response after severe insult.
Collapse
Affiliation(s)
- Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gazdik MA, McDonough KA. Identification of cyclic AMP-regulated genes in Mycobacterium tuberculosis complex bacteria under low-oxygen conditions. J Bacteriol 2005; 187:2681-92. [PMID: 15805514 PMCID: PMC1070381 DOI: 10.1128/jb.187.8.2681-2692.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), which kills approximately 2 million people a year despite current treatment options. A greater understanding of the biology of this bacterium is needed to better combat TB disease. The M. tuberculosis genome encodes as many as 15 adenylate cyclases, suggesting that cyclic AMP (cAMP) has an important, yet overlooked, role in mycobacteria. This study examined the effect of exogenous cAMP on protein expression in Mycobacterium bovis BCG grown under hypoxic versus ambient conditions. Both shaking and shallow standing cultures were examined for each atmospheric condition. Different cAMP-dependent changes in protein expression were observed in each condition by two-dimensional gel electrophoresis. Shaking low-oxygen cultures produced the most changes (12), while standing ambient conditions showed the fewest (2). Five upregulated proteins, Rv1265, Rv2971, GroEL2, PE_PGRS6a, and malate dehydrogenase, were identified from BCG by mass spectrometry and were shown to also be regulated by cAMP at the mRNA level in both M. tuberculosis H37Rv and BCG. To our knowledge, these data provide the first direct evidence for cAMP-mediated gene regulation in TB complex mycobacteria.
Collapse
Affiliation(s)
- Michaela A Gazdik
- New York State Department of Health, University of Albany, 120 New Scotland Ave., Albany, NY 12208, USA
| | | |
Collapse
|
42
|
Tong X, Yin L, Joshi S, Rosenberg DW, Giardina C. Cyclooxygenase-2 regulation in colon cancer cells: modulation of RNA polymerase II elongation by histone deacetylase inhibitors. J Biol Chem 2005; 280:15503-9. [PMID: 15713675 DOI: 10.1074/jbc.m411978200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We are interested in the mechanism of cyclooxygenase-2 (Cox-2) regulation in colon cancer cells because this knowledge could provide insight into colon carcinogenesis and suggest ways to suppress Cox-2 expression in colon tumors. Studying the HT-29 colon cancer cell line as a model, we found that Cox-2 mRNA and protein levels were activated over 10-fold by the inflammatory cytokine tumor necrosis factor (TNF)-alpha. Moreover, we found that the histone deacetylase inhibitors butyrate and trichostatin A could block Cox-2 activation in a gene-specific manner. TNF-alpha and butyrate did not significantly affect Cox-2 promoter activity, mRNA stability, or negative regulation by the Cox-2 3'-untranslated RNA region. A nuclear run-on assay showed that TNF-alpha increased Cox-2 transcription, whereas butyrate was suppressive. Because butyrate has been reported to suppress polymerase elongation on the c-myc gene, we employed the chromatin immunoprecipitation assay to determine the influence of butyrate and trichostatin A on polymerase distribution on the Cox-2 gene. These data indicated that butyrate restricted polymerase elongation from exon 1 to 2 on both the c-myc and Cox-2 genes. We propose that histone deacetylases regulate a transcriptional block on the Cox-2 and c-myc genes and that this block may be a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|
43
|
Mason AB, Halbrooks PJ, Larouche JR, Briggs SK, Moffett ML, Ramsey JE, Connolly SA, Smith VC, MacGillivray RTA. Expression, purification, and characterization of authentic monoferric and apo-human serum transferrins. Protein Expr Purif 2005; 36:318-26. [PMID: 15249056 DOI: 10.1016/j.pep.2004.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 04/12/2004] [Indexed: 11/17/2022]
Abstract
Transferrin is a bilobal protein with the ability to bind iron in two binding sites situated at the bottom of a cleft in each lobe. We have previously described the production of recombinant non-glycosylated human serum transferrins (hTF-NG), containing a factor Xa cleavage site and a hexa-His tag at the amino-terminus. Constructs in this background that contain strategic mutations to completely prevent iron binding in each lobe or in both lobes have now been produced. These monoferric hTFs will allow dissection of the contribution of each lobe to transferrin function. In addition, the construct completely lacking in the ability to bind iron in either lobe provides an opportunity to assess whether hTF has any other functions in addition to iron transport. Following insertion of the His-tagged hTF molecules into the pNUT vector, transfection into baby hamster kidney cells and selection with methotrexate, the secreted recombinant proteins were isolated from the tissue culture medium and characterized with regard to their iron binding properties. Significant improvements over our previous protocol include: (1) addition of butyric acid at a level of 1mM which leads to a substantial increase in protein production (as much as a 65% increase compared to control cells); and (2) elimination of an anion exchange column prior to isolation on a Qiagen Ni-NTA column which makes purification of the His-tagged constructs faster and therefore more efficient. These improvements should be applicable to expression of other recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Anne B Mason
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Foltz M, Boll M, Raschka L, Kottra G, Daniel H. A novel bifunctionality: PAT1 and PAT2 mediate electrogenic proton/amino acid and electroneutral proton/fatty acid symport. FASEB J 2004; 18:1758-60. [PMID: 15345686 DOI: 10.1096/fj.03-1387fje] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, the PAT family of proton-dependent amino acid transporters has been identified as a novel class of mammalian amino acid symporters. PAT1 and PAT2 members mediate electrogenic uptake of small, neutral amino acids and derivatives by cotransport of protons. Analysis of the structural requirements for substrate recognition by PAT1 identified that a free amino group in a substrate is not essential for recognition. We therefore hypothesized that PAT1 and its ortholog PAT2 may also be able to recognize and transport the homologous short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. We examined in Xenopus laevis oocytes whether the SCFAs interact with the transporter by employing flux studies, electrophysiology and intracellular pH recordings. SCFAs did not induce positive inward currents but inhibited glycine-induced transport currents. PAT-mediated uptake of radiolabeled proline was also dose-dependently reduced by SCFA and could be described by first order competition kinetics with apparent Ki-values for butyrate of 6.0 +/- 0.7 and 7.6 +/- 1.3 mM for PAT1 and PAT2, respectively. Acetate as well as propionate uptake was significantly enhanced in oocytes expressing PAT1 or PAT2. An electroneutral H+/SCFA symport mode was demonstrated by recording intracellular pH changes under voltage clamp conditions with rate constants for the initial intracellular acidification in the presence of SCFAs significantly increased in PAT-expressing oocytes. In conclusion, our data demonstrate that the PAT1 and PAT2 proteins are capable to transport selected SCFAs in an electroneutral and the homologous amino acids in an electrogenic mode and are therefore a paradigm for bifunctional solute carriers.
