1
|
Amjad H, Saleem F, Ahmad M, Nisar U, Arshad Dar H. Comprehensive bioinformatics-based annotation and functional characterization of bovine chymosin protein revealed novel biological insights. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100191. [PMID: 38259869 PMCID: PMC10801198 DOI: 10.1016/j.fochms.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Chymosin, an aspartic protease present in the stomachs of young ruminants like cows (bovine), causes milk coagulation and cheese production through the breakdown of κ-casein peptide bonds at the Met105-Phe106 site. Bovine chymosin is first synthesized as a pre-prochymosin that is cleaved to produce the mature chymosin protein. Despite significant strides in research, our understanding of this crucial enzyme remains incomplete. The purpose of this work was to perform in silico evolutionary and functional analysis and to gain unique insights into the structure of this protein. For this, the sequence of Bos taurus chymosin from UniProt database was subjected to various bioinformatics analyses. We found that bovine chymosin is a low molecular weight and hydrophilic protein that has homologs in other Bovidae species. Two active sites of aspartic peptidases, along with a functional domain, were identified. Gene Ontology analysis further confirmed chymosin's involvement in proteolysis and aspartic endopeptidase activity. Potential disordered residues and post-translational modification sites were also uncovered. It was revealed that the secondary structure of bovine chymosin is comprised of beta strands (44.27%), coils (43.65%), and alpha helices (12.07%). A highly optimized 3D structure was also obtained. Moreover, crucial protein-protein interactions were unveiled. Altogether, these findings provide valuable insights that could guide future research on bovine chymosin and its biological roles.
Collapse
Affiliation(s)
- Hafsa Amjad
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan
| | - Faiza Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan
| | - Munir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Uzma Nisar
- Department of Biotechnology, Lahore College for Women University, Lahore 54590, Pakistan
| | - Hamza Arshad Dar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Arain MA, Salman HM, Ali M, Khaskheli GB, Barham GS, Marghazani IB, Ahmed S. A Review on Camel Milk Composition, Techno-Functional Properties and Processing Constraints. Food Sci Anim Resour 2024; 44:739-757. [PMID: 38974725 PMCID: PMC11222694 DOI: 10.5851/kosfa.2023.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/09/2024] Open
Abstract
Camel milk plays a critical role in the diet of peoples belongs to the semi-arid and arid regions. Since prehistoric times, camel milk marketing was limited due to lacking the processing facilities in the camel-rearing areas, nomads practiced the self-consumption of raw and fermented camel milk. A better understanding of the techno-functional properties of camel milk is required for product improvement to address market and customer needs. Despite the superior nutraceutical and health promoting potential, limited camel dairy products are available compared to other bovines. It is a challenging impetus for the dairy industry to provide diversified camel dairy products to consumers with superior nutritional and functional qualities. The physicochemical behavior and characteristics of camel milk is different than the bovine milk, which poses processing and technological challenges. Traditionally camel milk is only processed into various fermented and non-fermented products; however, the production of commercially important dairy products (cheese, butter, yogurt, and milk powder) from camel milk still needs to be processed successfully. Therefore, the industrial processing and transformation of camel milk into various products, including fermented dairy products, pasteurized milk, milk powder, cheese, and other products, require the development of new technologies based on applied research. This review highlights camel milk's processing constraints and techno-functional properties while presenting the challenges associated with processing the milk into various dairy products. Future research directions to improve product quality have also been discussed.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Animal Husbandry &
Veterinary Science, Sindh Agriculture University, Tandojam
70050, Pakistan
- Faculty of Veterinary and Animal Sciences,
Lasbela University of Agriculture, Water and Marine Sciences,
Uthal 90150, Pakistan
| | | | - Mehboob Ali
- Rural Health Center
Akhtarabad, Okara 56100, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry &
Veterinary Science, Sindh Agriculture University, Tandojam
70050, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry &
Veterinary Science, Sindh Agriculture University, Tandojam
70050, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences,
Lasbela University of Agriculture, Water and Marine Sciences,
Uthal 90150, Pakistan
| | - Shabbir Ahmed
- Faculty of Animal Husbandry &
Veterinary Science, Sindh Agriculture University, Tandojam
70050, Pakistan
| |
Collapse
|
3
|
Riebel B, Govindasamy-Lucey S, Jaeggi JJ, Lucey JA. Functionality of process cheese made from Cheddar cheese with various rennet levels and high-pressure processing treatments. J Dairy Sci 2024; 107:74-90. [PMID: 37709025 DOI: 10.3168/jds.2023-23825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Due to its versatility and shelf stability, process cheese is gaining interest in many developing countries. The main structural component (base) of most processed cheese formulations is young Cheddar cheese that has high levels of intact casein. Exporting natural Cheddar cheese base from the United States to distant overseas markets would require the aging process to be slowed or reduced. As Cheddar cheese ripens, the original structure is broken down by proteolysis and solubilization of insoluble calcium phosphate. We explored the effect of varying rennet levels (we also used a less proteolytic rennet) and application of high-pressure processing (HPP) to Cheddar cheese, as we hoped these treatments might limit proteolysis and concomitant loss of intact casein. To try to retain high levels of insoluble Ca, all experimental cheeses were made with a high-draining pH and from concentrated milk. To compare our intact casein results with current practices, we manufactured a Cheddar cheese that was prepared according to typical industry methods (i.e., use of unconcentrated milk, calf chymosin [higher levels], and low draining pH value [∼6.2]). All experimental cheeses were made from ultrafiltered milk with protein and casein contents of ∼5.15% and 4.30%, respectively. Three (low) rennet levels were used: control (38 international milk clotting units/mL of rennet per 250 kg of milk), and 25% and 50% reduced from this level. All experimental cheeses had similar moisture contents (∼37%) and total Ca levels. Four days after cheese was made, half of the experimental samples from each vat underwent HPP at 600 MPa for 3 min. Cheddar cheese functionality was monitored during aging for 240 d at 4°C. Cheddar cheese base was used to prepare process cheese after aging for 14, 60, 120, 180, and 240 d. Loss tangent (LT) values of cheese during heating were measured by small strain oscillatory rheology. Intact casein levels were measured using the Kjeldahl method. Acid or base titrations were used to determine the buffering capacity and insoluble Ca levels as a percentage of total Ca. The LTmax values (an index of meltability) in process cheese increased with aging for all the cheese bases; the HPP treatment significantly decreased LTmax values of both base (natural) and process cheeses. All experimental cheeses had much higher levels of intact casein compared with typical industry-make samples. Process cheese made from the experimental treatments had visually higher stretching properties than process cheese made from Cheddar with the typical industry-make procedure. Residual rennet activity was not affected by rennet level, but the rate of proteolysis was slightly slower with lower rennet levels. The HPP treatment of Cheddar cheese reduced residual rennet activity and decreased the reduction of intact casein levels. The HPP treatment of Cheddar cheese resulted in process cheeses that had slightly higher hardness values, lower LTmax values, and retained higher storage modulus values at 70°C. We also observed that the other make procedures we used in all experimental treatments (i.e., using a less proteolytic chymosin, using a concentrated cheese milk, and maintaining a high draining pH value) had a major effect on retaining high levels of intact casein.
