1
|
de Oliveira CGN, Perez EC, Alvares-Saraiva AM, Lallo MA. CD8 T lymphocytes from B-1 cell-deficient mice down-regulates fungicidal activity of macrophages challenged with E. Cuniculi. Immunobiology 2024; 229:152827. [PMID: 38878483 DOI: 10.1016/j.imbio.2024.152827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Encephalitozoon cuniculi is an opportunistic intracellular pathogen that establishes a balanced relationship with immunocompetent individuals depending on the activity of their CD8+ T cells lymphocytes. However, lower resistance to experimental infection with E. cuniculi was found in B-1 deficient mice (Xid), besides increased the number of CD8 T lymphocytes. Here, we evaluated the profile of CD8+ T lymphocytes from Balb/c wild-type (WT) or Balb/c Xid mice (with B-1 cell deficiency) on the microbicidal activity of macrophages challenged with E. cuniculi. METHODS Naïve CD8 T lymphocytes from WT or Xid mice uninfected and primed CD8 T lymphocytes from WT or Xid mice infected with E cuniculi were co-cultured with macrophages previously challenged with E. cuniculi. We evaluated macrophages viability and microbicidal activity, and CD8 T lymphocytes viability and presence of activating molecules (CD62L, CD69, and CD107a). RESULTS Macrophages co-cultured with naïve CD8 T lymphocytes from WT demonstrated high microbicidal activity. Naïve CD8 T lymphocytes obtained from WT mice had a higher expression of CD69 and LAMP-1-activating molecules compared to Xid CD8+ T lymphocytes. Primed CD8 T lymphocytes from Xid mice proliferated more than those from WT mice, however, when the expression of the activating molecule CD69 associated with the expression of CD62L was kept low. In conclusion, naïve CD8+ T lymphocytes from Xid mice, deficient in B-1 cells, they had reduced expression of activation molecules and cytotoxic activity.
Collapse
Affiliation(s)
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Yaya-Candela AP, Ravagnani FG, Dietrich N, Sousa R, Baptista MS. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112919. [PMID: 38677261 DOI: 10.1016/j.jphotobiol.2024.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.
Collapse
Affiliation(s)
| | | | - Natasha Dietrich
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Sousa
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Giraud A, Imbert L, Favier A, Henot F, Duffieux F, Samson C, Frances O, Crublet E, Boisbouvier J. Enabling site-specific NMR investigations of therapeutic Fab using a cell-free based isotopic labeling approach: application to anti-LAMP1 Fab. JOURNAL OF BIOMOLECULAR NMR 2024; 78:73-86. [PMID: 38546905 DOI: 10.1007/s10858-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 06/15/2024]
Abstract
Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cβ resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.
Collapse
Affiliation(s)
- Arthur Giraud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Faustine Henot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | | | - Camille Samson
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | - Oriane Frances
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France.
| | - Jérôme Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
4
|
Yang YL, Zeng WH, Peng Y, Zuo SY, Fu YQ, Xiao YM, Huang WL, Wen ZY, Hu W, Yang YY, Huang XF. Characterization of three lamp genes from largemouth bass ( Micropterus salmoides): molecular cloning, expression patterns, and their transcriptional levels in response to fast and refeeding strategy. Front Physiol 2024; 15:1386413. [PMID: 38645688 PMCID: PMC11026864 DOI: 10.3389/fphys.2024.1386413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wan-Hong Zeng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yong Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Shi-Yu Zuo
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yuan-Qi Fu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yi-Ming Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wen-Li Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wei Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Yu-Ying Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Feng Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Boateng AK, Joseph R, Srivastava OP. Dysregulation of Autophagy Occurs During Congenital Cataract Development in βA3ΔG91 Mice. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38558092 PMCID: PMC10996937 DOI: 10.1167/iovs.65.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose To examine lens phenotypic characteristics in βA3ΔG91 mice and determine if βA3ΔG91 affects autophagy in the lens. Methods We generated a βA3ΔG91 mouse model using CRISPR/Cas9 methodology. Comparative phenotypic and biochemical characterizations of lenses from postnatal day 0 (P0), P15, and 1-month-old βA3ΔG91 and wild-type (WT) mice were performed. The methodologies used included non-invasive slit-lamp examination, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical (IHC) analyses to determine the levels of autophagy-related genes and proteins. Transmission electron microscopy (TEM) analysis of lenses was performed to assess organelle degradation and the presence of autophagic vesicles. TUNEL staining was used to determine apoptosis in the lens. Results Relative to WT lenses, 1-month-old βA3ΔG91 mice developed congenital nuclear cataract and microphthalmia and showed an early loss of endoplasmic reticulum (ER) in the cortex and attenuation of nuclei degradation. This observation was confirmed by TEM analysis, as was the presence of autophagic vesicles in βA3ΔG91 lenses. Comparative IHC and RT-qPCR analyses showed relatively higher levels of autophagy markers (ubiquitinated proteins and p62, LC3, and LAMP2 proteins) in βA3ΔG91 lenses compared to WT lenses. Additionally, βA3ΔG91 lenses showed relatively greater numbers of apoptotic cells and higher levels of cleaved caspase-3 and caspase-9. Conclusions The deletion of G91 in βA3ΔG91 mice leads to higher levels of expression of autophagy-related proteins and their transcripts relative to WT lenses. Taken together, G91 deletion in βA3/A1-crystallin is associated with autophagy disruption, attenuation of nuclei degradation, and cellular apoptosis in the lens, which might be congenital cataract causative factors.
Collapse
Affiliation(s)
- Akosua K. Boateng
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Roy Joseph
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P. Srivastava
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Karin Öllinger
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
7
|
Yamaguchi F, Sakane H, Akasaki K. Comparative study of the steady-state subcellular distribution of lysosome-associated membrane glycoprotein-2 (LAMP-2) isoforms with GYXXΦ-type tyrosine-based motifs that interact differently with four adaptor protein (AP) complexes. J Biochem 2024; 175:275-287. [PMID: 37983719 DOI: 10.1093/jb/mvad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Lysosome-associated membrane protein-1 and -2 (LAMP-1 and LAMP-2, respectively) are type I transmembrane proteins. LAMP-2 comprises three splice isoforms (LAMP-2A, -B and-C) with different cytoplasmic tails (CTs). These three CTs possess different tyrosine-based motifs (GYXXΦ, where Φ is a bulky hydrophobic amino acid) at their C-termini. Interactions between tyrosine-based motifs and μ-subunits of four tetrameric adaptor protein (AP) complexes are necessary for their vesicular transport to lysosomes. Little is known about how the interaction strengths of these tyrosine motifs with μ-subunits affect the localization of isoforms to lysosomes. The interactions were first investigated using a yeast two-hybrid system to address this question. LAMP-2A-CT interacted with all four μ-subunits (μ1, μ2, μ3A and μ4 of AP-1, AP-2, AP-3 and AP-4, respectively). The interaction with μ3A was more robust than that with other μ-subunits. LAMP-2B-CT interacted exclusively and moderately with μ3A. LAMP-2C-CT did not detectably interact with any of the four μ-subunits. Immunofluorescence microscopy showed that all isoforms were localized in late endosomes and lysosomes. LAMP-2C was present in the plasma membrane and early endosomes; however, LAMP-2A and -2B were barely detectable in these organelles. In cell fractionation, LAMP-2A was the most abundant in the dense lysosomes, whereas LAMP-2C was significantly present in the low-density fraction containing the plasma membrane and early endosomes, in addition to the dense lysosomes. LAMP-2B considerably existed in the low-density late endosomal fraction. These data strongly suggest that the LAMP-2 isoforms are distributed differently in endocytic organelles depending on their interaction strengths with AP-3.
Collapse
Affiliation(s)
- Fumiaki Yamaguchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| | - Hiroshi Sakane
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| | - Kenji Akasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
8
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
9
|
Terasawa K, Seike T, Sakamoto K, Ohtake K, Terada T, Iwata T, Watabe T, Yokoyama S, Hara‐Yokoyama M. Site-specific photo-crosslinking/cleavage for protein-protein interface identification reveals oligomeric assembly of lysosomal-associated membrane protein type 2A in mammalian cells. Protein Sci 2023; 32:e4823. [PMID: 37906694 PMCID: PMC10659947 DOI: 10.1002/pro.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- LiberoThera Co., Ltd.Chuo‐kuJapan
| | - Tatsuro Seike
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Electrical Engineering and BioscienceWaseda UniversityTokyoJapan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shigeyuki Yokoyama
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
- Laboratory for Protein Function and Structural BiologyRIKEN Cluster for Science, Technology and Innovation HubYokohamaJapan
- Department of Structural Biology and Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Miki Hara‐Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
10
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
11
|
Ding J, Ding L. Role of lysosomes in HSV-induced pathogenesis. Future Microbiol 2023; 18:911-916. [PMID: 37584568 DOI: 10.2217/fmb-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
HSV can evade host defenses and cause lifelong infection and severe illness. Lysosomes are catabolic organelles that play an important role in the regulation of cellular homeostasis. Lysosomal dysfunction and alterations in the process of autophagy have been identified in a variety of diseases, including HSV infection, and targeting lysosomes is a potential anti-HSV therapeutic strategy. This article reviews the role of lysosomes and lysosome-associated proteins in HSV infection, providing attractive targets and novel strategies for the treatment of HSV infection.
