1
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Jeong PS, Yang HJ, Jeon SB, Gwon MA, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Luteolin supplementation during porcine oocyte maturation improves the developmental competence of parthenogenetic activation and cloned embryos. PeerJ 2023; 11:e15618. [PMID: 37377789 PMCID: PMC10292194 DOI: 10.7717/peerj.15618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Min-Ah Gwon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Trigo D, Avelar C, Fernandes M, Sá J, da Cruz E Silva O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett 2022; 596:1095-1110. [PMID: 35088449 DOI: 10.1002/1873-3468.14298] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates ageing and neurodegeneration with anomalous neuronal metabolism, as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Avelar
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Fernandes
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juliana Sá
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Upstream Regulator Analysis of Wooden Breast Myopathy Proteomics in Commercial Broilers and Comparison to Feed Efficiency Proteomics in Pedigree Male Broilers. Foods 2021; 10:foods10010104. [PMID: 33419207 PMCID: PMC7825620 DOI: 10.3390/foods10010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
In an effort to understand the apparent trade-off between the continual push for growth performance and the recent emergence of muscle pathologies, shotgun proteomics was conducted on breast muscle obtained at ~8 weeks from commercial broilers with wooden breast (WB) myopathy and compared with that in pedigree male (PedM) broilers exhibiting high feed efficiency (FE). Comparison of the two proteomic datasets was facilitated using the overlay function of Ingenuity Pathway Analysis (IPA) (Qiagen, CA, USA). We focused on upstream regulator analysis and disease-function analysis that provides predictions of activation or inhibition of molecules based on (a) expression of downstream target molecules, (b) the IPA scientific citation database. Angiopoeitin 2 (ANGPT2) exhibited the highest predicted activation Z-score of all molecules in the WB dataset, suggesting that the proteomic landscape of WB myopathy would promote vascularization. Overlaying the FE proteomics data on the WB ANGPT2 upstream regulator network presented no commonality of protein expression and no prediction of ANGPT2 activation. Peroxisome proliferator coactivator 1 alpha (PGC1α) was predicted to be inhibited, suggesting that mitochondrial biogenesis was suppressed in WB. PGC1α was predicted to be activated in high FE pedigree male broilers. Whereas RICTOR (rapamycin independent companion of mammalian target of rapamycin) was predicted to be inhibited in both WB and FE datasets, the predictions were based on different downstream molecules. Other transcription factors predicted to be activated in WB muscle included epidermal growth factor (EGFR), X box binding protein (XBP1), transforming growth factor beta 1 (TGFB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Inhibitions of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT) and estrogen related receptor gamma (ESRRG) were also predicted in the WB muscle. These findings indicate that there are considerable differences in upstream regulators based on downstream protein expression observed in WB myopathy and in high FE PedM broilers that may provide additional insight into the etiology of WB myopathy.
Collapse
|
5
|
Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med 2020; 5:22. [PMID: 33298971 PMCID: PMC7683736 DOI: 10.1038/s41536-020-00107-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are fundamental for metabolic homeostasis in all multicellular eukaryotes. In the nervous system, mitochondria-generated adenosine triphosphate (ATP) is required to establish appropriate electrochemical gradients and reliable synaptic transmission. Notably, several mitochondrial defects have been identified in central nervous system disorders. Membrane leakage and electrolyte imbalances, pro-apoptotic pathway activation, and mitophagy are among the mechanisms implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, as well as ischemic stroke. In this review, we summarize mitochondrial pathways that contribute to disease progression. Further, we discuss pathological states that damaged mitochondria impose on normal nervous system processes and explore new therapeutic approaches to mitochondrial diseases.
Collapse
|
6
|
McKnight SM, Simmons RM, Wu G, Satterfield MC. Maternal arginine supplementation enhances thermogenesis in the newborn lamb. J Anim Sci 2020; 98:5819648. [PMID: 32283549 DOI: 10.1093/jas/skaa118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Body temperature maintenance is one of the most important physiological processes initiated after birth. Brown adipose tissue (BAT) is an essential mediator of thermogenesis in many species and is responsible for 50% of the heat generated in the newborn lamb. To determine if maternal arginine supplementation could enhance thermogenesis in the neonate, we randomly assigned 31 multiparous Suffolk ewes, gestating singletons or twins, to receive intravenous injections of either l-arginine (27 mg/kg body weight; n = 17) or sterile saline (n = 14) three times daily from day 75 to 125 of gestation (term = 147). Following parturition, lambs were removed from their mothers and subjected to 0 °C cold challenges at 4 and 22 h of age. Rectal temperatures were higher for the duration of the cold challenges in lambs from arginine-treated ewes compared with lambs from saline-treated ewes (P < 0.05). Elevated rectal temperatures were associated with increased (P < 0.05) circulating glycine and serine concentrations in lambs. The mRNA expression of genes related to BAT function changed over time, but not between lambs from arginine-treated vs. saline-treated ewes. Results indicate that maternal arginine treatment increases neonatal thermogenesis after birth. Although the underlying mechanisms remain to be elucidated, these data are a first step in improving neonatal survival in response to cold.