Collapse
Affiliation(s)
- B Riebel
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - S Govindasamy-Lucey
- Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706
| | - J J Jaeggi
- Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706
| | - J A Lucey
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706; Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
4
|
Balabova DV, Belash EA, Belenkaya SV, Shcherbakov DN, Belov AN, Koval AD, Mironova AV, Bondar AA, Volosnikova EA, Arkhipov SG, Sokolova OO, Chirkova VY, Elchaninov VV. Biochemical Properties of a Promising Milk-Clotting Enzyme, Moose ( Alces alces) Recombinant Chymosin. Foods 2023; 12:3772. [PMID: 37893665 PMCID: PMC10606240 DOI: 10.3390/foods12203772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Moose (Alces alces) recombinant chymosin with a milk-clotting activity of 86 AU/mL was synthesized in the Kluyveromyces lactis expression system. After precipitation with ammonium sulfate and chromatographic purification, a sample of genetically engineered moose chymosin with a specific milk-clotting activity of 15,768 AU/mg was obtained, which was used for extensive biochemical characterization of the enzyme. The threshold of the thermal stability of moose chymosin was 55 °C; its complete inactivation occurred after heating at 60 °C. The total proteolytic activity of moose chymosin was 0.332 A280 units. The ratio of milk-clotting and total proteolytic activities of the enzyme was 0.8. The Km, kcat and kcat/Km values of moose chymosin were 4.7 μM, 98.7 s-1, and 21.1 μM-1 s-1, respectively. The pattern of change in the coagulation activity as a function of pH and Ca2+ concentration was consistent with the requirements for milk coagulants for cheese making. The optimum temperature of the enzyme was 50-55 °C. The introduction of Mg2+, Zn2+, Co2+, Ba2+, Fe2+, Mn2+, Ca2+, and Cu2+ into milk activated the coagulation ability of moose chymosin, while Ni ions on the contrary inhibited its activity. Using previously published data, we compared the biochemical properties of recombinant moose chymosin produced in bacterial (Escherichia coli) and yeast (K. lactis) producers.
Collapse
Affiliation(s)
- Dina V. Balabova
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Ekaterina A. Belash
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Svetlana V. Belenkaya
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Dmitry N. Shcherbakov
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Alexander N. Belov
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Anatoly D. Koval
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Anna V. Mironova
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Alexander A. Bondar
- JCF “Genomics”, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Volosnikova
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Sergey G. Arkhipov
- Boreskov Institute of Catalysis, Siberan Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga O. Sokolova
- Boreskov Institute of Catalysis, Siberan Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Varvara Y. Chirkova
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Vadim V. Elchaninov
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| |
Collapse
|
5
|
Murashkin DE, Belenkaya SV, Bondar AA, Elchaninov VV, Shcherbakov DN. Analysis of Some Biochemical Properties of Recombinant Siberian Roe Deer (Capreolus pygargus) Chymosin Obtained in the Mammalian Cell Culture (CHO-K1). BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1284-1295. [PMID: 37770395 DOI: 10.1134/s0006297923090080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/30/2023]
Abstract
Structure of the chymosin gene of Siberian roe deer (Capreolus pygargus) was established for the first time and its exon/intron organization was determined. Coding part of the chymosin gene of C. pygargus was reconstructed by the Golden Gate method and obtained as a DNA clone. Comparative sequence analysis of the roe deer, cow, and one-humped camel prochymosins revealed a number of amino acid substitutions at the sites forming the substrate-binding cavity of the enzyme and affecting the S4 and S1' + S3' specificity subsites. Integration vector pIP1 was used to construct a plasmid pIP1-Cap in order to express recombinant roe deer prochymosin gene in CHO-K1 cells. CHO-K1-CYM-Cap pool cells were obtained, allowing synthesis and secretion of recombinant prochymosin into the culture fluid. As a result of zymogen activation, a recombinant roe deer chymosin was obtained and its total milk-clotting activity was estimated to be 468.4 ± 11.1 IMCU/ml. Yield of the recombinant roe deer chymosin was 500 mg/liter or ≈468,000 IMCU/liter, which exceeds the yields of genetically engineered chymosins in most of the expression systems used. Basic biochemical properties of the obtained enzyme were compared with the commercial preparations of recombinant chymosins from one-humped camel (Camelus dromedarius) and cow (Bos taurus). Specific milk-clotting activity of the recombinant chymosin of C. pygargus was 938 ± 22 IMCU/mg, which was comparable to that of the reference enzymes. Non-specific proteolytic activity of the recombinant roe deer chymosin was 1.4-4.5 times higher than that of the cow and camel enzymes. In terms of coagulation specificity, recombinant chymosin of C. pygargus occupied an intermediate position between the genetically engineered analogs of B. taurus and C. dromedarius chymosins. Thermostability threshold of the recombinant roe deer chymosin was 55°C. At 60°C, the enzyme retained <1% of its initial milk-clotting activity, and its complete thermal inactivation was observed at 65°C.
Collapse
Affiliation(s)
- Denis E Murashkin
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559, Russia
| | - Svetlana V Belenkaya
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Aleksandr A Bondar
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vadim V Elchaninov
- Federal Altaic Scientific Center of Agrobiotechnology, Barnaul, 656910, Russia
| | - Dmitrii N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559, Russia
- Altai State University, Barnaul, 656049, Russia
| |
Collapse
|
6
|
Jana A, Kakkar N, Halder SK, Das AJ, Bhaskar T, Ray A, Ghosh D. Efficient valorization of feather waste by Bacillus cereus IIPK35 for concomitant production of antioxidant keratin hydrolysate and milk-clotting metallo-serine keratinase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116380. [PMID: 36208515 DOI: 10.1016/j.jenvman.2022.116380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Keratinase production by Bacillus cereus IIPK35 was investigated under solid-state fermentation (SSF) and the maximum titer of 648.28 U/gds was revealed. Feather hydrolysates obtained from SSF exhibited paramount antioxidant properties in ABTS [2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid], FRAP [Ferric ion reducing antioxidant power], and DPPH [2,2,-Diphenyl-1-picrylhydrazyl] assay. The keratinase was purified up to homogeneity have a molecular weight of 42 kDa, and showed its stability between pH 6.5-10.0 and temperature 35-60 °C with optimum enzyme activity at pH 9.0 and 55 °C. The catalytic indices viz. Km of 9.8 mg/ml and Vmax of 307.7 μmol/min for keratin were determined. Besides keratin, the enzyme displayed broad and proteolytic activity towards other proteinaceous substrates such as casein, skim milk, gelatin, and bovine serum albumin. Pure keratinase activity was stimulated in presence of Ca2+ and Mg2+ ions, while it was strongly inhibited by both iodoacetamide and EDTA, indicating it to be a metallo-serine protease in nature. Circular dichroism study endorses the structural stability of the secondary structure at the said range of pH and temperature. The IIPK35 keratinase is non-cytotoxic in nature, shows remarkable storage stability and is stable in presence of Tween 80, Triton X 100, and sodium sulfite. Furthermore, it showed excellent milk clotting potential (107.6 Soxhlet Unit), suggesting its usefulness as an alternative milk clotting agent in the dairy industry. This study unlocks a new gateway for keratinase investigation in SSF using chicken feathers as substrate and biochemical and biophysical characterization of keratinase for better understanding and implication in industrial applications.
Collapse
Affiliation(s)
- Arijit Jana
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
| | - Nikita Kakkar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, 304022, India.
