1
|
Li L, Li X, Gao X, Liao W, Guo H, He C, Lu J, Ye X, Sun W, Liu C, Fan Y, Bai X, Wu Q. Global investigation into the CqCYP76AD and CqDODA families in Chenopodium quinoa: Identification, evolutionary history, and their functional roles in betalain biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109569. [PMID: 39892247 DOI: 10.1016/j.plaphy.2025.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Betalains are water-soluble pigments mainly distributed in the core Caryophyllales plants. Betalains provide plant with striking colors to attract pollinators and are beneficial to human health due to the strong antioxidant activity. To date, many studies regarding to betalain biosynthesis have been exerted in sugar beet (Beta vulgaris) and four-O-clock (Mirabilis jalapa), however, the key regulators in betalain pigmentation of quinoa (Chenopodium quinoa) remain to be elucidated. CYP76AD and DODA genes encode core enzymes converting L-DOPA to cyclo-DOPA and betalamic acid, respectively, in betalain biosynthesis. In this study, 44 CqCYP76AD (5 α-clade, 6 β-clade and 33 γ-clade homologs) and 18 CqDODA (10 α-clade, 2 β-clade and 6 γ-clade homologs) members were identified in quinoa genome. Expression analysis and cis-element analysis indicated that light and ABA are involved in the regulation of CqCYP76AD and CqDODA. We found application of exogenous ABA and darkness repressed the betalain production in quinoa seedlings. Tandem duplication is the major driving force for CqCYP76AD and CqDODA family expansion. Evolutionary history analysis on the duplication events of quinoa and its close relatives, sugar beet, C. pallidicaule, C. suecicum and C. formosanum, identified the quinoa-specific tandem duplications CqCYP76AD-α2/-α3, CqDODA-α1/-α6 in Chr04, and CqCYP76AD-α1/-α4/-α5, CqDODA-α3/-α4/-α5 in Chr03, which are absent in sugar beet. The close co-location of the CqCYP76AD-α-CqDODA-α gene clusters suggests they are putative enhanced regulatory units for betalain biosynthesis in quinoa, similar to the operon BvCYP76AD1-BvDODA1 in sugar beet. The functions of α-, β- and γ-clade CqCYP76ADs and CqDODAs were investigated by transient expression system in tobacco leaves and hairy root transformation in quinoa. The results indicated that CqCYP76AD-α1, CqCYP76AD-β3, CqDODA-α1, CqDODA-α3 and CqDODA-α5 are the important positive regulators for betalain accumulation in quinoa. Correlation between pigment contents and expression levels at different developmental stages indicates their roles in pigmentation of leaf, stem and spike tissues of in betalain-enriched quinoa. Overall, this study performed genome-wide identification and functional characterization of the important functional enzymes of CqCYP76ADs and CqDODAs for betalain biosynthesis in quinoa, which will deep our understanding of the mechanisms of betalain pigmentation in quinoa.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xiao'an Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xiaoli Gao
- Research Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, 850032, Lhasa, Tibet, China
| | - Wenhua Liao
- Research Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, 850032, Lhasa, Tibet, China
| | - Huihui Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Cailin He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Jing Lu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Glitz C, Dyekjær JD, Vaitkus D, Babaei M, Welner DH, Borodina I. Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05100-4. [PMID: 39747739 DOI: 10.1007/s12010-024-05100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.
Collapse
Affiliation(s)
- Christiane Glitz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Jane Dannow Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Dovydas Vaitkus
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Mahsa Babaei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Gougerdchi V, Hamedpour-Darabi M, Bagheri N, Sharma R, Vetukuri RR, Astatkie T, Dell B. Quinoa: A Promising Crop for Resolving the Bottleneck of Cultivation in Soils Affected by Multiple Environmental Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2117. [PMID: 39124236 PMCID: PMC11313704 DOI: 10.3390/plants13152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) has gained worldwide recognition for its nutritional values, adaptability to diverse environments, and genetic diversity. This review explores the current understanding of quinoa tolerance to environmental stress, focusing on drought, salinity, heat, heavy metals, and UV-B radiation. Although drought and salinity have been extensively studied, other stress factors remain underexplored. The ever-increasing incidence of abiotic stress, exacerbated by unpredictable weather patterns and climate change, underscores the importance of understanding quinoa's responses to these challenges. Global gene banks safeguard quinoa's genetic diversity, supporting breeding efforts to develop stress-tolerant varieties. Recent advances in genomics and molecular tools offer promising opportunities to improve stress tolerance and increase the yield potential of quinoa. Transcriptomic studies have shed light on the responses of quinoa to drought and salinity, yet further studies are needed to elucidate its resilience to other abiotic stresses. Quinoa's ability to thrive on poor soils and limited water resources makes it a sustainable option for land restoration and food security enterprises. In conclusion, quinoa is a versatile and robust crop with the potential to address food security challenges under environmental constraints.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | | | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 7194684471, Iran;
| | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Rahya Suchani, Samba, Jammu 181143, India;
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden;
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia;
| |
Collapse
|
4
|
Li X, Cui X, Ran R, Chen G, Zhao P. Genomic variation induced by a low concentration of ethyl methanesulfonate (EMS) in quinoa 'Longli-4' variety. BOTANICAL STUDIES 2024; 65:15. [PMID: 38967711 PMCID: PMC11226418 DOI: 10.1186/s40529-024-00427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Quinoa (Chenopodium quinoa, 2n = 4x = 36), a super pseudocereal crop, has been introduced into China nearly 60 years. Many excellent varieties have been developed through massive selection; however, few are developed through mutagenesis breeding. In this study, the 'Longli-4' variety, locally cultivated in Gansu province, Northwest China, was selected for experimentation. The grains of 'Longli-4' were treated with ethyl methanesulfonate (EMS) at a concentration of 0.8% for 8 h. Nine plants from independent M2 families were randomly selected to investigate the mutagenesis effect of EMS on the quinoa genome. The results indicated that the single nucleotide polymorphisms (SNPs) induced by EMS were unevenly distributed across all 18 chromosomes, with an average mutation frequency of 91.2 SNPs/Mb, ranging from 4.5 to 203.5 SNPs/Mb. A significant positive correlation between the number of SNPs and chromosome length was identified through linear model analysis. Transitions from G/C to A/T were the most predominated in all variant categories, accounting for 34.4-67.2% of the mutations, and SNPs were significantly enriched in intergenic regions, representing 69.2-75.1% of the total mutations. This study provides empirical support for the application of low concentration EMS treatment in quinoa breeding.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyun Cui
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China
| | - Ruilan Ran
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoxiong Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, P. R. China
| | - Pengshan Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China.