Collapse
Affiliation(s)
- Sorin M McKnight
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Rebecca M Simmons
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | | |
Collapse
|
7
|
Nasehi M, Torabinejad S, Hashemi M, Vaseghi S, Zarrindast MR. Effect of cholestasis and NeuroAid treatment on the expression of Bax, Bcl-2, Pgc-1α and Tfam genes involved in apoptosis and mitochondrial biogenesis in the striatum of male rats. Metab Brain Dis 2020; 35:183-192. [PMID: 31773435 DOI: 10.1007/s11011-019-00508-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Cholestasis means impaired bile synthesis or secretion. In fact, it is a bile flow reduction following Bile Duct Ligation (BDL). Cholestasis has a main role in necrosis and apoptosis. Apoptosis is a form of programmed cell death that has intrinsic and extrinsic pathways. The intrinsic pathway is mediated by Bcl-2 (B cell lymphoma-2) proteins which integrate death and survival signals. Bcl-2 has anti-apoptotic and Bax has pro-apoptotic effects. Also, striatum is one of the brain regions that has high expressions of Bcl-2 proteins. Moreover, Tfam and Pgc-1α are involved in mitochondrial biogenesis. On the other hand, NeuroAid, is a drug that has neuroprotective and anti-apoptosis effects. In this study, using quantitative PCR, we measured the expression of all these genes in the striatum of male rats following BDL and NeuroAid administration. Results showed, BDL increased the expression of Bax and Tfam and decreased the expression of Bcl-2. NeuroAid restored the effect of BDL on the expression of Bax, while did not alter the effect of BDL on Bcl-2. In addition, it increased the expression of Tfam that was previously elevated by BDL and raised the expression of Tfam in normal rats. Both BDL and NeuroAid, had no effect on Pgc-1α. In conclusion, cholestasis increased the expression of Bax and decreased the expression of Bcl-2, and this effect may have related to enhanced susceptibility of mitochondrial pathways following oxidative stress. Tfam expression was increased following cholestasis and this effect may have related to cellular compensatory mechanisms against high accumulation of free radicals or mitochondrial biogenesis failure. Furthermore, NeuroAid may play a role against apoptosis and can be used to increase mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Suliman HB, Nozik-Grayck E. Mitochondrial Dysfunction: Metabolic Drivers of Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:843-857. [PMID: 30604624 PMCID: PMC6751393 DOI: 10.1089/ars.2018.7705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling and lung vasculopathy. The disease displays progressive dyspnea, pulmonary artery uncoupling and right ventricular (RV) dysfunction. The overall survival rate is ranging from 28-72%. Recent Advances: The molecular events that promote the development of PH are complex and incompletely understood. Metabolic impairment has been proposed to contribute to the pathophysiology of PH with evidence for mitochondrial dysfunction involving the electron transport chain proteins, antioxidant enzymes, apoptosis regulators, and mitochondrial quality control. Critical Issues: It is vital to characterize the mechanisms by which mitochondrial dysfunction contribute to PH pathogenesis. This review focuses on the currently available publications that supports mitochondrial mechanisms in PH pathophysiology. Future Directions: Further studies of these metabolic mitochondrial alterations in PH could be viable targets of diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Centers, Durham, North Carolina
| | - Eva Nozik-Grayck
- Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
9
|
Benzoylaconine induces mitochondrial biogenesis in mice via activating AMPK signaling cascade. Acta Pharmacol Sin 2019; 40:658-665. [PMID: 30315253 DOI: 10.1038/s41401-018-0174-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/16/2018] [Indexed: 12/28/2022] Open
Abstract
The traditional Chinese medicine "Fuzi" (Aconiti Lateralis Radix Praeparata) and its three representative alkaloids, aconitine (AC), benzoylaconine (BAC), and aconine, have been shown to increase mitochondrial mass. Whether Fuzi has effect on mitochondrial biogenesis and the underlying mechanisms remain unclear. In the present study, we focused on the effect of BAC on mitochondrial biogenesis and the underlying mechanisms. We demonstrated that Fuzi extract and its three components AC, BAC, and aconine at a concentration of 50 μM significantly increased mitochondrial mass in HepG2 cells. BAC (25, 50, 75 μM) dose-dependently promoted mitochondrial mass, mtDNA copy number, cellular ATP production, and the expression of proteins related to the oxidative phosphorylation (OXPHOS) complexes in HepG2 cells. Moreover, BAC dose-dependently increased the expression of proteins involved in AMPK signaling cascade; blocking AMPK signaling abolished BAC-induced mitochondrial biogenesis. We further revealed that BAC treatment increased the cell viability but not the cell proliferation in HepG2 cells. These in vitro results were verified in mice treated with BAC (10 mg/kg per day, ip) for 7 days. We showed that BAC administration increased oxygen consumption rate in mice, but had no significant effect on intrascapular temperature. Meanwhile, BAC administration increased mtDNA copy number and OXPHOS-related protein expression and activated AMPK signaling in the heart, liver, and muscle. These results suggest that BAC induces mitochondrial biogenesis in mice through activating AMPK signaling cascade. BAC may have the potential to be developed as a novel remedy for some diseases associated with mitochondrial dysfunction.