Collapse
Affiliation(s)
- Jieqiong Ding
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science & Technology, Xianning, 437100, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, 437100, China
| |
Collapse
|
12
|
Iannucci S, Harvey WT, Hughes J, Robertson DL, Poyade M, Hutchinson E. The SARS-CoV-2 Spike Protein Mutation Explorer: using an interactive application to improve the public understanding of SARS-CoV-2 variants of concern. J Vis Commun Med 2023; 46:122-132. [PMID: 37526402 PMCID: PMC10726978 DOI: 10.1080/17453054.2023.2237087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
Due to the COVID-19 pandemic the virus responsible, SARS-CoV-2, became a source of intense interest for non-expert audiences. The viral spike protein gained particular public interest as the main target for protective immune responses, including those elicited by vaccines. The rapid evolution of SARS-CoV-2 resulted in variations in the spike that enhanced transmissibility or weakened vaccine protection. This created new variants of concern (VOCs). The emergence of VOCs was studied using viral sequence data which was shared through portals such as the online Mutation Explorer of the COVID-19 Genomics UK consortium (COG-UK/ME). This was designed for an expert audience, but the information it contained could be of general interest if suitably communicated. Visualisations, interactivity and animation can improve engagement and understanding of molecular biology topics, and so we developed a graphical educational resource, the SARS-CoV-2 Spike Protein Mutation Explorer (SSPME), which used interactive 3D molecular models and animations to explain the molecular biology underpinning VOCs. User testing showed that the SSPME had better usability and improved participant knowledge confidence and knowledge acquisition compared to COG-UK/ME. This demonstrates how interactive visualisations can be used for effective molecular biology communication, as well as improving the public understanding of SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Sarah Iannucci
- School of Simulation and Visualisation, The Glasgow School of Art, Glasgow, UK
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Matthieu Poyade
- School of Simulation and Visualisation, The Glasgow School of Art, Glasgow, UK
| | | |
Collapse
|
13
|
Johnson V, Vasu S, Kumar US, Kumar M. Surface-Engineered Extracellular Vesicles in Cancer Immunotherapy. Cancers (Basel) 2023; 15:2838. [PMID: 37345176 PMCID: PMC10216164 DOI: 10.3390/cancers15102838] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed bodies secreted by all cell types. EVs carry bioactive materials, such as proteins, lipids, metabolites, and nucleic acids, to communicate and elicit functional alterations and phenotypic changes in the counterpart stromal cells. In cancer, cells secrete EVs to shape a tumor-promoting niche. Tumor-secreted EVs mediate communications with immune cells that determine the fate of anti-tumor therapeutic effectiveness. Surface engineering of EVs has emerged as a promising tool for the modulation of tumor microenvironments for cancer immunotherapy. Modification of EVs' surface with various molecules, such as antibodies, peptides, and proteins, can enhance their targeting specificity, immunogenicity, biodistribution, and pharmacokinetics. The diverse approaches sought for engineering EV surfaces can be categorized as physical, chemical, and genetic engineering strategies. The choice of method depends on the specific application and desired outcome. Each has its advantages and disadvantages. This review lends a bird's-eye view of the recent progress in these approaches with respect to their rational implications in the immunomodulation of tumor microenvironments (TME) from pro-tumorigenic to anti-tumorigenic ones. The strategies for modulating TME using targeted EVs, their advantages, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | - Sunil Vasu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Uday S. Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | - Manoj Kumar
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Deng Y, Long Y, Song A, Wang H, Xiang S, Qiu Y, Ge X, Golberg D, Weng Q. Boron Dopants in Red-Emitting B and N Co-Doped Carbon Quantum Dots Enable Targeted Imaging of Lysosomes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17045-17053. [PMID: 36961975 DOI: 10.1021/acsami.3c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lysosomes are of great significance to cell growth, metabolism, and survival, as they independently maintain acidity and regulate various balances in cells. Therefore, it is essential to develop advanced probes for lysosome visualization and live tracking. Herein, a type of lysosome-targeting probe based on boron (B) and nitrogen (N) co-doped carbon quantum dots (B/N-CQDs) is presented, which exhibits red emission at 618 nm, high quantum yield (28%), and excellent fluorescence stability (97% at 1 h). These B/N-CQDs are prepared by a novel and green solid-state reaction and purified using a simple extraction process without additional chemical modifications. It is found that the boron dopants in the structure play a crucial role in the resultant lysosome-specific targeting property through borate esterification between boronic acid groups in the sample and diol structures in glycoproteins. This can be applied as a powerful tool for cell apoptosis, necrosis, and endosomal escape tracking. This work not only offers a new concept for targeted subcellular probe designs via chemical doping but also demonstrates the feasibility of these tools for analyzing complex cellular physiological activities.
Collapse
Affiliation(s)
- Yuxian Deng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Road, Changsha 410082, P. R. China
| | - Yanyang Long
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Road, Changsha 410082, P. R. China
| | - Aling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, P. R. China
| | - Haiyan Wang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Road, Changsha 410082, P. R. China
| | - Shuo Xiang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Road, Changsha 410082, P. R. China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, P. R. China
| | - Xingyi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, P. R. China
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Qunhong Weng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Road, Changsha 410082, P. R. China
| |
Collapse
|
15
|
Ramesh D, Bakkannavar S, Bhat VR, Sharan K. Extracellular vesicles as novel drug delivery systems to target cancer and other diseases: Recent advancements and future perspectives. F1000Res 2023; 12:329. [PMID: 37868300 PMCID: PMC10589634 DOI: 10.12688/f1000research.132186.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles produced into the extracellular space by cells. Apoptotic bodies (ApoBD), microvesicles (MVs), and exosomes are examples of EVs, which act as essential regulators in cell-cell communication in both normal and diseased conditions. Natural cargo molecules such as miRNA, messenger RNA, and proteins are carried by EVs and transferred to nearby cells or distant cells through the process of circulation. Different signalling cascades are then influenced by these functionally active molecules. The information to be delivered to the target cells depends on the substances within the EVs that also includes synthesis method. EVs have attracted interest as potential delivery vehicles for therapies due to their features such as improved circulation stability, biocompatibility, reduced immunogenicity, and toxicity. Therefore, EVs are being regarded as potent carriers of therapeutics that can be used as a therapeutic agent for diseases like cancer. This review focuses on the exosome-mediated drug delivery to cancer cells and the advantages and challenges of using exosomes as a carrier molecule.
Collapse
Affiliation(s)
- Divya Ramesh
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Shankar Bakkannavar
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Vinutha R Bhat
- Biochemistry, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Radiotherapy Oncology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| |
Collapse
|
16
|
Amaral O, Martins M, Oliveira AR, Duarte AJ, Mondragão-Rodrigues I, Macedo MF. The Biology of Lysosomes: From Order to Disorder. Biomedicines 2023; 11:213. [PMID: 36672721 PMCID: PMC9856021 DOI: 10.3390/biomedicines11010213] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Since its discovery in 1955, the understanding of the lysosome has continuously increased. Once considered a mere waste removal system, the lysosome is now recognised as a highly crucial cellular component for signalling and energy metabolism. This notable evolution raises the need for a summarized review of the lysosome's biology. As such, throughout this article, we will be compiling the current knowledge regarding the lysosome's biogenesis and functions. The comprehension of this organelle's inner mechanisms is crucial to perceive how its impairment can give rise to lysosomal disease (LD). In this review, we highlight some examples of LD fine-tuned mechanisms that are already established, as well as others, which are still under investigation. Even though the understanding of the lysosome and its pathologies has expanded through the years, some of its intrinsic molecular aspects remain unknown. In order to illustrate the complexity of the lysosomal diseases we provide a few examples that have challenged the established single gene-single genetic disorder model. As such, we believe there is a strong need for further investigation of the exact abnormalities in the pathological pathways in lysosomal disease.
Collapse
Affiliation(s)
- Olga Amaral
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Martins
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Rita Oliveira
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Joana Duarte
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Inês Mondragão-Rodrigues
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - M. Fátima Macedo
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Pruvost T, Mathieu M, Dubois S, Maillère B, Vigne E, Nozach H. Deciphering cross-species reactivity of LAMP-1 antibodies using deep mutational epitope mapping and AlphaFold. MAbs 2023; 15:2175311. [PMID: 36797224 PMCID: PMC9980635 DOI: 10.1080/19420862.2023.2175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Delineating the precise regions on an antigen that are targeted by antibodies has become a key step for the development of antibody therapeutics. X-ray crystallography and cryogenic electron microscopy are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, they are labor-intensive and a successful outcome is not guaranteed. We used deep mutational scanning (DMS) of the human LAMP-1 antigen displayed on yeast surface and leveraged next-generation sequencing to observe the effect of individual mutants on the binding of two LAMP-1 antibodies and to determine their functional epitopes on LAMP-1. Fine-tuned epitope mapping by DMS approaches is augmented by knowledge of experimental antigen structure. As human LAMP-1 structure has not yet been solved, we used the AlphaFold predicted structure of the full-length protein to combine with DMS data and ultimately finely map antibody epitopes. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one of the two antibodies with a LAMP-1 luminal domain. Finally, we used AlphaFold models of non-human LAMP-1 to understand the lack of mAb cross-reactivity. While both epitopes in the murine form exhibit multiple mutations in comparison to human LAMP-1, only one and two mutations in the Macaca form suffice to hinder the recognition by mAb B and A, respectively. Altogether, this study promotes a new application of AlphaFold to speed up precision mapping of antibody-antigen interactions and consequently accelerate antibody engineering for optimization.