| |
Collapse
|
5
|
Sandell FL, Holzweber T, Street NR, Dohm JC, Himmelbauer H. Genomic basis of seed colour in quinoa inferred from variant patterns using extreme gradient boosting. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1312-1324. [PMID: 38213076 PMCID: PMC11022794 DOI: 10.1111/pbi.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.
Collapse
Affiliation(s)
- Felix L. Sandell
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Thomas Holzweber
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Nathaniel R. Street
- Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversityUmeåSweden
- SciLifeLabUmeå UniversityUmeåSweden
| | - Juliane C. Dohm
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
6
|
Ding P, Tang P, Li X, Haroon A, Nasreen S, Noor H, Attia KA, Abushady AM, Wang R, Cui K, Wu X, Sun M, Gao Z. Genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in quinoa ( Chenopodium quinoa) under abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23261. [PMID: 38417846 DOI: 10.1071/fp23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
The MYB transcription factor (TF) are among the largest gene families of plants being responsible for several biological processes. The R2R3-MYB gene family are integral player regulating plant primary and secondary metabolism, growth and development, and responses to hormones and stresses. The phylogenetic analysis combined with gene structure analysis and motif determination resulted in division of R2R3-MYB gene family into 27 subgroups. Evidence generated from synteny analyses indicated that CqR2R3-MYBs gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, the expression patterns of different tissues under salt treatment were investigated resulting CqR2R3-MYB genes high expression both in roots and stem of quinoa (Chenopodium quinoa ) plants. More than half of CqR2R3-MYB genes showed expression under salt stress. Based on this result, CqR2R3-MYB s may regulate quinoa plant growth development and resistance to abiotic stresses. These findings provided comprehensive insights on role of CqR2R3-MYBs gene family members in quinoa and candidate MYB gene family members can be further studies on their role for abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Pengcheng Ding
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Peng Tang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofen Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Adeela Haroon
- Department of Botany, The Women University Multan, Multan 66000, Pakistan
| | - Saima Nasreen
- Department of Environmental Sciences, The Women University Multan, Multan 66000, Pakistan
| | - Hafeez Noor
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza 12588, Egypt
| | - Rongzhen Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Kaiyuan Cui
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiangyun Wu
- Shanxi Jiaqi Agri-Tech Co., Ltd., Taiyuan 030006, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
7
|
Guerrero-Rubio MA, Walker-Hale N, Guo R, Sheehan H, Timoneda A, Gandia-Herrero F, Brockington SF. Are seven amino acid substitutions sufficient to explain the evolution of high l-DOPA 4,5-dioxygenase activity leading to betalain pigmentation? Revisiting the gain-of-function mutants of Bean et al. (2018). THE NEW PHYTOLOGIST 2023; 239:2265-2276. [PMID: 37243529 DOI: 10.1111/nph.18981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/27/2023] [Indexed: 05/29/2023]
Abstract
This work revisits a publication by Bean et al. (2018) that reports seven amino acid substitutions are essential for the evolution of l-DOPA 4,5-dioxygenase (DODA) activity in Caryophyllales. In this study, we explore several concerns which led us to replicate the analyses of Bean et al. (2018). Our comparative analyses, with structural modelling, implicate numerous residues additional to those identified by Bean et al. (2018), with many of these additional residues occurring around the active site of BvDODAα1. We therefore replicated the analyses of Bean et al. (2018) to re-observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2-mut3 variant. Multiple in vivo assays, in both Saccharomyces cerevisiae and Nicotiana benthamiana, did not result in visible DODA activity in BvDODAα2-mut3, with betalain production always 10-fold below BvDODAα1. In vitro assays also revealed substantial differences in both catalytic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2-mut3 proteins, explaining their differing performance in vivo. In summary, we were unable to replicate the in vivo analyses of Bean et al. (2018), and our quantitative in vivo and in vitro analyses suggest a minimal effect of these seven residues in altering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Bean et al. (2018).