Collapse
|
10
|
Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, Lin J, Zhang M, Hu J, Fan Y, Reiter RJ, Wang H, Sun D. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 2018; 22:5132-5144. [PMID: 30063115 PMCID: PMC6156356 DOI: 10.1111/jcmm.13802] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG‐treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up‐regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20‐like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin‐mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.
Collapse
Affiliation(s)
- Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqiang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. J Neurosci 2018; 38:7505-7515. [PMID: 30030401 DOI: 10.1523/jneurosci.0541-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/19/2018] [Accepted: 07/07/2018] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of mitochondrial biogenesis is implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). However, it is not clear how mitochondrial biogenesis is regulated in neurons, with their unique compartmentalized anatomy and energetic demands. This is particularly relevant in PD because selectively vulnerable neurons feature long, highly arborized axons where degeneration initiates. We previously found that exposure of neurons to chronic, sublethal doses of rotenone, a complex I inhibitor linked to PD, causes early increases in mitochondrial density specifically in distal axons, suggesting possible upregulation of mitochondrial biogenesis within axons. Here, we directly evaluated for evidence of mitochondrial biogenesis in distal axons and examined whether PD-relevant stress causes compartmentalized alterations. Using BrdU labeling and imaging to quantify replicating mitochondrial DNA (mtDNA) in primary rat neurons (pooled from both sexes), we provide evidence of mtDNA replication in axons along with cell bodies and proximal dendrites. We found that exposure to chronic, sublethal rotenone increases mtDNA replication first in neurites and later extending to cell bodies, complementing our mitochondrial density data. Further, isolating axons from cell bodies and dendrites, we discovered that rotenone exposure upregulates mtDNA replication in distal axons. Utilizing superresolution stimulated emission depletion (STED) imaging, we identified mtDNA replication at sites of mitochondrial-endoplasmic reticulum contacts in axons. Our evidence suggests that mitochondrial biogenesis occurs not only in cell bodies, but also in distal axons, and is altered under PD-relevant stress conditions in an anatomically compartmentalized manner. We hypothesize that this contributes to vulnerability in neurodegenerative diseases.SIGNIFICANCE STATEMENT Mitochondrial biogenesis is crucial for maintaining mitochondrial and cellular health and has been linked to neurodegenerative disease pathogenesis. However, regulation of this process is poorly understood in CNS neurons, which rely on mitochondrial function for survival. Our findings offer fundamental insight into these regulatory mechanisms by demonstrating that replication of mitochondrial DNA, an essential precursor for biogenesis, can occur in distal regions of CNS neuron axons independent of the soma. Further, this process is upregulated specifically in axons as an early response to neurodegeneration-relevant stress. This is the first demonstration of the compartmentalized regulation of CNS neuronal mitochondrial biogenesis in response to stress and may prove a useful target in development of therapeutic strategies for neurodegenerative disease.
Collapse
|
12
|
Forni MF, Peloggia J, Braga TT, Chinchilla JEO, Shinohara J, Navas CA, Camara NOS, Kowaltowski AJ. Caloric Restriction Promotes Structural and Metabolic Changes in the Skin. Cell Rep 2018; 20:2678-2692. [PMID: 28903047 DOI: 10.1016/j.celrep.2017.08.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Julia Peloggia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Tárcio T Braga
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | | | - Jorge Shinohara
- Laboratório de Química Supramolecular e Nanotecnologia - LQSN, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Carlos Arturo Navas
- Departamento de Fisiologia, Instituto de Biologia, Universidade de São Paulo, R. do Matão, 321, 05508-090 São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
13
|
Gibbs WS, Garrett SM, Beeson CC, Schnellmann RG. Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis. Am J Physiol Renal Physiol 2018; 314:F260-F268. [PMID: 29046298 PMCID: PMC5866450 DOI: 10.1152/ajprenal.00324.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Our laboratory recently made the novel observation that 5-hydroxytryptamine 1F (5-HT1F) receptor activation induces mitochondrial biogenesis (MB), the production of new, functional mitochondria, in vitro and in vivo. We sought to determine the mechanism linking the 5-HT1F receptor to MB in renal proximal tubule cells. Using LY344864 , a selective 5-HT1F receptor agonist, we determined that the 5-HT1F receptor is coupled to Gαi/o and induces MB through Gβγ-dependent activation of Akt, endothelial nitric oxide synthase (eNOS), cyclic guanosine-monophosphate (cGMP), protein kinase G (PKG), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). We also report that the 5-HT1F receptor signals through a second, Gβγ-dependent pathway that is linked by Akt phosphorylation of Raf. In contrast to the activated Akt pathway, Raf phosphorylation reduced extracellular signal regulated kinases (ERK1/2) and foxhead box O3a (FOXO3a) phosphorylation, suppressing an inhibitory MB pathway. These results demonstrate that the 5-HT1F receptor regulates MB through Gβγ-dependent dual mechanisms that activate a stimulatory MB pathway, Akt/eNOS/cGMP/PKG/PGC-1α, while simultaneously repressing an inhibitory MB pathway, Raf/MEK/ERK/FOXO3a. Novel mechanisms of MB provide the foundation for new chemicals that induce MB to treat acute and chronic organ injuries.