Collapse
Affiliation(s)
- Tiphanie Pruvost
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | - Magali Mathieu
- Sanofi, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| | | | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| |
Collapse
|
18
|
Akbari A, Nazari-Khanamiri F, Ahmadi M, Shoaran M, Rezaie J. Engineered Exosomes for Tumor-Targeted Drug Delivery: A Focus on Genetic and Chemical Functionalization. Pharmaceutics 2022; 15:pharmaceutics15010066. [PMID: 36678695 PMCID: PMC9865907 DOI: 10.3390/pharmaceutics15010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer is the main cause of death worldwide. The limitations in traditional cancer therapies provoked the advance and use of several nanotechnologies for more effective and nontoxic cancer treatment. Along with synthetic nanocarriers, extracellular vesicles (EVs)-mediated drug delivery systems have aroused substantial interest. The term EVs refers to cell-derived nanovesicles, such as exosomes, with phospholipid-bound structures, participating in cell-to-cell communication. Exosomes are 30-150 nm vesicles that can transfer many biological molecules between cells. From a drug delivery standpoint, exosomes can be loaded with various therapeutic cargo, with the several advantages of low immunogenicity, high biocompatibility, transformative, and effective tumor targeting aptitude. The exosomal surface can be functionalized to improve tumor targeting ability of them. Researchers have genetically expressed or chemically linked various molecules on the surface of exosomes. Despite extensive investigation, clinical translation of exosome-based drug delivery remains challenging. In this review, we discuss various methods used to loading exosomes with therapeutic cargo. We describe examples of functionalized exosomes surface using genetic and chemical modification methods. Finally, this review attempts to provide future outlooks for exosome-based targeted drug delivery.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Fereshteh Nazari-Khanamiri
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Correspondence: ; Tel.: +98-914-854-8503; Fax: +98-443-222-2010
| |
Collapse
|
19
|
Sun K, Zheng X, Jin H, Yu F, Zhao W. Exosomes as CNS Drug Delivery Tools and Their Applications. Pharmaceutics 2022; 14:pharmaceutics14102252. [PMID: 36297688 PMCID: PMC9609403 DOI: 10.3390/pharmaceutics14102252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Central nervous system (CNS) diseases threaten the health of people all over the world. However, due to the structural and functional particularities of the brain and spinal cord, CNS-targeted drug development is rather challenging. Exosomes are small cellular vesicles with lipid bilayers that can be secreted by almost all cells and play important roles in intercellular communication. The advantages of low immunogenicity, the ability to cross the blood-brain barrier, and the flexibility of drug encapsulation make them stand out among CNS drug delivery tools. Herein, we reviewed the research on exosomes in CNS drug delivery over the past decade and outlined the impact of the drug loading mode, administration route, and engineered modification on CNS targeting. Finally, we highlighted the problems and prospects of exosomes as CNS drug delivery tools.
Collapse
Affiliation(s)
- Ke Sun
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xue Zheng
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongzhen Jin
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
20
|
Chaudhry N, Sica M, Surabhi S, Hernandez DS, Mesquita A, Selimovic A, Riaz A, Lescat L, Bai H, MacIntosh GC, Jenny A. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 2022; 18:2443-2458. [PMID: 35266854 PMCID: PMC9542896 DOI: 10.1080/15548627.2022.2038999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
The endolysosomal system not only is an integral part of the cellular catabolic machinery that processes and recycles nutrients for synthesis of biomaterials, but also acts as signaling hub to sense and coordinate the energy state of cells with growth and differentiation. Lysosomal dysfunction adversely influences vesicular transport-dependent macromolecular degradation and thus causes serious problems for human health. In mammalian cells, loss of the lysosome associated membrane proteins LAMP1 and LAMP2 strongly affects autophagy and cholesterol trafficking. Here we show that the previously uncharacterized Drosophila Lamp1 is a bona fide ortholog of vertebrate LAMP1 and LAMP2. Surprisingly and in contrast to lamp1 lamp2 double-mutant mice, Drosophila Lamp1 is not required for viability or autophagy, suggesting that fly and vertebrate LAMP proteins acquired distinct functions, or that autophagy defects in lamp1 lamp2 mutants may have indirect causes. However, Lamp1 deficiency results in an increase in the number of acidic organelles in flies. Furthermore, we find that Lamp1 mutant larvae have defects in lipid metabolism as they show elevated levels of sterols and diacylglycerols (DAGs). Because DAGs are the main lipid species used for transport through the hemolymph (blood) in insects, our results indicate broader functions of Lamp1 in lipid transport. Our findings make Drosophila an ideal model to study the role of LAMP proteins in lipid assimilation without the confounding effects of their storage and without interfering with autophagic processes.Abbreviations: aa: amino acid; AL: autolysosome; AP: autophagosome; APGL: autophagolysosome; AV: autophagic vacuole (i.e. AP and APGL/AL); AVi: early/initial autophagic vacuoles; AVd: late/degradative autophagic vacuoles; Atg: autophagy-related; CMA: chaperone-mediated autophagy; Cnx99A: Calnexin 99A; DAG: diacylglycerol; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; FB: fat body; HDL: high-density lipoprotein; Hrs: Hepatocyte growth factor regulated tyrosine kinase substrate; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LDL: low-density lipoprotein; Lpp: lipophorin; LTP: Lipid transfer particle; LTR: LysoTracker Red; MA: macroautophagy; MCC: Manders colocalization coefficient; MEF: mouse embryonic fibroblast MTORC: mechanistic target of rapamycin kinase complex; PV: parasitophorous vacuole; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; Snap: Synaptosomal-associated protein; st: starved; TAG: triacylglycerol; TEM: transmission electron microscopy; TFEB/Mitf: transcription factor EB; TM: transmembrane domain; tub: tubulin; UTR: untranslated region.
Collapse
Affiliation(s)
- Norin Chaudhry
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Margaux Sica
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Satya Surabhi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | | | - Ana Mesquita
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Adem Selimovic
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Ayesha Riaz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Laury Lescat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
- Department of Genetics, Albert Einstein College of MedicineNew York, NY, USA
| |
Collapse
|
21
|
Saito T, Yagi H, Kuo CW, Khoo KH, Kato K. An embeddable molecular code for Lewis X modification through interaction with fucosyltransferase 9. Commun Biol 2022; 5:676. [PMID: 35831428 PMCID: PMC9279290 DOI: 10.1038/s42003-022-03616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a “Lewis X code”, which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering. A 29-amino acid sequence in the N-terminal domain of LAMP-1 promotes its Lewis X glycosylation and is embeddable to other proteins for Lewis X glycoengineering.
Collapse
Affiliation(s)
- Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Kay-Hooi Khoo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
22
|
Li X, Yu Q, Zhao R, Guo X, Liu C, Zhang K, Zhang W, Liu J, Yu J, Wang S, Hao Q, Li W, Zhang W, Li M, Zhang Y, Zhang C, Gao Y. Designer Exosomes for Targeted Delivery of a Novel Therapeutic Cargo to Enhance Sorafenib-Mediated Ferroptosis in Hepatocellular Carcinoma. Front Oncol 2022; 12:898156. [PMID: 35814401 PMCID: PMC9263838 DOI: 10.3389/fonc.2022.898156] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
Sorafenib is one of the few effective first-line drugs approved for the treatment of advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common among individuals with HCC. Recent evidence indicated that the anticancer activity of sorafenib mainly relies on the induction of ferroptosis. Furthermore, in our study, genes that suppress ferroptosis, especially GPX4 and DHODH, were enriched in sorafenib-resistant cells and primary tissues and were associated with poor prognosis of HCC patients who received sorafenib treatment. Therefore, a new ferroptosis inducer comprising a multiplex small interfering RNA (multi-siRNA) capable of simultaneously silencing GPX4 and DHODH was created. Then, exosomes with high multi-siRNA loading and HCC-specific targeting were established by fusing the SP94 peptide and the N-terminal RNA recognition motif (RRM) of U1-A with the exosomal membrane protein Lamp2b. The results from the in vitro and in vivo experiments indicate that this tumor-targeting nano-delivery system (ExoSP94-lamp2b-RRM-multi-siRNA) could enhance sorafenib-induced ferroptosis and overcome sorafenib resistance. Taken together, HCC-targeted exosomes (ExoSP94-Lamp2b-RRM) could specifically deliver multi-siRNA to HCC tissues, enhance sorafenib-induced ferroptosis by silencing GPX4 and DHODH expression and consequently increase HCC sensitivity to sorafenib, which opens a new avenue for clinically overcoming sorafenib resistance from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Xiaoju Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runze Zhao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Xinyan Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Chenlin Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Jinghan Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Jinzheng Yu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yuan Gao, ; Cun Zhang, ; Yingqi Zhang,
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yuan Gao, ; Cun Zhang, ; Yingqi Zhang,
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yuan Gao, ; Cun Zhang, ; Yingqi Zhang,
| |
Collapse
|
23
|
Schnebert S, Goguet M, Vélez EJ, Depincé A, Beaumatin F, Herpin A, Seiliez I. Diving into the Evolutionary History of HSC70-Linked Selective Autophagy Pathways: Endosomal Microautophagy and Chaperone-Mediated Autophagy. Cells 2022; 11:cells11121945. [PMID: 35741074 PMCID: PMC9221867 DOI: 10.3390/cells11121945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a pleiotropic and evolutionarily conserved process in eukaryotes that encompasses different types of mechanisms by which cells deliver cytoplasmic constituents to the lysosome for degradation. Interestingly, in mammals, two different and specialized autophagic pathways, (i) the chaperone-mediated autophagy (CMA) and (ii) the endosomal microautophagy (eMI), both rely on the use of the same cytosolic chaperone HSPA8 (also known as HSC70) for targeting specific substrates to the lysosome. However, this is not true for all organisms, and differences exist between species with respect to the coexistence of these two autophagic routes. In this paper, we present an in-depth analysis of the evolutionary history of the main components of CMA and eMI and discuss how the observed discrepancies between species may contribute to improving our knowledge of these two functions and their interplays.
