1
|
Dos Santos C, Cambraia A, Shrestha S, Cutler M, Cottam M, Perkins G, Lev-Ram V, Roy B, Acree C, Kim KY, Deerinck T, Dean D, Cartailler JP, MacDonald PE, Hetzer M, Ellisman M, Arrojo E Drigo R. Calorie restriction increases insulin sensitivity to promote beta cell homeostasis and longevity in mice. Nat Commun 2024; 15:9063. [PMID: 39433757 PMCID: PMC11493975 DOI: 10.1038/s41467-024-53127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Caloric restriction (CR) can extend the organism life- and health-span by improving glucose homeostasis. How CR affects the structure-function of pancreatic beta cells remains unknown. We used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis reveal that CR activates transcription factors important for beta cell identity and homeostasis, while imaging metabolomics demonstrates that beta cells upon CR are more energetically competent. In fact, high-resolution microscopy show that CR reduces beta cell mitophagy to increase mitochondria mass and the potential for ATP generation. However, CR beta cells have impaired adaptive proliferation in response to high fat diet feeding. Finally, we show that long-term CR delays the onset of beta cell aging hallmarks and promotes cell longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cell structure-function during aging and diabetes.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Amanda Cambraia
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Shristi Shrestha
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Melanie Cutler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Matthew Cottam
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Guy Perkins
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Varda Lev-Ram
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Birbickram Roy
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Christopher Acree
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Keun-Young Kim
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Thomas Deerinck
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Danielle Dean
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Jean Philippe Cartailler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Martin Hetzer
- Institute of Science and Technology Austria (ISTA), Vienna, Austria
| | - Mark Ellisman
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Rafael Arrojo E Drigo
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA.
| |
Collapse
|
2
|
Li L, Niemann B, Knapp F, Werner S, Mühlfeld C, Schneider JP, Jurida LM, Molenda N, Schmitz ML, Yin X, Mayr M, Schulz R, Kracht M, Rohrbach S. Comparison of the stage-dependent mitochondrial changes in response to pressure overload between the diseased right and left ventricle in the rat. Basic Res Cardiol 2024; 119:587-611. [PMID: 38758338 DOI: 10.1007/s00395-024-01051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.
Collapse
MESH Headings
- Animals
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Male
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/pathology
- Heart Failure/genetics
- Disease Models, Animal
- Proteomics
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/pathology
- Ventricular Function, Right
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Heart Ventricles/pathology
- Rats
- Ventricular Function, Left
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/genetics
- Transcriptome
- Rats, Sprague-Dawley
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
Collapse
Affiliation(s)
- Ling Li
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, Rudolf-Buchheim-Street. 8, 35392, Giessen, Germany
| | - Fabienne Knapp
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Sebastian Werner
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Street. 1, 30625, Hannover, Germany
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Street. 1, 30625, Hannover, Germany
| | - Liane M Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nicole Molenda
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Friedrichstr. 24, 35392, Giessen, Germany
| | - Xiaoke Yin
- School of Cardiovascular and Metabolic Medicine and Science, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Manuel Mayr
- School of Cardiovascular and Metabolic Medicine and Science, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Ding Y, Zhao F, Hu J, Zhao Z, Shi B, Li S. A conjoint analysis of renal structure and omics characteristics reveal new insight to yak high-altitude hypoxia adaptation. Genomics 2024; 116:110857. [PMID: 38729453 DOI: 10.1016/j.ygeno.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.
Collapse
Affiliation(s)
- Yuan Ding
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Chen M, Liu J, Wu W, Guo T, Yuan J, Wu Z, Zheng Z, Zhao Z, Lin Q, Liu N, Chen H. SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury. Cell Biol Toxicol 2024; 40:31. [PMID: 38767771 PMCID: PMC11106166 DOI: 10.1007/s10565-024-09869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.
Collapse
Affiliation(s)
- Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ting Guo
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jinjin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Speijer D. How mitochondrial cristae illuminate the important role of oxygen during eukaryogenesis. Bioessays 2024; 46:e2300193. [PMID: 38449346 DOI: 10.1002/bies.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Wang R, Lei H, Wang H, Qi L, Liu Y, Liu Y, Shi Y, Chen J, Shen QT. Dysregulated inter-mitochondrial crosstalk in glioblastoma cells revealed by in situ cryo-electron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311160121. [PMID: 38377189 PMCID: PMC10907319 DOI: 10.1073/pnas.2311160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastomas (GBMs) are the most lethal primary brain tumors with limited survival, even under aggressive treatments. The current therapeutics for GBMs are flawed due to the failure to accurately discriminate between normal proliferating cells and distinctive tumor cells. Mitochondria are essential to GBMs and serve as potential therapeutical targets. Here, we utilize cryo-electron tomography to quantitatively investigate nanoscale details of randomly sampled mitochondria in their native cellular context of GBM cells. Our results show that compared with cancer-free brain cells, GBM cells own more inter-mitochondrial junctions of several types for communications. Furthermore, our tomograms unveil microtubule-dependent mitochondrial nanotunnel-like bridges in the GBM cells as another inter-mitochondrial structure. These quantified inter-mitochondrial features, together with other mitochondria-organelle and intra-mitochondrial ones, are sufficient to distinguish GBM cells from cancer-free brain cells under scrutiny with predictive modeling. Our findings decipher high-resolution inter-mitochondrial structural signatures and provide clues for diagnosis and therapeutic interventions for GBM and other mitochondria-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Huan Lei
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai200092, China
| | - Yunhui Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai200092, China
- Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai200092, China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qing-Tao Shen
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
8
|
Peng Y, Liu X, Liu X, Cheng X, Xia L, Qin L, Guan S, Wang Y, Wu X, Wu J, Yan D, Liu J, Zhang Y, Sun L, Liang J, Shang Y. RCCD1 promotes breast carcinogenesis through regulating hypoxia-associated mitochondrial homeostasis. Oncogene 2023; 42:3684-3697. [PMID: 37903896 DOI: 10.1038/s41388-023-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023]
Abstract
Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.