Collapse
Affiliation(s)
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, CB2 3EA, Cambridge, UK
| | - Rui Guo
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, CB2 3EA, Cambridge, UK
| | - Hester Sheehan
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, CB2 3EA, Cambridge, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, CB2 3EA, Cambridge, UK
| | - Fernando Gandia-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, 30100, Murcia, Spain
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, CB2 3EA, Cambridge, UK
| |
Collapse
|
8
|
Ohno S, Kokado R, Makishima R, Doi M. BpCYP76AD15 is involved in betaxanthin biosynthesis in bougainvillea callus. PLANTA 2023; 258:47. [PMID: 37474871 DOI: 10.1007/s00425-023-04202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
MAIN CONCLUSION BpCYP76AD15 is involved in betaxanthin biosynthesis in callus, but not in bracts, in bougainvillea. Bougainvillea (Bougainvillea peruviana) is a climbing tropical ornamental tree belonging to Nyctaginaceae. Pigments that are conferring colorful bracts in bougainvillea are betalains, and that conferring yellow color are betaxanthins. In general, for red-to-purple betacyanin biosynthesis, α clade CYP76AD that has tyrosine hydroxylase and DOPA oxygenase activity is required, while for betaxanthin biosynthesis, β clade CYP76AD that has only tyrosine hydroxylase is required. To date, betaxanthin biosynthesis pathway genes have not been identified yet in bougainvillea. Since bougainvillea is phylogenetically close to four-O-clock (Mirabilis jalapa), and it was reported that β clade CYP76AD, MjCYP76AD15, is involved in floral betaxanthin biosynthesis in four-O-clock. Thus, we hypothesized that orthologous gene of MjCYP76AD15 in bougainvillea might be involved in bract betaxanthin biosynthesis. To test the hypothesis, we attempted to identify β clade CYP76AD gene from yellow bracts by RNA-seq; however, we could not. Instead, we found that callus accumulated betaxanthin and that β clade CYP76AD gene, BpCYP76AD15, were expressed in callus. We validated BpCYP76AD15 function by transgenic approach (agro-infiltration and over-expression in transgenic tobacco), and it was suggested that BpCYP76AD15 is involved in betaxanthin biosynthesis in callus, but not in bracts in bougainvillea. Interestingly, our data also indicate the existence of two pathways for betaxanthin biosynthesis (β clade CYP76AD-dependent and -independent), and the latter pathway is important for betaxanthin biosynthesis in bougainvillea bracts.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Rika Kokado
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Rikako Makishima
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Xie F, Chen C, Chen J, Chen J, Hua Q, Shah K, Zhang Z, Zhao J, Hu G, Chen J, Qin Y. Betalain biosynthesis in red pulp pitaya is regulated via HuMYB132: a R-R type MYB transcription factor. BMC PLANT BIOLOGY 2023; 23:28. [PMID: 36635619 PMCID: PMC9837905 DOI: 10.1186/s12870-023-04049-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.
Collapse
Affiliation(s)
- Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qingzhu Hua
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Li X, Ran R, Chen G, Zhao P. Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. Int J Mol Sci 2022; 23:14030. [PMID: 36430511 PMCID: PMC9693436 DOI: 10.3390/ijms232214030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022] Open
Abstract
Quinoa (Chenopodium quinoa) is a well-known climate-resilient crop and has been introduced into multiple marginal lands across the world, including China, to improve food security and/or balanced nutrient supplies. Conventional breeding has been widely applied in the selection and breeding of quinoa varieties in China since 1980s; however, few studies have been implemented on the genetic variances among different varieties developed by diversity breeding objectives. In this study, the phenotypic and genetic differences between two varieties (Longli-4 and CA3-1) from China were systematically analyzed. A total of 407,651 and 2,731,411 single nucleotide polymorphisms (SNPs) and 212,724 and 587,935 small insertion and deletion (INDELs) were detected for Longli-4 and CA3-1, respectively, when compared with the reference genome of PI614886. The SNPs/INDELs were unevenly distributed across each chromosome for both varieties. There were 143,996 SNPs and 83,410 INDELs shared between Longli-4 and CA3-1, accounting for 4% of the total variances. The variation was then screened based on the SNP effects. There were 818 and 73 genes with the variety-specific non-synonymous and stop-gain variation in Longli-4, whereas there were 13,701 and 733 genes in CA3-1. Specifically, 3501 genes with the non-synonymous variation and 74 genes with the stop-gain variation were found in both Longli-4 and CA3-1. These results suggest that convergent selection occurred during the different breeding processes. A set of candidate genes related to agronomic traits and domestication were further selected to detect the genetic divergence in detail in the two varieties. Only one domestication gene was identified having Longli-4-specific stop-gain variation. Twelve candidate genes related to betalain (1), flowering (4), seed size (2), domestication (1), and saponin (4) were identified having CA3-1-specific stop-gain variation. Interestingly, one seed size gene homologous of CKX1 (cytokinin oxidase/dehydrogenase 1) had the stop-gain variation in both varieties. This research will therefore provide guidance for the molecular-assisted breeding in quinoa.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilan Ran
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiong Chen
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