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Amar Jyoti Das
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| |
Collapse
|
7
|
Balabova DV, Belenkaya SV, Volosnikova EA, Hermes T, Chirkova VY, Sharlaeva EA, Shcherbakov DN, Belov AN, Koval AD, Elchaninov VV. Can Recombinant Tree Shrew (Tupaia belangeri chinensis) Chymosin Coagulate Cow (Bos taurus) Milk? APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
Genetically engineered chymosin from the tree shrew (Tupaia belangeri chinensis) has been obtained and partially characterized for the first time. The target enzyme was produced in Escherichia coli, strain BL21(DE3). It was shown that tree shrew recombinant chymosin coagulates cow milk (Bos taurus). The total and specific milk-clotting activity of the obtained enzyme was 0.7–5.3 IMCU/mL and 8.8–16.6 IMCU/mg. The nonspecific proteolytic activity of tree shrew recombinant chymosin in relation to total bovine casein was 30 and 117% higher than that of recombinant chymosin of cow and of single-humped camel respectively. It was found that in comparison with most of the known genetically engineered chymosins, the tree shrew enzyme showed exceptionally low thermal stability. After heating at 45°C, the coagulation ability of tree shrew recombinant chymosin decreased by more than 40%, and at 50°C the enzyme lost more than 90% of the initial milk-clotting activity. The Michaelis constant (Km), enzyme turnover number (kcat), and catalytic efficiency (kcat/Km) for genetically engineered chymosin from the tree shrew were 6.3 ± 0.1 µM, 11 927 ± 3169 s–1 and 1968 ± 620 µM–1 s–1, respectively. Comparative analysis showed that the primary structure of the chymosin-sensitive site of cow kappa-casein and the supposed similar sequence of tree shrew kappa-casein differed by 75%. The ability of tree shrew recombinant chymosin to coagulate cow’s milk, along with a low thermal stability and high catalytic efficiency with respect to the substrate, imitating the chymosin-sensitive site of cow kappa-casein, suggests that this enzyme is of potential interest for cheese making.
Collapse
|
8
|
Akishev Z, Aktayeva S, Kiribayeva A, Abdullayeva A, Baltin K, Mussakhmetov A, Tursunbekova A, Ramankulov Y, Khassenov B. Obtaining of Recombinant Camel Chymosin and Testing Its Milk-Clotting Activity on Cow's, Goat's, Ewes', Camel's and Mare's Milk. BIOLOGY 2022; 11:1545. [PMID: 36358248 PMCID: PMC9687658 DOI: 10.3390/biology11111545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/29/2023]
Abstract
In the cheese-making industry, commonly chymosin is used as the main milk-clotting enzyme. Bactrian camel (Camelus bactrianus) chymosin (BacChym) has a milk-clotting activity higher than that of calf chymosin for cow's, goat's, ewes', mare's and camel's milk. A procedure for obtaining milk-clotting reagent based on recombinant camel chymosin is proposed here. Submerged fermentation by a recombinant yeast (Pichia pastoris GS115/pGAPZαA/ProchymCB) was implemented in a 50 L bioreactor, and the recombinant camel chymosin was prepared successfully. The activity of BacChym in yeast culture was 174.5 U/mL. The chymosin was concentrated 5.6-fold by cross-flow ultrafiltration and was purified by ion exchange chromatography. The activity of the purified BacChym was 4700 U/mL. By sublimation-drying with casein peptone, the BacChym powder was obtained with an activity of 36,000 U/g. By means of this chymosin, cheese was prepared from cow's, goat's, ewes', camel's and mare's milk with a yield of 18%, 17.3%, 15.9%, 10.4% and 3%, respectively. Thus, the proposed procedure for obtaining a milk-clotting reagent based on BacChym via submerged fermentation by a recombinant yeast has some prospects for biotechnological applications. BacChym could be a prospective milk-clotting enzyme for different types of milk and their mixtures.
Collapse
Affiliation(s)
- Zhiger Akishev
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, Nur-Sultan 010008, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Assel Kiribayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Aliya Abdullayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Arman Mussakhmetov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Annelya Tursunbekova
- Corporate Development and Strategy Department, S. Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, Nur-Sultan 010001, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
9
|
Wang N, Yang C, Peng H, Guo W, Wang M, Li G, Liu D. The introduction of an N-glycosylation site into prochymosin greatly enhances its production and secretion by Pichia pastoris. Microb Cell Fact 2022; 21:177. [PMID: 36042512 PMCID: PMC9429577 DOI: 10.1186/s12934-022-01904-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-glycosylation is one of the most important post-translational modifications. Many studies have shown that N-glycosylation has a significant effect on the secretion level of heterologous glycoproteins in yeast cells. However, there have been few studies reporting a clear and unified explanation for the intracellular mechanism that N-glycosylation affect the secretion of heterologous glycoproteins so far. Pichia pastoris is an important microbial cell factory producing heterologous protein. It is of great significance to study the effect of N-glycosylation on the secretion level of heterologous protein. Camel chymosin is a glycoprotein with higher application potential in cheese manufacturing industry. We have expressed camel prochymosin in P. pastoris GS115, but the lower secretion level limits its industrial application. This study attempts to increase the secretion level of prochymosin through N-glycosylation, and explore the molecular mechanism of N-glycosylation affecting secretion. RESULTS Adding an N-glycosylation site at the 34th amino acid of the propeptide of prochymosin significantly increased its secretion in P. pastoris. N-glycosylation improved the thermostability of prochymosin without affecting the enzymatic activity. Immunoprecipitation coupled to mass spectrometry (IP-MS) analysis showed that compared with the wild prochymosin (chy), the number of proteins interacting with N-glycosylated mutant (chy34) decreased, and all differential interacting proteins (DIPs) were down-regulated in chy34-GS115 cell. The DIPs in endoplasmic reticulum were mainly concentrated in the misfolded protein pathway. Among the five DIPs in this pathway, overexpression of BiP significantly increased the secretion of chy. The knockout of the possible misfolded protein recognition elements, UDP-glycose:glycoprotein glucosyltransferase 1 and 2 (UGGT1/2) had no effect on the growth of yeast cells and the secretion of prochymosin. CONCLUSIONS In conclusion, N-glycosylation increased the secretion of prochymosin in P. pastoris trough the adjustment of intracellular interacted proteins. The results of our study may help to elucidate the molecular mechanism of N-glycosylation affecting secretion and provide a new research method to improve the secretion of heterologous glycoprotein in P. pastoris.
Collapse
Affiliation(s)
- Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caifeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huakang Peng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenfang Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengqi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Balabova DV, Rudometov AP, Belenkaya SV, Belov AN, Koval AD, Bondar AA, Bakulina AY, Rukhlova EA, Elchaninov VV, Shcherbakov DN. Biochemical and technological properties of moose (<i>Alces alces</i>) recombinant chymosin. Vavilovskii Zhurnal Genet Selektsii 2022; 26:240-249. [PMID: 35774365 PMCID: PMC9167822 DOI: 10.18699/vjgb-22-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing “cheese-making” standards is an urgent biotechnological task. Within this study, we for the first time constructed an expression vector allowing production of a recombinant analog of moose chymosin in the expression system of Escherichia coli (strain SHuffle express). We built a model of the spatial structure of moose chymosin and compared the topography of positive and negative surface charges with the correspondent structures of cow and camel chymosins. We found that the distribution of charges on the surface of moose chymosin has common features with that of cow and camel chymosins. However, the moose enzyme carries a unique positively charged patch, which is likely to affect its interaction with the substrate. Biochemical and technological properties of the moose rChn were studied. Commercial rСhns of cow and camel were used as comparison enzymes. In some technological parameters, the moose rChn proved to be superior to the reference enzymes. Сompared with the cow and camel rСhns, the moose chymosin specific activity is less dependent on the changes in CaCl2 concentration in the range of 1–5 mM and pH in the range of 6–7, which is an attractive technological property. The total proteolytic activity of the moose rСhn occupies an intermediate position between the rСhns of cow and camel. The combination of biochemical and technological properties of the moose rСhn argues for further study of this enzyme.
