1
|
Riou A, Broeglin A, Grimm A. Mitochondrial transplantation in brain disorders: Achievements, methods, and challenges. Neurosci Biobehav Rev 2025; 169:105971. [PMID: 39638101 DOI: 10.1016/j.neubiorev.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial transplantation is a new treatment strategy aimed at repairing cellular damage by introducing healthy mitochondria into injured cells. The approach shows promise in protecting brain function in various neurological disorders such as traumatic brain injury/ischemia, neurodegenerative diseases, cognitive disorders, and cancer. These conditions are often characterized by mitochondrial dysfunction, leading to impaired energy production and neuronal death. The review highlights promising preclinical studies where mitochondrial transplantation has been shown to restore mitochondrial function, reduce inflammation, and improve cognitive and motor functions in several animal models. It also addresses significant challenges that must be overcome before this therapy can be clinically applied. Current efforts to overcome these challenges, including advancements in isolation techniques, cryopreservation methods, finding an appropriate mitochondria source, and potential delivery routes, are discussed. Considering the rising incidence of neurological disorders and the limited effectiveness of current treatments, this review offers a comprehensive overview of the current state of mitochondrial transplantation research and critically assesses the remaining obstacles. It provides valuable insights that could steer future studies and potentially lead to more effective treatments for various brain disorders.
Collapse
Affiliation(s)
- Aurélien Riou
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Aline Broeglin
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel 4002, Switzerland.
| |
Collapse
|
2
|
Puighermanal E, Luna-Sánchez M, Gella A, van der Walt G, Urpi A, Royo M, Tena-Morraja P, Appiah I, de Donato MH, Menardy F, Bianchi P, Esteve-Codina A, Rodríguez-Pascau L, Vergara C, Gómez-Pallarès M, Marsicano G, Bellocchio L, Martinell M, Sanz E, Jurado S, Soriano FX, Pizcueta P, Quintana A. Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models. Nat Commun 2024; 15:7730. [PMID: 39231983 PMCID: PMC11375224 DOI: 10.1038/s41467-024-51884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients. CBD delays motor decline and neurodegenerative signs, improves social deficits and breathing abnormalities, decreases thermally induced seizures, and improves neuropathology in affected brain regions. Mechanistically, we identify peroxisome proliferator-activated receptor gamma (PPARγ) as a key nuclear receptor mediating CBD's beneficial effects, while also providing proof of dysregulated PPARγ expression and activity as a common feature in both mouse neurons and fibroblasts from LS patients. Taken together, our results provide the first evidence for CBD as a potential treatment for LS.
Collapse
Affiliation(s)
- Emma Puighermanal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Marta Luna-Sánchez
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Gella
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gunter van der Walt
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Royo
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Isabella Appiah
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Fabien Menardy
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patrizia Bianchi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | | | | | - Giovanni Marsicano
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | | | - Elisenda Sanz
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Jurado
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Francesc Xavier Soriano
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Albert Quintana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
3
|
Morelli AM, Scholkmann F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Biochimie 2024; 221:99-109. [PMID: 38307246 DOI: 10.1016/j.biochi.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Tian J, Fan J, Zhang T. Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 2023; 54:543-557. [PMID: 37874501 DOI: 10.1007/s10735-023-10158-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Jingjing Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China.
| |
Collapse
|
5
|
Aye CC, Hammond DE, Rodriguez-Cuenca S, Doherty MK, Whitfield PD, Phelan MM, Yang C, Perez-Perez R, Li X, Diaz-Ramos A, Peddinti G, Oresic M, Vidal-Puig A, Zorzano A, Ugalde C, Mora S. CBL/CAP Is Essential for Mitochondria Respiration Complex I Assembly and Bioenergetics Efficiency in Muscle Cells. Int J Mol Sci 2023; 24:3399. [PMID: 36834818 PMCID: PMC9964740 DOI: 10.3390/ijms24043399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
CBL is rapidly phosphorylated upon insulin receptor activation. Mice whole body CBL depletion improved insulin sensitivity and glucose clearance; however, the precise mechanisms remain unknown. We depleted either CBL or its associated protein SORBS1/CAP independently in myocytes and assessed mitochondrial function and metabolism compared to control cells. CBL- and CAP-depleted cells showed increased mitochondrial mass with greater proton leak. Mitochondrial respiratory complex I activity and assembly into respirasomes were reduced. Proteome profiling revealed alterations in proteins involved in glycolysis and fatty acid degradation. Our findings demonstrate CBL/CAP pathway couples insulin signaling to efficient mitochondrial respiratory function and metabolism in muscle.