Collapse
Affiliation(s)
- Simon Schnebert
- E2S UPPA, INRAE, NUMEA, Université de Pau et des Pays de l’Adour, 64310 Saint-Pée-sur-Nivelle, France; (S.S.); (M.G.); (E.J.V.); (F.B.)
| | - Maxime Goguet
- E2S UPPA, INRAE, NUMEA, Université de Pau et des Pays de l’Adour, 64310 Saint-Pée-sur-Nivelle, France; (S.S.); (M.G.); (E.J.V.); (F.B.)
| | - Emilio J. Vélez
- E2S UPPA, INRAE, NUMEA, Université de Pau et des Pays de l’Adour, 64310 Saint-Pée-sur-Nivelle, France; (S.S.); (M.G.); (E.J.V.); (F.B.)
| | - Alexandra Depincé
- UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, INRAE, F-35042 Rennes, France;
| | - Florian Beaumatin
- E2S UPPA, INRAE, NUMEA, Université de Pau et des Pays de l’Adour, 64310 Saint-Pée-sur-Nivelle, France; (S.S.); (M.G.); (E.J.V.); (F.B.)
| | - Amaury Herpin
- UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, INRAE, F-35042 Rennes, France;
- Correspondence: (A.H.); (I.S.)
| | - Iban Seiliez
- E2S UPPA, INRAE, NUMEA, Université de Pau et des Pays de l’Adour, 64310 Saint-Pée-sur-Nivelle, France; (S.S.); (M.G.); (E.J.V.); (F.B.)
- Correspondence: (A.H.); (I.S.)
| |
Collapse
|
24
|
Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J Dairy Sci 2022; 105:4520-4533. [DOI: 10.3168/jds.2021-20892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
25
|
Iannucci S, Harvey W, Hughes J, Robertson DL, Hutchinson E, Poyade M. Using Molecular Visualisation Techniques to Explain the Molecular Biology of SARS-CoV-2 Spike Protein Mutations to a General Audience. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1388:129-152. [PMID: 36104619 DOI: 10.1007/978-3-031-10889-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Since the COVID-19 pandemic started in 2019, the virus responsible for the outbreak-SARS-CoV-2-has continued to evolve. Mutations of the virus' spike protein, the main protein driving infectivity and transmissibility, are especially concerning as they may allow the virus to improve its infectivity, transmissibility, and ability to evade the immune system. Understanding how specific molecular changes can alter the behaviour of a virus is challenging for non-experts, but this information helps us to understand the pandemic we are living through and the public health measures and interventions needed to bring it under control. In response to communication challenges arising from the COVID-19 pandemic, we recently developed an online educational application to explain the molecular biology of SARS-CoV-2 spike protein mutations to the general public. We used visualisation techniques such as 3D modelling and animation, which have been shown to be highly effective teaching tools in molecular biology, allowing the viewer to better understand protein structure, function, and dynamics. We also included interactive elements for users to learn actively by engaging with the digital content, and consequently improve information retention.This chapter presents the methodological and technological framework which we used to create this resource, the 'SARS-CoV-2 Spike Protein Mutation Explorer' (SSPME). It explains how molecular visualisation and 3D modelling software were used to develop accurate models of relevant proteins; how 3D animation software was used to accurately visualise the dynamic molecular processes of SARS-CoV-2 infection, transmission, and antibody evasion; and how game development software was used to compile the 3D models and animations into a comprehensive, informative interactive application on SARS-CoV-2 spike protein mutations. This chapter indicates how cutting-edge visualisation techniques and technologies can be used to improve science communication about complex topics in molecular biology and infection biology to the general public, something that is critical to gaining control of the continuing COVID-19 pandemic.
Collapse
Affiliation(s)
- Sarah Iannucci
- The School of Simulation and Visualisation, The Glasgow School of Art, Glasgow, UK.
- the Anatomy Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - William Harvey
- MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow, UK
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow, UK
| | - Matthieu Poyade
- The School of Simulation and Visualisation, The Glasgow School of Art, Glasgow, UK
| |
Collapse
|
26
|
Ikami Y, Terasawa K, Sakamoto K, Ohtake K, Harada H, Watabe T, Yokoyama S, Hara-Yokoyama M. The two-domain architecture of LAMP2A regulates its interaction with Hsc70. Exp Cell Res 2021; 411:112986. [PMID: 34942188 DOI: 10.1016/j.yexcr.2021.112986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
Chaperone-mediated autophagy (CMA) is a unique proteolytic pathway, in which cytoplasmic proteins recognized by heat shock cognate protein 70 (Hsc70/HSPA8) are transported into lysosomes for degradation. The substrate/chaperone complex binds to the cytosolic tail of the lysosomal-associated membrane protein type 2A (LAMP2A), but whether the interaction between Hsc70 and LAMP2A is direct or mediated by other molecules has remained to be elucidated. The structure of LAMP2A comprises a large lumenal domain composed of two domains, both with the β-prism fold, a transmembrane domain and a short cytoplasmic tail. We previously reported the structural basis for the homophilic interaction of the lumenal domains of LAMP2A, using site-specific photo-crosslinking and/or steric hindrance within cells. In the present study, we introduced a photo-crosslinker into the cytoplasmic tail of LAMP2A and successfully detected its crosslinking with Hsc70, revealing this direct interaction for the first time. Furthermore, we demonstrated that the truncation of the membrane-distal domain within the lumenal domain of LAMP2A reduced the amount of Hsc70 that coimmunoprecipitated with LAMP2A. Our present results suggested that the two-domain architecture of the lumenal domains of LAMP2A underlies the interaction with Hsc70 at the cytoplasmic surface of the lysosome.
Collapse
Affiliation(s)
- Yuta Ikami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kensaku Sakamoto
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazumasa Ohtake
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
27
|
Terasawa K, Kato Y, Ikami Y, Sakamoto K, Ohtake K, Kusano S, Tomabechi Y, Kukimoto-Niino M, Shirouzu M, Guan JL, Kobayashi T, Iwata T, Watabe T, Yokoyama S, Hara-Yokoyama M. Direct homophilic interaction of LAMP2A with the two-domain architecture revealed by site-directed photo-crosslinks and steric hindrances in mammalian cells. Autophagy 2021; 17:4286-4304. [PMID: 33849387 PMCID: PMC8726616 DOI: 10.1080/15548627.2021.1911017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
LAMP1 (lysosomal-associated membrane protein 1) and LAMP2 are the most abundant protein components of lysosome membranes. Both LAMPs have common structures consisting of a large lumenal domain composed of two domains (N-domain and C-domain, which are membrane-distal and -proximal, respectively), both with the β-prism fold, a transmembrane domain, and a short cytoplasmic tail. LAMP2 is involved in various aspects of autophagy, and reportedly forms high-molecular weight complexes at the lysosomal membrane. We previously showed that LAMP2 molecules coimmunoprecipitated with each other, but whether the homophilic interaction is direct or indirect has remained to be elucidated. In the present study, we demonstrated the direct homophilic interaction of mouse LAMP2A molecules, using expanded genetic code technologies that generate photo-crosslinking and/or steric hindrance at specified interfaces. Specifically, the results suggested that LAMP2A molecules assemble by facing each other with one side of the β-prism (defined as side A) of the C-domains. The N-domain truncation, which increased the coimmunoprecipitation of LAMP2A molecules in our previous study, permitted the nonspecific involvement of both sides of the β-prism (side A and side B). Thus, the presence of the N-domain restricts the LAMP2A interactions to side A-specific. The truncation of LAMP2A impaired the recruitment of GAPDH (a CMA-substrate) fused to the HaloTag protein to the surface of late endosomes/lysosomes (LE/Lys) and affected a process that generates LE/Lys. The present study revealed that the homophilic interaction of LAMP2A is direct, and the side A-specific, homophilic interaction of LAMP2A is required for the functional aspects of LAMP2A.Abbreviations: Aloc-Lys: Nε-allyloxycarbonyl-l-lysine; CMA: chaperone-mediated autophagy; FFE: free-flow electrophoresis; GAPDH-HT: glyceraldehyde-3-phosphate dehydrogenase fused to HaloTag protein; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LBPA: lysobisphosphatidic acid; LE/Lys: late endosome/lysosomes; MEFs: mouse embryonic fibroblasts; pBpa: p-benzoyl- l-phenylalanine.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuji Kato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Ikami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Seisuke Kusano
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Yuri Tomabechi
- Laboratory for Protein Function and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Function and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Function and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
28
|
Abstract
Obesity is a growing human health concern worldwide and imposes adverse effects on many cell types and organ systems, including the kidneys. Obesity interferes with various cellular processes by increasing lipid accumulation and oxidation, insulin resistance, and inflammation. Autophagy is an important cellular process to maintain hemostasis and preserve resources, but might be altered in obesity. Interestingly, experimental studies have shown either an increase or a decrease in the rate of autophagy, and accumulation of byproducts and mediators of this cascade in kidneys of obese individuals. Hence, whether autophagy is beneficial or detrimental under these conditions remains unresolved. This review summarizes emerging evidence linking superfluous fat accumulation to alterations in autophagy. Elucidating the role of autophagy in the pathogenesis and complications of obesity in the kidney might help in the identification of therapeutic targets to prevent or delay the development of chronic kidney disease in obese subjects. Autophagy, kidney, obesity, lipids.