Collapse
Affiliation(s)
| | - A. P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”
| | - S. V. Belenkaya
- Altai State University; State Research Center of Virology and Biotechnology “Vector”; Novosibirsk State University
| | - A. N. Belov
- Federal Altai Scientific Center for Agrobiotechnology, Siberian Research Institute of Cheese-Making
| | - A. D. Koval
- Federal Altai Scientific Center for Agrobiotechnology, Siberian Research Institute of Cheese-Making
| | - A. A. Bondar
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - A. Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”; Novosibirsk State University
| | - E. A. Rukhlova
- State Research Center of Virology and Biotechnology “Vector”
| | - V. V. Elchaninov
- Federal Altai Scientific Center for Agrobiotechnology, Siberian Research Institute of Cheese-Making
| | - D. N. Shcherbakov
- Altai State University; State Research Center of Virology and Biotechnology “Vector”
| |
Collapse
|
11
|
Mbye M, Ayyash M, Abu-Jdayil B, Kamal-Eldin A. The Texture of Camel Milk Cheese: Effects of Milk Composition, Coagulants, and Processing Conditions. Front Nutr 2022; 9:868320. [PMID: 35520282 PMCID: PMC9062519 DOI: 10.3389/fnut.2022.868320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous people in African, Middle Asian, Middle Eastern, and Gulf Cooperation Council (GCC) countries highly value camel milk (CM) as it plays a vital role in their diet. The protein composition of CM as well as the structure of its casein micelles differs significantly from bovine milk (BM). Cheeses made from CM have a weak curd and soft texture compared to those made from BM. This review article presents and discusses the effect of milk protein composition, processing conditions (pasteurization and high-pressure treatment), and coagulants (camel chymosin, organic acids, plant proteases) on the quality of CM cheeses. CM cheese's weak texture is due to compositional characteristics of the milk, including low κ-casein-to-β-casein ratio (≈0.05 in CM vs. ≈0.33 in BM), large micelle size, different whey protein components, and higher proteolytic activity than BM. CM cheese texture can be improved by preheating the milk at low temperatures or by high pressure. Supplementing CM with calcium has shown inconsistent results on cheese texture, which may be due to interactions with other processing conditions. Despite their structure, CM cheeses are generally well liked in sensory studies.
Collapse
Affiliation(s)
- Mustapha Mbye
- Department of Food Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Basim Abu-Jdayil
- Department of Petroleum & Chemical Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
12
|
Challenging Sustainable and Innovative Technologies in Cheese Production: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well known that cheese yield and quality are affected by animal genetics, milk quality (chemical, physical, and microbiological), production technology, and the type of rennet and dairy cultures used in production. Major differences in the same type of cheese (i.e., hard cheese) are caused by the rennet and dairy cultures, which affect the ripening process. This review aims to explore current technological advancements in animal genetics, methods for the isolation and production of rennet and dairy cultures, along with possible applications of microencapsulation in rennet and dairy culture production, as well as the challenge posed to current dairy technologies by the preservation of biodiversity. Based on the reviewed scientific literature, it can be concluded that innovative approaches and the described techniques can significantly improve cheese production.
Collapse
|
13
|
Baig D, Sabikhi L, Khetra Y, Shelke PA. Technological challenges in production of camel milk cheese and ways to overcome them – A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Yang X, Zhang Z, Zhang W, Qiao H, Wen P, Zhang Y. Proteomic analysis, purification and characterization of a new milk-clotting protease from Tenebrio molitor larvae. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Li B, Waldron DS, Drake M, Lyne J, Kelly AL, McSweeney PL. Suitability of a novel camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese manufacture. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Muthukumaran MS, Mudgil P, Baba WN, Ayoub MA, Maqsood S. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2008953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. Selva Muthukumaran
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, India
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| |
Collapse
|
17
|
Bittante G, Amalfitano N, Bergamaschi M, Patel N, Haddi ML, Benabid H, Pazzola M, Vacca GM, Tagliapietra F, Schiavon S. Composition and aptitude for cheese-making of milk from cows, buffaloes, goats, sheep, dromedary camels, and donkeys. J Dairy Sci 2021; 105:2132-2152. [PMID: 34955249 DOI: 10.3168/jds.2021-20961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
Bovines account for about 83% of the milk and dairy products consumed by humans worldwide, the rest represented by bubaline, caprine, ovine, camelid, and equine species, which are particularly important in areas of extensive pastoralism. Although milk is increasingly used for cheese production, the cheese-making efficiency of milk from the different species is not well known. This study compares the cheese-making ability of milk sampled from lactating females of the 6 dairy species in terms of milk composition, coagulation properties (using lactodynamography), curd-firming modeling, nutrients recovered in the curd, and cheese yield (through laboratory model-cheese production). Equine (donkey) milk had the lowest fat and protein content and did not coagulate after rennet addition. Buffalo and ewe milk yielded more fresh cheese (25.5 and 22.9%, respectively) than cow, goat, and dromedary milk (15.4, 11.9, and 13.8%, respectively). This was due to the greater fat and protein contents of the former species with respect to the latter, but also to the greater recovery of fat in the curd of bubaline (88.2%) than in the curd of camelid milk (55.0%) and consequent differences in the recoveries of milk total solids and energy in the curd; protein recovery, however, was much more similar across species (from 74.7% in dromedaries to 83.7% in bovine milk). Compared with bovine milk, the milk from the other Artiodactyla species coagulated more rapidly, reached curd firmness more quickly (especially ovine milk), had a more pronounced syneresis (especially caprine milk), had a greater potential asymptotical curd firmness (except dromedary and goat milk), and reached earlier maximum curd firmness (especially caprine and ovine milk). The maximum measured curd firmness was greater for bubaline and ovine milk, intermediate for bovine and caprine milk, and lower for camelid milk. The milk of all ruminant species can be used to make cheese, but, to improve efficiency, cheese-making procedures need to be optimized to take into account the large differences in their coagulation, curd-firming, and syneresis properties.
Collapse
Affiliation(s)
- Giovanni Bittante
- DAFNAE-Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Nicolò Amalfitano
- DAFNAE-Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Matteo Bergamaschi
- DAFNAE-Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Nageshvar Patel
- DAFNAE-Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Mohamed-Laid Haddi
- Laboratoire de Mycologie, Biotechnologie et Activité Microbienne, Université des Frères Mentouri, Constantine 25000, Algeria
| | - Hamida Benabid
- Institut de Nutrition, Alimentation et Technologies Agro-Alimentaires, Université des Frères Mentouri, Constantine 25000, Algeria
| | - Michele Pazzola
- Department of Animal Biology, University of Sassari, 07100 Sassari, Italy
| | | | - Franco Tagliapietra
- DAFNAE-Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy.
| | - Stefano Schiavon
- DAFNAE-Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova (Padua), 35020 Legnaro (PD), Italy
| |
Collapse
|
18
|
Ayyash M, Abdalla A, Alameri M, Baig MA, Kizhakkayil J, Chen G, Huppertz T, Kamal-Eldin A. Biological activities of the bioaccessible compounds after in vitro digestion of low-fat Akawi cheese made from blends of bovine and camel milk. J Dairy Sci 2021; 104:9450-9464. [PMID: 34147215 DOI: 10.3168/jds.2021-20438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to assess protein degradation and biological activities of the water-soluble extract (WSE) and the 10 kDa permeable and nonpermeable fractions of in vitro digesta of low-fat Akawi cheese made from blends (100:0, 85:15, or 70:30) of bovine milk and camel milk and ripened for 28 d. Biological activities, such as antioxidant activities, amylase and glucosidase inhibition, angiotensin-converting enzyme inhibition, and antiproliferative of the WSE, and the 10 kDa permeable and nonpermeable fraction of the digesta were assessed. To identify the nature of the bioaccessible compounds, untargeted metabolomic analysis was carried out by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Higher o-phthaldialdehyde absorbances were observed in cheeses made of bovine-camel milk blends compared with cheese from bovine milk only. The WSE from these blends also exhibited higher angiotensin-converting enzyme inhibitory effects and higher antiproliferative effects than from bovine milk. The results from this study suggest that the use of blends of camel milk and bovine milk can modulate biological activities of low-fat Akawi cheese.
