1
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
2
|
Xu ZH, Xie MM, Xie CL, Yang XW, Wang JS. Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects. Mar Drugs 2025; 23:49. [PMID: 39852551 PMCID: PMC11766622 DOI: 10.3390/md23010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, offering a promising source for drug development. In this study, we isolated 44 natural products from deep-sea-derived fungi and identified isobisvertinol (17) as a compound with anti-inflammatory and ferroptosis-inhibiting effects. Using LPS-induced microglial inflammation and RSL3-induced neuronal ferroptosis models, we found that 17 targets TLR4 to provide neuroprotection. Molecular docking studies revealed that 17 inhibits TLR4 activation by occupying the hydrophobic pocket at the TLR4-MD2 binding site. Additionally, 17 suppresses TLR4, reducing p38 MAPK phosphorylation, and inhibits ferroptosis by decreasing lipid peroxidation and modulating mitochondrial membrane potential. Metabolomic analysis showed that 17 rescues alterations in multiple metabolic pathways induced by RSL3 and increases levels of antioxidant metabolites, including glutamine, glutamate, and glutathione. In summary, our results indicate that isobisvertinol (17) targets TLR4 in neural cells to reduce inflammation and inhibit p38 MAPK phosphorylation, while regulating metabolic pathways, mainly GSH synthesis, to provide antioxidant effects and prevent ferroptosis in neurons.
Collapse
Affiliation(s)
- Zi-Han Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China;
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, China;
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China;
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China;
| | - Chun-Lan Xie
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, China;
| | - Xian-Wen Yang
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, China;
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China;
| |
Collapse
|
3
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025:S0022-202X(24)03024-0. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
4
|
An Y, Xu M, Yan M, Zhang H, Li C, Wang L, Liu C, Dong H, Chen L, Zhang L, Chen Y, Han X, Li Y, Wang D, Gao C. Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension. J Thromb Haemost 2025; 23:158-170. [PMID: 39357568 DOI: 10.1016/j.jtha.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Whether primary or just as a complication from the progression of pulmonary arterial hypertension (PAH), thrombosis seems to be an important player in this condition. The crosstalk between red blood cells (RBCs) and pulmonary microvascular endothelial cells (PMVECs) and their role in PAH remain undefined. OBJECTIVES The goals of this study were to assess the role of RBC-PMVEC interaction in microvascular thrombosis and thrombotic vascular remodeling under hypoxic conditions. METHODS We established an in vitro hypoxic coincubation model of RBC and PMVEC as well as a hypoxic mouse model. We investigated erythrophagocytosis (EP), ferroptosis, thrombosis tendency, and pulmonary hemodynamics in experimental PAH. RESULTS Increased EP in PMVEC triggered ferroptosis, enhanced procoagulant activity, and exacerbated vessel remodeling under hypoxic conditions. In the PAH mouse model induced by chronic hypoxia, EP-induced ferroptosis followed by upregulated TMEM16F led to a high tendency of thrombus formation and thrombotic vascular remodeling. Inhibition of ferroptosis or silencing of TMEM16F could alleviate hypercoagulable phenotype, reverse right ventricular systolic pressure, right ventricular hypertrophy index, and remodeling of pulmonary vessels. CONCLUSION These results illustrate the pathogenic RBC-PMVEC interactions in PAH. Inhibition EP, ferroptosis, or TMEM16F could be a novel therapeutic target to prevent PAH development and thrombotic complications.
Collapse
Affiliation(s)
- Yao An
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Minghui Xu
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Meishan Yan
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Hongyu Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Caixia Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Lifeng Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Caixu Liu
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Haoran Dong
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Li Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Lixin Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yingli Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Xu Han
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yun Li
- Hematology Department, Daqing Oil Field General Hospital, Daqing, China
| | - Dongsheng Wang
- Department of Emergency, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
5
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
6
|
Wei W, Tang M, Wang Q, Li X. Circ_HECW2 regulates ox-LDL-induced dysfunction of cardiovascular endothelial cells by miR-942-5p/TLR4 axis. Clin Hemorheol Microcirc 2025; 89:1-14. [PMID: 36213989 DOI: 10.3233/ch-221550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is a common coronary artery disease. The functional mechanism of circular RNA (circRNA) HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 (circ_HECW2, hsa_circ_0057583) in ox-LDL-treated human cardiac microvascular endothelial cells (hCMECs) is still unclear. METHODS Expression levels of circ_HECW2, microRNA (miR)-942-5p, and toll-like receptor 4 (TLR4) were analyzed by quantitative real-time PCR (qRT-PCR) and western blot assays. Cell proliferation and apoptosis were analyzed by 5-ethynyl-2'-deoxyuridine (EdU) assay, cell counting kit-8 (CCK8) assay, and flow cytometry, respectively. Tube formation assay was performed to analyze the angiogenesis of cells. Luciferase reporter and RNA pull-down assays were performed to analyze the target relationship among circ_HECW2, miR-942-5p and TLR4. RESULTS Circ_HECW2 and TLR4 expression levels were up-regulated and miR-942-5p expression was decreased in the serum of CAD patients and oxidized low-density lipoprotein (ox-LDL)-induced hCMECs. Knockdown of circ_HECW2 enhanced cell proliferation and inhibited cell apoptosis in ox-LDL-treated hCMECs. MiR-942-5p was the target of circ_HECW2 and directly targeted TLR4. Moreover, the effect of circ_HECW2 knockdown could be weakened by anti-miR-942-5p, and TLR4 could restore the function of miR-942-5p on cell damage of ox-LDL-induced hCMECs. CONCLUSION Circ_HECW2 could regulate ox-LDL-induced cardiovascular endothelial cell dysfunction through targeting miR-942-5p/TLR4 axis.
Collapse
Affiliation(s)
- Wenbo Wei
- Department of Cardiology, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Min Tang
- Department of Cardiology, Nanjing Tongren Hospital Affiliated to Southeast University School of Medicine, Nanjing City, Jiangsu, China
| | - Qi Wang
- Department of Cardiology, Nanjing Tongren Hospital Affiliated to Southeast University School of Medicine, Nanjing City, Jiangsu, China
| | - Xiaoming Li
- Emergency Department, Ben Q Hospital Affiliated to Nanjing Medical University, Nanjing City, Jiangsu, China
| |
Collapse
|
7
|
Zou P, He Q, Xia H, Zhong W. Ferroptosis and its impact on common diseases. PeerJ 2024; 12:e18708. [PMID: 39713140 PMCID: PMC11663406 DOI: 10.7717/peerj.18708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron accumulation, lipid peroxidation, and a decline in antioxidant capacity, all of which are regulated by gene expression. The onset of numerous diseases is closely associated with ferroptosis. Common diseases affect a large population, reduce the quality of life, and impose an increased burden on the healthcare system. The role of ferroptosis in common diseases, its therapeutic potential, and even its translation into clinical drug treatments are currently significant research topics worldwide. This study preliminarily explores the theoretical basis of ferroptosis, its mechanism and treatment prospect in common diseases including ischaemia-reperfusion injury, inflammatory bowel diseases, liver fibrosis, acute kidney injury, diabetic kidney disease, stroke, Alzheimer's disease, cardiovascular disease, immune and cancer. This review provides a theoretical foundation for the further study and development of ferroptosis, as well as for the prevention and treatment of common diseases.