Collapse
Affiliation(s)
- Cho-Cho Aye
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Dean E. Hammond
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Sergio Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Mary K. Doherty
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| | - Phillip D. Whitfield
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, UK
| | - Marie M. Phelan
- Centre for Nuclear Magnetic Resonance, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Chenjing Yang
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Rafael Perez-Perez
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, 28029 Madrid, Spain
| | - Xiaoxin Li
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Angels Diaz-Ramos
- Institute for Research in Biomedicine, C/Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Gopal Peddinti
- Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Matej Oresic
- Technical Research Centre of Finland, 02044 Espoo, Finland
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, 20520 Turku, Finland
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Antonio Zorzano
- Institute for Research in Biomedicine, C/Baldiri Reixac 10, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department de Bioquimica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Cristina Ugalde
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, 28029 Madrid, Spain
| | - Silvia Mora
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
- Department de Bioquimica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Moreno-Asso A, Altıntaş A, McIlvenna LC, Patten RK, Botella J, McAinch AJ, Rodgers RJ, Barrès R, Stepto NK. Non-cell autonomous mechanisms control mitochondrial gene dysregulation in polycystic ovary syndrome. J Mol Endocrinol 2021; 68:63-76. [PMID: 34752415 PMCID: PMC8679849 DOI: 10.1530/jme-21-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with insulin resistance and impaired energy metabolism in skeletal muscle, the aetiology of which is currently unclear. Here, we mapped the gene expression profile of skeletal muscle from women with PCOS and determined if cultured primary myotubes retain the gene expression signature of PCOS in vivo. Transcriptomic analysis of vastus lateralis biopsies collected from PCOS women showed lower expression of genes associated with mitochondrial function, while the expression of genes associated with the extracellular matrix was higher compared to controls. Altered skeletal muscle mRNA expression of mitochondrial-associated genes in PCOS was associated with lower protein expression of mitochondrial complex II-V, but not complex I, with no difference in mitochondrial DNA content. Transcriptomic analysis of primary myotube cultures established from biopsies did not display any differentially expressed genes between controls and PCOS. Comparison of gene expression profiles in skeletal muscle biopsies and primary myotube cultures showed lower expression of mitochondrial and energy metabolism-related genes in vitro, irrespective of the group. Together, our results show that the altered mitochondrial-associated gene expression in skeletal muscle in PCOS is not preserved in cultured myotubes, indicating that the in vivo extracellular milieu, rather than genetic or epigenetic factors, may drive this alteration. Dysregulation of mitochondrial-associated genes in skeletal muscle by extracellular factors may contribute to the impaired energy metabolism associated with PCOS.
Collapse
Affiliation(s)
- Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
- Correspondence should be addressed to A Moreno-Asso or R Barrès: or
| | - Ali Altıntaş
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke C McIlvenna
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Javier Botella
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Andrew J McAinch
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| | - Raymond J Rodgers
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to A Moreno-Asso or R Barrès: or
| | - Nigel K Stepto
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| |
Collapse
|
7
|
Rodrigues AC, Spagnol AR, Frias FDT, de Mendonça M, Araújo HN, Guimarães D, Silva WJ, Bolin AP, Murata GM, Silveira L. Intramuscular Injection of miR-1 Reduces Insulin Resistance in Obese Mice. Front Physiol 2021; 12:676265. [PMID: 34295259 PMCID: PMC8290840 DOI: 10.3389/fphys.2021.676265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023] Open
Abstract
The role of microRNAs in metabolic diseases has been recognized and modulation of them could be a promising strategy to treat obesity and obesity-related diseases. The major purpose of this study was to test the hypothesis that intramuscular miR-1 precursor replacement therapy could improve metabolic parameters of mice fed a high-fat diet. To this end, we first injected miR-1 precursor intramuscularly in high-fat diet-fed mice and evaluated glucose tolerance, insulin sensitivity, and adiposity. miR-1-treated mice did not lose weight but had improved insulin sensitivity measured by insulin tolerance test. Next, using an in vitro model of insulin resistance by treating C2C12 cells with palmitic acid (PA), we overexpressed miR-1 and measured p-Akt content and the transcription levels of a protein related to fatty acid oxidation. We found that miR-1 could not restore insulin sensitivity in C2C12 cells, as indicated by p-Akt levels and that miR-1 increased expression of Pgc1a and Cpt1b in PA-treated cells, suggesting a possible role of miR-1 in mitochondrial respiration. Finally, we analyzed mitochondrial oxygen consumption in primary skeletal muscle cells treated with PA and transfected with or without miR-1 mimic. PA-treated cells showed reduced basal respiration, oxygen consumption rate-linked ATP production, maximal and spare capacity, and miR-1 overexpression could prevent impairments in mitochondrial respiration. Our data suggest a role of miR-1 in systemic insulin sensitivity and a new function of miR-1 in regulating mitochondrial respiration in skeletal muscle.