Collapse
Affiliation(s)
- Mutamed Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, PO Box 15551, UAE.
| | - Abdelmoneim Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Mouza Alameri
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, PO Box 15551, UAE
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, PO Box 15551, UAE
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, PO Box 15551, UAE
| | - Gang Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China, 100081
| | - Thom Huppertz
- FrieslandCampina, Amersfoort 3818LE, the Netherlands; Wageningen University & Research, Wageningen 6708PD, the Netherlands
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, PO Box 15551, UAE
| |
Collapse
|
19
|
Filkin SY, Chertova NV, Zatsepin SS, Sadykhov EG, Fedorov AN, Lipkin AV. Production of Beluga Whale (Delphinapterus leucas) Chymosin in the Methylotrophic Yeast Komagataella phaffii and Characteristics of the Recombinant Enzyme. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Akishev Z, Kiribayeva A, Mussakhmetov A, Baltin K, Ramankulov Y, Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. Heliyon 2021; 7:e07137. [PMID: 34113734 PMCID: PMC8170492 DOI: 10.1016/j.heliyon.2021.e07137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Camel chymosin can be efficiently employed to produce cheese. Traditionally the rennet enzyme produced by the glands of the fourth stomach of ruminant animals (abomassum) is used in cheese making. Full-length Camelus bactrianus (Bactrian camel) prochymosin gene was synthesized and constitutively expressed in Pichia pastoris cells under glyceraldehydes-3-phosphate dehydrogenase (GAP) promoter. It was purified by sequential anion and cation exchange chromatography. SDS-PAGE analysis resulted in two bands, approximately 42 and 35 kDa. The 42 kDa band vanished when the sample was treated with endoglycosidase H, indicating that the recombinant protein is partially glycosylated. Optimal pH for the activity of the highest-purity recombinant chymosin was pH 4.5 for cow's milk and pH 4.0 for mare's milk. The range 45-50 °C and 70 °C for cow's and mare's milk types, respectively, was found to be the most appropriate for maximal relative milk-clotting activity. Concentration of CaCl2 that ensured the stability of the chymosin milk-clotting activity was between 20 and 50 mM with an optimum at 30 mM. Milk-clotting activity of camel recombinant chymosin and ability to make curd was successfully tested on fresh mare's milk. Pichia pastoris strain with integrated camel chymosin gene showed high productivity of submerged fermentation in bioreactor with milk-clotting activity 1412 U/mL and 80 mg/L enzyme yield. These results suggest that the constitutive expression of the camel chymosin Camelus bactrianus in the yeast Pichia pastoris has good prospects for practical applications.
Collapse
Affiliation(s)
- Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
- L.N.Gumilyov Eurasian National University, 2 Kanysh Satpayev Street, Nur-Sultan, 010008, Kazakhstan
| | - Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
- L.N.Gumilyov Eurasian National University, 2 Kanysh Satpayev Street, Nur-Sultan, 010008, Kazakhstan
| | - Arman Mussakhmetov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
21
|
Konuspayeva G, Faye B. Recent Advances in Camel Milk Processing. Animals (Basel) 2021; 11:ani11041045. [PMID: 33917722 PMCID: PMC8068116 DOI: 10.3390/ani11041045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The camel milk market was limited for a long time by its almost exclusive self-consumption use in nomadic camps. Significant development has been observed for the past two or three decades, including internationally, boosted by its reputation regarding its health effects for regular consumers. Such emergence has led the stakeholders in the sector to offer diversified products corresponding to the tastes of increasingly urbanized consumers, more sensitive to “modern” products. Thus, traditionally drunk in raw or naturally fermented form, camel milk has undergone unprecedented transformations such as pasteurization, directed fermentation, cheese or yoghurt processing, and manufacture of milk powder for the export market. However, the specific characteristics of this milk (composition, physical properties) mean that the technologies applied (copied from technologies used for cow milk) must be adapted. In this review, some technological innovations are presented, enabling stakeholders of the camel milk sector to satisfy the demand of manufacturers and consumers. Abstract Camel milk is a newcomer to domestic markets and especially to the international milk market. This recent emergence has been accompanied by a diversification of processed products, based on the technologies developed for milk from other dairy species. However, technical innovations had to be adapted to a product with specific behavior and composition. The transformation of camel milk into pasteurized milk, fermented milk, cheese, powder, or other products was supported, under the pressure of commercial development, by technological innovations made possible by a basic and applied research set. Some of these innovations regarding one of the less studied milk sources are presented here, as well as their limitations. Technical investigations for an optimal pasteurization, development of controlled fermentation at industrial scale, control of cheese technology suitable for standardized production, and improvements in processes for the supply of a high-quality milk powder are among the challenges of research regarding camel milk.
Collapse
Affiliation(s)
- Gaukhar Konuspayeva
- UMR SELMET, CIRAD-ES, 34398 Montpellier, France;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Bernard Faye
- UMR SELMET, CIRAD-ES, 34398 Montpellier, France;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence: ; Tel.: +33-671-355-928
| |
Collapse
|
22
|
Ali Hanoğlu S, Ektiren D, Karaaslan M. Recombinant expression and characterization of Oryctolagus cuniculus chymosin in Komagataella phaffii (Pichia pastoris). Protein Expr Purif 2021; 183:105874. [PMID: 33744413 DOI: 10.1016/j.pep.2021.105874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted for investigating expression and enzymatic characteristics of recombinant Oryctolagus cuniculus chymosin (ROCC) expressed in Pichia pastoris. SDS-PAGE of partially purified supernatant displayed two distinct molecular bands approximately at the sizes of 40 kDa and 45 kDa corresponding to chymosin and partially glycosylated chymosin, respectively. Proteolysis assay demonstrated that rabbit chymosin was more specific compared to bovine and camel chymosins when it comes to hydrolyzing α, β, and κ-casein. Rabbit chymosin kept its stability in a wide pH range (3.0-6.0) at 37 °C for 8 h. Active chymosin exhibited maximum enzymatic activity at 40 °C and pH 4.0 with the addition of 75 mM CaCl2. The ROCC clotting activity on donkey, cow, goat, lamb, camel milk was determined as 40, 10, 5.7, 3.07, and 2.66 IMCU/mL, respectively. These results revealed that ROCC might possess a potential for incorporation into cheese manufacture technology as a milk-clotting enzyme.
Collapse
Affiliation(s)
- Selin Ali Hanoğlu
- Harran University, Engineering Faculty, Food Engineering Department, Sanliurfa, Turkey
| | - Demet Ektiren
- Harran University, Engineering Faculty, Food Engineering Department, Sanliurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Sanliurfa, Turkey.
| |
Collapse
|
23
|
Abstract
The transformation of camel milk into cheese is an operation considered very delicate because of several difficulties encountered in achieving coagulation. The present study aims to improve coagulation abilities of camel milk using enzyme extracts from pineapple, kiwi, and ginger. Our results concerning the characterization of the enzymatic extract showed an extraction yield that varies according to the type of extract (pineapple: 75.28% ± 4.59, kiwi: 63.97% ± 5.22, and ginger: 28.64% ± 1.47). The optimum coagulation conditions of the 3 types of extract were as follows: for pineapple: pH = 5 and temperature = 45°C; for kiwifruit: pH = 6.6 and temperature = 40°C; and for ginger: pH = 6.6 and temperature = 45°C. A fresh cheese was made from camel milk with a particular nutritional quality and consistency. The kiwi proteases displayed chymosin-like properties and thus hold the best potential for use as a milk coagulant in cheese production.