Collapse
Affiliation(s)
- Whitney S Gibbs
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
| | - Sara M Garrett
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
- Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
14
|
Bombicino SS, Iglesias DE, Rukavina-Mikusic IA, Buchholz B, Gelpi RJ, Boveris A, Valdez LB. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes. Free Radic Biol Med 2017; 112:267-276. [PMID: 28756312 DOI: 10.1016/j.freeradbiomed.2017.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023]
Abstract
This study, in an experimental model of type I Diabetes Mellitus in rats, deals with the mitochondrial production rates and steady-state concentrations of H2O2 and NO, and ATP levels as part of a network of signaling molecules involved in heart mitochondrial biogenesis. Sustained hyperglycemia leads to a cardiac compromise against a work overload, in the absence of changes in resting cardiac performance and of heart hypertrophy. Diabetes was induced in male Wistar rats by a single dose of Streptozotocin (STZ, 60mg × kg-1, ip.). After 28 days of STZ-injection, rats were sacrificed and hearts were isolated. The mitochondrial mass (mg mitochondrial protein × g heart-1), determined through cytochrome oxidase activity ratio, was 47% higher in heart from diabetic than from control animals. Stereological analysis of cardiac tissue microphotographs showed an increase in the cytosolic volume occupied by mitochondria (30%) and in the number of mitochondria per unit area (52%), and a decrease in the mean area of each mitochondrion (23%) in diabetic respect to control rats. Additionally, an enhancement (76%) in PGC-1α expression was observed in cardiac tissue of diabetic animals. Moreover, heart mitochondrial H2O2 (127%) and NO (23%) productions and mtNOS expression (132%) were higher, while mitochondrial ATP production rate was lower (~ 40%), concomitantly with a partial-mitochondrial depolarization, in diabetic than in control rats. Changes in mitochondrial H2O2 and NO steady-state concentrations and an imbalance between cellular energy demand and mitochondrial energy transduction could be involved in the signaling pathways that lead to the novo synthesis of mitochondria. However, this compensatory mechanism triggered to restore the mitochondrial and tissue normal activities, did not lead to competent mitochondria capable of supplying the energetic demands in diabetic pathological conditions.
Collapse
Affiliation(s)
- Silvina S Bombicino
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Darío E Iglesias
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Ivana A Rukavina-Mikusic
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- University of Buenos Aires, Faculty of Medicine, Pathology Department, Cardiovascular Physiopathology Institute (INFICA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- University of Buenos Aires, Faculty of Medicine, Pathology Department, Cardiovascular Physiopathology Institute (INFICA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Alberto Boveris
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Laura B Valdez
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Kam JH, Jeffery G. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss. Oncotarget 2016; 6:26690-701. [PMID: 26393878 PMCID: PMC4694945 DOI: 10.18632/oncotarget.5614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial function declines with age and is associated with age-related disorders and cell death. In the retina this is critical as photoreceptor energy demands are the greatest in the body and aged cell loss large (~30%). But mitochondria can fuse or divide to accommodate changing demands. We explore ageing mitochondrial dynamics in young (1 month) and old (12 months) mouse retina, investigating changes in mitochondrial fission (Fis1) and fusion (Opa1) proteins, cytochrome C oxidase (COX III), which reflects mitochondrial metabolic status, and heat shock protein 60 (Hsp60) that is a mitochondrial chaperon for protein folding.Western blots showed each protein declined with age. However, within this, immunostaining revealed increases of around 50% in Fis1 and Opa1 in photoreceptor inner segments (IS). Electron microscope analysis revealed mitochondrial fragmentation with age and marked changes in morphology in IS, consistent with elevated dynamics. COX III declined by approximately 30% in IS, but Hsp60 reductions were around 80% in the outer plexiform layer.Our results are consistent with declining mitochondrial metabolism. But also with increased photoreceptor mitochondrial dynamics that differ from other retinal regions, perhaps reflecting attempts to maintain function. These changes are the platform for age related photoreceptor loss initiated after 12 months.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
17
|
Kong BW, Lassiter K, Piekarski-Welsher A, Dridi S, Reverter-Gomez A, Hudson NJ, Bottje WG. Proteomics of Breast Muscle Tissue Associated with the Phenotypic Expression of Feed Efficiency within a Pedigree Male Broiler Line: I. Highlight on Mitochondria. PLoS One 2016; 11:e0155679. [PMID: 27244447 PMCID: PMC4887024 DOI: 10.1371/journal.pone.0155679] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
As feed represents 60 to 70% of the cost of raising an animal to market weight, feed efficiency (the amount of dry weight intake to amount of wet weight gain) remains an important genetic trait in animal agriculture. To gain greater understanding of cellular mechanisms of feed efficiency (FE), shotgun proteomics was conducted using in-gel trypsin digestion and tandem mass spectrometry on breast muscle samples obtained from pedigree male (PedM) broilers exhibiting high feed efficiency (FE) or low FE phenotypes (n = 4 per group). The high FE group had greater body weight gain (P = 0.004) but consumed the same amount of feed (P = 0.30) from 6 to 7 wk resulting in higher FE (P < 0.001). Over 1800 proteins were identified, of which 152 were different (P < 0.05) by at least 1.3 fold and ≤ 15 fold between the high and low FE phenotypes. Data were analyzed for a modified differential expression (DE) metric (Phenotypic Impact Factors or PIF) and interpretation