Collapse
Affiliation(s)
- Ramyar Ghandriz
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| |
Collapse
|
29
|
Kakhlon O, Vaknin H, Mishra K, D’Souza J, Marisat M, Sprecher U, Wald‐Altman S, Dukhovny A, Raviv Y, Da’adoosh B, Engel H, Benhamron S, Nitzan K, Sweetat S, Permyakova A, Mordechai A, Akman HO, Rosenmann H, Lossos A, Tam J, Minassian BA, Weil M. Alleviation of a polyglucosan storage disorder by enhancement of autophagic glycogen catabolism. EMBO Mol Med 2021; 13:e14554. [PMID: 34486811 PMCID: PMC8495453 DOI: 10.15252/emmm.202114554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.
Collapse
Affiliation(s)
- Or Kakhlon
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hilla Vaknin
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Kumudesh Mishra
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Jeevitha D’Souza
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Monzer Marisat
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Uri Sprecher
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Shane Wald‐Altman
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Anna Dukhovny
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Yuval Raviv
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Benny Da’adoosh
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Hamutal Engel
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Sandrine Benhamron
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Keren Nitzan
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Sahar Sweetat
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Anna Permyakova
- Obesity and Metabolism LaboratoryInstitute for Drug ResearchSchool of PharmacyFaculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anat Mordechai
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hasan Orhan Akman
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Hanna Rosenmann
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Alexander Lossos
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Joseph Tam
- Obesity and Metabolism LaboratoryInstitute for Drug ResearchSchool of PharmacyFaculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Berge A. Minassian
- Division of NeurologyDepartment of PediatricsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
30
|
Liu Y, Li YP, Xiao LM, Chen LK, Zheng SY, Zeng EM, Xu CH. Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis. J Transl Med 2021; 101:837-850. [PMID: 33875790 DOI: 10.1038/s41374-021-00545-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidences have suggested that extracellular vesicles (EVs) are crucial players in the pathogenesis of ischemic brain injury. This study was designed to explore the specific functions of M2 phenotype microglia-derived EVs in ischemic brain injury progression. The expression of microRNA-135a-5p (miR-135a-5p) in M2 microglia-derived EVs was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), followed by the identification of expression relationship among miR-135a-5p, thioredoxin-interacting protein (TXNIP), and nod-like receptor protein 3 (NLRP3) by dual luciferase reporter gene assay. After construction of an oxygen-glucose deprivation/reperfusion (OGD/R) cell model, the effects of miR-135a-5p on the biological characteristics of HT-22 cells were assessed by cell counting kit 8 (CCK-8) assay and flow cytometry. Finally, a mouse model of transient middle cerebral artery occlusion (tMCAO) was established and cerebral infarction volume was determined by triphenyltetrazolium chloride (TTC) staining and the expression of IL-18 and IL-1β in the brain tissue was determined by enzyme-linked immunosorbent assay (ELISA). We found that M2 microglia-derived EVs had high expression of miR-135a-5p, and that miR-135a-5p in M2 microglia-derived EVs negatively regulated the expression of NLRP3 via TXNIP. Overexpression of miR-135a-5p promoted the proliferation but inhibited the apoptosis of neuronal cells, and inhibited the expression of autophagy-related proteins. M2 microglia-derived EVs delivered miR-135a-5p into neuronal cells to inhibit TXNIP expression, which further inhibited the activation of NLRP3 inflammasome, thereby reducing neuronal autophagy and ischemic brain injury. Hence, M2 microglia-derived EVs are novel therapeutic targets for ischemic brain injury treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - You-Ping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Li-Min Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Li-Ke Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Su-Yue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
31
|
Morava E, Schatz UA, Torring PM, Abbott MA, Baumann M, Brasch-Andersen C, Chevalier N, Dunkhase-Heinl U, Fleger M, Haack TB, Nelson S, Potelle S, Radenkovic S, Bommer GT, Van Schaftingen E, Veiga-da-Cunha M. Impaired glucose-1,6-biphosphate production due to bi-allelic PGM2L1 mutations is associated with a neurodevelopmental disorder. Am J Hum Genet 2021; 108:1151-1160. [PMID: 33979636 PMCID: PMC8206387 DOI: 10.1016/j.ajhg.2021.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
We describe a genetic syndrome due to PGM2L1 deficiency. PGM2 and PGM2L1 make hexose-bisphosphates, like glucose-1,6-bisphosphate, which are indispensable cofactors for sugar phosphomutases. These enzymes form the hexose-1-phosphates crucial for NDP-sugars synthesis and ensuing glycosylation reactions. While PGM2 has a wide tissue distribution, PGM2L1 is highly expressed in the brain, accounting for the elevated concentrations of glucose-1,6-bisphosphate found there. Four individuals (three females and one male aged between 2 and 7.5 years) with bi-allelic inactivating mutations of PGM2L1 were identified by exome sequencing. All four had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals. Analysis of the children's fibroblasts showed that glucose-1,6-bisphosphate and other sugar bisphosphates were markedly reduced but still present at concentrations able to stimulate phosphomutases maximally. Hence, the concentrations of NDP-sugars and glycosylation of the heavily glycosylated protein LAMP2 were normal. Consistent with this, serum transferrin was normally glycosylated in affected individuals. PGM2L1 deficiency does not appear to be a glycosylation defect, but the clinical features observed in this neurodevelopmental disorder point toward an important but still unknown role of glucose-1,6-bisphosphate or other sugar bisphosphates in brain metabolism.
Collapse
Affiliation(s)
- Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ulrich A Schatz
- Institute of Human Genetics, Department of Genetics and Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Pernille M Torring
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Mary-Alice Abbott
- Medical Genetics, Department of Pediatrics, University of Massachusetts Medical School - Baystate, Springfield, MA 01199, USA
| | - Matthias Baumann
- Department of Pediatrics I, Division of Pediatric Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark; Human Genetics, Faculty of Health, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | - Martin Fleger
- Department of Pediatrics, Landeskrankenhaus Bregenz, 6900 Bregenz, Austria
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Stephen Nelson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sven Potelle
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Metabolomics Expertise Center, VIB-KU Leuven, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
32
|
Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou DX, Chen J. Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res 2021; 65:6355. [PMID: 33841067 PMCID: PMC8009086 DOI: 10.29219/fnr.v65.6355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Fisetin, a natural potent flavonoid, has various beneficial, pharmacological activities. In this study, we investigated expression changes of the fisetin regulating genes in lipopolysaccharide (LPS)-treated RAW264.7 cells and explored the role of fisetin in inflammation and autophagy. Methods and results Microarray analysis identified 1,071 genes that were regulated by fisetin in LPS-treated RAW264.7 cells, and these genes were mainly related to the process of immune system response. Quantitative real-time polymerase chain reaction and Bio-Plex analysis indicated that fisetin decreased the expression and secretion of several inflammatory cytokines in cells administered with LPS. Western blot analysis and immunofluorescence assay showed that fisetin decreased microtubule-associated protein 1 light-chain 3B (LC3B) and lysosome-associated membrane protein 1 (LAMP1) expression in LPS-treated cells, while the autophagy inhibitor chloroquine (CQ) could partially reverse this effect. In addition, fisetin reduced the elevated expression of p-PI3K, p-AKT and p-mTOR induced by LPS in a concentration-dependent manner. Conclusions Fisetin diminished the expression and secretion of inflammatory cytokines and facilitated autophagosome-lysosome fusion and degradation in LPS-treated RAW264.7 cells via inhibition of the PI3K/AKT/mTOR signaling pathway. Overall, the results of this study provide new clues for the anti-inflammatory mechanism of fisetin and explain the crosstalk between autophagy and inflammation to some extent.