Collapse
Affiliation(s)
- Pengjian Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xu Q, Liu X, Chen Z, Guo C, Lu P, Zhang S, Wang X, Shen J. Combination decoction of Astragalus mongholicus and Salvia miltiorrhiza mitigates pressure-overload cardiac dysfunction by inhibiting multiple ferroptosis pathways. Front Pharmacol 2024; 15:1447546. [PMID: 39737072 PMCID: PMC11683366 DOI: 10.3389/fphar.2024.1447546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background Astragalus mongholicus (AM) and Salvia miltiorrhiza (SM) are commonly used in traditional Chinese medicine to treat heart failure (HF). Ferroptosis has been studied as a key factor in the occurrence of HF. It remains unclear whether the combined use of AM and SM can effectively improve HF and the underlying mechanisms. Objective This study aims to explore whether the combined use of AM and SM can improve HF by inhibiting ferroptosis. It also examines the roles and interactions of the pathways associated with GPX4, FSP1, and DHODH. Methods In vitro experiments used angiotensin II-induced (4 μM for 48 h) hypertrophic H9c2 cells, while in vivo studies employed a rat model of transverse aortic constriction-induced (to 1 mm for 8 weeks) HF. Interventions included decoctions of AM and SM (for animal experiments) and medicated serum (for cell experiments), along with specific pathway inhibitors such as erastin, FSP1 inhibitor and brequinar. Subsequently, various molecular biology methods were used to measure the protein levels of GPX4, FSP1, and DHODH, as well as each sample group's ferroptosis-related and HF-related indicators, to elucidate the underlying mechanisms. Results The combined use of AM and SM can effectively restore the levels of GPX4, FSP1, and DHODH that are reduced after HF, as well as improve indicators related to ferroptosis and HF. When GPX4, FSP1, or DHODH is inhibited, the ferroptosis-inhibiting effect and the ability of AM and SM to improve HF are both weakened. When two of the three proteins are inhibited, the protective effect of HDC is strongest when GPX4 is retained, followed by FSP1, and weakest when DHODH is retained. Conclusion This study confirms that the combined use of AM and SM inhibits ferroptosis and alleviates HF by increasing GPX4, FSP1, and DHODH levels. It shows that the protective effect is strongest through GPX4, followed by FSP1, and weakest through DHODH. These findings provide new insights into the therapeutic mechanisms of this combination of botanical drugs.
Collapse
Affiliation(s)
- Qiyao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhaoyang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pengyu Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sujie Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianping Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Wang Y, Zhao X, Chen B, Chen S, Liang Y, Chen D, Li X. Methylophiopogonanone A Inhibits Ferroptosis in H9c2 Cells: An Experimental and Molecular Simulation Study. Molecules 2024; 29:5764. [PMID: 39683922 DOI: 10.3390/molecules29235764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, homoisoflavone methylophiopogonanone A (MOA) was investigated for its inhibitory effect on ferroptosis of H9c2 cells using a set of cellular assays, such as BODIPY-probed and H2DCFDA-probed flow cytometry analyses, cell counting kit-8 analysis (CCK-8), and lactate dehydrogenase (LDH) release analysis. All these cellular assays adopted Fer-1 as the positive control. Subsequently, MOA and Fer-1 were subjected to two antioxidant assays, i.e., 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging and 2,2'-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid radical (ABTS•+)-scavenging. Finally, MOA, along with Fer-1, were systematically analyzed for molecular docking and dynamics simulations using a set of software tools. The experimental results revealed that MOA could inhibit ferroptosis of H9c2 cells but did not effectively scavenge PTIO• and ABTS•+ free radicals. Two molecular simulation methods or algorithms suggested that MOA possessed similar binding affinity and binding free energy (∆Gbind) to Fer-1. Visual analyses indicated various hydrophobic interactions between MOA and one of the seven enzymes, including superoxide dismutase (SOD), dihydroorotate dehydrogenase (DHODH), ferroportin1 (FPN), ferroptosis suppressor protein 1 (FSP1), glutathione peroxidase 4 (GPX4), nicotinamide adenine dinucleotide phosphate (NADPH), and solute carrier family 7 member 11 (SLC7A11). Based on these experimental and molecular simulation results, it is concluded that MOA, a homoisoflavonoid with meta-di-OHs, can inhibit ferroptosis in H9c2 cells. Its inhibitory effect is mainly attributed to the regulation of enzymes rather than direct free radical scavenging. The regulation of enzymes primarily depends on hydrophobic interactions rather than H-bond formation. During the process, flexibility around position 9 allows MOA to adjust to the enzyme binding site. All these findings provide foundational information for developing MOA and its derivatives as potential drugs for myocardial diseases.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xi Zhao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ban Chen
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yongbai Liang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
10
|
Lu Y, Xie X, Luo L. Ferroptosis crosstalk in anti-tumor immunotherapy: molecular mechanisms, tumor microenvironment, application prospects. Apoptosis 2024; 29:1914-1943. [PMID: 39008197 DOI: 10.1007/s10495-024-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Immunotherapies for cancer, specifically immune checkpoint inhibition (ICI), have shown potential in reactivating the body's immune response against tumors. However, there are challenges to overcome in addressing drug resistance and improving the effectiveness of these treatments. Recent research has highlighted the relationship between ferroptosis and the immune system within immune cells and the tumor microenvironment (TME), suggesting that combining targeted ferroptosis with immunotherapy could enhance anti-tumor effects. This review explores the potential of using immunotherapy to target ferroptosis either alone or in conjunction with other therapies like immune checkpoint blockade (ICB) therapy, radiotherapy, and nanomedicine synergistic treatments. It also delves into the roles of different immune cell types in promoting anti-tumor immune responses through ferroptosis. Together, these findings provide a comprehensive understanding of synergistic immunotherapy focused on ferroptosis and offer innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
11
|
Guo Z, Zhuang H, Shi X. Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review). Oncol Lett 2024; 28:563. [PMID: 39390976 PMCID: PMC11465226 DOI: 10.3892/ol.2024.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, and the second leading cause of cancer-associated mortality. The incidence and mortality rates of CRC remain high, posing a significant threat to humans and overall quality of life. Current therapeutic strategies, such as surgery and chemotherapy, are limited due to disease recurrence, chemotherapeutic drug resistance and toxicity. Thus, research is focused on the development of novel treatment approaches. In 2012, ferroptosis was identified as a form of regulated cell death that is iron-dependent and driven by lipid peroxidation. Notably, therapies targeting ferroptosis exhibit potential in the treatment of disease; however, their role in CRC treatment remains controversial. The present study aimed to systematically review the mechanisms and signaling pathways of ferroptosis in CRC, and the specific role within the tumor microenvironment. Moreover, the present study aimed to review the role of ferroptosis in drug resistance, offering novel perspectives for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Zhao Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Haoyan Zhuang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Xuewen Shi