A Genome-Wide Identification Study Reveals That HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT Involved in Betalain Biosynthesis in Hylocereus. Genes (Basel) 2021; 12:genes12121858. [PMID: 34946807 PMCID: PMC8702118 DOI: 10.3390/genes12121858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble nitrogen-containing pigments with multiple bioactivities. Pitayas are the only at large-scale commercially grown fruit containing abundant betalains for consumers. Currently, the key genes involved in betalain biosynthesis remain to be fully elucidated. Moreover, genome-wide analyses of these genes in betalain biosynthesis are not available in betalain-producing plant species. In this study, totally 53 genes related to betalain biosynthesis were identified from the genome data of Hylocereus undatus. Four candidate genes i.e., one cytochrome P-450 R gene (HmoCYP76AD1), two L-DOPA 4,5-dioxygenase genes (HmoDODAα1 and HmoDODAα2), and one cyclo-DOPA 5-O glucosyltransferase gene (HmocDOPA5GT) were initially screened according to bioinformatics and qRT-PCR analyses. Silencing HmoCYP76AD1, HmoDODAα1, HmoDODAα2 or HmocDOPA5GT resulted in loss of red pigment. HmoDODAα1 displayed a high level of L-DOPA 4,5-dioxygenase activity to produce betalamic acid and formed yellow betaxanthin. Co-expression of HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT in Nicotiana benthamiana and yeast resulted in high abundance of betalain pigments with a red color. These results suggested that HmoCYP76AD1, HmoDODAα1, and HmocDOPA5GT play key roles in betalain biosynthesis in Hylocereus. The results of the present study provide novel genes for molecular breeding programs of pitaya.
Collapse
|
12
|
Ma Q, Su C, Dong CH. Genome-Wide Transcriptomic and Proteomic Exploration of Molecular Regulations in Quinoa Responses to Ethylene and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112281. [PMID: 34834644 PMCID: PMC8625574 DOI: 10.3390/plants10112281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/02/2023]
Abstract
Quinoa (Chenopodiumquinoa Willd.), originated from the Andean region of South America, shows more significant salt tolerance than other crops. To reveal how the plant hormone ethylene is involved in the quinoa responses to salt stress, 4-week-old quinoa seedlings of 'NL-6' treated with water, sodium chloride (NaCl), and NaCl with ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were collected and analyzed by transcriptional sequencing and tandem mass tag-based (TMT) quantitative proteomics. A total of 9672 proteins and 60,602 genes was identified. Among them, the genes encoding glutathione S-transferase (GST), peroxidase (POD), phosphate transporter (PT), glucan endonuclease (GLU), beta-galactosidase (BGAL), cellulose synthase (CES), trichome birefringence-like protein (TBL), glycine-rich cell wall structural protein (GRP), glucosyltransferase (GT), GDSL esterase/lipase (GELP), cytochrome P450 (CYP), and jasmonate-induced protein (JIP) were significantly differentially expressed. Further analysis suggested that the genes may mediate through osmotic adjustment, cell wall organization, reactive oxygen species (ROS) scavenging, and plant hormone signaling to take a part in the regulation of quinoa responses to ethylene and salt stress. Our results provide a strong foundation for exploration of the molecular mechanisms of quinoa responses to ethylene and salt stress.
Collapse
Affiliation(s)
- Qian Ma
- Correspondence: (Q.M.); (C.-H.D.); Tel.: +86-53258957640 (Q.M.); +86-53258957640 (C.-H.D.)
| | | | - Chun-Hai Dong
- Correspondence: (Q.M.); (C.-H.D.); Tel.: +86-53258957640 (Q.M.); +86-53258957640 (C.-H.D.)
| |
Collapse
|
13
|
Portillo-Nava C, Guerrero-Esperanza M, Guerrero-Rangel A, Guevara-Domínguez P, Martínez-Gallardo N, Nava-Sandoval C, Ordaz-Ortiz J, Sánchez-Segura L, Délano-Frier J. Natural or light-induced pigment accumulation in grain amaranths coincides with enhanced resistance against insect herbivory. PLANTA 2021; 254:101. [PMID: 34669050 DOI: 10.1007/s00425-021-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Increased resistance to insect herbivory in grain amaranth plants is associated with increased betalain pigmentation, either naturally acquired or accumulated in response to blue-red light irradiation. Betalains are water-soluble pigments characteristic of plants of the Caryophyllales order. Their abiotic stress-induced accumulation is believed to protect against oxidative damage, while their defensive function against biotic aggressors is scarce. A previous observation of induced betalain-biosynthetic gene expression in stressed grain amaranth plants led to the proposal that these pigments play a defensive role against insect herbivory. This study provided further support for this premise. First, a comparison of "green" and "red" Amaranthus cruentus phenotypes showed that the latter suffered less insect herbivory damage. Coincidentally, growth and vitality of Manduca sexta larvae were more severely affected when fed on red-leafed A. cruentus plants or on an artificial diet supplemented with red-leaf pigment extracts. Second, the exposure of A. cruentus and A. caudatus plants, having contrasting pigmentation phenotypes, to light enriched in the blue and red wavelength spectra led to pigment accumulation throughout the plant and to increased resistance to insect herbivory. These events were accompanied by the induced expression of known betalain-biosynthetic genes, including uncharacterized DODA genes believed to participate in this biosynthetic pathway in a still undefined way. Finally, transient co-expression of different combinations of betalain-biosynthetic genes in Nicotiana benthamiana led to detectable accumulation of betalamic acid and betanidin. This outcome supported the participation of certain AhDODA and other genes in the grain amaranth betalain-biosynthetic pathway.