Collapse
Affiliation(s)
- Alice C Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre R Spagnol
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia de Toledo Frias
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana de Mendonça
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Hygor N Araújo
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Dimitrius Guimarães
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - William J Silva
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gilson Masahiro Murata
- Department of Medical Clinics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Leonardo Silveira
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Doulamis IP, Guariento A, Duignan T, Orfany A, Kido T, Zurakowski D, Del Nido PJ, McCully JD. Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardiothorac Surg 2021; 57:836-845. [PMID: 31782771 DOI: 10.1093/ejcts/ezz326] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Type 2 diabetes causes mitochondrial dysfunction, which increases myocardial susceptibility to ischaemia-reperfusion injury. We investigated the efficacy of transplantation of mitochondria isolated from diabetic or non-diabetic donors in providing cardioprotection from warm global ischaemia and reperfusion in the diabetic rat heart. METHODS Ex vivo perfused hearts from Zucker diabetic fatty (ZDF fa/fa) rats (n = 6 per group) were subjected to 30 min of warm global ischaemia and 120 min reperfusion. Immediately prior to reperfusion, vehicle alone (VEH) or vehicle containing mitochondria isolated from either ZDF (MTZDF) or non-diabetic Zucker lean (ZL +/?) (MTZL) skeletal muscle were delivered to the coronary arteries via the aortic cannula. RESULTS Following 30-min global ischaemia and 120-min reperfusion, left ventricular developed pressure was significantly increased in MTZDF and MTZL groups compared to VEH group (MTZDF: 92.8 ± 5.2 mmHg vs MTZL: 110.7 ± 2.4 mmHg vs VEH: 44.3 ± 5.9 mmHg; P < 0.01 each); and left ventricular end-diastolic pressure was significantly decreased (MTZDF 12.1 ± 1.3 mmHg vs MTZL 8.6 ± 0.8 mmHg vs VEH: 18.6 ± 1.5 mmHg; P = 0.016 for MTZDF vs VEH and P < 0.01 for MTZL vs VEH). Total tissue ATP content was significantly increased in both MT groups compared to VEH group (MTZDF: 18.9 ± 1.5 mmol/mg protein/mg tissue vs MTZL: 28.1 ± 2.3 mmol/mg protein/mg tissue vs VEH: 13.1 ± 0.5 mmol/mg protein/mg tissue; P = 0.018 for MTZDF vs VEH and P < 0.01 for MTZL vs VEH). Infarct size was significantly decreased in the MT groups (MTZDF: 11.8 ± 0.7% vs MTZL: 9.9 ± 0.5% vs VEH: 52.0 ± 1.4%; P < 0.01 each). CONCLUSIONS Mitochondrial transplantation significantly enhances post-ischaemic myocardial functional recovery and significantly decreases myocellular injury in the diabetic heart.
Collapse
Affiliation(s)
- Ilias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvise Guariento
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Duignan
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arzoo Orfany
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takashi Kido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Zurakowski
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Ravera S, Bartolucci M, Calzia D, Morelli AM, Panfoli I. Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems. J Neurosci Res 2021; 99:2250-2260. [PMID: 34085315 DOI: 10.1002/jnr.24865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Martina Bartolucci
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genoa, Italy.,Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | | | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Nemec M, Vernerová L, Laiferová N, Balážová M, Vokurková M, Kurdiová T, Oreská S, Kubínová K, Klein M, Špiritović M, Tomčík M, Vencovský J, Ukropec J, Ukropcová B. Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training. J Physiol 2020; 599:207-229. [PMID: 33063873 DOI: 10.1113/jp280468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- M Nemec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - L Vernerová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - N Laiferová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - M Balážová
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Vokurková
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Kurdiová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - S Oreská
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Kubínová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klein
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Špiritović
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - M Tomčík
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Vencovský
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Ukropec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - B Ukropcová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
11
|
Ravera S, Morelli AM, Panfoli I. Myelination increases chemical energy support to the axon without modifying the basic physicochemical mechanism of nerve conduction. Neurochem Int 2020; 141:104883. [PMID: 33075435 DOI: 10.1016/j.neuint.2020.104883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023]
Abstract
The existence of different conductive patterns in unmyelinated and myelinated axons is uncertain. It seems that considering exclusively physical electrical phenomena may be an oversimplification. A novel interpretation of the mechanism of nerve conduction in myelinated nerves is proposed, to explain how the basic mechanism of nerve conduction has been adapted to myelinated conditions. The neurilemma would bear the voltage-gated channels and Na+/K+-ATPase in both unmyelinated and myelinated conditions, the only difference being the sheath wrapping it. The dramatic increase in conduction speed of the myelinated axons would essentially depend on an increment in ATP availability within the internode: myelin would be an aerobic ATP supplier to the axoplasm, through connexons. In fact, neurons rely on aerobic metabolism and on trophic support from oligodendrocytes, that do not normally duplicate after infancy in humans. Such comprehensive framework of nerve impulse propagation in axons may shed new light on the pathophysiology of nervous system disease in humans, seemingly strictly dependent on the viability of the pre-existing oligodendrocyte.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, I 16132, Italy
| | - Alessandro Maria Morelli
- Laboratory of Biochemistry, Department of Pharmacy-DIFAR, University of Genoa, Genoa, I 16132, Italy.