- Department of Anorectal, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
12
|
Schaale D, Laspa Z, Balmes A, Sigle M, Dicenta-Baunach V, Hochuli R, Fu X, Serafimov K, Castor T, Harm T, Müller KAL, Rohlfing AK, Laufer S, Schäffer TE, Lämmerhofer M, Gawaz M. Hemin promotes platelet activation and plasma membrane disintegration regulated by the subtilisin-like proprotein convertase furin. FASEB J 2024; 38:e70155. [PMID: 39530531 DOI: 10.1096/fj.202400863rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Platelet activation plays a critical role in thrombosis and hemostasis. Several pathophysiological situations lead to hemolysis, resulting in the liberation of free ferric iron-containing hemin. Hemin has been shown to activate platelets and induce thrombo-inflammation. Classical antiplatelet therapy failed to prevent hemin-induced platelet activation. Thus, the aim of the present study was to characterize the mechanism of hemin-induced platelet death (ferroptosis). We evaluated the in vitro effect of hemin on platelet activation, signaling, oxylipins, and plasma membrane destruction using light transmission aggregometry, ex vivo thrombus formation, multiparametric flow cytometry, micro-UHPLC mass spectrometry for oxylipin profiling, and scanning ion conductance microscopy (SICM). We found that hemin induces platelet cell death indicated by increased ROS levels, phosphatidyl serine (PS) exposure, and loss of mitochondrial membrane potential (ΔΨm). Further, hemin causes lipid peroxidation and generation of distinct oxylipins, which strongly affects plasma membrane integrity leading to generation of platelet-derived microvesicles. Interestingly, hemin-dependent platelet death (ferroptosis) is specifically regulated by the subtilisin-like proprotein convertase furin. In summary, platelet undergo a non-apoptotic cell death mediated by furin. Inhibition of furin may offer a therapeutic strategy to control hemin-induced thrombosis and thrombo-inflammation at a site of hemolysis.
Collapse
Affiliation(s)
- David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Aylin Balmes
- Institute of Applied Physics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Valerie Dicenta-Baunach
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ravi Hochuli
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
De Leon-Oliva D, Boaru DL, Minaya-Bravo AM, De Castro-Martinez P, Fraile-Martinez O, Garcia-Montero C, Cobo-Prieto D, Barrena-Blázquez S, Lopez-Gonzalez L, Albillos A, Alvarez-Mon M, Saez MA, Diaz-Pedrero R, Ortega MA. Improving understanding of ferroptosis: Molecular mechanisms, connection with cellular senescence and implications for aging. Heliyon 2024; 10:e39684. [PMID: 39553553 PMCID: PMC11564042 DOI: 10.1016/j.heliyon.2024.e39684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
In the face of cell damage, cells can initiate a response ranging from survival to death, the balance being crucial for tissue homeostasis and overall health. Cell death, in both accidental and regulated forms, plays a fundamental role in maintaining tissue homeostasis. Among the regulated mechanisms of cell death, ferroptosis has garnered attention for its iron-dependent phospholipid (PL) peroxidation and its implications in aging and age-related disorders, as well as for its therapeutic relevance. In this review, we provide an overview of the mechanisms, regulation, and physiological and pathological roles of ferroptosis. We present new insights into the relationship between ferroptosis, cellular senescence and aging, emphasizing how alterations in ferroptosis pathways contribute to aging-related tissue dysfunction. In addition, we examine the therapeutic potential of ferroptosis in aging-related diseases, offering innovative insights into future interventions aimed at mitigating the effects of aging and promoting longevity.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Agustín Albillos
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Gastroenterology and Hepatology Service, Ramón y Cajal University Hospital, University of Alcalá, IRYCIS, Network Biomedical Research Center for Liver and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806, Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| |
Collapse
|
14
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
15
|
Tang S, Chen L. The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int 2024; 24:351. [PMID: 39462352 PMCID: PMC11520064 DOI: 10.1186/s12935-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian, endometrial, and cervical cancer are the most common types of gynecologic tumor in women. Surgery, combined with radiotherapy and chemotherapy, is commonly used to treat these tumors. Unfortunately, difficulties in early diagnosis and acquired drug resistance have resulted in poor outcomes for most patients. Ferroptosis is a form of regulated cell death that depends on iron and is characterized by iron accumulation, reactive oxygen species production, and lipid peroxidation. The strong association between ferroptosis and many diseases, especially tumor diseases, has been confirmed by numerous studies. Many studies have demonstrated that ferroptosis is involved in initiating, progressing and metastasizing gynecologic tumors. This review summarizes the pathogenesis of ferroptosis and its association with the development, treatment, and prognosis of gynecologic tumors, and further explore the potential utility of ferroptosis in treating gynecologic tumors.
Collapse
Affiliation(s)
- Shenglan Tang
- Department of the First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Li Chen
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Shangcheng, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
16
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
18
|
Alizadeh Saghati A, Sharifi Z, Hatamikhah M, Salimi M, Talkhabi M. Unraveling the relevance of SARS-Cov-2 infection and ferroptosis within the heart of COVID-19 patients. Heliyon 2024; 10:e36567. [PMID: 39263089 PMCID: PMC11388749 DOI: 10.1016/j.heliyon.2024.e36567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a huge mortality rate and imposed significant costs on the health system, causing severe damage to the cells of different organs such as the heart. However, the exact details and mechanisms behind this damage are not clarified. Therefore, we aimed to identify the cell and molecular mechanism behind the heart damage caused by SARS-Cov-2 infection. Methods RNA-seq data for COVID-19 patients' hearts was analyzed to obtain differentially expressed genes (DEGs) and differentially expressed ferroptosis-related genes (DEFRGs). Then, DEFRGs were used for analyzing GO and KEGG enrichment, and perdition of metabolites and drugs. we also constructed a PPI network and identified hub genes and functional modules for the DEFRGs. Subsequently, the hub genes were validated using two independent RNA-seq datasets. Finally, the miRNA-gene interaction networks were predicted in addition to a miRNA-TF co-regulatory network, and important miRNAs and transcription factors (TFs) were highlighted. Findings We found ferroptosis transcriptomic alterations within the hearts of COVID-19 patients. The enrichment analyses suggested the involvement of DEFRGs in the citrate cycle pathway, ferroptosis, carbon metabolism, amino acid biosynthesis, and response to oxidative stress. IL6, CDH1, AR, EGR1, SIRT3, GPT2, VDR, PCK2, VDR, and MUC1 were identified as the ferroptosis-related hub genes. The important miRNAs and TFs were miR-124-3P, miR-26b-5p, miR-183-5p, miR-34a-5p and miR-155-5p; EGR1, AR, IL6, HNF4A, SRC, EZH2, PPARA, and VDR. Conclusion These results provide a useful context and a cellular snapshot of how ferroptosis affects cardiomyocytes (CMs) in COVID-19 patients' hearts. Besides, suppressing ferroptosis seems to be a beneficial therapeutic approach to mitigate heart damage in COVID-19.