Collapse
|
24
|
Belenkaya SV, Bondar AA, Kurgina TA, Elchaninov VV, Bakulina AY, Rukhlova EA, Lavrik OI, Ilyichev AA, Shcherbakov DN. Characterization of the Altai Maral Chymosin Gene, Production of a Chymosin Recombinant Analog in the Prokaryotic Expression System, and Analysis of Its Several Biochemical Properties. BIOCHEMISTRY (MOSCOW) 2021; 85:781-791. [PMID: 33040722 DOI: 10.1134/s0006297920070068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the first time, the chymosin gene (CYM) of a maral was characterized. Its exon/intron organization was established using comparative analysis of the nucleotide sequence. The CYM mRNA sequence encoding a maral preprochymosin was reconstructed. Nucleotide sequence of the CYM maral mRNA allowed developing an expression vector to ensure production of a recombinant enzyme. Recombinant maral prochymosin was obtained in the expression system of Escherichia coli [strain BL21 (DE3)]. Total milk-coagulation activity (MCA) of the recombinant maral chymosin was 2330 AU/ml. The recombinant maral prochymosin relative activity was 52955 AU/mg. The recombinant maral chymosin showed 100-81% MCA in the temperature range 30-50°C, thermal stability (TS) threshold was 50°C, and the enzyme was completely inactivated at 70°C. Preparations of the recombinant chymosin of a single-humped camel and recombinant bovine chymosin were used as reference samples. Michaelis-Menten constant (Km), turnover number (kcat), and catalytic efficiency (kcat/Km) of the recombinant maral chymosin, were 1.18 ± 0.1 µM, 2.68 ± 0.08 s-1 and 2.27± 0.10 µm M-1·s-1, respectively.
Collapse
Affiliation(s)
- S V Belenkaya
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - A A Bondar
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - T A Kurgina
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - V V Elchaninov
- Federal Altai Scientific Center of Agrobiotechnologies, Siberian Research Institute of Cheese Making, Barnaul, 656910, Russia
| | - A Yu Bakulina
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - E A Rukhlova
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - A A Ilyichev
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - D N Shcherbakov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia.,Altai State University, Barnaul, 656049, Russia
| |
Collapse
|
25
|
Li CP, Liu F, Zheng J, Zhao H. A novel electrochemical assay for chymosin determination using a label-free peptide as a substrate. J Dairy Sci 2021; 104:2511-2519. [PMID: 33455776 DOI: 10.3168/jds.2020-19282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
Chymosin is a predominant enzyme in rennet and is used in cheese production because of its excellent milk-clotting activity. Herein, we proposed a facile and label-free electrochemical method for determining chymosin activity based on a peptide-based enzyme substrate. The synthesized substrate peptide for chymosin was assembled onto the surface of the Au-deposited grassy carbon electrode. The current was proportional to chymosin activity, and thus chymosin activity could be determined. The detection ranges of chymosin activity were 2.5 to 25 U mL-1. The detection limit of chymosin activity was 0.8 U mL-1. The sensing platform was used to quantify chymosin activity in commercial rennet with high selectivity, excellent stability, and satisfactory reproducibility. We developed a facile, fast, and effective electrochemical assay for detecting chymosin activity, which has potential applications in cheesemaking.
Collapse
Affiliation(s)
- Can-Peng Li
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China.
| | - Feng Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China
| | - Jing Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China.
| |
Collapse
|
26
|
Beltrán‐Espinoza JA, Domínguez‐Lujan B, Gutiérrez‐Méndez N, Chávez‐Garay DR, Nájera‐Domínguez C, Leal‐Ramos MY. The impact of chymosin and plant‐derived proteases on the acid‐induced gelation of milk. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Belenkaya SV, Shcherbakov DN, Balabova DV, Belov AN, Koval AD, Elchaninov VV. Production of Maral (Cervus elaphus sibiricus Severtzov) Recombinant Chymosin in the Prokaryotic Expression System and the Study of the Aggregate of Its Biochemical Properties Relevant for the Cheese-Making Industry. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Putranto WS, Suhartono MT, Kusumaningrum HD, Giriwono PE, Mustopa AZ. A novel rennin like protease from Lactobacillus plantarum 1.13 isolated from Indonesian fermented meat (Bakasam). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Al-Zoreky NS, Almathen FS. Using recombinant camel chymosin to make white soft cheese from camel milk. Food Chem 2020; 337:127994. [PMID: 32919273 DOI: 10.1016/j.foodchem.2020.127994] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023]
Abstract
Bovine derived chymosin in rennet cannot coagulate camel milk (CAM). The study aimed at producing cheese curd from CAM using a recombinant camel chymosin. Pasteurized CAM was prepared for curdling using a recombinant camel chymosin (50 IMCU/ kg). CAM (pH 6.65) contained 2.83% Fat, 3.34% proteins and 9.11% non-fat solids. Physicochemical properties of soft cheese from cultured CAM were 51.89%, 15.62%, 20.21% and 2.47% for moisture, protein, fat and ash, respectively. Cultured CAM afforded higher cheese yield (8.75%) than non-cultured CAM (3.34%). CAM cheese whey had 48.94% and 76.80% of the fat and proteins, respectively, of their corresponding concentrations in CAM. The study is the first report on soft cheeses from CAM (cultured and non-cultured) using a recombinant camel chymosin, with reference to whey constituents. CAM cheese and whey could be added-value products.
Collapse
Affiliation(s)
- Najeeb S Al-Zoreky
- Department of Food and Nutrition Sciences, College of Agricultural & Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Camel Research Center, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Faisal S Almathen
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Camel Research Center, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
30
|
Belenkaya SV, Balabova DV, Belov AN, Koval AD, Shcherbakov DN, Elchaninov VV. Basic Biochemical Properties of Recombinant Chymosins (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Dynamic in situ imaging of semi-hard cheese microstructure under large-strain tensile deformation: Understanding structure-fracture relationships. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Lamichhane P, Sharma P, Kennedy D, Kelly AL, Sheehan JJ. Microstructure and fracture properties of semi-hard cheese: Differentiating the effects of primary proteolysis and calcium solubilization. Food Res Int 2019; 125:108525. [DOI: 10.1016/j.foodres.2019.108525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
|
33
|
Assessing the authenticity of animal rennet using δ 15N analysis of chymosin. Food Chem 2019; 293:545-549. [PMID: 31151646 DOI: 10.1016/j.foodchem.2019.04.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 11/20/2022]
Abstract
Chymosin is a protease that curdles the milk casein. Animal rennet was the first discovered source of chymosin and its use is mandatory for the production of PDO cheeses such as Parmigiano Reggiano and Grana Padano. Of the alternatives, fermentation-produced chymosin is the most competitive because it functions in a similar way, but is much cheaper. Analytical tools are necessary in order to distinguish the 2 types of chymosin and verify the compulsory use of animal rennet in the production of PDO cheeses. In this work, a method to analyse 15N/14N in chymosin after extraction was developed. The δ15N values of animal rennet range from 5.7‰ to 8‰, whereas the δ15N values of fermentation-produced chymosin are significantly lower, ranging from -5.3‰ to 2.2‰. A threshold value of 5.7‰ was defined for authentic animal rennet. Addition of fermentation-produced chymosin to animal rennet, or its complete substitution, can be therefore detected.