Collapse
Affiliation(s)
- Claudia Portillo-Nava
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Moisés Guerrero-Esperanza
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Armando Guerrero-Rangel
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Paulina Guevara-Domínguez
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Norma Martínez-Gallardo
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Cecilia Nava-Sandoval
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala S/N,Col. Santo Tomás, CDMX, CP, 11340, Alcaldía Miguel Hidalgo, México
| | - José Ordaz-Ortiz
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Lino Sánchez-Segura
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - John Délano-Frier
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México.
| |
Collapse
|
14
|
Kasei A, Watanabe H, Ishiduka N, Noda K, Murata M, Sakuta M. Comparative Analysis of the Extradiol Ring-Cleavage Dioxygenase LigB from Arabidopsis and 3,4-Dihydroxyphenylalanine Dioxygenase from Betalain-Producing Plants. PLANT & CELL PHYSIOLOGY 2021; 62:732-740. [PMID: 33638982 DOI: 10.1093/pcp/pcab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Diverse arrays of naturally occurring compounds in plants are synthesized by specialized metabolic enzymes, many of which are distributed taxonomically. Although anthocyanin pigments are widely distributed and ubiquitous, betalains have replaced anthocyanins in most families in Caryophyllales. Anthocyanins and betalains never occur together in the same plant. The formation of betalamic acid, catalyzed by 3,4-dihydroxyphenylalanine (DOPA) 4,5-extradiol dioxygenase (DOD), is a key step in betalain biosynthesis. DODs in betalain-producing plants are coded by LigB genes, homologs of which have been identified in a wide range of higher plant orders, as well as in certain fungi and bacteria. Two classes of LigB homologs have been reported: those found in anthocyanin-producing species and those found in betalain-producing species, which contain DOD. To gain insight into the evolution of specialized metabolic enzymes involved in betalain biosynthesis, we performed a comparative biochemical analysis of Arabidopsis LigB, an extradiol ring-cleavage dioxygenase in anthocyanin-producing Arabidopsis and Phytolacca DOD1 of betalain-producing Phytolacca americana. We show that Arabidopsis LigB catalyzes 2,3-extradiol cleavage of DOPA to synthesize muscaflavin, whereas Phytolacca DOD1 converts DOPA to betalamic acid via 4,5-extradiol cleavage. Arabidopsis LigB also converts caffeic acid, a ubiquitous phenolic compound in higher plants, to iso-arabidopic acid in vitro via 2,3-extradiol cleavage of the aromatic ring. Amino-acid substitution in Arabidopsis LigB and Phytolacca DOD1 led to variable extradiol ring-cleavage function, supporting the suggestion that catalytic promiscuity serves as a starting point for the divergence of new enzymatic activities.
Collapse
Affiliation(s)
- Akane Kasei
- Department of Biological Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Hanako Watanabe
- Department of Biological Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Natsumi Ishiduka
- Department of Biological Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Kyoko Noda
- Department of Nutrition and Food Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Masatsune Murata
- Department of Nutrition and Food Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| |
Collapse
|
15
|
A Review of Chenopodium quinoa (Willd.) Diseases-An Updated Perspective. PLANTS 2021; 10:plants10061228. [PMID: 34208662 PMCID: PMC8233811 DOI: 10.3390/plants10061228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
The journey of the Andean crop quinoa (Chenopodium quinoa Willd.) to unfamiliar environments and the combination of higher temperatures, sudden changes in weather, intense precipitation, and reduced water in the soil has increased the risk of observing new and emerging diseases associated with this crop. Several diseases of quinoa have been reported in the last decade. These include Ascochyta caulina, Cercospora cf. chenopodii, Colletotrichum nigrum, C. truncatum, and Pseudomonas syringae. The taxonomy of other diseases remains unclear or is characterized primarily at the genus level. Symptoms, microscopy, and pathogenicity, supported by molecular tools, constitute accurate plant disease diagnostics in the 21st century. Scientists and farmers will benefit from an update on the phytopathological research regarding a crop that has been neglected for many years. This review aims to compile the existing information and make accurate associations between specific symptoms and causal agents of disease. In addition, we place an emphasis on downy mildew and its phenotyping, as it continues to be the most economically important and studied disease affecting quinoa worldwide. The information herein will allow for the appropriate execution of breeding programs and control measures.