Collapse
Affiliation(s)
- Amin Alizadeh Saghati
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Sharifi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Hatamikhah
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marieh Salimi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Yuan H, Shi M, Wei J, Liu C, Wang Z, Li Y, Guo Z. Integrating bioinformatics and ferroptosis to reveal the protective mechanism of Astragaloside IV on chronic heart failure rats. Sci Rep 2024; 14:20787. [PMID: 39242661 PMCID: PMC11379966 DOI: 10.1038/s41598-024-72011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Ferroptosis is an important pathological mechanism of chronic heart failure (CHF). This study aimed to investigate the protective mechanism of Astragaloside IV (AS-IV) on CHF rats by integrating bioinformatics and ferroptosis. CHF-related targets and ferroptosis-related targets were collected. After the intersection, the common targets were obtained. The PPI network of the common targets was constructed, and topological analysis of the network was carried out. The target with the highest topological parameter values was selected as the key target. The key target p53 was obtained through bioinformatics analysis, and its molecular docking model with AS-IV was obtained, as well as molecular dynamics simulation analysis. The rat models of CHF after myocardial infarction were established by ligation of left coronary artery and treated with AS-IV for 4 weeks. AS-IV treatment significantly improved cardiac function in CHF rats, improved cardiomyocyte morphology and myocardial fibrosis, reduced mitochondrial damage, decreased myocardial MDA and Fe2+ content, increased GSH content, inhibited the expression of p53 and p-p53, and up-regulated the expression of SLC7A11 and GPX4. In conclusion, AS-IV improved cardiac function in CHF rats, presumably by regulating p53/SLC7A11/GPX4 signaling pathway and inhibiting myocardial ferroptosis.
Collapse
Affiliation(s)
- Hui Yuan
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, China
| | - Min Shi
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, China
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiaming Wei
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, China
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chengxin Liu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, China
| | - Ziyan Wang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhihua Guo
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
20
|
Lv J, Shi S, Fu Z, Wang Y, Duan C, Hu S, Wu H, Zhang B, Li Y, Song Q. Exploring the inflammation-related mechanisms of Lingguizhugan decoction on right ventricular remodeling secondary to pulmonary arterial hypertension based on integrated strategy using UPLC-HRMS, systems biology approach, and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155879. [PMID: 39032277 DOI: 10.1016/j.phymed.2024.155879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/27/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) and the consequent right heart dysfunction persist with high morbidity and mortality, and the mechanisms and pharmacologic interventions for chronic right-sided heart failure (RHF) have not been adequately investigated. Research has shown that prolonged inflammation is critical in precipitating the progression of PAH-associated right heart pathology. Some research demonstrated that Lingguizhugan decoction (LGZGD), as a classical Chinese medicine formula, had beneficial effects in alleviating PAH and RHF, while its underlying mechanisms involved are not fully elucidated. PURPOSE Based on that, this study aims to investigate the effects and underlying mechanisms of LGZGD on PAH-induced RHF. STUDY DESIGN In this study, we identified the serum constituents and deciphered the potential anti-inflammatory mechanism and crucial components of LGZGD using combined approaches of UPLC-HRMS, transcriptomic analysis, and molecular docking techniques. Finally, we used in vivo experiments to verify the expression of key targets in the monocrotaline (MCT)-induced RHF model and the intervene effect of LGZGD. RESULTS Integrated strategies based on UPLC-HRMS and systems biology approach combined with in vivo experimental validation showed that LGZGD could improve right heart fibrosis and dysfunction via regulating diverse inflammatory signaling pathways and the activity of immune cells, including chemokine family CCL2, CXCR4, leukocyte integrins family ITGAL, ITGB2, and M2 macrophage infiltration, as well as lipid peroxidation-associated HMOX1, NOX4, and 4-HNE. CONCLUSION The present research demonstrated for the first time that LGZGD might improve PAH-induced RHF through multiple anti-inflammatory signaling and inhibition of ferroptosis, which could provide certain directions for future research in related fields.
Collapse
Affiliation(s)
- Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Chen Q, Wang Y, Wang J, Ouyang X, Zhong J, Huang Y, Huang Z, Zheng B, Peng L, Tang X, Li S. Lipotoxicity Induces Cardiomyocyte Ferroptosis via Activating the STING Pathway. Antioxid Redox Signal 2024. [PMID: 39001814 DOI: 10.1089/ars.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Affiliation(s)
- Qian Chen
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yina Wang
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiafu Wang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Ouyang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Zhong
- Department of Ultrasonography, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Huang
- Zhongshan School of Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoshan Huang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Benrong Zheng
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xixiang Tang
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suhua Li
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
23
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
24
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
25
|
Li Y, Zhang Z, Zhang Z, Zheng N, Ding X. Empagliflozin, a sodium-glucose cotransporter inhibitor enhancing mitochondrial action and cardioprotection in metabolic syndrome. J Cell Physiol 2024; 239:e31264. [PMID: 38764242 DOI: 10.1002/jcp.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
Metabolic syndrome (MetS) has a large clinical population nowadays, usually due to excessive energy intake and lack of exercise. During MetS, excess nutrients stress the mitochondria, resulting in relative hypoxia in tissues and organs, even when blood supply is not interrupted or reduced, making mitochondrial dysfunction a central pathogenesis of cardiovascular disease in the MetS. Sodium-glucose cotransporter 2 inhibitors were designed as a hyperglycemic drug that acts on the renal tubules to block sugar reabsorption in primary urine. Recently they have been shown to have anti-inflammatory and other protective effects on cardiomyocytes in MetS, and have also been recommended in the latest heart failure guidelines as a routine therapy. Among these inhibitors, empagliflozin shows better clinical promise due to less influence from glomerular filtration rate. This review focuses on the mitochondrial mechanisms of empagliflozin, which underlie the anti-inflammatory and recover cellular functions in MetS cardiomyocytes, including stabilizing calcium concentration, mediating metabolic reprogramming, maintaining homeostasis of mitochondrial quantity and quality, stable mitochondrial DNA copy number, and repairing damaged mitochondrial DNA.