Collapse
|
34
|
Gumus P, Hayaloglu AA. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir. J Dairy Sci 2019; 102:5945-5956. [PMID: 31079909 DOI: 10.3168/jds.2018-15671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022]
Abstract
Beyaz peynir, a white brined cheese, was manufactured using different blends of camel chymosin (100, 75, 50, 25, and 0%) with calf chymosin and ripened for 90 d. The purpose of this study was to determine the best mixture of coagulant for Beyaz peynir, in terms of proteolysis, texture, and melting characteristics. The cheeses were evaluated in terms of chemical composition, levels of proteolysis, total free amino acids, texture, meltability, residual coagulant activity, microstructure, and sensory properties during 90 d of ripening. Differences in the gross chemical composition were statistically significant for all types of cheeses. Levels of proteolysis were highly dependent on the blends of the coagulants. Higher proteolysis was observed in cheeses that used a higher ratio of calf chymosin. Differences in urea-PAGE and peptide profiles of each cheese were observed as well. Meltability values proportionally increased with the higher increasing levels of calf chymosin in the blend formula. These coagulants had a slight effect on the microstructure of cheeses. The cheese made with camel chymosin had a harder texture than calf chymosin cheese, and hardness values of all cheese samples decreased during ripening. The cheeses with a high ratio of calf chymosin had higher residual enzyme activity than those made with camel chymosin. No significant difference in sensory properties was observed among the cheeses. In conclusion, cheeses made with a high level of calf chymosin had a higher level of proteolysis, residual coagulant activity, and meltability. The cheeses also had a softer texture than cheeses made with a high content of camel chymosin. Camel chymosin may be used as a coagulant alone if low or limited levels of proteolysis are desired in cheese.
Collapse
Affiliation(s)
- P Gumus
- Department of Food Engineering, Kilis 7 Aralık University, 79000 Kilis, Turkey
| | - A A Hayaloglu
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
35
|
Soltani M, Sahingil D, Gokce Y, Hayaloglu AA. Effect of blends of camel chymosin and microbial rennet ( Rhizomucor miehei) on chemical composition, proteolysis and residual coagulant activity in Iranian Ultrafiltered White cheese. Journal of Food Science and Technology 2019; 56:589-598. [PMID: 30906016 DOI: 10.1007/s13197-018-3513-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/21/2017] [Accepted: 05/21/2018] [Indexed: 11/24/2022]
Abstract
Iranian Ultrafiltered White cheese was produced by using different blends of coagulants (100:0, 75:25, 50:50, 25:75 and 0:100; Rhizomucor miehei and camel chymosin, respectively) and ripened for 90 days. The effect of different combinations of these coagulants on chemical composition, proteolysis and residual coagulant activity of the cheeses were studied. The results showed that pH, fat-in-dry matter, salt-in-dry matter and protein contents of the cheeses were significantly influenced by type and concentration of the coagulants. The difference between proteolytic activities of the two coagulants resulted in different levels of proteolysis in the cheeses. A direct relationship was determined between using higher concentrations of R. miehei and increasing the hydrolysis of αs1-casein in the cheeses, during ripening. The residual coagulant activity was influenced by the type and concentration of the coagulant as well. In conclusion, R. miehei provided a higher level of proteolysis and residual coagulant activity compared with camel chymosin.
Collapse
Affiliation(s)
- Mostafa Soltani
- 1Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,2Nutrition and Food Sciences Research Center, Tehran Medical Sciences,, Islamic Azad University, Tehran, Iran
| | - Didem Sahingil
- 3Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - Yasemin Gokce
- 3Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - Ali A Hayaloglu
- 3Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
36
|
Bekele B, Hansen EB, Eshetu M, Ipsen R, Hailu Y. Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk. J Dairy Sci 2018; 102:1108-1115. [PMID: 30591338 DOI: 10.3168/jds.2018-15084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
This experiment was conducted to investigate the effect of starter cultures on the physicochemical properties, texture, and consumer preferences of soft white cheese (SWC) made from camel (Camelus dromedarius) milk. The experiment was laid out in a completely randomized design with 5 treatments [starter cultures; i.e., 1 thermophilic (STI-12), 2 blended (RST-743 and XPL-2), and 2 mesophilic (R-707 and CHN-22) cultures]. Starter cultures STI-12 and RST-743 were inoculated at 37°C, whereas XPL-2, R-707, and CHN-22 were inoculated at 30°C. Camel milk inoculated using STI-12 and RST-743 cultures resulted in faster acidification than XPL-2, R-707, and CHN-22 cultures. Camel milk SWC made using STI-12 and CHN-22 cultures gave lower pH (4.54) and titratable acidity (0.59), respectively, whereas R-707 culture resulted in high cheese yield (13.44 g/100 g). In addition, high fat (20.91 g/100 g), protein (17.49 g/100 g), total solids (43.44 g/100 g), and ash (2.40 g/100 g) contents were recorded for SWC made from camel milk made using RST-743 culture. Instrumental analysis of cheese texture revealed differences in resistance to deformation in which camel milk SWC made using RST-743 culture gave higher firmness (3.20 N) and brittleness (3.12 N). However, no significant difference was observed among camel milk SWC adhesiveness made using different starter cultures. Consumer preference for appearance, aroma, taste, and overall acceptances of SWC were affected by inoculation of starter cultures. Considering curd firmness, cheese yield, compositional quality, and textures using STI-12, RST-743, and R-707, these cultures were found to be better for the manufacture of camel milk SWC.
Collapse
Affiliation(s)
- Birhanu Bekele
- Yabello Pastoral and Dryland Agriculture Research Center, Oromia Agricultural Research Institute, PO Box 85, Yabello, Ethiopia.
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mitiku Eshetu
- School of Animal and Range Sciences, Haramaya University, PO Box 138, Dire Dawa, Ethiopia
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Yonas Hailu
- School of Animal and Range Sciences, Haramaya University, PO Box 138, Dire Dawa, Ethiopia
| |
Collapse
|
37
|
Belenkaya SV, Rudometov AP, Shcherbakov DN, Balabova DV, Kriger AV, Belov AN, Koval AD, Elchaninov VV. Biochemical Properties of Recombinant Chymosin in Alpaca (Vicugna pacos L.). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818060054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Alinovi M, Cordioli M, Francolino S, Locci F, Ghiglietti R, Monti L, Tidona F, Mucchetti G, Giraffa G. Effect of fermentation-produced camel chymosin on quality of Crescenza cheese. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Leite Júnior BRDC, Tribst AAL, Yada RY, Cristianini M. Milk-clotting activity of high pressure processed coagulants: Evaluation at different pH and temperatures and pH influence on the stability. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Rheological and sensory properties and aroma compounds formed during ripening of soft brined cheese made from camel milk. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Alihanoğlu S, Ektiren D, Akbulut Çakır Ç, Vardin H, Karaaslan A, Karaaslan M. Effect of Oryctolagus cuniculus (rabbit) rennet on the texture, rheology, and sensory properties of white cheese. Food Sci Nutr 2018; 6:1100-1108. [PMID: 29983974 PMCID: PMC6021729 DOI: 10.1002/fsn3.649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
Calf rennet has long been used in cheese-making. Because of calf rennet shortage and high cost, novel proteases were needed to meet industry's increasing enzyme demand. Recombinant chymosins and camel chymosin were started to be used in the industry. There is no study in the literature subjecting use of rabbit rennet in cheese production. Chemical, rheological, and sensorial characteristics of white cheese made with rabbit rennet were investigated in this study. Quality characteristics of rabbit rennet cheese (RC) were compared to cheeses produced with commercial calf (CC) and camel chymosins (CLC). RC and CLC exhibited higher hardness and dynamic moduli values throughout the storage as compared to CC. Although moisture levels of cheese samples were similar at day 60, CC had much lower hardness and dynamic moduli values than CLC and RC. While the appearance and structure were better for CLC, the highest odor and taste scores were obtained by RC during 60 days of storage. The results of this investigation proposed that rabbit rennet could be a suitable milk coagulant for white cheese production. Our results showed that rabbit rennet has comparable cheese-making performance with camel chymosin and could be a good alternative for calf chymosin.