Collapse
Affiliation(s)
- Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Leyi Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Sudun Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
9
|
Xu J, Wang Y, Li P, Chen C, Jiang Z, Wang X, Liu P. PRUNE1 (located on chromosome 1q21.3) promotes multiple myeloma with 1q21 Gain by enhancing the links between purine and mitochondrion. Br J Haematol 2023; 203:599-613. [PMID: 37666675 DOI: 10.1111/bjh.19088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Patients with multiple myeloma (MM) with chromosome 1q21 Gain (1q21+) are clinically and biologically heterogeneous. 1q21+ in the real world actually reflects the prognosis for gain/amplification of the CKS1B gene. In this study, we found that the copy number of prune exopolyphosphatase 1 (PRUNE1), located on chromosome 1q21.3, could further stratify the prognosis of MM patients with 1q21+. Using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS), transmission electron microscopy (TEM), confocal fluorescence microscopy, calculation of adenosine triphosphate (ATP), intracellular reactive oxygen species (ROS) and mitochondrial oxygen consumption rates (OCRs), we demonstrated for the first time that PRUNE1 promotes the proliferation and invasion of MM cells by stimulating purine metabolism, purine synthesis enzymes and mitochondrial functions, enhancing links between purinosomes and mitochondria. SOX11 was identified as a transcription factor for PRUNE1. Through integrated analysis of the transcriptome and proteome, CD73 was determined to be the downstream target of PRUNE1. Furthermore, it has been determined that dipyridamole can effectively suppress the proliferation of MM cells with high-expression levels of PRUNE1 in vitro and in vivo. These findings provide insights into disease-causing mechanisms and new therapeutic targets for MM patients with 1q21+.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Jiang
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiaona Wang
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| |
Collapse
|
10
|
Usey MM, Huet D. ATP synthase-associated coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing proteins are critical for mitochondrial function in Toxoplasma gondii. mBio 2023; 14:e0176923. [PMID: 37796022 PMCID: PMC10653836 DOI: 10.1128/mbio.01769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family are transported into the mitochondrial intermembrane space, where they play important roles in the biogenesis and function of the organelle. Unexpectedly, the ATP synthase of the apicomplexan Toxoplasma gondii harbors CHCH domain-containing subunits of unknown function. As no other ATP synthase studied to date contains this class of proteins, characterizing their function will be of broad interest to the fields of molecular parasitology and mitochondrial evolution. Here, we demonstrate that that two T. gondii ATP synthase subunits containing CHCH domains are required for parasite survival and for stability and function of the ATP synthase. We also show that knockdown disrupts multiple aspects of the mitochondrial morphology of T. gondii and that mutation of key residues in the CHCH domains caused mis-localization of the proteins. This work provides insight into the unique features of the apicomplexan ATP synthase, which could help to develop therapeutic interventions against this parasite and other apicomplexans, such as the malaria-causing parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Sun J, Ge X, Jin B, Li S, Hou Y, Zhong S, Yang Z, Xi P, Li M, Gao B. Super-resolution imaging of mitochondrial cristae using a more hydrophobic far-red Si-rhodamine probe. Chem Commun (Camb) 2023; 59:13038-13041. [PMID: 37843422 DOI: 10.1039/d3cc04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Mitochondrial probe SiRPFA was synthesized by attaching a long perfluoroalkyl chain on Si-rhodamine cationic dye. High lipophilicity endowed SiRPFA with mitochondrial membrane potential independent properties. Under stimulated emission depletion microscopy, SiRPFA clearly revealed changes in mitochondrial cristae morphology during autophagy induced by starvation or apoptosis.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Boya Jin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Shiyi Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Yiwei Hou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Suyi Zhong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Zikang Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing 100871, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
12
|
Liu C, Ding Z, Zhang Z, Zhao L, Zhang C, Huang F. Morphological changes of mitochondria-related to apoptosis during postmortem aging of beef muscles. Food Chem X 2023; 19:100806. [PMID: 37780314 PMCID: PMC10534185 DOI: 10.1016/j.fochx.2023.100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to investigate how postmortem muscle cells' mitochondria changed in morphology from three aspects: the outer membrane, cristae, and fission/fusion. Atomic force microscopy (AFM) results showed that mitochondria underwent a morphology transformation from normal to swelling and collapse. Meanwhile, the cleavage of OPA1, upregulation of OMA1, downregulation of Mic60 and transmission electron microscope micrographs revealed that mitochondrial cristae ruptured with an aging time extended. Additionally, the increased expressions of Fis1 and Drp1, and the AFM topographic images mutually confirmed mitochondrial fission. These results further proved from the perspective of mitochondrial morphology that the degree of mitochondrial damage increased with the postmortem aging time extended, which was consistent with the results of the release of cytochrome c caused by the increase of mitochondrial permeability transition pore opening and the decrease of mitochondrial membrane permeability, and further induced the apoptosis of postmortem muscle cells.
Collapse
Affiliation(s)
- Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Zihan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Laiyu Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
13
|
Das A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165076. [PMID: 37391150 DOI: 10.1016/j.scitotenv.2023.165076] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Plastic pollution is one of the most pressing environmental threats the world is facing currently. The degradation of macroplastics into smaller forms viz. microplastics (MPs) or Nanoplastics (NPs) is a potential threat to both terrestrial and marine ecosystems and also to human health by directly affecting the organs and activating a plethora of intracellular signaling, that may lead to cell death. There is accumulating evidence that supports the serious toxicity caused by MP/NPs at all levels of biological complexities (biomolecules, organelles, cells, tissues, organs, and organ systems) and the involvement of the reactive oxygen species (ROS) in this process. Studies indicate that MPs or NPs can accumulate in mitochondria and further disrupt the mitochondrial electron transport chain, cause mitochondrial membrane damage, and perturb the mitochondrial membrane potential or depolarization of the mitochondria. These events eventually lead to the generation of different types of reactive free radicals, which can induce DNA damage, protein oxidation, lipid peroxidation, and compromization of the antioxidant defense pool. Furthermore, MP-induced ROS was found to trigger a plethora of signaling cascades, such as the p53 signaling pathway, Mitogen-activated protein kinases (MAPKs) signaling pathway including the c-Jun N-terminal kinases (JNK), p38 kinase, and extracellular signal related kinases (ERK1/2) signaling cascades, Nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway, Phosphatidylinositol-3-kinases (PI3Ks)/Akt signaling pathway, and Transforming growth factor-beta (TGF-β) pathways, to name a few. As a consequence of oxidative stress caused by the MPs/NPs, different types of organ damage are observed in living species, including humans, such as pulmonary toxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity, reproductive toxicity, hepatotoxicity, etc. Although presently, a good amount of research is going on to access the detrimental effects of MPs/NPs on human health, there is a lack of proper model systems, multi-omics approaches, interdisciplinary research, and mitigation strategies.