Collapse
Affiliation(s)
- Yunhao Li
- Graduate School, China Medical University, Shenyang, China
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhanming Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zheming Zhang
- Graduate School, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJ, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, Lünemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, Münz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 2024; 20:1213-1246. [PMID: 38442890 PMCID: PMC11210914 DOI: 10.1080/15548627.2024.2319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrey S. Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Werner J.H. Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer-University of Liège, Liège, Belgium
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Donna D. Zhang
- Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Enyong Dai
- The Second Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gabor Juhasz
- Biological Research Center, Institute of Genetics, Szeged, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangchun Xie
- Department of Oncology, Central South University, Changsha, Hunan, China
| | - Morten Petersen
- Functional genomics, Department of Biology, Copenhagen University, Denmark
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, USA
| | - Charleen T. Chu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye lnstitute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Europe
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sébastien Besteiro
- LPHI, University Montpellier, CNRS, Montpellier, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Valerian E. Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, USA
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Scott Ayton
- Florey Institute, University of Melbourne, Parkville, Australia
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine, Bunkyo-ku Tokyo, Japan
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John’s University, New York City, NY, USA
| | - Minghui Gao
- The HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Martin Kampmann
- Department of Biochemistry & Biophysics, University of California, San Francisco, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, Australia
- Faculty of Medicine, Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Marta M. Lipinski
- Department of Anesthesiology & Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Lu JS, Wang JH, Han K, Li N. Nicorandil Regulates Ferroptosis and Mitigates Septic Cardiomyopathy via TLR4/SLC7A11 Signaling Pathway. Inflammation 2024; 47:975-988. [PMID: 38159178 PMCID: PMC11147835 DOI: 10.1007/s10753-023-01954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
This study mainly explored the role of nicorandil in regulating ferroptosis and alleviating septic cardiomyopathy through toll-like receptor (TLR) 4/solute carrier family 7 member 11 (SLC7A11) signaling pathway. Twenty-four male SD rats were randomly divided into control, Nic (nicorandil), LPS (lipopolysaccharide), and LPS + Nic groups and given echocardiography. A detection kit was applied to measure the levels of lactic dehydrogenase (LDH), cardiac troponin I (cTnI), and creatine kinase-MB (CK-MB); HE staining and the levels of glutathione (GSH), malondialdehyde (MDA), total iron, and Fe2+ of myocardial tissues were detected. Moreover, the expression of TLR4 and SLC7A11 were measured by qRT-PCR and the proteins regulating ferroptosis (TLR4, SLC7A11, GPX4, ACSL4, DMT1, Fpn, and TfR1) were checked by western blot. Myocardial cells (H9C2) were induced with lipopolysaccharide (LPS) and transfected with si-TLR4 or SLC7A11-OE. Then, the viability, ferroptosis, and TLR4/SLC7A11 signaling pathway of cells were examined. Nicorandil could significantly increase left ventricular (LV) ejection fraction (LVEF) while reduce LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV). Also, it greatly reduced the levels of LDH, cTnI, and CK-MB; alleviated the pathological changes of myocardial injury; notably decreased MDA, total iron, and Fe2+ levels in myocardial tissues; and significantly increased GSH level. Besides, nicorandil obviously raised protein levels of GPX4, Fpn, and SLC7A11, and decreased protein levels of ACSL4, DMT1, TfR1, and TLR4. After knockdown of TLR4 or overexpression of SLC7A11, the inhibition effect of nicorandil on ferroptosis was strengthened in LPS-induced H9C2 cells. Therefore, nicorandil may regulate ferroptosis through TLR4/SLC7A11 signaling, thereby alleviating septic cardiomyopathy.
Collapse
Affiliation(s)
- Jin-Shuai Lu
- Departments of Emergency, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang, 830001, China
| | - Jian-Hao Wang
- Postgraduate School, Xinjiang Medical University, Urumqi City, Xinjiang, 830017, China
| | - Kun Han
- Postgraduate School, Xinjiang Medical University, Urumqi City, Xinjiang, 830017, China
| | - Nan Li
- Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang, 830001, China.
| |
Collapse
|
28
|
Wang S, Guo Q, Zhou L, Xia X. Ferroptosis: A double-edged sword. Cell Death Discov 2024; 10:265. [PMID: 38816377 PMCID: PMC11139933 DOI: 10.1038/s41420-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Ferroptosis represents a form of programmed cell death that is propelled by iron-dependent lipid peroxidation, thereby being distinguished by the prominent features of iron accumulation and lipid peroxidation. Ferroptosis has been implicated in numerous physiological and pathological phenomena, with mounting indications that it holds significant implications for cancer and other medical conditions. On one side, it demonstrates anti-cancer properties by triggering ferroptosis within malignant cells, and on the other hand, it damages normal cells causing other diseases. Therefore, in this paper, we propose to review the paradoxical regulation of ferroptosis in tumors and other diseases. First, we introduce the development history, concept and mechanism of ferroptosis. The second part focuses on the methods of inducing ferroptosis in tumors. The third section emphasizes the utilization of ferroptosis in different medical conditions and strategies to inhibit ferroptosis. The fourth part elucidates the key contradictions in the control of ferroptosis. Finally, potential research avenues in associated domains are suggested.
Collapse
Affiliation(s)
- Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
29
|
Ren Y, Zhao X. Bone marrow mesenchymal stem cells-derived exosomal lncRNA GAS5 mitigates heart failure by inhibiting UL3/Hippo pathway-mediated ferroptosis. Eur J Med Res 2024; 29:303. [PMID: 38812041 PMCID: PMC11137962 DOI: 10.1186/s40001-024-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, No.20 Zhao Wuda Road, Hohhot, 010017, China.
| |
Collapse
|
30
|
Do Y, Yagi M, Hirai H, Miki K, Fukahori Y, Setoyama D, Yamamoto M, Furukawa T, Kunisaki Y, Kang D, Uchiumi T. Cardiomyocyte-specific deletion of the mitochondrial transporter Abcb10 causes cardiac dysfunction via lysosomal-mediated ferroptosis. Biosci Rep 2024; 44:BSR20231992. [PMID: 38655715 PMCID: PMC11088307 DOI: 10.1042/bsr20231992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.