Collapse
Affiliation(s)
- Selin Alihanoğlu
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Demet Ektiren
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Çağım Akbulut Çakır
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Hasan Vardin
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Asliye Karaaslan
- Technical Sciences Vocational SchoolFood Technology ProgramHarran UniversitySanliurfaTurkey
| | - Mehmet Karaaslan
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| |
Collapse
|
42
|
Spatiotemporal Characterization of Texture of Crescenza Cheese, a Soft Fresh Italian Cheese. J FOOD QUALITY 2018. [DOI: 10.1155/2018/5062124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crescenza cheese is a soft fresh cheese without rind, typically manufactured using a high amount of rennet. It is characterized by a fast proteolysis that causes changes in texture and leads to the so-called defect of “colatura” that is the tendency of the matrix to freely flow in the outer part of the cheese and generate spatial inhomogeneities into the cheese. In this paper, the textural properties of Crescenza were evaluated for cheeses manufactured using two types of rennet and starter cultures. Cheese texture was monitored during a 3-week shelf life considering a possible spatial variability of the matrix. At the beginning of the shelf life, a certain spatial inhomogeneity was observed from the center to the edge of the cheese block for all the trials. The firmness decreases from the center to the outer part of the block. During storage, hardness showed a decrease during 1st wk of storage; moreover, from days 7 to 21, cheese increased its hardness in the center and decreased it in the outer part of the block, resulting in a higher spatial inhomogeneity of the cheese. The textural measurements can be a useful tool to define the quality of Crescenza cheese during shelf life.
Collapse
|
43
|
Ansari SM, Sørensen J, Schiøtt B, Palmer DS. On the effect of mutations in bovine or camel chymosin on the thermodynamics of binding κ-caseins. Proteins 2018; 86:75-87. [DOI: 10.1002/prot.25410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Samiul M. Ansari
- Department of Pure and Applied Chemistry; University of Strathclyde, Thomas Graham Building, 295 Cathedral Street; Glasgow G1 1XL Scotland
| | - Jesper Sørensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry; University of Aarhus, Langelandsgade 140; Aarhus DK 8000 Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry; University of Aarhus, Langelandsgade 140; Aarhus DK 8000 Denmark
| | - David S. Palmer
- Department of Pure and Applied Chemistry; University of Strathclyde, Thomas Graham Building, 295 Cathedral Street; Glasgow G1 1XL Scotland
| |
Collapse
|
44
|
Ogel ZB. Microbial Production of Recombinant Rennet. MICROBIAL CULTURES AND ENZYMES IN DAIRY TECHNOLOGY 2018. [DOI: 10.4018/978-1-5225-5363-2.ch012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rennet, traditionally obtained from calves, is non-vegeterian and unethical due to the slaughter of unweaned animals. Chymosin is highly specific to the Phe105-Met106 bond of κ-casein and has low proteolytic activity. Microbial aspartic proteases can partly replace chymosin. However, recombinant DNA technology has allowed chymosin itself to be produced by bacteria, yeast, and molds. Not only rennet from calf, but from animals like goat kid, lamb, buffalo, camel, and others can be used in cheesemaking. Chymosins of these animals can be cloned and successfully expressed in microorganisms and can be employed in the production of novel as well as traditional cheese products from the milk of camel, goat, and even horse and donkey. This chapter outlines the recombinant DNA techniques applied over the past few years to improve the microbial production of recombinant rennet, from animals and plants.
Collapse
|
45
|
McCarthy CM, Wilkinson MG, Guinee TP. Effect of coagulant type and level on the properties of half-salt, half-fat Cheddar cheese made with or without adjunct starter: Improving texture and functionality. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Lamichhane P, Kelly AL, Sheehan JJ. Symposium review: Structure-function relationships in cheese. J Dairy Sci 2017; 101:2692-2709. [PMID: 29055536 DOI: 10.3168/jds.2017-13386] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
Abstract
The quality and commercial value of cheese are primarily determined by its physico-chemical properties (e.g., melt, stretch, flow, and color), specific sensory attributes (e.g., flavor, texture, and mouthfeel), usage characteristics (e.g., convenience), and nutritional properties (e.g., nutrient profile, bioavailability, and digestibility). Many of these functionalities are determined by cheese structure, requiring an appropriate understanding of the relationships between structure and functionality to design bespoke functionalities. This review provides an overview of a broad range of functional properties of cheese and how they are influenced by the structural organization of cheese components and their interactions, as well as how they are influenced by environmental factors (e.g., pH and temperature).
Collapse
Affiliation(s)
- Prabin Lamichhane
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 YN60
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 YN60
| | - Jeremiah J Sheehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| |
Collapse
|
47
|
Mati A, Senoussi-Ghezali C, Si Ahmed Zennia S, Almi-Sebbane D, El-Hatmi H, Girardet JM. Dromedary camel milk proteins, a source of peptides having biological activities – A review. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Sánchez-Muñoz MA, Valdez-Solana MA, Avitia-Domínguez C, Ramírez-Baca P, Candelas-Cadillo MG, Aguilera-Ortíz M, Meza-Velázquez JA, Téllez-Valencia A, Sierra-Campos E. Utility of Milk Coagulant Enzyme of Moringa oleifera Seed in Cheese Production from Soy and Skim Milks. Foods 2017; 6:foods6080062. [PMID: 28783066 PMCID: PMC5575637 DOI: 10.3390/foods6080062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, the potential use of Moringa oleifera as a clotting agent of different types of milk (whole, skim, and soy milk) was investigated. M. oleifera seed extract showed high milk-clotting activity followed by flower extract. Specific clotting activity of seed extract was 200 times higher than that of flower extract. Seed extract is composed by four main protein bands (43.6, 32.2, 19.4, and 16.3 kDa). Caseinolytic activity assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and tyrosine quantification, showed a high extent of casein degradation using M. oleifera seed extract. Milk soy cheese was soft and creamy, while skim milk cheese was hard and crumbly. According to these results, it is concluded that seed extract of M. oleifera generates suitable milk clotting activity for cheesemaking. To our knowledge, this study is the first to report comparative data of M. oleifera milk clotting activity between different types of soy milk.
Collapse
Affiliation(s)
- María Alejandra Sánchez-Muñoz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Mónica Andrea Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N Col. Centro, Durango, Dgo, CP 34000, Mexico.
| | - Patricia Ramírez-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - María Guadalupe Candelas-Cadillo
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Miguel Aguilera-Ortíz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Jorge Armando Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N Col. Centro, Durango, Dgo, CP 34000, Mexico.
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| |
Collapse
|
49
|
Interaction between sodium chloride and texture in semi-hard Danish cheese as affected by brining time, dl -starter culture, chymosin type and cheese ripening. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi AA. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|