| | - Isabella Panfoli
- Laboratory of Biochemistry, Department of Pharmacy-DIFAR, University of Genoa, Genoa, I 16132, Italy
| |
Collapse
|
12
|
Gaster M. The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. APMIS 2018; 127:3-26. [DOI: 10.1111/apm.12908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Gaster
- Laboratory for Molecular Physiology Department of Pathology and Department of Endocrinology Odense University Hospital Odense Denmark
| |
Collapse
|
13
|
Shi M, O'Keefe L, Simcocks AC, Su XQ, McAinch AJ. The effect of cyanidin-3-O-β-glucoside and peptides extracted from yoghurt on glucose uptake and gene expression in human primary skeletal muscle myotubes from obese and obese diabetic participants. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Ravera S, Signorello MG, Bartolucci M, Ferrando S, Manni L, Caicci F, Calzia D, Panfoli I, Morelli A, Leoncini G. Extramitochondrial energy production in platelets. Biol Cell 2018. [PMID: 29537672 DOI: 10.1111/boc.201700025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the β subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | | | - Martina Bartolucci
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Sara Ferrando
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Lucia Manni
- Department of Biology, Università di Padova, Padova, Italy
| | | | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Alessandro Morelli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| |
Collapse
|
15
|
Pan S, Sharma P, Shah SD, Deshpande DA. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 313:L154-L165. [PMID: 28450286 DOI: 10.1152/ajplung.00106.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pawan Sharma
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Cree-Green M, Newcomer BR, Coe G, Newnes L, Baumgartner A, Brown MS, Pyle L, Reusch JE, Nadeau KJ. Peripheral insulin resistance in obese girls with hyperandrogenism is related to oxidative phosphorylation and elevated serum free fatty acids. Am J Physiol Endocrinol Metab 2015; 308:E726-33. [PMID: 25714677 PMCID: PMC4420897 DOI: 10.1152/ajpendo.00619.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022]
Abstract
Hyperandrogenic syndrome (HAS) is associated with insulin resistance (IR) and type 2 diabetes. Muscle IR in type 2 diabetes is linked with defects in mitochondrial oxidative capacity. In vivo muscle mitochondrial function has not been studied in HAS, especially in youth, who are early in the disease process. Our goal was to measure muscle mitochondrial oxidative function and peripheral IR in obese youth with HAS. Obese girls without HAS [n = 22, age 15(13,17) yr, BMI Z-score 2.05 ± 0.37] and with HAS [n = 35, age 15(14,16) yr, BMI Z-score 2.18 ± 0.30] were enrolled. Mitochondrial function was assessed with (31)phosphorus MR spectroscopy before, during, and after near-maximal isometric calf exercise, and peripheral IR was assessed with an 80 mU·m(-2)·min(-1) hyperinsulinemic euglycemic clamp. Girls with HAS had higher androgens [free androgen index 7.9(6.6,15.5) vs. 3.5(3.0,4.0), P < 0.01] and more IR [glucose infusion rate 9.4(7.0, 12,2) vs. 14.5(13.2,15.8) mg·kg lean(-1)·min(-1), P < 0.01]. HAS girls also had increased markers of inflammation including CRP, platelets, and white blood cell count and higher serum free fatty acids during hyperinsulinemia. Mitochondrial oxidative phosphorylation was lower in HAS [0.11(0.06,0.19) vs. 0.18(0.12,0.23) mmol/s, P < 0.05], although other spectroscopy markers of mitochondrial function were similar between groups. In multivariate analysis of the entire cohort, IR related to androgens, oxidative phosphorylation, and free fatty acid concentrations during hyperinsulinemia. These relationships were present in just the HAS cohort as well. Obese girls with HAS have significant peripheral IR, which is related to elevated androgens and free fatty acids and decreased mitochondrial oxidative phosphorylation. These may provide future options as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Center for Women's Health Research, Anschutz Medical Campus, Aurora, Colorado;
| | - Bradley R Newcomer
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory Coe
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lindsey Newnes
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amy Baumgartner
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Pyle
- Department of Pediatrics, University of Colorado School of Medicine, and Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Jane E Reusch
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Veteran Affairs, Denver, Colorado
| | - Kristen J Nadeau
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Center for Women's Health Research, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
17
|
Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, Yaakob H. Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. MOLECULAR BIOSYSTEMS 2015; 11:1742-74. [DOI: 10.1039/c5mb00158g] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper highlights the metabolomic roles in systems biology towards the elucidation of metabolic mechanisms in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA)