Collapse
Affiliation(s)
- Amlan Das
- Department of Biochemistry, School of Biosciences, The Assam Royal Global University, NH-37, opp. Tirupati Balaji Temple, Betkuchi, Guwahati, Assam 781035, India.
| |
Collapse
|
14
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Dos Santos C, Shrestha S, Cottam M, Perkins G, Lev-Ram V, Roy B, Acree C, Kim KY, Deerinck T, Cutler M, Dean D, Cartailler JP, MacDonald PE, Hetzer M, Ellisman M, E Drigo RA. Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554369. [PMID: 37662336 PMCID: PMC10473730 DOI: 10.1101/2023.08.23.554369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Caloric restriction (CR) extends organismal lifespan and health span by improving glucose homeostasis mechanisms. How CR affects organellar structure and function of pancreatic beta cells over the lifetime of the animal remains unknown. Here, we used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis link this transcriptional phenotype to transcription factors involved in beta cell identity (Mafa) and homeostasis (Atf6). Imaging metabolomics further demonstrates that CR beta cells are more energetically competent. In fact, high-resolution light and electron microscopy indicates that CR reduces beta cell mitophagy and increases mitochondria mass, increasing mitochondrial ATP generation. Finally, we show that long-term CR delays the onset of beta cell aging and senescence to promote longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cells during aging and diabetes.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Shristi Shrestha
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Matthew Cottam
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Guy Perkins
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Varda Lev-Ram
- University of California San Diego, Department of Pharmacology, School of Medicine. La Jolla, CA USA
| | - Birbickram Roy
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Christopher Acree
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Keun-Young Kim
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Thomas Deerinck
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Melanie Cutler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Danielle Dean
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | | | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Martin Hetzer
- Institute of Science and Technology Austria (ISTA), Vienna, Austria
| | - Mark Ellisman
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Rafael Arrojo E Drigo
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| |
Collapse
|
16
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
17
|
Mitochondrial cristae in health and disease. Int J Biol Macromol 2023; 235:123755. [PMID: 36812974 DOI: 10.1016/j.ijbiomac.2023.123755] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.
Collapse
|
18
|
Jauregui AM, Cubero Cortés ZM, Meehan SD, Bhattacharya SK. Isolation of Mitochondrial Lipids and Mass Spectrometric Analysis. Methods Mol Biol 2023; 2625:1-6. [PMID: 36653628 DOI: 10.1007/978-1-0716-2966-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondria participate in many important metabolic processes in the body. The lipid profile of mitochondria is especially important in membrane regulation and pathway signaling. The isolation and study of these lipids can provide unparalleled information about the mechanisms behind these cellular processes. In this chapter, we describe a protocol to isolate mitochondrial lipids from homogenized murine optic nerves. The lipid extraction was performed using butanol-methanol (BUME) and subsequently analyzed using liquid chromatography-mass spectrometry. Further analysis of the raw data was conducted using LipidSearch™ and MetaboAnalyst 4.0.
Collapse
Affiliation(s)
- Alexa M Jauregui
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sean D Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA.
- Miami Integrative Metabolomics Research Center, Miami, FL, USA.
- University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
19
|
Basiouni S, Tellez-Isaias G, Latorre JD, Graham BD, Petrone-Garcia VM, El-Seedi HR, Yalçın S, El-Wahab AA, Visscher C, May-Simera HL, Huber C, Eisenreich W, Shehata AA. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet Sci 2023; 10:55. [PMID: 36669057 PMCID: PMC9866488 DOI: 10.3390/vetsci10010055] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal's microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the key transcription factors involved in the related signal transduction pathways. Secondly, the most promising phytogenic substances and their current applications to ameliorate oxidative stress and inflammation in poultry are highlighted.
Collapse
Affiliation(s)
- Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 58190, Mexico
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University (AU), 06110 Ankara, Turkey
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany
| | - Helen L. May-Simera
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
| | - Claudia Huber
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), D-85747 Garching, Germany
| | - Wolfgang Eisenreich
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), D-85747 Garching, Germany
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| |
Collapse
|
20
|
Venediktova N, Solomadin I, Starinets V, Mironova G. Structural and Dynamic Features of Liver Mitochondria and Mitophagy in Rats with Hyperthyroidism. Int J Mol Sci 2022; 23:ijms232214327. [PMID: 36430802 PMCID: PMC9695125 DOI: 10.3390/ijms232214327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
This work investigated the effect of thyroxine on the biogenesis and quality control system of rat liver mitochondria. Chronic administration of thyroxine to experimental animals induced hyperthyroidism, which was confirmed by a severalfold increase in serum-free triiodothyronine and thyroxine concentrations. The uptake of oxygen was found to increase with a decrease in ADP phosphorylation efficiency and respiratory state ratio. Electron microscopy showed 36% of liver mitochondria to be swollen and approximately 18% to have a lysed matrix with a reduced number of cristae. Frequently encountered multilamellar bodies associated with defective mitochondria were located either at the edge of or inside the organelle. The number, area and perimeter of hyperthyroid rat mitochondria increased. Administration of thyroxine increased mitochondrial biogenesis and the quantity of mitochondrial DNA in liver tissue. Mitochondrial dynamics and mitophagy changed significantly. The data obtained indicate that excess thyroid hormones cause a disturbance of the mitochondrial quality control system and ultimately to the incorporation of potentially toxic material in the mitochondrial pool.
Collapse
|
21
|
Xiang QQ, Kang YH, Lian LH, Chen ZY, Wang P, Hu JM, Chen LQ. Proteomic profiling reveals mitochondrial toxicity of nanosilver and silver nitrate in the gill of common carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106318. [PMID: 36206702 DOI: 10.1016/j.aquatox.2022.106318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Mitochondria are recognized as an important target organelle for the toxicity of nanomaterials. Although the toxic effects of silver nanoparticles (AgNPs) on mitochondria have been widely reported, the mechanism behind the toxicity remains unclear. In this study, the effects of two forms of silver (AgNPs and AgNO3) on carp gill mitochondria were investigated by analyzing the mitochondrial ultrastructure, physicochemical properties of mitochondrial membrane, and mitochondrial proteomics. After exposure of common carp to AgNPs (0.75 mg/L) and AgNO3 (0.05 mg/L) for 96 h, both forms of silver were shown to cause gill mitochondrial lesions, including irregular shape, loss of mitochondrial cristae, and increased mitochondrial membrane permeability. Proteomics results revealed that AgNPs and AgNO3 induced 362 and 297 differentially expressed proteins (DEPs) in gill mitochondria, respectively. Among the DEPs, 244 were shared between AgNPs and AgNO3 treatments. These shared proteins were mainly distributed in the mitochondrial membrane and matrix, and were significantly enriched in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathway. The functional annotation of DEPs induced by both silver forms was mainly involved in energy production and conversion. These results indicated that the toxic mechanism of AgNPs and AgNO3 on gill mitochondria were comparable and the two forms of silver caused mitochondrial dysfunction in fish gills by inhibiting the TCA cycle and disrupting the electron transport chain.