Collapse
Affiliation(s)
- Yue Sun
- Xiangya School of Public Health, Central South University, Changsha, China.,Inspecting Agency, Shanghai Municipal Health Commission, Shanghai, China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Huihui Zhang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - De-Xing Hou
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
33
|
Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood 2021; 136:1033-1043. [PMID: 32294159 DOI: 10.1182/blood.2019004465] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Neutropenia and neutrophil dysfunction cause serious infections and inflammatory bowel disease in glycogen storage disease type Ib (GSD-Ib). Our discovery that accumulating 1,5-anhydroglucitol-6-phosphate (1,5AG6P) caused neutropenia in a glucose-6-phosphatase 3 (G6PC3)-deficient mouse model and in 2 rare diseases (GSD-Ib and G6PC3 deficiency) led us to repurpose the widely used antidiabetic drug empagliflozin, an inhibitor of the renal glucose cotransporter sodium glucose cotransporter 2 (SGLT2). Off-label use of empagliflozin in 4 GSD-Ib patients with incomplete response to granulocyte colony-stimulating factor (GCSF) treatment decreased serum 1,5AG and neutrophil 1,5AG6P levels within 1 month. Clinically, symptoms of frequent infections, mucosal lesions, and inflammatory bowel disease resolved, and no symptomatic hypoglycemia was observed. GCSF could be discontinued in 2 patients and tapered by 57% and 81%, respectively, in the other 2. The fluctuating neutrophil numbers in all patients were increased and stabilized. We further demonstrated improved neutrophil function: normal oxidative burst (in 3 of 3 patients tested), corrected protein glycosylation (2 of 2), and normal neutrophil chemotaxis (1 of 1), and bactericidal activity (1 of 1) under treatment. In summary, the glucose-lowering SGLT2 inhibitor empagliflozin, used for type 2 diabetes, was successfully repurposed for treating neutropenia and neutrophil dysfunction in the rare inherited metabolic disorder GSD-Ib without causing symptomatic hypoglycemia. We ascribe this to an improvement in neutrophil function resulting from the reduction of the intracellular concentration of 1,5AG6P.
Collapse
|
34
|
Lin HQ, Dai SH, Liu WC, Lin X, Yu BT, Chen SB, Liu S, Ling H, Tang J. Effects of prolonged cold-ischemia on autophagy in the graft lung in a rat orthotopic lung transplantation model. Life Sci 2021; 268:118820. [PMID: 33278393 DOI: 10.1016/j.lfs.2020.118820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury causes present challenges in the field of graft transplantation which is also a major contributor to early graft dysfunction or failure after organ transplantation. The study focuses on the effects of prolonged cold-ischemia (CI) on the autophagic activity in the graft lung in a rat orthotopic lung transplantation model. MATERIAL AND METHODS Donor lungs were preserved under CI conditions for different periods. An orthotopic lung transplantation model was developed, and the lung tissues from donor lungs subjected to CI preservation and reperfusion were harvested. We evaluated the effects of different CI periods on autophagy, reactive oxygen species (ROS) and glucose consumption. Additionally, the mechanism by which prolonged CI affected autophagy was investigated through determination of the molecules related to the mTOR pathway after treatment with 3-Methyladenine (3-MA), rapamycin and an adenosine triphosphate (ATP) synthase inhibitor oligomycin (OM). RESULTS Prolonged CI led to increased activities of key glycolytic enzymes, glucose consumption and lactic acid production. Autophagy, ROS and glucose consumption were induced in the graft lung after I/R, which reached peak levels after 6 h and was gradually decreased. Most importantly, the perfusion treatment of 3-MA or OM decreased ROS level and autophagy, but increased the extent of mTOR phosphorylation, while the perfusion treatment of rapamycin induced ROS and autophagy. CONCLUSION Taken together, autophagy mediated by a prolonged CI preservation affects the glucose consumption and ROS production in the graft lung via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Hui-Qing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shao-Hua Dai
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Wei-Cheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Lin
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Shi-Biao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Sheng Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Hua Ling
- Department of Nursing, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| | - Jian Tang
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
35
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
36
|
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Am J Cancer Res 2021; 11:3183-3195. [PMID: 33537081 PMCID: PMC7847680 DOI: 10.7150/thno.52570] [Citation(s) in RCA: 676] [Impact Index Per Article: 225.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are cell-derived nanovesicles that are involved in the intercellular transportation of materials. Therapeutics, such as small molecules or nucleic acid drugs, can be incorporated into exosomes and then delivered to specific types of cells or tissues to realize targeted drug delivery. Targeted delivery increases the local concentration of therapeutics and minimizes side effects. Here, we present a detailed review of exosomes engineering through genetic and chemical methods for targeted drug delivery. Although still in its infancy, exosome-mediated drug delivery boasts low toxicity, low immunogenicity, and high engineerability, and holds promise for cell-free therapies for a wide range of diseases.
Collapse
|
37
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
38
|
Wang L, Wu D, Robinson CV, Wu H, Fu TM. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol Cell 2020; 80:501-511.e3. [PMID: 33065002 PMCID: PMC7655608 DOI: 10.1016/j.molcel.2020.09.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are ATP-driven proton pumps comprised of a cytoplasmic V1 complex for ATP hydrolysis and a membrane-embedded Vo complex for proton transfer. They play important roles in acidification of intracellular vesicles, organelles, and the extracellular milieu in eukaryotes. Here, we report cryoelectron microscopy structures of human V-ATPase in three rotational states at up to 2.9-Å resolution. Aided by mass spectrometry, we build all known protein subunits with associated N-linked glycans and identify glycolipids and phospholipids in the Vo complex. We define ATP6AP1 as a structural hub for Vo complex assembly because it connects to multiple Vo subunits and phospholipids in the c-ring. The glycolipids and the glycosylated Vo subunits form a luminal glycan coat critical for V-ATPase folding, localization, and stability. This study identifies mechanisms of V-ATPase assembly and biogenesis that rely on the integrated roles of ATP6AP1, glycans, and lipids.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Sudhakar JN, Lu HH, Chiang HY, Suen CS, Hwang MJ, Wu SY, Shen CN, Chang YM, Li FA, Liu FT, Shui JW. Lumenal Galectin-9-Lamp2 interaction regulates lysosome and autophagy to prevent pathogenesis in the intestine and pancreas. Nat Commun 2020; 11:4286. [PMID: 32855403 PMCID: PMC7453023 DOI: 10.1038/s41467-020-18102-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Intracellular galectins are carbohydrate-binding proteins capable of sensing and repairing damaged lysosomes. As in the physiological conditions glycosylated moieties are mostly in the lysosomal lumen but not cytosol, it is unclear whether galectins reside in lysosomes, bind to glycosylated proteins, and regulate lysosome functions. Here, we show in gut epithelial cells, galectin-9 is enriched in lysosomes and predominantly binds to lysosome-associated membrane protein 2 (Lamp2) in a Asn(N)-glycan dependent manner. At the steady state, galectin-9 binding to glycosylated Asn175 of Lamp2 is essential for functionality of lysosomes and autophagy. Loss of N-glycan-binding capability of galectin-9 causes its complete depletion from lysosomes and defective autophagy, leading to increased endoplasmic reticulum (ER) stress preferentially in autophagy-active Paneth cells and acinar cells. Unresolved ER stress consequently causes cell degeneration or apoptosis that associates with colitis and pancreatic disorders in mice. Therefore, lysosomal galectins maintain homeostatic function of lysosomes to prevent organ pathogenesis.