of protein expression data facilitated using the Ingenuity Pathway Analysis (IPA) program. In the entire data set, 228 mitochondrial proteins were identified whose collective expression indicates a higher mitochondrial expression in the high FE phenotype (binomial probability P < 0.00001). Within the top up and down 5% PIF molecules in the dataset, there were 15 mitoproteome proteins up-regulated and only 5 down-regulated in the high FE phenotype. Pathway enrichment analysis also identified mitochondrial dysfunction and oxidative phosphorylation as the number 1 and 5 differentially expressed canonical pathways (up-regulated in high FE) in the proteomic dataset. Upstream analysis (based on DE of downstream molecules) predicted that insulin receptor, insulin like growth receptor 1, nuclear factor, erythroid 2-like 2, AMP activated protein kinase (α subunit), progesterone and triiodothyronine would be activated in the high FE phenotype whereas rapamycin independent companion of target of rapamycin, mitogen activated protein kinase 4, and serum response factor would be inhibited in the high FE phenotype. The results provide additional insight into the fundamental molecular landscape of feed efficiency in breast muscle of broilers as well as further support for a role of mitochondria in the phenotypic expression of FE. Funding provided by USDA-NIFA (#2013–01953), Arkansas Biosciences Institute (Little Rock, AR), McMaster Fellowship (AUS to WB) and the Agricultural Experiment Station (Univ. of Arkansas, Fayetteville).
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Alissa Piekarski-Welsher
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Antonio Reverter-Gomez
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Nicholas James Hudson
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Walter Gay Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
19
|
Garrido-Maraver J, Paz MV, Cordero MD, Bautista-Lorite J, Oropesa-Ávila M, de la Mata M, Pavón AD, de Lavera I, Alcocer-Gómez E, Galán F, Ybot González P, Cotán D, Jackson S, Sánchez-Alcázar JA. Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2535-53. [PMID: 26341273 DOI: 10.1016/j.bbadis.2015.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Juan Garrido-Maraver
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Marina Villanueva Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Mario D Cordero
- Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain
| | | | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Isabel de Lavera
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Elizabet Alcocer-Gómez
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | | | - Patricia Ybot González
- Instituto de Biomedicina de Sevilla (IBIS)-CSIC, Hospital Virgen del Rocío, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Sandra Jackson
- Department of Neurology, Uniklinikum C. G. Carus, Dresden, Germany
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain.
| |
Collapse
|
20
|
Chen X, Zhao X, Zhang M, Wei S. Nuclear respiratory factor-2α and adenosine triphosphate synapses in rat primary cortical neuron cultures: The key role of adenosine monophosphate-activated protein kinase. Mol Med Rep 2015; 12:6323-9. [PMID: 26239887 DOI: 10.3892/mmr.2015.4140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Nuclear respiratory factor‑2α (NRF‑2α) is an important transcription factor that regulates mitochondrial oxidative phosphorylation and regeneration. NRF‑2α regulates mitochondrial transcription factors (mTF)A and B, and mitochondrial DNA by indirectly regulating the mitochondrial respiratory enzyme chain subunit. In addition, NRF‑2α is involved in the mitochondrial energy metabolism. Peroxisome proliferator‑activated receptor γ coactivator 1α (PGC‑1α), is an important transcription coactivator of NRF‑2α. Adenosine monophosphate‑activated protein kinase (AMPK) is considered an important effector in the regulation of the energy metabolism balance of nervous system microenvironments. However, the signaling mechanism underlying the energy coupling of PGC‑1α and NRF‑2α in visual cortical neurons remains to be elucidated. The present study used a primary culture system of rat visual cortical neurons in order to investigate whether AMPK is involved in the regulation of NRF‑2α and PGC‑1α expression in cortical neurons. The results of the present study indicated that KCl depolarization rapidly activated AMPK, and significantly increased the expression levels of PGC‑1α, NRF‑2α and mtTFA, as well as adenosine triphosphate production in cultured neurons. Similarly, the AMPK agonists 5‑aminoimidazole‑4‑carboxamide riboside and resveratrol significantly increased the mRNA expression levels of PGC‑1α and NRF‑2α in cultured neurons. These responses were blocked by compound C, an AMPK inhibitor. In conclusion, AMPK is an important transcriptional regulator of the neuronal excitation response, and exerts its regulatory effects via the PGC‑1α/NRF‑2α signaling pathway.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Ophthalmology, The Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiao Zhao
- Department of Medical Affairs, Affiliated Hospital of The Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Maonian Zhang
- Department of Ophthalmology, The Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shihui Wei
- Department of Ophthalmology, The Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
21
|
Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 2014; 55:207-27. [PMID: 25149919 DOI: 10.1146/annurev-pharmtox-010814-124346] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany;
| | | |
Collapse
|
22
|
Kalogeris TJ, Baines C, Korthuis RJ. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis. PLoS One 2014; 9:e98459. [PMID: 24914683 PMCID: PMC4051583 DOI: 10.1371/journal.pone.0098459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/03/2014] [Indexed: 12/11/2022] Open
Abstract
We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO) donor, a guanylate cyclase (GC) activator, or a cell-permeant cyclic GMP (cGMP) analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS), or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge.