Collapse
Affiliation(s)
- Qian-Qian Xiang
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, PR China
| | - Yu-Hang Kang
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, PR China
| | - Li-Hong Lian
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, PR China
| | - Zhi-Ying Chen
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, PR China
| | - Peng Wang
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China
| | - Jin-Ming Hu
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, PR China
| | - Li-Qiang Chen
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
22
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
23
|
Liu C, Wei Q, Li X, Han D, Liu J, Huang F, Zhang C. Proteomic analyses of mitochondrial damage in postmortem beef muscles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4182-4191. [PMID: 35000191 DOI: 10.1002/jsfa.11767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The objective of the study was to examine the expression profiles of mitochondrial proteins in at-death and 24 h postmortem (PM) using tandem mass tag (TMT) approach to characterize the mitochondria possible mechanisms that are affiliated with tenderization. RESULTS Results showed that the tender meat at 24 h PM emerged with more serious mitochondrial damage. Altogether 456 mitochondrial proteins were identified, including 442 down-regulated and 14 up-regulated proteins. These differentially-expressed proteins were primarily involved in the progress of PM energy metabolism, apoptosis, and the morphological alterations of mitochondrial. Among them, 47 subunits (such as NDUFA2, COX4I1, and ATP5PB) were annotated into the oxidative phosphorylation pathway. VDAC1, VDAC2, and VDAC3 involving in the damage of MPTP, and IMMT, CHCHD3, APOL and APOO modulating the morphology of mitochondria, and DIABLO and AIFM1 released from mitochondria affect caspase's activation. HSPD1 and HSPE1 involved in apoptosis, mitochondrial physiological and morphological alterations. CONCLUSION The earlier-mentioned proteins were validated as potential indicators of tenderness regulated by mitochondrial damage. These results highlighted that mitochondrial damage possibly participate in PM tenderization of beef muscles by energy metabolism and cell apoptosis status. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Qichao Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Dong Han
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
24
|
Pérez-Hernández CA, Moreno-Altamirano MMB, López-Villegas EO, Butkeviciute E, Ali M, Kronsteiner B, Dunachie SJ, Dockrell HM, Smith SG, Sánchez-García FJ. Mitochondrial Ultrastructure and Activity Are Differentially Regulated by Glycolysis-, Krebs Cycle-, and Microbiota-Derived Metabolites in Monocytes. BIOLOGY 2022; 11:biology11081132. [PMID: 36009759 PMCID: PMC9404980 DOI: 10.3390/biology11081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Several intermediate metabolites harbour cell-signalling properties, thus, it is likely that specific metabolites enable the communication between neighbouring cells, as well as between host cells with the microbiota, pathogens, and tumour cells. Mitochondria, a source of intermediate metabolites, participate in a wide array of biological processes beyond that of ATP production, such as intracellular calcium homeostasis, cell signalling, apoptosis, regulation of immune responses, and host cell-microbiota crosstalk. In this regard, mitochondria's plasticity allows them to adapt their bioenergetics status to intra- and extra-cellular cues, and the mechanisms driving such plasticity are currently a matter of intensive research. Here, we addressed whether mitochondrial ultrastructure and activity are differentially shaped when human monocytes are exposed to an exogenous source of lactate (derived from glycolysis), succinate, and fumarate (Krebs cycle metabolic intermediates), or butyrate and acetate (short-chain fatty acids produced by intestinal microbiota). It has previously been shown that fumarate induces mitochondrial fusion, increases the mitochondrial membrane potential (Δψm), and reshapes the mitochondrial cristae ultrastructure. Here, we provide evidence that, in contrast to fumarate, lactate, succinate, and butyrate induce mitochondrial fission, while acetate induces mitochondrial swelling. These traits, along with mitochondrial calcium influx kinetics and glycolytic vs. mitochondrial ATP-production rates, suggest that these metabolites differentially shape mitochondrial function, paving the way for the understanding of metabolite-induced metabolic reprogramming of monocytes and its possible use for immune-response intervention.
Collapse
Affiliation(s)
- C. Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
| | - M. Maximina Bertha Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
| | - Edgar O. López-Villegas
- Unidad de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Egle Butkeviciute
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.B.); (H.M.D.)
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Susanna J. Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Hazel M. Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.B.); (H.M.D.)
| | - Steven G. Smith
- Division of Biosciences, Brunel University London, London UB8 3PH, UK;
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
- Correspondence:
| |
Collapse
|
25
|
Ghzaiel I, Zarrouk A, Essadek S, Martine L, Hammouda S, Yammine A, Ksila M, Nury T, Meddeb W, Tahri Joutey M, Mihoubi W, Caccia C, Leoni V, Samadi M, Acar N, Andreoletti P, Hammami S, Ghrairi T, Vejux A, Hammami M, Lizard G. Protective effects of milk thistle (Sylibum marianum) seed oil and α-tocopherol against 7β-hydroxycholesterol-induced peroxisomal alterations in murine C2C12 myoblasts: Nutritional insights associated with the concept of pexotherapy. Steroids 2022; 183:109032. [PMID: 35381271 DOI: 10.1016/j.steroids.2022.109032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7β-hydroxycholesterol (7β-OHC; 50 μM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 μg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7β-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7β-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7β-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7β-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal β-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal β-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia; Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia; Faculty of Medicine, University of Sousse, 4000 Sousse, Tunisia.
| | - Soukaina Essadek
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Souha Hammouda
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Mohamed Ksila
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Thomas Nury
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wiem Meddeb
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mounia Tahri Joutey
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco
| | - Wafa Mihoubi
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, B.P 1177, Université de Sfax, 3018 Sfax, Tunisia
| | - Claudio Caccia
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Pierre Andreoletti
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Sonia Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Taoufik Ghrairi
- Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
26
|
Del Turco S, Cappello V, Tapeinos C, Moscardini A, Sabatino L, Battaglini M, Melandro F, Torri F, Martinelli C, Babboni S, Silvestrini B, Morganti R, Gemmi M, De Simone P, Martins PN, Crocetti L, Peris A, Campani D, Basta G, Ciofani G, Ghinolfi D. Cerium oxide nanoparticles administration during machine perfusion of discarded human livers: A pilot study. Liver Transpl 2022; 28:1173-1185. [PMID: 35100468 DOI: 10.1002/lt.26421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 01/13/2023]
Abstract
The combined approach of ex situ normothermic machine perfusion (NMP) and nanotechnology represents a strategy to mitigate ischemia/reperfusion injury in liver transplantation (LT). We evaluated the uptake, distribution, and efficacy of antioxidant cerium oxide nanoparticles (nanoceria) during normothermic perfusion of discarded human livers. A total of 9 discarded human liver grafts were randomized in 2 groups and underwent 4 h of NMP: 5 grafts were treated with nanoceria conjugated with albumin (Alb-NC; 50 µg/ml) and compared with 4 untreated grafts. The intracellular uptake of nanoceria was analyzed by electron microscopy (EM) and inductively coupled plasma-mass spectrometry (ICP-MS). The antioxidant activity of Alb-NC was assayed in liver biopsies by glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) assay, telomere length, and 4977-bp common mitochondrial DNA deletion (mtDNA4977 deletion). The cytokine profile was evaluated in perfusate samples. EM and ICP-MS confirmed Alb-NC internalization, rescue of mitochondrial phenotype, decrease of lipid droplet peroxidation, and lipofuscin granules in the treated grafts. Alb-NC exerted an antioxidant activity by increasing GSH levels (percentage change: +94% ± 25%; p = 0.01), SOD (+17% ± 4%; p = 0.02), and CAT activity (51% ± 23%; p = 0.03), reducing the occurrence of mtDNA4977 deletion (-67.2% ± 11%; p = 0.03), but did not affect cytokine release. Alb-NC during ex situ perfusion decreased oxidative stress, upregulating graft antioxidant defense. They could be a tool to improve quality grafts during NMP and represent an antioxidant strategy aimed at protecting the graft against reperfusion injury during LT.