Collapse
Affiliation(s)
| | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Yu Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Yu Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
40
|
Cameron B, Dabdoubi T, Berthou-Soulié L, Gagnaire M, Arnould I, Severac A, Soubrier F, Morales J, Leighton PA, Harriman W, Ching K, Abdiche Y, Radošević K, Bouquin T. Complementary epitopes and favorable developability of monoclonal anti-LAMP1 antibodies generated using two transgenic animal platforms. PLoS One 2020; 15:e0235815. [PMID: 32673351 PMCID: PMC7365404 DOI: 10.1371/journal.pone.0235815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
Monoclonal antibodies (mAbs) for therapeutic applications should be as similar to native human antibodies as possible to minimize their immunogenicity in patients. Several transgenic animal platforms are available for the generation of fully human mAbs. Attributes such as specificity, efficacy and Chemistry, Manufacturing and Controls (CMC) developability of antibodies against a specific target are typically established for antibodies obtained from one platform only. In this study, monoclonal antibodies (mAbs) cross-reactive against human and cynomolgus LAMP1 were derived from the human immunoglobulin transgenic TRIANNI mouse and OmniChicken® platforms and assessed for their specificity, sequence diversity, ability to bind to and internalize into tumor cells, expected immunogenicity and CMC developability. Our results show that the two platforms were complementary at providing a large diversity of mAbs with respect to epitope coverage and antibody sequence diversity. Furthermore, most antibodies originating from either platform exhibited good manufacturability characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Severac
- Biologics Research, Sanofi R&D, Boufféré, France
| | | | - Jacqueline Morales
- Ligand Pharmaceuticals Inc., San Diego, California, United States of America
| | - Philip A. Leighton
- Ligand Pharmaceuticals Inc., San Diego, California, United States of America
| | - William Harriman
- Ligand Pharmaceuticals Inc., San Diego, California, United States of America
| | - Kathryn Ching
- Ligand Pharmaceuticals Inc., San Diego, California, United States of America
| | - Yasmina Abdiche
- Carterra Inc., Salt Lake City, Utah, United States of America
| | | | | |
Collapse
|
41
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Wang N, Liu H, Liu G, Li M, He X, Yin C, Tu Q, Shen X, Bai W, Wang Q, Tao Y, Yin H. Yeast β-D-glucan exerts antitumour activity in liver cancer through impairing autophagy and lysosomal function, promoting reactive oxygen species production and apoptosis. Redox Biol 2020; 32:101495. [PMID: 32171725 PMCID: PMC7076095 DOI: 10.1016/j.redox.2020.101495] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 01/05/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that recycles proteins and organelles in a lysosome-dependent manner and is induced as an alternative source of energy and metabolites in response to diverse stresses. Inhibition of autophagy has emerged as an appealing therapeutic strategy in cancer. However, it remains to be explored whether autophagy inhibition is a viable approach for the treatment of hepatocellular carcinoma (HCC). Here, we identify that water-soluble yeast β-D-glucan (WSG) is a novel autophagy inhibitor and exerts significant antitumour efficacy on the inhibition of HCC cells proliferation and metabolism as well as the tumour growth in vivo. We further reveal that WSG inhibits autophagic degradation by increasing lysosomal pH and inhibiting lysosome cathepsins (cathepsin B and cathepsin D) activities, which results in the accumulation of damaged mitochondria and reactive oxygen species (ROS) production. Furthermore, WSG sensitizes HCC cells to apoptosis via the activation of caspase 8 and the transfer of truncated BID (tBID) into mitochondria under nutrient deprivation condition. Of note, administration of WSG as a single agent achieves a significant antitumour effect in xenograft mouse model and DEN/CCl4 (diethylnitrosamine/carbon tetrachloride)-induced primary HCC model without apparent toxicity. Our studies reveal, for the first time, that WSG is a novel autophagy inhibitor with significant antitumour efficacy as a single agent, which has great potential in clinical application for liver cancer therapy. Water-soluble yeast β-D-glucan (WSG) exerts direct antitumour activity in HCC WSG inhibits autophagic degradation by increasing lysosomal pH WSG causes accumulation of damaged mitochondria and ROS production WSG sensitizes HCC cells to apoptosis via the activation of caspase 8
Collapse
Affiliation(s)
- Ningning Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guijun Liu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China
| | - Min Li
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China
| | - Xuxiao He
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China
| | - Chunzhao Yin
- University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qiaochu Tu
- University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xia Shen
- University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yongzhen Tao
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China.
| | - Huiyong Yin
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, 10049, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
43
|
Dillard KJ, Ochs M, Niskanen JE, Arumilli M, Donner J, Kyöstilä K, Hytönen MK, Anttila M, Lohi H. Recessive missense LAMP3 variant associated with defect in lamellar body biogenesis and fatal neonatal interstitial lung disease in dogs. PLoS Genet 2020; 16:e1008651. [PMID: 32150563 PMCID: PMC7082050 DOI: 10.1371/journal.pgen.1008651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Neonatal interstitial lung diseases due to abnormal surfactant biogenesis are rare in humans and have never been reported as a spontaneous disorder in animals. We describe here a novel lung disorder in Airedale Terrier (AT) dogs with clinical symptoms and pathology similar to the most severe neonatal forms of human surfactant deficiency. Lethal hypoxic respiratory distress and failure occurred within the first days or weeks of life in the affected puppies. Transmission electron microscopy of the affected lungs revealed maturation arrest in the formation of lamellar bodies (LBs) in the alveolar epithelial type II (AECII) cells. The secretory organelles were small and contained fewer lamellae, often in combination with small vesicles surrounded by an occasionally disrupted common limiting membrane. A combined approach of genome-wide association study and whole exome sequencing identified a recessive variant, c.1159G>A, p.(E387K), in LAMP3, a limiting membrane protein of the cytoplasmic surfactant organelles in AECII cells. The substitution resides in the LAMP domain adjacent to a conserved disulfide bond. In summary, this study describes a novel interstitial lung disease in dogs, identifies a new candidate gene for human surfactant dysfunction and brings important insights into the essential role of LAMP3 in the process of the LB formation.
Collapse
Affiliation(s)
- Kati J. Dillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Veterinary Bacteriology and Pathology Research Unit, Finnish Food Authority, Helsinki, Finland
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Institute of Functional Anatomy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Julia E. Niskanen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Marjukka Anttila
- Veterinary Bacteriology and Pathology Research Unit, Finnish Food Authority, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
44
|
Zheng L, Li XY, Huang FZ, Zhang XT, Tang HB, Li YS, Zhang WK, Li XJ, Tian GH. Effect of electroacupuncture on relieving central post-stroke pain by inhibiting autophagy in the hippocampus. Brain Res 2020; 1733:146680. [PMID: 31987731 DOI: 10.1016/j.brainres.2020.146680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION To explore the underlying mechanism of electroacupuncture (EA) treatment on central post-stroke pain (CPSP), and provide basic evidence for the EA treatment on CPSP. METHODS Firstly, 40 male SD rats were successfully established with a model of CPSP, under the intervention of different EA frequencies (2 Hz and 15 Hz) and fluoxetine (5 ml/kg and 0.4 mg/ml), whose brain tissue was then removed for paraffin-embedded sectioning; secondly, LPS induced the primary brain cells in the hippocampus to cause inflammation model which were added NS398 (inhibitor of COX-2) and DKK-1 (inhibitor of β-catenin) later. The lesion sites of brain tissue were observed by Nissl staining and Transmission Electron Microscope (TEM) and autophagy-related proteins (LC3B, p62, LAMP-1), COX-2 and β-catenin were detected by Western Blot and immunohistochemical staining. Finally, the correlation between LC3B, COX-2, and β-catenin was calculated by multispectral quantification. RESULTS (1) In the EA group (15 Hz), the number of Nissl bodies increased, autophagy-related protein LC3B-Ⅱ/Ⅰ, LAMP-1, COX-2, and β-catenin was lowly expressed, p62 was highly expressed; (2) COX-2, β-catenin and LC3B are positively correlated with each other (COX-2 & β-catenin: r = 0.923; COX-2 & LC3B: r = 0.818; β-catenin & LC3B: r = 0.801); (3) Nissl bodies of primary brain cells of the hippocampus under LPS were like animal experiments; after addition of DKK-1, high expression of β-catenin and COX-2 induced by LPS was significantly down-regulated, and LC3B-II/I was significantly down-regulated, and p62 protein only had up-regulation trend; after addition of NS398, COX-2 and LC3B-II/I was significantly down-regulated. CONCLUSION EA may inhibit autophagy in the hippocampus by reducing β-catenin/COX-2 protein expression and effectively alleviating CPSP. SIGNIFICANCE STATEMENT Previous studies have found that EA can reduce the expression of NK-1R in damaged rats by inhibition of COX-2 and β-catenin loops, which controls the activation of glial cells in the damaged area and the apoptosis of neuronal cells, and alleviated pain. In the male SD rat model, we evaluated this effect that EA inhibits autophagy in the hippocampus by reducing β-catenin/COX-2 protein expression in the brain tissue. In addition, we assessed expression levels of autophagy-related proteins and genes on the inflammatory primary brain cells model. From the experiment, we found EA may inhibit autophagy in the hippocampus by reducing β-catenin/COX-2 protein expression. These findings provide a foundation for the interpretation of the mechanism of EA on relieving CPSP in clinical practice.
Collapse
Affiliation(s)
- Ling Zheng
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central University For Nationalities, Wuhan 430074, China
| | - Xin-Yi Li
- Key Laboratory of Chinese Internal Medicine of MOE and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Feng-Zhen Huang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central University For Nationalities, Wuhan 430074, China
| | - Xia-Tian Zhang
- Key Laboratory of Chinese Internal Medicine of MOE and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central University For Nationalities, Wuhan 430074, China.