| | - Kian-Kai Cheng
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| | - Abid Ali Khan
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
- Department of Biosciences
| | - Chua Lee Suan
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy
- Faculty of Medicine
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| |
Collapse
|
18
|
Pomiès P, Rodriguez J, Blaquière M, Sedraoui S, Gouzi F, Carnac G, Laoudj-Chenivesse D, Mercier J, Préfaut C, Hayot M. Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med 2014; 19:175-86. [PMID: 25339614 PMCID: PMC4288361 DOI: 10.1111/jcmm.12390] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 07/07/2014] [Indexed: 12/02/2022] Open
Abstract
The mechanisms leading to skeletal limb muscle dysfunction in chronic obstructive pulmonary disease (COPD) have not been fully elucidated. Exhausted muscle regenerative capacity of satellite cells has been evocated, but the capacity of satellite cells to proliferate and differentiate properly remains unknown. Our objectives were to compare the characteristics of satellite cells derived from COPD patients and healthy individuals, in terms of proliferative and differentiation capacities, morphological phenotype and atrophy/hypertrophy signalling, and oxidative stress status. Therefore, we purified and cultivated satellite cells from progressively frozen vastus lateralis biopsies of eight COPD patients and eight healthy individuals. We examined proliferation parameters, differentiation capacities, myotube diameter, expression of atrophy/hypertrophy markers, oxidative stress damages, antioxidant enzyme expression and cell susceptibility to H2O2 in cultured myoblasts and/or myotubes. Proliferation characteristics and commitment to terminal differentiation were similar in COPD patients and healthy individuals, despite impaired fusion capacities of COPD myotubes. Myotube diameter was smaller in COPD patients (P = 0.015), and was associated with a higher expression of myostatin (myoblasts: P = 0.083; myotubes: P = 0.050) and atrogin-1 (myoblasts: P = 0.050), and a decreased phospho-AKT/AKT ratio (myoblasts: P = 0.022). Protein carbonylation (myoblasts: P = 0.028; myotubes: P = 0.002) and lipid peroxidation (myotubes: P = 0.065) were higher in COPD cells, and COPD myoblasts were significantly more susceptible to oxidative stress. Thus, cultured satellite cells from COPD patients display characteristics of morphology, atrophic signalling and oxidative stress similar to those described in in vivo COPD skeletal limb muscles. We have therefore demonstrated that muscle alteration in COPD can be studied by classical in vitro cellular models.
Collapse
Affiliation(s)
- Pascal Pomiès
- INSERM U-1046, University Montpellier I, University Montpellier II, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Smith R, Solberg R, Jacobsen LL, Voreland AL, Rustan AC, Thoresen GH, Johansen HT. Simvastatin inhibits glucose metabolism and legumain activity in human myotubes. PLoS One 2014; 9:e85721. [PMID: 24416446 PMCID: PMC3885717 DOI: 10.1371/journal.pone.0085721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/30/2013] [Indexed: 01/05/2023] Open
Abstract
Simvastatin, a HMG-CoA reductase inhibitor, is prescribed worldwide to patients with hypercholesterolemia. Although simvastatin is well tolerated, side effects like myotoxicity are reported. The mechanism for statin-induced myotoxicity is still poorly understood. Reports have suggested impaired mitochondrial dysfunction as a contributor to the observed myotoxicity. In this regard, we wanted to study the effects of simvastatin on glucose metabolism and the activity of legumain, a cysteine protease. Legumain, being the only known asparaginyl endopeptidase, has caspase-like properties and is described to be involved in apoptosis. Recent evidences indicate a regulatory role of both glucose and statins on cysteine proteases in monocytes. Satellite cells were isolated from the Musculus obliquus internus abdominis of healthy human donors, proliferated and differentiated into polynuclear myotubes. Simvastatin with or without mevalonolactone, farnesyl pyrophosphate or geranylgeranyl pyrophosphate were introduced on day 5 of differentiation. After 48 h, cells were either harvested for immunoblotting, ELISA, cell viability assay, confocal imaging or enzyme activity analysis, or placed in a fuel handling system with [14C]glucose or [3H]deoxyglucose for uptake and oxidation studies. A dose-dependent decrease in both glucose uptake and oxidation were observed in mature myotubes after exposure to simvastatin in concentrations not influencing cell viability. In addition, simvastatin caused a decrease in maturation and activity of legumain. Dysregulation of glucose metabolism and decreased legumain activity by simvastatin points out new knowledge about the effects of statins on skeletal muscle, and may contribute to the understanding of the myotoxicity observed by statins.