Collapse
Affiliation(s)
- Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Haruka Hirai
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukina Fukahori
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Liu J, Deng L, Qu L, Li X, Wang T, Chen Y, Jiang M, Zou W. Herbal medicines provide regulation against iron overload in cardiovascular diseases: Informing future applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117941. [PMID: 38387684 DOI: 10.1016/j.jep.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofen Li
- School of Basic Medicine Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
32
|
Jin S, Wang H, Zhang X, Song M, Liu B, Sun W. Emerging regulatory mechanisms in cardiovascular disease: Ferroptosis. Biomed Pharmacother 2024; 174:116457. [PMID: 38518600 DOI: 10.1016/j.biopha.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, autophagy, and other types of cell death, is a novel iron-dependent regulated cell death characterized by the accumulation of lipid peroxides and redox imbalance with distinct morphological, biochemical, and genetic features. Dysregulation of iron homeostasis, the disruption of antioxidative stress pathways and lipid peroxidation are crucial in ferroptosis. Ferroptosis is involved in the pathogenesis of several cardiovascular diseases, including atherosclerosis, cardiomyopathy, myocardial infarction, ischemia-reperfusion injury, abdominal aortic aneurysm, aortic dissection, and heart failure. Therefore, a comprehensive understanding of the mechanisms that regulate ferroptosis in cardiovascular diseases will enhance the prevention and treatment of these diseases. This review discusses the latest findings on the molecular mechanisms of ferroptosis and its regulation in cardiovascular diseases, the application of ferroptosis modulators in cardiovascular diseases, and the role of traditional Chinese medicines in ferroptosis regulation to provide a comprehensive understanding of the pathogenesis of cardiovascular diseases and identify new prevention and treatment options.
Collapse
Affiliation(s)
- Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| |
Collapse
|
33
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
34
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
35
|
Bian W, Li H, Chen Y, Yu Y, Lei G, Yang X, Li S, Chen X, Li H, Yang J, Yang C, Li Y, Zhou Y. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother 2024; 173:116386. [PMID: 38492438 DOI: 10.1016/j.biopha.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), a heterogeneous lymphoid malignancy, poses a significant threat to human health. The standard therapeutic regimen for patients with DLBCL is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with a typical cure rate of 50-70%. However, some patients either relapse after complete remission (CR) or exhibit resistance to R-CHOP treatment. Therefore, novel therapeutic approaches are imperative for managing high-risk or refractory DLBCL. Ferroptosis is driven by iron-dependent phospholipid peroxidation, a process that relies on the transition metal iron, reactive oxygen species (ROS), and phospholipids containing polyunsaturated fatty acids-containing phospholipids (PUFA-PLs). Research indicates that ferroptosis is implicated in various carcinogenic and anticancer pathways. Several hematological disorders exhibit heightened sensitivity to cell death induced by ferroptosis. DLBCL cells, in particular, demonstrate an increased demand for iron and an upregulation in the expression of fatty acid synthase. Additionally, there exists a correlation between ferroptosis-associated genes and the prognosis of DLBCL. Therefore, ferroptosis may be a promising novel target for DLBCL therapy. In this review, we elucidate ferroptosis mechanisms, its role in DLBCL, and the potential therapeutic targets in DLBCL. This review offers novel insights into the application of ferroptosis in treatment strategies for DLBCL.
Collapse
Affiliation(s)
- Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Tang Z, Huang X, Mei H, Zheng Z. Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner. J Bioenerg Biomembr 2024; 56:149-157. [PMID: 38319402 DOI: 10.1007/s10863-024-10006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Myocardial infarction (MI) is the main cause of heart failure (HF). N6-methyladenosine (m6A) methylation is associated with the progression of HF. The study aimed to explore whether METTL3 regulates ferroptosis of cardiomyocytes in HF. We evaluated ferroptosis by detecting lactic dehydrogenase (LDH) release, lipid reactive oxygen species (ROS), Fe2+, glutathione (GSH), and malonaldehyde (MDA) levels. M6A methylation was assessed using methylated RNA immunoprecipitation assay. The binding relationship was assessed using RNA immunoprecipitation assays. The mRNA stability was assessed using actinomycin D treatment. The results showed that METTL3 was upregulated in oxygen glucose deprivation/recovery (OGD/R) cells, which knockdown suppressed OGD/R-induced ferroptosis. Moreover, METTL3 could bind to SLC7A11, promoting m6A methylation of SLC7A11. Silencing of SLC7A11 abrogated the suppression of ferroptosis induced by METTL3 knockdown. Additionally, YTHDF2 was the reader that recognized the methylation of SLC7A11, reducing the stability of SLC7A11. The silencing of METTL3 inhibited OGD/R-induced ferroptosis by suppressing the m6A methylation of SLC7A11, which is recognized by YTHDF2. The findings suggested that METTL3-mediated ferroptosis might be a new strategy for MI-induced HF therapy.
Collapse
Affiliation(s)
- Zengyao Tang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330000, China
- The First People's Hospital of Jiujiang, Jiujiang, Jiangxi Province, China
| | - Xin Huang
- Department of Cardiology, The First Hospital of Nanchang, Nanchang City, Jiangxi Province, 330000, China
| | - Hanying Mei
- Department of Rheumatology Immunology, The First People's Hospital of Jiujiang, Jiujiang, Jiangxi Province, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330000, China.
| |
Collapse
|
37
|
Xiang Z, Zhang P, Jia C, Xu R, Cao D, Xu Z, Lu T, Liu J, Wang X, Qiu C, Fu W, Li W, Cheng L, Yang Q, Feng S, Wang L, Zhao Y, Liu X. Piezo1 channel exaggerates ferroptosis of nucleus pulposus cells by mediating mechanical stress-induced iron influx. Bone Res 2024; 12:20. [PMID: 38553442 PMCID: PMC10980708 DOI: 10.1038/s41413-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/17/2023] [Accepted: 01/19/2024] [Indexed: 04/02/2024] Open
Abstract
To date, several molecules have been found to facilitate iron influx, while the types of iron influx channels remain to be elucidated. Here, Piezo1 channel was identified as a key iron transporter in response to mechanical stress. Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells (NPCs). Importantly, Piezo1-induced iron influx was independent of the transferrin receptor (TFRC), a well-recognized iron gatekeeper. Furthermore, pharmacological inactivation of Piezo1 profoundly reduced iron accumulation, alleviated mitochondrial ROS, and suppressed ferroptotic alterations in stimulation of mechanical stress. Moreover, conditional knockout of Piezo1 (Col2a1-CreERT Piezo1flox/flox) attenuated the mechanical injury-induced intervertebral disc degeneration (IVDD). Notably, the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout (cDKO) mice (Col2a1-CreERT Piezo1flox/flox/Gpx4flox/flox). These findings suggest that Piezo1 is a potential determinant of iron influx, indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.