Collapse
Affiliation(s)
- Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Valentina Cappello
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Aldo Moscardini
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, Pisa, Italy
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Beatrice Silvestrini
- Division of Interventional Radiology, University of Pisa Medical School Hospital, Pisa, Italy
| | | | - Mauro Gemmi
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paulo N Martins
- Department of Surgery, Division of Transplantation, University of Massachusetts, Worcester, Massachusetts, USA
| | - Laura Crocetti
- Division of Interventional Radiology, University of Pisa Medical School Hospital, Pisa, Italy
| | - Adriano Peris
- Regional Transplant Authority of Tuscany, Florence, Italy
| | - Daniela Campani
- Division of Pathology, University of Pisa Medical School Hospital, Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| |
Collapse
|
27
|
The Role of Mitochondrial Metabolism, AMPK-SIRT Mediated Pathway, LncRNA and MicroRNA in Osteoarthritis. Biomedicines 2022; 10:biomedicines10071477. [PMID: 35884782 PMCID: PMC9312479 DOI: 10.3390/biomedicines10071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)–Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.
Collapse
|
28
|
Huang Y, Du Y, Zheng Y, Wen C, Zou H, Huang J, Zhou H, Zhao H, Wu L. Ct-OATP1B3 promotes high-grade serous ovarian cancer metastasis by regulation of fatty acid beta-oxidation and oxidative phosphorylation. Cell Death Dis 2022; 13:556. [PMID: 35717493 PMCID: PMC9206684 DOI: 10.1038/s41419-022-05014-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy mainly due to its extensive metastasis. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a newly discovered splice variant of solute carrier organic anion transporter family member 1B3 (SLCO1B3), has been reported to be overexpressed in several types of cancer. However, the biological function of Ct-OATP1B3 remains largely unknown. Here, we reveal that Ct-OATP1B3 is overexpressed in HGSOC and promotes the metastasis of HGSOC in vivo and in vitro. Mechanically, Ct-OATP1B3 directly interacts with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein, which results in enhancement of the mRNA stability and expression of carnitine palmitoyltransferase 1A (CPT1A) and NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2), leading to increased mitochondrial fatty acid beta-oxidation (FAO) and oxidative phosphorylation (OXPHOS) activities. The increased FAO and OXPHOS activities further facilitate adenosine triphosphate (ATP) production and cellular lamellipodia formation, which is the initial step in the processes of tumor cell migration and invasion. Taken together, our study provides an insight into the function and underlying mechanism of Ct-OATP1B3 in HGSOC metastasis, and highlights Ct-OATP1B3 as a novel prognostic marker as well as therapeutic target in HGSOC.
Collapse
Affiliation(s)
- Yutang Huang
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Yan Du
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China ,grid.8547.e0000 0001 0125 2443Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032 China
| | - Yujie Zheng
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Chunjie Wen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Hecun Zou
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Jiafeng Huang
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Honghao Zhou
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China ,grid.216417.70000 0001 0379 7164Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, 410078 China
| | - Hongbo Zhao
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China ,grid.8547.e0000 0001 0125 2443Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032 China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| | - Lanxiang Wu
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
29
|
Kang KW, Ko JY, Lee H, Shin SY, Lee WS, Hong J, Kim SW, Lee SK, Oak MH. Surgically Metabolic Resection of Pericardial Fat to Ameliorate Myocardial Mitochondrial Dysfunction in Acute Myocardial Infarction Obese Rats. J Korean Med Sci 2022; 37:e55. [PMID: 35257523 PMCID: PMC8901878 DOI: 10.3346/jkms.2022.37.e55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pericardial fat (PF) is highly associated with cardiovascular disease but the effectiveness of surgical resection of PF is still unknown for myocardial mitochondrial structure and function in acute myocardial infarction (AMI) with obesity. The aim of this study was to demonstrate the difference in myocardial mitochondrial structure and function between obese AMI with additionally resected PF and those without resected PF. METHODS Obese rats with 12-week high fat diet (45 kcal% fat, n = 21) were randomly assigned into 3 groups: obese control, obese AMI and obese AMI with additionally resected PF. One week after developing AMI and additional resection of PF, echocardiogram, myocardial mitochondrial histomorphology, oxidative phosphorylation system (OXPHOS), anti-oxidative enzyme and sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) in the non-infarcted area were assessed between these groups. RESULTS There was significant improvement of systolic function in AMI with PF resection compared with the AMI group in the echocardiogram. Even though the electron microscopic morphology for the mitochondria seems to be similar between the AMI with PF resection and AMI groups, there was an improved expression of PGC-1α and responsive OXPHOS including NDUFB3, NDUFB5 and SDHB are associated with the ATP levels in the AMI with PF resection compared with those in the AMI group. In addition, the expression levels of antioxidant enzymes (MnSOD) and SERCA2 were improved in the AMI with PF resection compared with those in the AMI group. CONCLUSION Surgical resection of PF might ameliorate myocardial mitochondria dysfunction in obese AMI.
Collapse
Affiliation(s)
- Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea.
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, Muan, Korea
| | - Hyunghee Lee
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Seung Yong Shin
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Wang Soo Lee
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Joonhwa Hong
- Division of Cardiothoracic Surgery, College of Medicine, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Sang-Wook Kim
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Seong-Kyu Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon, Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan, Korea.