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central University For Nationalities, Wuhan 430074, China
| | - Wei Kevin Zhang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central University For Nationalities, Wuhan 430074, China
| | - Xiao-Jun Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central University For Nationalities, Wuhan 430074, China
| | - Gui-Hua Tian
- Key Laboratory of Chinese Internal Medicine of MOE and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
45
|
Zou H, Wang T, Yuan J, Sun J, Yuan Y, Gu J, Liu X, Bian J, Liu Z. Cadmium-induced cytotoxicity in mouse liver cells is associated with the disruption of autophagic flux via inhibiting the fusion of autophagosomes and lysosomes. Toxicol Lett 2019; 321:32-43. [PMID: 31862506 DOI: 10.1016/j.toxlet.2019.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant. Previous studies have shown that Cd can induce liver cell injury; however, the toxicity mechanisms of Cd have not been fully elucidated. This study aimed to further confirm the hepatotoxic effects of Cd in mouse liver cells by various methods both in vivo and in vitro. In addition, it found that Cd induced autophagy but also caused autophagy blockade, and autophagy blockade intensified Cd-induced injury in liver cells. Subsequently, the study investigated the effects of Cd on lysosomes and found that Cd induced lysosomal acidification, promoted the expression of lysosomal-associated membrane protein 2 and lysosomal hydrolase cathepsin B both in vivo and in vitro, and enhanced the lysosomal degradation capacity. It indicated that Cd triggered lysosomal activation. However, the fusion of autophagosomes with lysosomes was inhibited by Cd both in vivo and in vitro. Next, the expression of Rab7, a key protein that regulates autophagosome-lysosome fusion, was examined. Cd was found to inhibit Rab7 expression both in vivo and in vitro. In conclusion, the results indicated that Cd obstructed the autophagic flux by inhibiting the fusion of autophagosomes with lysosomes, thus exacerbating the Cd-induced hepatotoxicity. Moreover, the molecular mechanism of Cd-induced inhibition of autophagosome-lysosome fusion is probably related to the Cd-induced downregulation of Rab7.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
46
|
Jalali Z, Parvaz N. Molecular evolution of autophagy rate-limiting factor LAMP2 in placental mammals. Gene 2019; 727:144231. [PMID: 31707000 DOI: 10.1016/j.gene.2019.144231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 01/24/2023]
Abstract
Autophagy is the cellular process of removal of misfolded or damaged macromolecules and organelles. Experimental studies have demonstrated autophagy as a major mechanism of lifespan extension in long-lived mammals such as bats and mole rat rodents. Moreover, the role of this biological process has been well documented in protection against age-associated diseases and viral infection. However, studies on the molecular adaptive changes of autophagy factors during evolution are scarce. Here, we conducted a bioinformatics study of the molecular evolution of the Lysosomal Associated Membrane Protein 2 (LAMP2), as a rate-limiting factor in the lysosomal degradation stage of autophagy (the communal step of two of autophagy types: macroautophagy and chaperone-mediated). Analyzing LAMP2 across placental mammals, our phylogenetic-based maximum likelihood analyses indicate that the majority of the coding sites undergo purifying selection. However, around 27% of sites display a relaxation of purifying constraints (average ω = 0.42128), among which, 14 particular sites undergo positive selection (ω > 1). These sites are mostly located in the first luminal domain of LAMP2 (N-domain), with a hotspot region in the 135-144 codons interval. Therefore, the N-domain may account for the functional diversity and regulation of LAMP2. In addition, the identified positive selection sites could act as key regulatory sites in the LAMP2 function. On the other hand, testing the rate of evolution in LAMP2 along different clades of placental mammals revealed a relatively relaxed evolution in LAMP2 along megabats' clade. It is not clear yet whether an expedited evolution of LAMP2 in megabats has contributed to their reported up-regulation of autophagy. Finally, our data indicate positive selection sites along the ancestral branch of the clades of rodents, mouse-related rodents, and mole-rats; and suggest the potentially important regulatory role of these sites in LAMP2. Identifying the residues under positive selection, our findings pave the way for future experimental investigations to define how these selective substitutions have functionally affected autophagy.
Collapse
Affiliation(s)
- Zahra Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Najmeh Parvaz
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
47
|
Lorenzo-Herrero S, Sordo-Bahamonde C, Gonzalez S, López-Soto A. CD107a Degranulation Assay to Evaluate Immune Cell Antitumor Activity. Methods Mol Biol 2019; 1884:119-130. [PMID: 30465198 DOI: 10.1007/978-1-4939-8885-3_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cancer development is under surveillance by the immune system of the host. Tumor cells can be recognized and killed by cytotoxic lymphocytes- such as CD8+ T lymphocytes and natural killer (NK) cells-mainly through the immune secretion of lytic granules that kill target cells. This process involves the fusion of the granule membrane with the cytoplasmic membrane of the immune effector cell, resulting in surface exposure of lysosomal-associated proteins that are typically present on the lipid bilayer surrounding lytic granules, such as CD107a. Therefore, membrane expression of CD107a constitutes a marker of immune cell activation and cytotoxic degranulation. In this chapter, we detail the steps required to isolate peripheral blood mononuclear cells (PBMCs), coculture them with target tumor cell lines, and evaluate the cytotoxic immune function by means of flow cytometry evaluation of CD107a expression on the surface of NK cells.
Collapse
Affiliation(s)
- Seila Lorenzo-Herrero
- Departamento de Biología Funcional, Inmunología, Universidad of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Christian Sordo-Bahamonde
- Departamento de Biología Funcional, Inmunología, Universidad of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Segundo Gonzalez
- Departamento de Biología Funcional, Inmunología, Universidad of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
| |
Collapse
|
48
|
Wang MKM, Ren T, Liu H, Lim SY, Lee K, Honko A, Zhou H, Dyall J, Hensley L, Gartin AK, Cunningham JM. Critical role for cholesterol in Lassa fever virus entry identified by a novel small molecule inhibitor targeting the viral receptor LAMP1. PLoS Pathog 2018; 14:e1007322. [PMID: 30265711 PMCID: PMC6179309 DOI: 10.1371/journal.ppat.1007322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 09/07/2018] [Indexed: 12/03/2022] Open
Abstract
Lassa fever virus (LASV) is endemic in West Africa and causes severe hemorrhagic fever and sensorineural hearing loss. We identified a small molecule inhibitor of LASV and used it to analyze the mechanism of entry. Using a photo-reactive analog that retains antiviral activity as a probe, we identified the inhibitor target as lysosome-associated membrane protein 1 (LAMP1), a host factor that binds to the LASV glycoprotein (GP) during infection. We found that LAMP1 binding to LASV GP is cholesterol-dependent, and that the inhibitor blocks infection by competing with cholesterol in LAMP1. Mutational analysis of a docking-based model identified a putative inhibitor binding site in the cholesterol-binding pocket within the LAMP1 domain that binds GP. These findings identify a critical role for cholesterol in LASV entry and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- May Kwang-Mei Wang
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tao Ren
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hu Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sun-Young Lim
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kyungae Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anna Honko
- United States Army Medical Research institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Huanying Zhou
- NIAID/NIH Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Julie Dyall
- NIAID/NIH Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Lisa Hensley
- NIAID/NIH Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Ashley K. Gartin
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M. Cunningham
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Gendarme M, Baumann J, Ignashkova TI, Lindemann RK, Reiling JH. Image-based drug screen identifies HDAC inhibitors as novel Golgi disruptors synergizing with JQ1. Mol Biol Cell 2017; 28:3756-3772. [PMID: 29074567 PMCID: PMC5739293 DOI: 10.1091/mbc.e17-03-0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is increasingly recognized as a major hub for cellular signaling and is involved in numerous pathologies, including neurodegenerative diseases and cancer. The study of Golgi stress-induced signaling pathways relies on the selectivity of the available tool compounds of which currently only a few are known. To discover novel Golgi-fragmenting agents, transcriptomic profiles of cells treated with brefeldin A, golgicide A, or monensin were generated and compared with a database of gene expression profiles from cells treated with other bioactive small molecules. In parallel, a phenotypic screen was performed for compounds that alter normal Golgi structure. Histone deacetylase (HDAC) inhibitors and DNA-damaging agents were identified as novel Golgi disruptors. Further analysis identified HDAC1/HDAC9 as well as BRD8 and DNA-PK as important regulators of Golgi breakdown mediated by HDAC inhibition. We provide evidence that combinatorial HDACi/(+)-JQ1 treatment spurs synergistic Golgi dispersal in several cancer cell lines, pinpointing a possible link between drug-induced toxicity and Golgi morphology alterations.
Collapse
Affiliation(s)
| | - Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
FUS toxicity is rescued by the modulation of lncRNA hsrω expression in Drosophila melanogaster. Sci Rep 2017; 7:15660. [PMID: 29142303 PMCID: PMC5688078 DOI: 10.1038/s41598-017-15944-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
FUS is an aggregation-prone hnRNP involved in transcriptional and post-transcriptional regulation that aberrantly forms immunoreactive inclusion bodies in a range of neurological diseases classified as FUS-proteinopathies. Although FUS has been extensively examined, the underlying molecular mechanisms of these diseases have not yet been elucidated in detail. We previously reported that RNAi of the lncRNA hsrω altered the expression and sub-cellular localization of Drosophila FUS in the central nervous system of the fly. In order to obtain a clearer understanding of the role of hsrω in FUS toxicity, we herein drove the expression of human FUS in Drosophila eyes with and without a hsrω RNAi background. We found that hFUS was largely soluble and also able to form aggregates. As such, hFUS was toxic, inducing an aberrant eye morphology with the loss of pigmentation. The co-expression of hsrω double-stranded RNA reduced hFUS transcript levels and induced the formation of cytoplasmic non-toxic hFUS-LAMP1-insoluble inclusions. The combination of these events caused the titration of hFUS molar excess and a removal of hFUS aggregates to rescue toxicity. These results revealed the presence of a lncRNA-dependent pathway involved in the management of aggregation-prone hnRNPs, suggesting that properly formed FUS inclusions are not toxic to cells.
Collapse
|