Collapse
|
16
|
Segawa T, Nishiyama C, Tamiru-Oli M, Sugihara Y, Abe A, Sone H, Itoh N, Asukai M, Uemura A, Oikawa K, Utsushi H, Ikegami-Katayama A, Imamura T, Mori M, Terauchi R, Takagi H. Sat-BSA: an NGS-based method using local de novo assembly of long reads for rapid identification of genomic structural variations associated with agronomic traits. BREEDING SCIENCE 2021; 71:299-312. [PMID: 34776737 PMCID: PMC8573553 DOI: 10.1270/jsbbs.20148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 05/29/2023]
Abstract
Advances in next generation sequencing (NGS)-based methodologies have accelerated the identifications of simple genetic variants such as point mutations and small insertions/deletions (InDels). Structural variants (SVs) including large InDels and rearrangements provide vital sources of genetic diversity for plant breeding. However, their analysis remains a challenge due to their complex nature. Consequently, novel NGS-based approaches are needed to rapidly and accurately identify SVs. Here, we present an NGS-based bulked-segregant analysis (BSA) technique called Sat-BSA (SVs associated with traits) for identifying SVs controlling traits of interest in crops. Sat-BSA targets allele frequencies at all SNP positions to first identify candidate genomic regions associated with a trait, which is then reconstructed by long reads-based local de novo assembly. Finally, the association between SVs, RNA-seq-based gene expression patterns and trait is evaluated for multiple cultivars to narrow down the candidate genes. We applied Sat-BSA to segregating F2 progeny obtained from crosses between turnip cultivars with different tuber colors and successfully isolated two genes harboring SVs that are responsible for tuber phenotypes. The current study demonstrates the utility of Sat-BSA for the identification of SVs associated with traits of interest in species with large and heterozygous genomes.
Collapse
Affiliation(s)
- Tenta Segawa
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Chisato Nishiyama
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Muluneh Tamiru-Oli
- Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, 5 Ring Road, Bundoora, VIC 3086, Australia
| | - Yu Sugihara
- Kyoto University, Nakajou 1, Mozume, Mukou, Kyoto 617-0001, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Hinako Sone
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Noriaki Itoh
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Mayu Asukai
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Hiroe Utsushi
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | | | - Tomohiro Imamura
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masashi Mori
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Ryohei Terauchi
- Kyoto University, Nakajou 1, Mozume, Mukou, Kyoto 617-0001, Japan
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
17
|
Ogata T, Toyoshima M, Yamamizo-Oda C, Kobayashi Y, Fujii K, Tanaka K, Tanaka T, Mizukoshi H, Yasui Y, Nagatoshi Y, Yoshikawa N, Fujita Y. Virus-Mediated Transient Expression Techniques Enable Functional Genomics Studies and Modulations of Betalain Biosynthesis and Plant Height in Quinoa. FRONTIERS IN PLANT SCIENCE 2021; 12:643499. [PMID: 33815450 PMCID: PMC8014037 DOI: 10.3389/fpls.2021.643499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Quinoa (Chenopodium quinoa), native to the Andean region of South America, has been recognized as a potentially important crop in terms of global food and nutrition security since it can thrive in harsh environments and has an excellent nutritional profile. Even though challenges of analyzing the complex and heterogeneous allotetraploid genome of quinoa have recently been overcome, with the whole genome-sequencing of quinoa and the creation of genotyped inbred lines, the lack of technology to analyze gene function in planta is a major limiting factor in quinoa research. Here, we demonstrate that two virus-mediated transient expression techniques, virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX), can be used in quinoa. We show that apple latent spherical virus (ALSV) can induce gene silencing of quinoa phytoene desaturase (CqPDS1) in a broad range of quinoa inbred lines derived from the northern and southern highland and lowland sub-populations. In addition, we show that ALSV can be used as a VOX vector in roots. Our data also indicate that silencing a quinoa 3,4-dihydroxyphenylalanine 4,5-dioxygenase gene (CqDODA1) or a cytochrome P450 enzyme gene (CqCYP76AD1) inhibits betalain production and that knockdown of a reduced-height gene homolog (CqRHT1) causes an overgrowth phenotype in quinoa. Moreover, we show that ALSV can be transmitted to the progeny of quinoa plants. Thus, our findings enable functional genomics in quinoa, ushering in a new era of quinoa research.