| |
Collapse
|
30
|
Benaroya H. Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways. Rev Neurosci 2022; 33:657-690. [PMID: 35219282 DOI: 10.1515/revneuro-2021-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022]
Abstract
The goal of this paper is to provide an overview of our current understanding of mitochondrial function as a framework to motivate the hypothesis that mitochondrial behavior is governed by optimization principles that are constrained by the laws of the physical and biological sciences. Then, mathematical optimization tools can generally be useful to model some of these processes under reasonable assumptions and limitations. We are specifically interested in optimizations via variational methods, which are briefly summarized. Within such an optimization framework, we suggest that the numerous mechanical instigators of cell and intracellular functioning can be modeled utilizing some of the principles of mechanics that govern engineered systems, as well as by the frequently observed feedback and feedforward mechanisms that coordinate the multitude of processes within cells. These mechanical aspects would need to be coupled to governing biochemical rules. Of course, biological systems are significantly more complex than engineered systems, and require considerably more experimentation to ascertain and characterize parameters and subsequent behavior. That complexity requires well-defined limitations and assumptions for any derived models. Optimality is being motivated as a framework to help us understand how cellular decisions are made, especially those that transition between physiological behaviors and dysfunctions along pathophysiological pathways. We elaborate on our interpretation of optimality and cellular decision making within the body of this paper, as we revisit these ideas in the numerous different contexts of mitochondrial functions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08901, USA
| |
Collapse
|
31
|
Xu M, Ding L, Liang J, Yang X, Liu Y, Wang Y, Ding M, Huang X. NAD kinase sustains lipogenesis and mitochondrial metabolismthrough fatty acid synthesis. Cell Rep 2021; 37:110157. [PMID: 34965438 DOI: 10.1016/j.celrep.2021.110157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022] Open
Abstract
Lipid storage in fat tissue is important for energy homeostasis and cellular functions. Through RNAi screening in Drosophila fat body, we found that knockdown of a Drosophila NAD kinase (NADK), which phosphorylates NAD to synthesize NADP de novo, causes lipid storage defects. NADK sustains lipogenesis by maintaining the pool of NADPH. Promoting NADPH production rescues the lipid storage defect in the fat body of NADK RNAi animals. Furthermore, NADK and fatty acid synthase 1 (FASN1) regulate mitochondrial mass and function by altering the levels of acetyl-CoA and fatty acids. Reducing the level of acetyl-CoA or increasing the synthesis of cardiolipin (CL), a mitochondrion-specific phospholipid, partially rescues the mitochondrial defects of NADK RNAi. Therefore, NADK- and FASN1-mediated fatty acid synthesis coordinates lipid storage and mitochondrial function.
Collapse
Affiliation(s)
- Mengyao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn 271016, China
| | - Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
33
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
34
|
Iovine JC, Claypool SM, Alder NN. Mitochondrial compartmentalization: emerging themes in structure and function. Trends Biochem Sci 2021; 46:902-917. [PMID: 34244035 PMCID: PMC11008732 DOI: 10.1016/j.tibs.2021.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.
Collapse
Affiliation(s)
- Joseph C Iovine
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
35
|
Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P, Feng Y, Jian W. Myocardial Ischemia-Reperfusion Injury: Therapeutics from a Mitochondria-Centric Perspective. Cardiology 2021; 146:781-792. [PMID: 34547747 DOI: 10.1159/000518879] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
Coronary arterial disease is the most common cardiovascular disease. Myocardial ischemia-reperfusion injury caused by the initial interruption of organ blood flow and subsequent restoration of organ blood flow is an important clinical problem with various cardiac reperfusion strategies after acute myocardial infarction. Even though blood flow recovery is necessary for oxygen and nutrient supply, reperfusion causes pathological sequelae that lead to the aggravation of ischemic injury. At present, although it is known that injury will occur after reperfusion, clinical treatment always focuses on immediate recanalization. Mitochondrial fusion, fission, biogenesis, autophagy, and their intricate interaction constitute an effective mitochondrial quality control system. The mitochondrial quality control system plays an important role in maintaining cell homeostasis and cell survival. The removal of damaged, aging, and dysfunctional mitochondria is mediated by mitochondrial autophagy. With the help of appropriate changes in mitochondrial dynamics, new mitochondria are produced through mitochondrial biogenesis to meet the energy needs of cells. Mitochondrial dysfunction and the resulting oxidative stress have been associated with the pathogenesis of ischemia/reperfusion (I/R) injury, which play a crucial role in the pathophysiological process of myocardial injury. This review aimed at elucidating the mitochondrial quality control system and establishing the possibility of using mitochondria as a potential therapeutic target in the treatment of I/R injuries.
Collapse
Affiliation(s)
- Manli Zhou
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China,
| | - Yunfeng Yu
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiaoxin Luo
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianzhang Wang
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiaodong Lan
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yu Feng
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China.,National Key Discipline of Traditional Chinese Medicine Diagnostics, Hunan Provincial Key Laboratory, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
36
|
Almendro-Vedia V, Natale P, Valdivieso González D, Lillo MP, Aragones JL, López-Montero I. How rotating ATP synthases can modulate membrane structure. Arch Biochem Biophys 2021; 708:108939. [PMID: 34052190 DOI: 10.1016/j.abb.2021.108939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
Collapse
Affiliation(s)
- Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Pilar Lillo
- Departamento Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Juan L Aragones
- Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
37
|
St John JC. Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism, Development, and Disease. Annu Rev Anim Biosci 2021; 9:203-224. [PMID: 33592161 DOI: 10.1146/annurev-animal-080520-083353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Collapse
Affiliation(s)
- Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia;
| |
Collapse
|
38
|
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol 2021; 30:R575-R588. [PMID: 32428499 DOI: 10.1016/j.cub.2020.02.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cristae are infoldings of the mitochondrial inner membrane jutting into the organelle's innermost compartment from narrow stems at their base called crista junctions. They are emblematic of aerobic mitochondria, being the fabric for the molecular machinery driving cellular respiration. Electron microscopy revealed that diverse eukaryotes possess cristae of different shapes. Yet, crista diversity has not been systematically examined in light of our current knowledge about eukaryotic evolution. Since crista form and function are intricately linked, we take a holistic view of factors that may underlie both crista diversity and the adherence of cristae to a recognizable form. Based on electron micrographs of 226 species from all major lineages, we propose a rational crista classification system that postulates cristae as variations of two general morphotypes: flat and tubulo-vesicular. The latter is most prevalent and likely ancestral, but both morphotypes are found interspersed throughout the eukaryotic tree. In contrast, crista junctions are remarkably conserved, supporting their proposed role as diffusion barriers that sequester cristae contents. Since cardiolipin, ATP synthase dimers, the MICOS complex, and dynamin-like Opa1/Mgm1 are known to be involved in shaping cristae, we examined their variation in the context of crista diversity. Moreover, we have identified both commonalities and differences that may collectively be manifested as diverse variations of crista form and function.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
39
|
Méndez-López I, Sancho-Bielsa FJ, Engel T, García AG, Padín JF. Progressive Mitochondrial SOD1 G93A Accumulation Causes Severe Structural, Metabolic and Functional Aberrations through OPA1 Down-Regulation in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22158194. [PMID: 34360957 PMCID: PMC8347639 DOI: 10.3390/ijms22158194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
In recent years, the “non-autonomous motor neuron death” hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1G93A mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1G93A protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1G93A toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.
Collapse
Affiliation(s)
- Iago Méndez-López
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
| | - Francisco J. Sancho-Bielsa
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain;
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Antonio G. García
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
| | - Juan Fernando Padín
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain;
- Correspondence:
| |
Collapse
|
40
|
Joubert F, Puff N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems. MEMBRANES 2021; 11:membranes11070465. [PMID: 34201754 PMCID: PMC8306996 DOI: 10.3390/membranes11070465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria are known as the powerhouse of eukaryotic cells. Energy production occurs in specific dynamic membrane invaginations in the inner mitochondrial membrane called cristae. Although the integrity of these structures is recognized as a key point for proper mitochondrial function, less is known about the mechanisms at the origin of their plasticity and organization, and how they can influence mitochondria function. Here, we review the studies which question the role of lipid membrane composition based mainly on minimal model systems.