Collapse
Affiliation(s)
- Robert Smith
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| | - Rigmor Solberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Linn Løkken Jacobsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Anette Larsen Voreland
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Arild Christian Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Harald Thidemann Johansen
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Abstract
The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic signalling, we will focus on the role of purinergic signalling and its changes associated with diabetes in the pancreas and selected tissues/organ systems affected by hyperglycaemia and other stress molecules of diabetes. Since this is the first review of this kind, a comprehensive historical angle is taken, and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF UK
- Department of Pharmacology, Melbourne University, Melbourne, Australia
| | - Ivana Novak
- Molecular and Integrative Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
21
|
Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep 2013; 32:465-78. [PMID: 22742515 PMCID: PMC3475448 DOI: 10.1042/bsr20120034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.
Collapse
|
22
|
Hoeks J, Schrauwen P. Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol Metab 2012; 23:444-50. [PMID: 22726362 DOI: 10.1016/j.tem.2012.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 01/07/2023]
Abstract
Reduced mitochondrial capacity in skeletal muscle has been suggested to underlie the development of insulin resistance and type 2 diabetes mellitus (T2DM). However, data obtained from human subjects concerning this putative relation indicate that the mitochondrial defect observed in diabetic muscle might be secondary to the insulin-resistant state instead of being a causal factor. Nonetheless, diminished mitochondrial function, even secondary to insulin resistance, may accelerate lipid deposition in non-adipose tissues and aggravate insulin resistance. Indeed, improving mitochondrial capacity via exercise training and calorie restriction is associated with positive metabolic health effects. Here we review muscle mitochondrial dysfunction in humans and propose that targeting muscle mitochondria to improve muscle oxidative capacity should be considered as a strategy for improving metabolic health.
Collapse
Affiliation(s)
- Joris Hoeks
- NUTRIM - School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
23
|
Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Arch Physiol Biochem 2012; 118:156-89. [PMID: 22385297 DOI: 10.3109/13813455.2012.656653] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. Recent research has shown that diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux. A reduced TCA cycle flux has also been shown both in insulin resistant offspring of T2D patients and exercising T2D patients in vivo. This review will discuss the latest advances in the understanding of the molecular mechanisms regulating the TCA cycle with focus on possible underlying mechanism which could explain the impaired TCA flux in insulin resistant human skeletal muscle in type 2 diabetes. A reduced TCA is both a marker and a maker of the diabetic phenotype.
Collapse
Affiliation(s)
- Michael Gaster
- Laboratory of Molecular Physiology, Department of Pathology, Odense University Hospital, Denmark.
| | | | | |
Collapse
|
24
|
Reduced TCA Flux in Diabetic Myotubes: Determined by Single Defects? Biochem Res Int 2012; 2012:716056. [PMID: 22506116 PMCID: PMC3312545 DOI: 10.1155/2012/716056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/03/2012] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate, there was no significant difference between groups. These results show that the primary reduced TCA cycle flux in diabetic myotubes is not explained by defects in specific part of the TCA cycle but rather results from a general downregulation of the TCA cycle.
Collapse
|
25
|
Minet AD, Gaster M. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased. Biogerontology 2012; 13:277-85. [PMID: 22318488 DOI: 10.1007/s10522-012-9372-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content, but the existent mitochondria express normal to increased functional capabilities. The present data suggest that the origin of aging lies outside the mitochondria and that a malfunction in the cell might be preceding and initiating the increase of mitochondrial ATP synthesis and concomitant ROS production in the single mitochondrion in response to decreased mitochondrial mass and reduced extra-mitochondrial energy supply. This then can lead to the increased damage of DNA, lipids and proteins of the mitochondria as postulated by the free radical theory of aging.