Collapse
Affiliation(s)
- Takuya Ogata
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Masami Toyoshima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Chihiro Yamamizo-Oda
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yasufumi Kobayashi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Kenichiro Fujii
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Kojiro Tanaka
- Technology Development Group, Actree Corporation, Hakusan, Japan
| | - Tsutomu Tanaka
- Technology Development Group, Actree Corporation, Hakusan, Japan
| | | | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
19
|
Imamura T, Yasui Y, Koga H, Takagi H, Abe A, Nishizawa K, Mizuno N, Ohki S, Mizukoshi H, Mori M. A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Commun Biol 2020; 3:513. [PMID: 32943738 PMCID: PMC7498606 DOI: 10.1038/s42003-020-01249-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Halophytes are plants that grow in high-salt environments and form characteristic epidermal bladder cells (EBCs) that are important for saline tolerance. To date, however, little has been revealed about the formation of these structures. To determine the genetic basis for their formation, we applied ethylmethanesulfonate mutagenesis and obtained two mutants with reduced levels of EBCs (rebc) and abnormal chloroplasts. In silico subtraction experiments revealed that the rebc phenotype was caused by mutation of REBC, which encodes a WD40 protein that localizes to the nucleus and chloroplasts. Phylogenetic and transformant analyses revealed that the REBC protein differs from TTG1, a WD40 protein involved in trichome formation. Furthermore, rebc mutants displayed damage to their shoot apices under abiotic stress, suggesting that EBCs may protect the shoot apex from such stress. These findings will help clarify the mechanisms underlying EBC formation and function.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Hironori Koga
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hiroki Takagi
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Kanako Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi-Shi, Ishikawa, 923-1292, Japan
| | - Hiroharu Mizukoshi
- Technology Development Group, Actree Co., 375 Misumimachi, Hakusan, Ishikawa, 924-0053, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
20
|
Xie F, Hua Q, Chen C, Zhang L, Zhang Z, Chen J, Zhang R, Zhao J, Hu G, Zhao J, Qin Y. Transcriptomics-based identification and characterization of glucosyltransferases involved in betalain biosynthesis in Hylocereus megalanthus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:112-124. [PMID: 32413806 DOI: 10.1016/j.plaphy.2020.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 05/19/2023]
Abstract
Pitaya (Hylocereus spp.) is the only commercial cultivation of fruit containing abundant betalains for consumer. Betalains are water-soluble nitrogen-containing pigments with high nutritional value and bioactivities. In this study, contents of betaxanthins and betacyanins were compared between 'Guanhuabai' (H. undatus) and 'Huanglong' (H. megalanthus) pitayas and key genes involved in betalain biosynthesis were screened from 'Huanglong' pitaya by RNA-Seq technology. Twenty-nine candidate genes related to betalain biosynthesis were obtained from the transcriptome data. Based on expression characteristics and sequence analyses, HmB5GT1 and HmHCGT2 were further analyzed. HmB5GT1 and HmHCGT2 were both conserved in 'PSPG-box' and localized in nucleus. Silencing of HmB5GT1 and HmHCGT2 resulted in a significant reduction in betacyanin and betaxanthin contents. Those results suggested that HmB5GT1 and HmHCGT2 are possibly involved in betalain biosynthesis in H. megalanthus. The present work provides new information on betalain biosynthesis in Hylocereus at the transcriptional level.
Collapse
Affiliation(s)
- Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qingzhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lulu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junsheng Zhao
- Institute of Fruit Science in Maoming, Maoming, 525000, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, Lopez-Nieves S, Guo R, Brockington S. The evolution of betalain biosynthesis in Caryophyllales. THE NEW PHYTOLOGIST 2019; 224:71-85. [PMID: 31172524 DOI: 10.1111/nph.15980] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/20/2019] [Indexed: 05/19/2023]
Abstract
Within the angiosperm order Caryophyllales, an unusual class of pigments known as betalains can replace the otherwise ubiquitous anthocyanins. In contrast to the phenylalanine-derived anthocyanins, betalains are tyrosine-derived pigments which contain the chromophore betalamic acid. The origin of betalain pigments within Caryophyllales and their mutual exclusion with anthocyanin pigments have been the subject of considerable research. In recent years, numerous discoveries, accelerated by -omic scale data, phylogenetics and synthetic biology, have shed light on the evolution of the betalain biosynthetic pathway in Caryophyllales. These advances include the elucidation of the biosynthetic steps in the betalain pathway, identification of transcriptional regulators of betalain synthesis, resolution of the phylogenetic history of key genes, and insight into a role for modulation of primary metabolism in betalain synthesis. Here we review how molecular genetics have advanced our understanding of the betalain biosynthetic pathway, and discuss the impact of phylogenetics in revealing its evolutionary history. In light of these insights, we explore our new understanding of the origin of betalains, the mutual exclusion of betalains and anthocyanins, and the homoplastic distribution of betalain pigmentation within Caryophyllales. We conclude with a speculative conceptual model for the stepwise emergence of betalain pigmentation.
Collapse
Affiliation(s)
- Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Tao Feng
- Wuhan Botanical Garden, T1 Lumo Road, Wuhan, 430074, China
| | - Hester Sheehan
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- CeBiTec & Faculty of Biology, Bielefeld University, Universitaetsstrasse, Bielefeld, 33615, Germany
| | - Samuel Lopez-Nieves
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Rui Guo
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
- Wuhan Botanical Garden, T1 Lumo Road, Wuhan, 430074, China
| | - Samuel Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| |
Collapse
|
22
|
Lin M, Han P, Li Y, Wang W, Lai D, Zhou L. Quinoa Secondary Metabolites and Their Biological Activities or Functions. Molecules 2019; 24:E2512. [PMID: 31324047 PMCID: PMC6651730 DOI: 10.3390/molecules24132512] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) was known as the "golden grain" by the native Andean people in South America, and has been a source of valuable food over thousands of years. It can produce a variety of secondary metabolites with broad spectra of bioactivities. At least 193 secondary metabolites from quinoa have been identified in the past 40 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-containing compounds. These metabolites exhibit many physiological functions, such as insecticidal, molluscicidal and antimicrobial activities, as well as various kinds of biological activities such as antioxidant, cytotoxic, anti-diabetic and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological activities and functions of quinoa secondary metabolites. Biosynthesis, development and utilization of the secondary metabolites especially from quinoa bran were prospected.