Collapse
Affiliation(s)
- Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - Christopher Baines
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
23
|
Law SR, Narsai R, Whelan J. Mitochondrial biogenesis in plants during seed germination. Mitochondrion 2014; 19 Pt B:214-21. [PMID: 24727594 DOI: 10.1016/j.mito.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Mitochondria occupy a central role in the eukaryotic cell. In addition to being major sources of cellular energy, mitochondria are also involved in a diverse range of functions including signalling, the synthesis of many essential organic compounds and a role in programmed cell death. The active proliferation and differentiation of mitochondria is termed mitochondrial biogenesis and necessitates the coordinated communication of mitochondrial status within an integrated cellular network. Two models of mitochondrial biogenesis have been defined previously, the growth and division model and the maturation model. The former describes the growth and division of pre-existing mature organelles through a form of binary fission, while the latter describes the propagation of mitochondria from structurally and biochemically simple promitochondrial structures that upon appropriate stimuli, mature into fully functional mitochondria. In the last decade, a number of studies have utilised seed germination in plants as a platform for the examination of the processes occurring during mitochondrial biogenesis. These studies have revealed many new aspects of the tightly regulated procession of events that define mitochondrial biogenesis during this period of rapid development. A model for mitochondrial biogenesis that supports the maturation of mitochondria from promitochondrial structures has emerged, where mitochondrial signalling plays a crucial role in the early steps of seed germination.
Collapse
Affiliation(s)
- Simon R Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
24
|
Kemper MF, Stirone C, Krause DN, Duckles SP, Procaccio V. Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection. Eur J Pharmacol 2013; 723:322-9. [PMID: 24275351 DOI: 10.1016/j.ejphar.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 12/19/2022]
Abstract
We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC). In vessels ex vivo, estrogen decreased protein levels of PGC-1α via activation of phosphatidylinositol 3-kinase (PI3K). Estrogen treatment also increased phosphorylation of forkhead transcription factor, FoxO1, a known pathway for PGC-1α downregulation. In contrast to the decrease in PGC-1α, estrogen increased protein levels of nuclear respiratory factor 1, a known PGC target and mediator of mitochondrial biogenesis. The latter effect of estrogen was independent of PI3K, suggesting a separate mechanism consistent with increased expression of PGC-1β and PRC. We demonstrated increased mitochondrial biogenesis following estrogen treatment in vivo; cerebrovascular levels of mitochondrial transcription factor A and electron transport chain subunits as well as the mitochondrial/nuclear DNA ratio were increased. We examined a downstream target of PGC-1β, glutamate-cysteine ligase (GCL), the rate-limiting enzyme for glutathione synthesis. In vivo estrogen increased protein levels of both GCL subunits and total glutathione levels. Together these data show estrogen differentially regulates PGC-1 isoforms in brain vasculature, underscoring the importance of these coactivators in adapting mitochondria in specific tissues. By upregulating PGC-1β and/or PRC, estrogen appears to enhance mitochondrial biogenesis, function and reactive oxygen species protection.