Collapse
Affiliation(s)
- Ariane D Minet
- Department of Pathology, Laboratory for Molecular Physiology, Odense University Hospital, Denmark
| | | |
Collapse
|
26
|
Aguer C, Gambarotta D, Mailloux RJ, Moffat C, Dent R, McPherson R, Harper ME. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One 2011; 6:e28536. [PMID: 22194845 PMCID: PMC3240634 DOI: 10.1371/journal.pone.0028536] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1) characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2) determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. METHODOLOGY/PRINCIPAL FINDINGS Oxygen consumption rate (OCR), lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG)), 5 mM glucose (low glucose (LG)) or 10 mM galactose (GAL). Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. CONCLUSIONS/SIGNIFICANCE Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell culture model elicited an abnormal response in cells from post-diabetic patients, it may be useful in further studies of the molecular mechanisms of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Daniela Gambarotta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Ryan J. Mailloux
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Cynthia Moffat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Robert Dent
- Ottawa Hospital Weight Management Clinic, Ottawa, Ontario, Canada
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Eriksen MB, Minet AD, Glintborg D, Gaster M. Intact primary mitochondrial function in myotubes established from women with PCOS. J Clin Endocrinol Metab 2011; 96:E1298-302. [PMID: 21593108 DOI: 10.1210/jc.2011-0278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) affects 5-8% of fertile women and is often accompanied by insulin resistance, leading to increased risk of developing type 2 diabetes. Skeletal muscle from insulin-resistant PCOS subjects display reduced expression of nuclear encoded genes involved in mitochondrial oxidative metabolism. OBJECTIVE We aimed to investigate whether there was a primary mitochondrial dysfunction or difference in mitochondria content that might contribute to the in vivo detected insulin resistance. DESIGN The ATP synthesis with and without ATP use and the mitochondrial mass was determined in mitochondria isolated from myotubes established from PCOS subjects and control subjects. PATIENTS Myotubes were established from eight insulin-resistant PCOS subjects (verified by euglycemic hyperinsulinemic clamp) and eight healthy weight- and age-matched controls. RESULTS Mitochondrial mass and measurable mitochondrial ATP synthesis, with and without ATP use, were not different between PCOS subjects and control subjects. CONCLUSION We found no evidence for a primary impaired mitochondrial function or content in myotubes established from PCOS subjects, and our results suggest that reduced expression of oxidative genes in PCOS subjects is an adaptive trait.
Collapse
|
28
|
Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M. Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol Cell Proteomics 2011; 10:M110.006650. [PMID: 21697546 DOI: 10.1074/mcp.m110.006650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle is a key tissue site of insulin resistance in type 2 diabetes. Human myotubes are primary skeletal muscle cells displaying both morphological and biochemical characteristics of mature skeletal muscle and the diabetic phenotype is conserved in myotubes derived from subjects with type 2 diabetes. Several abnormalities have been identified in skeletal muscle from type 2 diabetic subjects, however, the exact molecular mechanisms leading to the diabetic phenotype has still not been found. Here we present a large-scale study in which we combine a quantitative proteomic discovery strategy using isobaric peptide tags for relative and absolute quantification (iTRAQ) and a label-free study with a targeted quantitative proteomic approach using selected reaction monitoring to identify, quantify, and validate changes in protein abundance among human myotubes obtained from nondiabetic lean, nondiabetic obese, and type 2 diabetic subjects, respectively. Using an optimized protein precipitation protocol, a total of 2832 unique proteins were identified and quantified using the iTRAQ strategy. Despite a clear diabetic phenotype in diabetic myotubes, the majority of the proteins identified in this study did not exhibit significant abundance changes across the patient groups. Proteins from all major pathways known to be important in type 2 diabetic subjects were well-characterized in this study. This included pathways like the trichloroacetic acid (TCA) cycle, lipid oxidation, oxidative phosphorylation, the glycolytic pathway, and glycogen metabolism from which all but two enzymes were found in the present study. None of these enzymes were found to be regulated at the level of protein expression or degradation supporting the hypothesis that these pathways are regulated at the level of post-translational modification. Twelve proteins were, however, differentially expressed among the three different groups. Thirty-six proteins were chosen for further analysis and validation using selected reaction monitoring based on the regulation identified in the iTRAQ discovery study. The abundance of adenosine deaminase was considerably down-regulated in diabetic myotubes and as the protein binds propyl dipeptidase (DPP-IV), we speculate whether the reduced binding of adenosine deaminase to DPP-IV may contribute to the diabetic phenotype in vivo by leading to a higher level of free DPP-IV to bind and inactivate the anti-diabetic hormones, glucagon-like peptide-1 and glucose-dependent insulintropic polypeptide.