Collapse
Affiliation(s)
- Minyi Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peipei Han
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Imamura T, Isozumi N, Higashimura Y, Miyazato A, Mizukoshi H, Ohki S, Mori M. Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:969-981. [PMID: 30451369 PMCID: PMC6587806 DOI: 10.1111/pbi.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/18/2018] [Accepted: 11/14/2018] [Indexed: 05/02/2023]
Abstract
Betalains are plant pigments primarily produced by plants of the order Caryophyllales. Because betalain possesses anti-inflammatory and anticancer activities, it may be useful as a pharmaceutical agent and dietary supplement. Recent studies have identified the genes involved in the betalain biosynthesis of betanin. Amaranthin and celosianin II are abundant in the quinoa (Chenopodium quinoa Willd.) hypocotyl, and amaranthin comprises glucuronic acid bound to betanin; therefore, this suggests the existence of a glucuronyltransferase involved in the synthesis of amaranthin in the quinoa hypocotyl. To identify the gene involved in amaranthin biosynthesis, we performed a BLAST analysis and phylogenetic tree analysis based on sequences homologous to flavonoid glycosyltransferase, followed by expression analysis on the quinoa hypocotyl to obtain three candidate proteins. Production of amaranthin in a transient Nicotiana benthamiana expression system was evaluated for these candidates and one was identified as having the ability to produce amaranthin. The gene encoding this protein was quinoa amaranthin synthetase 1 (CqAmaSy1). We also created a transgenic tobacco bright yellow-2 (BY-2) cell line wherein four betalain biosynthesis genes were introduced to facilitate amaranthin production. This transgenic cell line produced 13.67 ± 4.13 μm (mean ± SEM) amaranthin and 26.60 ± 1.53 μm betanin, whereas the production of isoamaranthin and isobetanin could not be detected. Tests confirmed the ability of amaranthin and betanin to slightly suppress cancer cell viability. Furthermore, amaranthin was shown to significantly inhibit HIV-1 protease activity, whereas betanin did not.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiIshikawaJapan
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT)Japan Advanced Institute of Science and Technology (JAIST)NomiIshikawaJapan
| | - Yasuki Higashimura
- Department of Food ScienceIshikawa Prefectural UniversityNonoichiIshikawaJapan
| | - Akio Miyazato
- Center for Nano Materials and Technology (CNMT)Japan Advanced Institute of Science and Technology (JAIST)NomiIshikawaJapan
| | | | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT)Japan Advanced Institute of Science and Technology (JAIST)NomiIshikawaJapan
| | - Masashi Mori
- Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiIshikawaJapan
| |
Collapse
|
24
|
Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM. Quinoa Abiotic Stress Responses: A Review. PLANTS (BASEL, SWITZERLAND) 2018; 7:E106. [PMID: 30501077 PMCID: PMC6313892 DOI: 10.3390/plants7040106] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a genetically diverse Andean crop that has earned special attention worldwide due to its nutritional and health benefits and its ability to adapt to contrasting environments, including nutrient-poor and saline soils and drought stressed marginal agroecosystems. Drought and salinity are the abiotic stresses most studied in quinoa; however, studies of other important stress factors, such as heat, cold, heavy metals, and UV-B light irradiance, are severely limited. In the last few decades, the incidence of abiotic stress has been accentuated by the increase in unpredictable weather patterns. Furthermore, stresses habitually occur as combinations of two or more. The goals of this review are to: (1) provide an in-depth description of the existing knowledge of quinoa's tolerance to different abiotic stressors; (2) summarize quinoa's physiological responses to these stressors; and (3) describe novel advances in molecular tools that can aid our understanding of the mechanisms underlying quinoa's abiotic stress tolerance.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Sustainable Seed Systems Lab, Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164-6420, USA.
- Facultad de Recursos Naturales, Escuela de Agrnomía, Escuela Superior Politecnica del Chimborazo, Riobamba 060106, Ecuador.
| | - Juan A González
- Fundación Miguel Lillo, Instituto de Ecología, Miguel Lillo, San Miguel de Tucumán Post 4000, Argentina.
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada-Reno, Reno, NV 89557, USA.
| | - Francisco Fuentes
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Macul, Santiago 4860, Chile.
| | - Kevin M Murphy
- Sustainable Seed Systems Lab, Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| |
Collapse
|
25
|
Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R. Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Curr Biol 2018; 28:3075-3085.e7. [PMID: 30245105 DOI: 10.1016/j.cub.2018.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 02/03/2023]
Abstract
Soil salinity is destroying arable land and is considered to be one of the major threats to global food security in the 21st century. Therefore, the ability of naturally salt-tolerant halophyte plants to sequester large quantities of salt in external structures, such as epidermal bladder cells (EBCs), is of great interest. Using Chenopodium quinoa, a pseudo-cereal halophyte of great economic potential, we have shown previously that, upon removal of salt bladders, quinoa becomes salt sensitive. In this work, we analyzed the molecular mechanism underlying the unique salt dumping capabilities of bladder cells in quinoa. The transporters differentially expressed in the EBC transcriptome and functional electrophysiological testing of key EBC transporters in Xenopus oocytes revealed that loading of Na+ and Cl- into EBCs is mediated by a set of tailored plasma and vacuole membrane-based sodium-selective channel and chloride-permeable transporter.
Collapse
Affiliation(s)
- Jennifer Böhm
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Joachim Scholz-Starke
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Antonella Gradogna
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Nadia Bazihizina
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia; Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia; Department of Horticulture, Foshan University, Foshan 528000, PRC
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai 201602, China; Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany.
| |
Collapse
|