Collapse
Affiliation(s)
- Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, 75005 Paris, France;
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physique, 75005 Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot-Paris 7, UMR 7057 CNRS, 75013 Paris, France
- Correspondence:
| |
Collapse
|
41
|
Zou W, Chen Q, Slone J, Yang L, Lou X, Diao J, Huang T. Nanoscopic quantification of sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells derived from patients with mitochondrial diseases. J Nanobiotechnology 2021; 19:136. [PMID: 33985528 PMCID: PMC8120746 DOI: 10.1186/s12951-021-00882-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
SLC25A46 mutations have been found to lead to mitochondrial hyper-fusion and reduced mitochondrial respiratory function, which results in optic atrophy, cerebellar atrophy, and other clinical symptoms of mitochondrial disease. However, it is generally believed that mitochondrial fusion is attributable to increased mitochondrial oxidative phosphorylation (OXPHOS), which is inconsistent with the decreased OXPHOS of highly-fused mitochondria observed in previous studies. In this paper, we have used the live-cell nanoscope to observe and quantify the structure of mitochondrial cristae, and the behavior of mitochondria and lysosomes in patient-derived SLC25A46 mutant fibroblasts. The results show that the cristae have been markedly damaged in the mutant fibroblasts, but there is no corresponding increase in mitophagy. This study suggests that severely damaged mitochondrial cristae might be the predominant cause of reduced OXPHOS in SLC25A46 mutant fibroblasts. This study demonstrates the utility of nanoscope-based imaging for realizing the sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells, which may be particularly valuable for the quick evaluation of pathogenesis of mitochondrial morphological abnormalities. ![]()
Collapse
Affiliation(s)
- Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Li Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoting Lou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
42
|
Lu Z, Hu Y, Wang Y, Zhang T, Long J, Liu J. Topological reorganizations of mitochondria isolated from rat brain after 72 hours of paradoxical sleep deprivation, revealed by electron cryo-tomography. Am J Physiol Cell Physiol 2021; 321:C17-C25. [PMID: 33979213 DOI: 10.1152/ajpcell.00077.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep deprivation has profound influence on several aspects of health and disease. Mitochondria dysfunction has been implicated to play an essential role in the neuronal cellular damage induced by sleep deprivation, but little is known about how neuronal mitochondrial ultrastructure is affected under sleep deprivation. In this report, we utilized electron cryo-tomography to reconstruct the three-dimensional (3-D) mitochondrial structure and extracted morphometric parameters to quantitatively characterize its reorganizations. Isolated mitochondria from the hippocampus and cerebral cortex of adult male Sprague-Dawley rats after 72 h of paradoxical sleep deprivation (PSD) were reconstructed and analyzed. Statistical analysis of six morphometric parameters specific to the mitochondrial inner membrane topology revealed identical pattern of changes in both the hippocampus and cerebral cortex but with higher significance levels in the hippocampus. The structural differences were indistinguishable by conventional phenotypic methods based on two-dimensional electron microscopy images or 3-D electron tomography reconstructions. Furthermore, to correlate structure alterations with mitochondrial functions, high-resolution respirometry was employed to investigate the effects of PSD on mitochondrial respiration, which showed that PSD significantly suppressed the mitochondrial respiratory capacity of the hippocampus, whereas the isolated mitochondria from the cerebral cortex were less affected. These results demonstrate the capability of the morphometric parameters for quantifying complex structural reorganizations and suggest a correlation between PSD and inner membrane architecture/respiratory functions of the brain mitochondria with variable effects in different brain regions.
Collapse
Affiliation(s)
- Zhuoyang Lu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
44
|
Tresse E, Riera-Ponsati L, Jaberi E, Sew WQG, Ruscher K, Issazadeh-Navikas S. IFN-β rescues neurodegeneration by regulating mitochondrial fission via STAT5, PGAM5, and Drp1. EMBO J 2021; 40:e106868. [PMID: 33913175 DOI: 10.15252/embj.2020106868] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource-demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN-β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN-β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN-β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria-endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN-β in the Ifnb-/- model of Parkinson disease (PD) disrupts STAT5-PGAM5-Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN-β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN-β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622 Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.
Collapse
Affiliation(s)
- Emilie Tresse
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lluís Riera-Ponsati
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Elham Jaberi
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Wei Qi Guinevere Sew
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research and LUBIN Lab - Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Shohreh Issazadeh-Navikas
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Burska D, Stiburek L, Krizova J, Vanisova M, Martinek V, Sladkova J, Zamecnik J, Honzik T, Zeman J, Hansikova H, Tesarova M. Homozygous missense mutation in UQCRC2 associated with severe encephalomyopathy, mitochondrial complex III assembly defect and activation of mitochondrial protein quality control. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166147. [PMID: 33865955 DOI: 10.1016/j.bbadis.2021.166147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023]
Abstract
The mitochondrial respiratory chain (MRC) complex III (CIII) associates with complexes I and IV (CI and CIV) into supercomplexes. We identified a novel homozygous missense mutation (c.665G>C; p.Gly222Ala) in UQCRC2 coding for structural subunit Core 2 in a patient with severe encephalomyopathy. The structural data suggest that the Gly222Ala exchange might result in an altered spatial arrangement in part of the UQCRC2 subunit, which could impact specific protein-protein interactions. Accordingly, we have found decreased levels of CIII and accumulation of CIII-specific subassemblies comprising MT-CYB, UQCRB, UQCRQ, UQCR10 and CYC1 subunits, but devoid of UQCRC1, UQCRC2, and UQCRFS1 in the patient's fibroblasts. The lack of UQCRC1 subunit-containing subassemblies could result from an impaired interaction with mutant UQCRC2Gly222Ala and subsequent degradation of both subunits by mitochondrial proteases. Indeed, we show an elevated amount of matrix CLPP protease, suggesting the activation of the mitochondrial protein quality control machinery in UQCRC2Gly222Ala fibroblasts. In line with growing evidence, we observed a rate-limiting character of CIII availability for the supercomplex formation, accompanied by a diminished amount of CI. Furthermore, we found impaired electron flux between CI and CIII in skeletal muscle and fibroblasts of the UQCRC2Gly222Ala patient. The ectopic expression of wild-type UQCRC2 in patient cells rescued maximal respiration rate, demonstrating the deleterious effect of the mutation on MRC. Our study expands the phenotypic spectrum of human disease caused by CIII Core protein deficiency, provides insight into the assembly pathway of human CIII, and supports the requirement of assembled CIII for a proper accumulation of CI.