Collapse
Affiliation(s)
- Tine E Thingholm
- Department of Endocrinology, Odense University Hospital, 5000 Odense, Denmark.
| | | | | | | | | |
Collapse
|
29
|
Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One 2011; 6:e20220. [PMID: 21637849 PMCID: PMC3102686 DOI: 10.1371/journal.pone.0020220] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 01/15/2023] Open
Abstract
Background Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. Methodology/Principal Findings To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value<0.1) were found in the reference mitochondrial sequence and some of the best candidates were chosen for a co-localization test. In situ hybridization of pre-mir-302a, pre-let-7b and mir-365, using specific labelled locked nucleic acids and confocal microscopy, demonstrated that these miRNA were localized in mitochondria of human myoblasts. Total RNA was extracted from enriched mitochondria isolated by an immunomagnetic method from a culture of human myotubes. The detection of 742 human miRNA (miRBase) were monitored by RT-qPCR at three increasing mtRNA inputs. Forty six miRNA were significantly expressed (2nd derivative method Cp>35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). Conclusions/Significance The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria.
Collapse
Affiliation(s)
- Eric Barrey
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
- Biopuces et Génomique Fonctionnelle (Biomics), Direction des Sciences du Vivant, CEA, Grenoble, France
- * E-mail: (EB); (XG)
| | - Gaelle Saint-Auret
- Biopuces et Génomique Fonctionnelle (Biomics), Direction des Sciences du Vivant, CEA, Grenoble, France
| | - Blandine Bonnamy
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
| | - Dominique Damas
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
| | - Orane Boyer
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
| | - Xavier Gidrol
- Biopuces et Génomique Fonctionnelle (Biomics), Direction des Sciences du Vivant, CEA, Grenoble, France
- * E-mail: (EB); (XG)
| |
Collapse
|
30
|
Nehlin JO, Just M, Rustan AC, Gaster M. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 2011; 12:349-65. [PMID: 21512720 DOI: 10.1007/s10522-011-9336-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/06/2011] [Indexed: 12/23/2022]
Abstract
Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the proliferative potential of myoblasts decreased dramatically with passage number, a number of cellular functions were altered: the capacity of myoblasts to fuse and differentiate into myotubes was reduced, and metabolic processes in myotubes such as glucose uptake, glycogen synthesis, glucose oxidation and fatty acid β-oxidation became gradually impaired. Upon insulin stimulation, glucose uptake and glycogen synthesis increased but as the cellular proliferative capacity became gradually exhausted, the response dropped concomitantly. Palmitic acid incorporation into lipids in myotubes decreased with passage number and could be explained by reduced incorporation into diacyl- and triacylglycerols. The levels of long-chain acyl-CoA esters decreased with increased passage number. Late-passage, non-proliferating, myoblast cultures showed strong senescence-associated β-galactosidase activity indicating that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.
| | | | | | | |
Collapse
|
31
|
The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. Biochem Biophys Res Commun 2011; 409:591-5. [PMID: 21513703 DOI: 10.1016/j.bbrc.2011.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Although, most studies of human skeletal muscle in vivo have reported the co-existence of impaired insulin sensitivity and reduced expression of oxidative phosphorylation genes, there is so far no clear evidence for whether the intrinsic ATP synthesis is primarily decreased or not in the mitochondria of diabetic skeletal muscle from subjects with type 2 diabetes. ATP synthesis was measured on mitochondria isolated from cultured myotubes established from lean (11/9), obese (9/11) and subjects with type 2 diabetes (9/11) (female/male, n=20 in each group), precultured under normophysiological conditions in order to verify intrinsic impairments. To resemble dynamic equilibrium present in whole cells between ATP synthesis and utilization, ATP was measured in the presence of an ATP consuming enzyme, hexokinase, under steady state. Mitochondria were isolated using an affinity based method which selects the mitochondria based on an antibody recognizing the mitochondrial outer membrane and not by size through gradient centrifugation. The dynamic equilibrium between ATP synthesis and ATP consumption is 35% lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. The ATP synthesis rate without ATP consumption was not different between groups and there were no significant gender differences. The mitochondrial dysfunction in type 2 diabetes in vivo is partly based on a primarily impaired ATP synthesis.
Collapse
|
32
|
Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes. Biochem Biophys Res Commun 2010; 404:1023-8. [PMID: 21187069 DOI: 10.1016/j.bbrc.2010.12.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 11/22/2022]
Abstract
Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid oxidation (complete and incomplete) were determined in non-contracting myotubes established from 10 lean, 10 obese and 10 subjects with type 2 diabetes precultured under normophysiological conditions. ATP, ADP, AMP, mitochondrial mass and energy charge were not different between groups. In diabetic myotubes, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation.
Collapse
|