Collapse
Affiliation(s)
- Martin F Kemper
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| | - Chris Stirone
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| | - Diana N Krause
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA.
| | - Sue P Duckles
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| | - Vincent Procaccio
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| |
Collapse
|
25
|
Pfeifer A, Kilić A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther 2013; 140:81-91. [PMID: 23756133 DOI: 10.1016/j.pharmthera.2013.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) mediates the physiological effects of nitric oxide and natriuretic peptides in a broad spectrum of tissues and cells. So far, the major focus of research on cGMP lay on the cardiovascular system. Recent evidence suggests that cGMP also plays a major role in the regulation of cellular and whole-body metabolism. Here, we focus on the role of cGMP in adipose tissue. In addition, other organs important for the regulation of metabolism and their regulation by cGMP are discussed. Targeting the cGMP signaling pathway could be an exciting approach for the regulation of energy expenditure and the treatment of obesity.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Germany.
| | | | | |
Collapse
|
26
|
Xiao F, Chen D, Luo L, Zhong X, Xie Y, Zou L, Zeng M, Guan L, Zhong C. Time‑order effects of vitamin C on hexavalent chromium‑induced mitochondrial damage and DNA‑protein crosslinks in cultured rat peripheral blood lymphocytes. Mol Med Rep 2013; 8:53-60. [PMID: 23657841 DOI: 10.3892/mmr.2013.1462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/24/2013] [Indexed: 11/06/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] and its compounds have extensive applications in many industries and are widely known to cause occupational diseases as well as carcinogenic effects in humans. Mitochondrial damage, which is important in Cr(VI)‑induced cytotoxicity, may be characterized by the opening status of the permeability transition pore, the maintenance of the mitochondrial membrane potential and the level of malondialdehyde. The formation of DNA‑protein crosslinks (DPCs) in target tissues appears to be the direct and primary genotoxic effect of Cr(VI) exposure, and the lymphocytic DPCs may be viewed as a biomarker of internal Cr(VI) accumulation. It is well known that vitamin C (vit C) is an important biological reducing agent in humans and animals, which is capable of reducing Cr(VI). Regardless of the evidence from cell culture and in vivo experiments of the protective effect of the antioxidant, vit C, following exposure to Cr(VI), no studies have been conducted to date to demonstrate the time‑order effects of vit C on Cr(VI)‑induced mitochondrial damage and DPC formation. In the present study, by using peripheral blood lymphocytes from Sprague‑Dawley rats, we demonstrated that vit C pre‑ and co‑treatment have a protective effect against Cr(VI)‑induced loss of cell viability and mitochondrial damage, while only vit C co‑treatment has a protective effect against the Cr(VI)‑induced increase in DPCs. The mechanistic investigation revealed that cellular reactive oxygen species levels are correlated with Cr(VI)‑induced mitochondrial damage, and that p53 expression is correlated with the Cr(VI)‑induced increase in DPCs. We concluded that vit C exerts different time‑order effects on Cr(VI)‑induced mitochondrial damage and DPC formation, and that biomarkers, including DPC and p53, may be used in the assessment of the development of Cr(VI)‑induced cancer. These findings facilitate more detailed follow‑up of the Cr(VI)‑exposure populations for secondary prevention.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Health Toxicology, School of Public Health, Central South University, Changsha, Hunan 410078, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
28
|
Carrie C, Murcha MW, Giraud E, Ng S, Zhang MF, Narsai R, Whelan J. How do plants make mitochondria? PLANTA 2013; 237:429-439. [PMID: 22976451 DOI: 10.1007/s00425-012-1762-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 05/28/2023]
Abstract
Plant mitochondria can differ in size, shape, number and protein content across different tissue types and over development. These differences are a result of signaling and regulatory processes that ensure mitochondrial function is tuned in a cell-specific manner to support proper plant growth and development. In the last decade, the processes involved in mitochondrial biogenesis are becoming clearer, including; how dormant seeds transition from empty promitochondria to fully functional mitochondria with extensive cristae structures and various biochemical activities, the regulation of nuclear genes encoding mitochondrial proteins via regulators of the diurnal cycle in plants, the mitochondrial stress response, the targeting of proteins to mitochondria and other organelles and connections between the respiratory chain and protein import complexes. All these findings indicate that mitochondrial function is a part of an integrated cellular network, and communication between mitochondria and other cellular processes extends beyond the known exchange or transport of metabolites. Our current knowledge now needs to be used to gain more insight into the molecular components at various levels of this hierarchical and complex regulatory and communication network, so that mitochondrial function can be predicted and modified in a rational manner.
Collapse
Affiliation(s)
- Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, Planegg-Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kashiwagi S, Atochin DN, Li Q, Schleicher M, Pong T, Sessa WC, Huang PL. eNOS phosphorylation on serine 1176 affects insulin sensitivity and adiposity. Biochem Biophys Res Commun 2013; 431:284-90. [PMID: 23291238 DOI: 10.1016/j.bbrc.2012.12.110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022]
Abstract
Phosphorylation of endothelial nitric oxide synthase (eNOS) is an important regulator of its enzymatic activity. We generated knockin mice expressing phosphomimetic (SD) and unphosphorylatable (SA) eNOS mutations at S1176 to study the role of eNOS phosphorylation. The single amino acid SA mutation is associated with hypertension and decreased vascular reactivity, while the SD mutation results in increased basal and stimulated endothelial NO production. In addition to these vascular effects, modulation of the S1176 phosphorylation site resulted in unanticipated effects on metabolism. The eNOS SA mutation results in insulin resistance, hyperinsulinemia, adiposity, and increased weight gain on high fat. In contrast, the eNOS SD mutation is associated with decreased insulin levels and resistance to high fat-induced weight gain. These results demonstrate the importance of eNOS in regulation of insulin sensitivity, energy metabolism, and bodyweight regulation, and suggest eNOS phosphorylation as a novel target for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-80. [PMID: 21967640 PMCID: PMC3315176 DOI: 10.1089/ars.2011.4085] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O₂, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O₂ utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.