Collapse
Affiliation(s)
- Ziqian Xiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
- University of Health and Rehabilitation Sciences, Qingdao, 226000, China
| | - Pengfei Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunwang Jia
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Rongkun Xu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dingren Cao
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhaoning Xu
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Tingting Lu
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, 061011, China
| | - Jingwei Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaoxiong Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
- University of Health and Rehabilitation Sciences, Qingdao, 226000, China
| | - Cheng Qiu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Wenyang Fu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Weiwei Li
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lei Cheng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 30021, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lianlei Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
38
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
39
|
Zhang Y, Yang J, Ouyang C, Meng N. The association between ferroptosis and autophagy in cardiovascular diseases. Cell Biochem Funct 2024; 42:e3985. [PMID: 38509716 DOI: 10.1002/cbf.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Junjun Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
40
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
41
|
Jing Z, Yuan W, Wang J, Ni R, Qin Y, Mao Z, Wei F, Song C, Zheng Y, Cai H, Liu Z. Simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact Mater 2024; 33:223-241. [PMID: 38045570 PMCID: PMC10689208 DOI: 10.1016/j.bioactmat.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Postoperative anatomical reconstruction and prevention of local recurrence after tumor resection are two vital clinical challenges in osteosarcoma treatment. A three-dimensional (3D)-printed porous Ti6Al4V scaffold (3DTi) is an ideal material for reconstructing critical bone defects with numerous advantages over traditional implants, including a lower elasticity modulus, stronger bone-implant interlock, and larger drug-loading space. Simvastatin is a multitarget drug with anti-tumor and osteogenic potential; however, its efficiency is unsatisfactory when delivered systematically. Here, simvastatin was loaded into a 3DTi using a thermosensitive poly (lactic-co-glycolic) acid (PLGA)-polyethylene glycol (PEG)-PLGA hydrogel as a carrier to exert anti-osteosarcoma and osteogenic effects. Newly constructed simvastatin/hydrogel-loaded 3DTi (Sim-3DTi) was comprehensively appraised, and its newfound anti-osteosarcoma mechanism was explained. Specifically, in a bone defect model of rabbit condyles, Sim-3DTi exhibited enhanced osteogenesis, bone in-growth, and osseointegration compared with 3DTi alone, with greater bone morphogenetic protein 2 expression. In our nude mice model, simvastatin loading reduced tumor volume by 59%-77 % without organic damage, implying good anti-osteosarcoma activity and biosafety. Furthermore, Sim-3DTi induced ferroptosis by upregulating transferrin and nicotinamide adenine dinucleotide phosphate oxidase 2 levels in osteosarcoma both in vivo and in vitro. Sim-3DTi is a promising osteogenic bone substitute for osteosarcoma-related bone defects, with a ferroptosis-mediated anti-osteosarcoma effect.
Collapse
Affiliation(s)
- Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Renhua Ni
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
42
|
Zhang EX, Hao WW, Wang ZH, Shi YR. Mechanism of prevention and treatment of ulcerative colitis from the perspective of iron death. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:109-115. [DOI: 10.11569/wcjd.v32.i2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
43
|
Wu X, Li J, Chai S, Li C, Lu S, Bao S, Yu S, Guo H, He J, Peng Y, Sun H, Wang L. Integrated analysis and validation of ferroptosis-related genes and immune infiltration in acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:123. [PMID: 38402377 PMCID: PMC10893752 DOI: 10.1186/s12872-023-03622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intracellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration. METHODS Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes (DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we identified hub genes in protein-protein interaction (PPI) network. After obtaining the key DE-FRGs through the junction of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to ferroptosis in AMI. RESULTS Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA. CONCLUSION Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condition. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shengjie Chai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaguo Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Suli Bao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuai Yu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie He
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
44
|
Huang X, Yan X, Chen G, Feng Y, Bai Y, Yan P, Lai J, Wei S. Insufficient autophagy enables the nuclear factor erythroid 2-related factor 2 (NRF2) to promote ferroptosis in morphine-treated SH-SY5Y cells. Psychopharmacology (Berl) 2024; 241:291-304. [PMID: 38049617 DOI: 10.1007/s00213-023-06485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
RATIONALE While morphine has important therapeutic value it is also one of the most widely abused drugs in the world. As a newly discovered style of cell death, ferroptosis is involved in the occurrence and development of many diseases, however, the current understanding of the relationship between ferroptosis and morphine is still limited. OBJECTIVE To clarify the role of opioid receptors in morphine-induced ferroptosis and to investigate the role of NRF2 in morphine-induced ferroptosis. METHODS We first used different doses of morphine (0, 0.5, 1, and 1.5 mM) to investigate morphine-induced ferroptosis in SH-SY5Y cells, and we choose 1.5 mM morphine for subsequent experiments. We next inhibited opioid receptors and NRF2 separately and examined their influence on morphine-induced ferroptosis. Finally, we tested morphine-induced insufficient autophagy. RESULTS Morphine triggered ferroptosis in a dose-dependent manner, which could be significantly rescued by the ferroptosis-specific inhibitor DFO. Moreover, GPX4 rather than xCT antiporter might be involved in morphine-induced ferroptosis. We also found naloxone could inhibit morphine-induced ferroptosis. Interestingly, our results demonstrated that NRF2 could promote rather than defend morphine-induced ferroptosis; this may be due to the increased p62-related insufficient autophagy. CONCLUSION Morphine-induced ferroptosis is regulated by the opioid receptor and GPX4 rather than the xCT antiporter. NRF2-mediated ferroptosis in morphine-exposed cells may stem from increased p62-related insufficient autophagy.
Collapse
Affiliation(s)
- Xin Huang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinyue Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Yue Feng
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuying Bai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Peng Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
45
|
Song J, Chen Y, Chen Y, Wang S, Dong Z, Liu X, Li X, Zhang Z, Sun L, Zhong J. Ferrostatin-1 Blunts Right Ventricular Hypertrophy and Dysfunction in Pulmonary Arterial Hypertension by Suppressing the HMOX1/GSH Signaling. J Cardiovasc Transl Res 2024; 17:183-196. [PMID: 37603208 DOI: 10.1007/s12265-023-10423-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Ferroptosis plays a critical role in pulmonary arterial hypertension (PAH)-induced right ventricular (RV) dysfunction, but key genes remain largely unclear. We here identified HMOX1 as an essential ferroptosis-related differentially expressed gene in PAH by bioinformatic analysis using FerrDb, GSE119754, and GSE3675 datasets, respectively. Notably, there were marked increases in HMOX1 and iron levels in RV of monocrotaline-induced PAH rats with reduced TAPSE levels. More importantly, treatment with ferrostatin-1 effectively attenuated RV hypertrophy, remodeling, myocardial fibrosis, and dysfunction in PAH rats. In cultured H9C2 cells and primary neonatal rat cardiomyocytes, pretreatment with ferrostatin-1 and knockdown HMOX1 by siRNA strikingly blunted hypoxia-induced promotion of lipid peroxidation, ferroptosis, and cardiomyocyte injury by potentiating glutathione (GSH) and nitric oxide signaling, respectively. In summary, ferrostatin-1 attenuates RV hypertrophy, fibrosis, and dysfunction in PAH by suppressing the HMOX1/GSH signaling. Targeting HMOX1 ferroptosis signaling functions as a potential therapeutic strategy for patients with PAH.