Collapse
Affiliation(s)
- Martin Foltz
- Molecular Nutrition Unit, Institute of Nutritional Sciences, Technical University of Munich, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Short-chain fatty acids are important end products of bacterial carbohydrate fermentation in the colon. In particular, n-butyrate is thought to play a regulatory role in the maintenance of a physiological environment. Disturbances in the interplay between the microflora and the lining epithelium may lead to mucosal inflammation and promote carcinogenesis. The purpose of this article is to review the literature between March 2003 and February 2004 and to determine if recent studies have improved the understanding of butyrate effects in health and disease. RECENT FINDINGS Preclinical studies (cell culture experiments, animal studies) using modern molecular biological tools (including cDNA arrays) have provided new insights into the action of butyrate on colonic epithelial, vascular endothelial and extracolonic cell types. The new information adds pieces of evidence to the assumption that butyrate may ameliorate colonic inflammation and may be chemopreventive in carcinogenesis. In contrast, new data from clinical studies have been limited in the review period. SUMMARY In the era of molecular biology our understanding of subcellular processes that ultimately lead to inflammatory bowel disease or colorectal cancer has widened considerably. The new powerful technology of genomics and proteomics, however, raises new questions without easy answers. With this new information in mind, we will have to go back to human intervention trials to test the hypotheses generated in vitro. The preclinical data from the review period justify the need for carefully designed clinical trials to test the benefits derived from butyrate production.
Collapse
Affiliation(s)
- Wolfgang Scheppach
- Division of Gastroenterology, Department of Medicine, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany.
| | | |
Collapse
|
46
|
Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 2004; 317:463-71. [PMID: 15063780 DOI: 10.1016/j.bbrc.2004.03.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 01/29/2023]
Abstract
Cox-2 plays an important role in colon carcinogenesis and inflammation. Studying the HT-29 colon cancer cell line as a model, we found that Cox-2 expression and activity is increased approximately 25-fold by TNF-alpha. As previously reported for other Cox-2 inducers, this activation appears to result from a p38-mediated mRNA stabilization rather than an increase in promoter activity. The HDAC inhibitors butyrate and TSA blocked the TNF-alpha activation of Cox-2 protein and mRNA synthesis, and dramatically suppressed Cox-2 activity in HT-29 cells. The suppression of Cox-2 synthesis did not involve promoter inactivation and could be achieved even when applied after the TNF-alpha stimulus. The effect of the HDAC inhibitors was observed prior to the activation of p21 expression and did not require new protein synthesis. Finally, butyrate did not prevent p38 phosphorylation, so the block is likely to occur at a later step in the activation pathway. We propose that a component of the cytokine-induced Cox-2 mRNA stabilization pathway is sensitive to acetylation.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
47
|
Takachi R, Kimira M, Uesugi S, Kudo Y, Ouchi K, Watanabe S. The effect of dietary and plasma fatty acids on platelet aggregation in senior generation of Japanese women. Biofactors 2004; 22:205-10. [PMID: 15630285 DOI: 10.1002/biof.5520220143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary factors that influence platelet aggregation have not been fully clarified in humans. 63 Japanese women, aged 40-70 years old, completed one-day weighted dietary records, and received physical and laboratory examinations. Platelet aggregation was measured by 1.0 and 3.0 microM ADP induction. The results were analyzed with special reference to fatty acids. The short and medium chain fatty acid intake showed negative correlation with maximum percent of platelet aggregation induced by 1.0 microM ADP. Short and medium chain fatty acids in this study were mostly derived from milk and dairy products. Importance of short and medium chain fatty acid intake on platelet aggregation requires further study for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Ribeka Takachi
- Department of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG. Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett 2003; 554:88-94. [PMID: 14596920 DOI: 10.1016/s0014-5793(03)01110-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the effect of sodium butyrate on in vitro angiogenesis and cyclooxygenase (COX) expression using primary cultures of human intestinal microvascular endothelial cells (HIMEC). Butyrate inhibited VEGF-induced cellular proliferation, transmigration and tube formation of HIMEC. Butyrate also inhibited COX-2 expression as well as prostaglandin (PG)E2 and PGI2 production, and administration of PGI2 analog partially reversed the effect of butyrate on HIMEC angiogenesis. These results indicate that sodium butyrate inhibits HIMEC angiogenesis through down-regulation of COX-2 expression and PG production, and suggest that anti-angiogenic mechanisms may also be involved in the inhibitory effect of sodium butyrate on tumor growth.
Collapse
Affiliation(s)
- Hitoshi Ogawa
- Department of Medicine, Division of Gastroenterology and Hepatology, Digestive Disease Center, Froedtert Memorial Lutheran Hospital, Milwaukee Veterans Administration Medical Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|