Collapse
Affiliation(s)
- Daniela Burska
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Lukas Stiburek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Jana Krizova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Marie Vanisova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Vaclav Martinek
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Sladkova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Marketa Tesarova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic.
| |
Collapse
|
46
|
Quintana-Cabrera R, Manjarrés-Raza I, Vicente-Gutiérrez C, Corrado M, Bolaños JP, Scorrano L. Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria. Redox Biol 2021; 41:101944. [PMID: 33780775 PMCID: PMC8039725 DOI: 10.1016/j.redox.2021.101944] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) are a common product of active mitochondrial respiration carried in mitochondrial cristae, but whether cristae shape influences ROS levels is unclear. Here we report that the mitochondrial fusion and cristae shape protein Opa1 requires mitochondrial ATP synthase oligomers to reduce ROS accumulation. In cells fueled with galactose to force ATP production by mitochondria, cristae are enlarged, ATP synthase oligomers destabilized, and ROS accumulate. Opa1 prevents both cristae remodeling and ROS generation, without impinging on levels of mitochondrial antioxidant defense enzymes that are unaffected by Opa1 overexpression. Genetic and pharmacologic experiments indicate that Opa1 requires ATP synthase oligomerization and activity to reduce ROS levels upon a blockage of the electron transport chain. Our results indicate that the converging effect of Opa1 and mitochondrial ATP synthase on mitochondrial ultrastructure regulate ROS abundance to sustain cell viability.
Collapse
Affiliation(s)
- Rubén Quintana-Cabrera
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; CIBERFES, Institute of Health Carlos III, Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Salamanca, Spain.
| | - Israel Manjarrés-Raza
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; CIBERFES, Institute of Health Carlos III, Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Salamanca, Spain
| | - Carlos Vicente-Gutiérrez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; CIBERFES, Institute of Health Carlos III, Madrid, Spain
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg Im Breisgau, Germany
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; CIBERFES, Institute of Health Carlos III, Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Salamanca, Spain
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy; Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
47
|
Tezcan G, Garanina EE, Alsaadi M, Gilazieva ZE, Martinova EV, Markelova MI, Arkhipova SS, Hamza S, McIntyre A, Rizvanov AA, Khaiboullina SF. Therapeutic Potential of Pharmacological Targeting NLRP3 Inflammasome Complex in Cancer. Front Immunol 2021; 11:607881. [PMID: 33613529 PMCID: PMC7887322 DOI: 10.3389/fimmu.2020.607881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Dysregulation of NLRP3 inflammasome complex formation can promote chronic inflammation by increased release of IL-1β. However, the effect of NLRP3 complex formation on tumor progression remains controversial. Therefore, we sought to determine the effect of NLRP3 modulation on the growth of the different types of cancer cells, derived from lung, breast, and prostate cancers as well as neuroblastoma and glioblastoma in-vitro. Method The effect of Caspase 1 inhibitor (VX765) and combination of LPS/Nigericin on NLRP3 inflammasome activity was analyzed in A549 (lung cancer), MCF-7 (breast cancer), PC3 (prostate cancer), SH-SY5Y (neuroblastoma), and U138MG (glioblastoma) cells. Human fibroblasts were used as control cells. The effect of VX765 and LPS/Nigericin on NLRP3 expression was analyzed using western blot, while IL-1β and IL-18 secretion was detected by ELISA. Tumor cell viability and progression were determined using Annexin V, cell proliferation assay, LDH assay, sphere formation assay, transmission electron microscopy, and a multiplex cytokine assay. Also, angiogenesis was investigated by a tube formation assay. VEGF and MMPs secretion were detected by ELISA and a multiplex assay, respectively. Statistical analysis was done using one-way ANOVA with Tukey’s analyses and Kruskal–Wallis one-way analysis of variance. Results LPS/Nigericin increased NRLP3 protein expression as well as IL-1β and IL-18 secretion in PC3 and U138MG cells compared to A549, MCF7, SH-SY5Y cells, and fibroblasts. In contrast, MIF expression was commonly found upregulated in A549, PC3, SH-SY5Y, and U138MG cells and fibroblasts after Nigericin treatment. Nigericin and a combination of LPS/Nigericin decreased the cell viability and proliferation. Also, LPS/Nigericin significantly increased tumorsphere size in PC3 and U138MG cells. In contrast, the sphere size was reduced in MCF7 and SH-SY5Y cells treated with LPS/Nigericin, while no effect was detected in A549 cells. VX765 increased secretion of CCL24 in A549, MCF7, PC3, and fibroblasts as well as CCL11 and CCL26 in SH-SY5Y cells. Also, VX765 significantly increased the production of VEGF and MMPs and stimulated angiogenesis in all tumor cell lines. Discussion Our data suggest that NLRP3 activation using Nigericin could be a novel therapeutic approach to control the growth of tumors producing a low level of IL-1β and IL-18.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zarema E Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina V Martinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Maria I Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana S Arkhipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| |
Collapse
|
48
|
Grieco JP, Allen ME, Perry JB, Wang Y, Song Y, Rohani A, Compton SLE, Smyth JW, Swami NS, Brown DA, Schmelz EM. Progression-Mediated Changes in Mitochondrial Morphology Promotes Adaptation to Hypoxic Peritoneal Conditions in Serous Ovarian Cancer. Front Oncol 2021; 10:600113. [PMID: 33520711 PMCID: PMC7838066 DOI: 10.3389/fonc.2020.600113] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer in women, with a survival rate of less than 30% when the cancer has spread throughout the peritoneal cavity. Aggregation of cancer cells increases their viability and metastatic potential; however, there are limited studies that correlate these functional changes to specific phenotypic alterations. In this study, we investigated changes in mitochondrial morphology and dynamics during malignant transition using our MOSE cell model for progressive serous ovarian cancer. Mitochondrial morphology was changed with increasing malignancy from a filamentous network to single, enlarged organelles due to an imbalance of mitochondrial dynamic proteins (fusion: MFN1/OPA1, fission: DRP1/FIS1). These phenotypic alterations aided the adaptation to hypoxia through the promotion of autophagy and were accompanied by changes in the mitochondrial ultrastructure, mitochondrial membrane potential, and the regulation of reactive oxygen species (ROS) levels. The tumor-initiating cells increased mitochondrial fragmentation after aggregation and exposure to hypoxia that correlated well with our previously observed reduced growth and respiration in spheroids, suggesting that these alterations promote viability in non-permissive conditions. Our identification of such mitochondrial phenotypic changes in malignancy provides a model in which to identify targets for interventions aimed at suppressing metastases.
Collapse
Affiliation(s)
- Joseph P Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Mitchell E Allen
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Justin B Perry
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Yipei Song
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ali Rohani
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Stephanie L E Compton
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion (VTC), Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - David A Brown
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Eva M Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
49
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
50
|
Cardiolipin in Immune Signaling and Cell Death. Trends Cell Biol 2020; 30:892-903. [DOI: 10.1016/j.tcb.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|