Collapse
Affiliation(s)
- Jiawei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yihang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yufei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhaojie Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xueting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhenzhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lanlan Sun
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Department of Ultrasound Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Wang F, Dai Q, Xu L, Gan L, Shi Y, Yang M, Yang S. Advances on the Role of Ferroptosis in Ionizing Radiation Response. Curr Pharm Biotechnol 2024; 25:396-410. [PMID: 37612860 DOI: 10.2174/1389201024666230823091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Ferroptosis is an iron-dependent programmed cell death mode that is distinct from other cell death modes, and radiation is able to stimulate cellular oxidative stress and induce the production of large amounts of reactive oxygen radicals, which in turn leads to the accumulation of lipid peroxide and the onset of ferroptosis. In this review, from the perspective of the role of ferroptosis in generating a radiation response following cellular irradiation, the relationship between ferroptosis induced by ionizing radiation stress and the response to ionizing radiation is reviewed, including the roles of MAPK and Nrf2 signaling pathways in ferroptosis, resulting from the oxidative stress response to ionizing radiation, the metabolic regulatory role of the p53 gene in ferroptosis, and regulatory modes of action of iron metabolism and iron metabolism-related regulatory proteins in promoting and inhibiting ferroptosis. It provides some ideas for the follow-up research to explore the specific mechanism and regulatory network of ferroptosis in response to ionizing radiation.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - QingHui Dai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Luhan Xu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yidi Shi
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shuhong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
47
|
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin J, He P, Xie J. Ferroptosis in cardiovascular disease. Biomed Pharmacother 2024; 170:116057. [PMID: 38159373 DOI: 10.1016/j.biopha.2023.116057] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
In the 21st century, cardiovascular disease (CVD) has become one of the leading causes of death worldwide. The prevention and treatment of CVD remain pressing scientific issues. Several recent studies have suggested that ferroptosis may play a key role in CVD. Most studies conducted thus far on ferroptosis and CVD have supported the link. Ferroptosis mediated by different signaling and metabolic pathways can lead to ischemic heart disease, myocarditis, heart failure, ischemia-reperfusion injury, and cardiomyopathy. Still, the specific mechanism of ferroptosis in CVD, the particular organ areas affected, and the stage of disease involved need to be further studied. Therefore, understanding the mechanisms regulating ferroptosis in CVD may improve disease management. Throughout this review, we summarized the mechanism of ferroptosis and its effect on the pathogenesis of CVD. We also predicted and discussed future research directions, aiming to provide new ideas and strategies for preventing and treating CVD.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyong Xie
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Siyuan Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rumao Zhong
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peichun He
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
48
|
Ma Y, Yang X, Jiang N, Lu C, Zhang J, Zhuang S. Echinacoside ameliorates doxorubicin‑induced cardiac injury by regulating GPX4 inhibition‑induced ferroptosis. Exp Ther Med 2024; 27:29. [PMID: 38125366 PMCID: PMC10731406 DOI: 10.3892/etm.2023.12317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 12/23/2023] Open
Abstract
Echinacoside (ECH) is a compound derived from the natural herbs Cistanche and Echinacea, which has considerable protective effects on heart failure (HF). HF is characterized by myocardial damage and abnormal ferroptosis. Glutathione peroxidase 4 (GPX4) is an important regulator of ferroptosis, which plays a role in ferroptosis-related diseases. Despite this, the therapeutic mechanisms of ECH against HF remain unknown. Therefore, the aim of the present study was to investigate the cardioprotective effect and underlying mechanisms of ECH in the treatment of doxorubicin (DOX)-induced chronic HF (CHF). Cell proliferation was assessed using a CCK-8 assay. Furthermore, cardiac cell injury and oxidative stress were determined by measuring the lactate dehydrogenase (LDH), malondialdehyde (MDA), and glutathione (GSH) levels. The levels of Fe2+ and lipid reactive oxygen species (ROS), and expression of the biomarkers of ferroptosis, including GPX4 and prostaglandin-endoperoxide synthase 2 (PTGS2), were measured to examine cardiomyocyte ferroptosis. Additionally, RNA interference was used to silence Gpx4. In vitro and in vivo, ECH considerably reduced the MDA and LDH levels and increased the GSH level, thereby attenuating DOX-induced cardiac injury and oxidative stress. Meanwhile, ECH treatment decreased the lipid ROS levels and PTGS2 expression while increasing GPX4 expression, thereby alleviating DOX-induced cardiomyocyte ferroptosis. Moreover, knockdown of Gpx4 inhibited the protective effects of ECH on DOX-induced accumulation of lipid ROS in cardiomyocytes. These findings indicate that ECH can reduce DOX-induced cardiac injury by inhibiting ferroptosis via GPX4, highlighting its value as a potentially valuable therapeutic target in the management of CHF.
Collapse
Affiliation(s)
- Yan Ma
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Xiaoli Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Nianxin Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
49
|
Wu H, Chen L, Lu K, Liu Y, Lu W, Jiang J, Weng C. HMGB2 Deficiency Mitigates Abdominal Aortic Aneurysm by Suppressing Ang-II-Caused Ferroptosis and Inflammation via NF- κβ Pathway. Mediators Inflamm 2023; 2023:2157355. [PMID: 38148870 PMCID: PMC10751175 DOI: 10.1155/2023/2157355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background Ferroptosis is a new form of cell death, which is closely related to the occurrence of many diseases. Our work focused on the mechanism by which HMGB2 regulate ferroptosis and inflammation in abdominal aortic aneurysm (AAA). Methods Reverse transcription-quantitative polymerase chain reaction and western blot were utilized to assess HMGB2 levels. CCK-8 and flow cytometry assays were utilized to measure cell viability and apoptosis. We detected reactive oxygen species generation, Fe2+ level, and ferroptosis-related protein levels in Ang-II-treated VSMCs, which were typical characteristics of ferroptosis. Finally, the mice model of AAA was established to verify the function of HMGB2 in vivo. Results Increased HMGB2 level was observed in Ang-II-treated VSMCs and Ang-II-induced mice model. HMGB2 depletion accelerated viability and impeded apoptosis in Ang-II-irritatived VSMCs. Moreover, HMGB2 deficiency neutralized the increase of ROS in VSMCs caused by Ang-II. HMGB2 silencing considerably weakened Ang-II-caused VSMC ferroptosis, as revealed by the decrease of Fe2+ level and ACSL4 and COX2 levels and the increase in GPX4 and FTH1 levels. Furthermore, the mitigation effects of shHMGB2 on Ang-II-induced VSMC damage could be counteracted by erastin, a ferroptosis agonist. Mechanically, HMGB2 depletion inactivated the NF-κβ signaling in Ang-II-treated VSMCs. Conclusions Our work demonstrated that inhibition of HMGB2-regulated ferroptosis and inflammation to protect against AAA via NF-κβ signaling, suggesting that HMGB2 may be a potent therapeutic agent for AAA.
Collapse
Affiliation(s)
- Hao Wu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Legao Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Kaiping Lu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yi Liu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Jinsong Jiang
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Chao Weng
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|