Collapse
Affiliation(s)
| | - María Eugenia Elguero
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- Department of Internal Medicine, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Biochemistry, INFIBIOC and School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue. Br J Nutr 2012; 109:413-24. [DOI: 10.1017/s0007114512001171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obesity has been related to a chronic pro-inflammatory state affecting white adipose tissue (WAT), which has a great impact on carbohydrate, lipid and energy metabolism. In turn, the dysregulation of adipokine secretion derived from the accumulation of excess lipids in adipocytes further contributes to the development of insulin resistance and can be associated with mitochondrial dysfunction. The aim of the present study was to determine whether sexual dimorphism found in the systemic insulin sensitivity profile is related to sex differences in a high-fat diet (HFD) response of gonadal WAT at mitochondrial function and inflammatory profile levels. Wistar rats (10 weeks old) of both sexes were fed a control pelleted diet (3 % (w/w) fat;n8 for each sex) or a HFD (24 % (w/w) fat;n8 for each sex). Serum insulin sensitivity markers, mRNA expression levels of inflammatory factors and the protein content of insulin and adiponectin signalling pathways were analysed, as well as the levels of the main markers of mitochondrial biogenesis, antioxidant defence and oxidative damage. In the present study, the periovarian depot exhibits a greater expandability capacity, along with a lower hypoxic and pro-inflammatory state, without signs of mitochondrial dysfunction or changes in its dynamics. In contrast, epididymal fat has a much more pronounced pro-inflammatory, hypoxic and insulin-resistant profile accompanied by changes in mitochondrial dynamics, probably associated with HFD-induced mitochondrial dysfunction. Thus, this explains the worse serum insulin sensitivity profile of male rats.
Collapse
|
32
|
Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P. Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 2012; 227:2297-310. [PMID: 21928343 DOI: 10.1002/jcp.23021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sébastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Nickens KP, Han Y, Shandilya H, Larrimore A, Gerard GF, Kaldjian E, Patierno SR, Ceryak S. Acquisition of mitochondrial dysregulation and resistance to mitochondrial-mediated apoptosis after genotoxic insult in normal human fibroblasts: a possible model for early stage carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:264-72. [PMID: 22057391 PMCID: PMC3273576 DOI: 10.1016/j.bbamcr.2011.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/14/2022]
Abstract
Acquisition of death-resistance is critical in the evolution of neoplasia. Our aim was to model the early stages of carcinogenesis by examining intracellular alterations in cells that have acquired apoptosis-resistance after exposure to a complex genotoxin. We previously generated sub-populations of BJ-hTERT human diploid fibroblasts, which have acquired death-resistance following exposure to hexavalent chromium [Cr(VI)], a broad-spectrum genotoxicant. Long-term exposure to certain forms of Cr(VI) is associated with respiratory carcinogenesis. Here, we report on the death-sensitivity of subclonal populations derived from clonogenic survivors of BJ-hTERT cells treated with 5 μM Cr(VI) (DR1, DR2), or selected by dilution-based cloning without treatment (CC1). Following Cr(VI) treatment, CC1 cells downregulated expression of the anti-apoptotic protein Bcl-2 and exhibited extensive expression of cleaved caspase 3. In contrast, the DR cells exhibited no cleaved caspase 3 expression and maintained expression of Bcl-2 following recovery from 24 h Cr(VI) exposure. The DR cells also exhibited attenuated mitochondrial-membrane depolarization and mitochondrial retention of cytochrome c and SMAC/DIABLO following Cr(VI) exposure. The DR cells exhibited less basal mtDNA damage, as compared to CC1 cells, which correlates with intrinsic (non-induced) death-resistance. Notably, there was no difference in p53 protein expression before or after treatment among all cell lines. Taken together, our data suggest the presence of more resilient mitochondria in death-resistant cells, and that death-resistance can be acquired in normal human cells early after genotoxin exposure. We postulate that resistance to mitochondrial-mediated cell death and mitochondrial dysregulation may be an initial phenotypic alteration observed in early stage carcinogenesis.
Collapse
Affiliation(s)
- Kristen P. Nickens
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Ying Han
- Transgenomic, Incorporated, 12325 Emmet Street Omaha, NE 68164
| | | | - Ashley Larrimore
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Gary F. Gerard
- Transgenomic, Incorporated, 12325 Emmet Street Omaha, NE 68164
| | - Eric Kaldjian
- Hearing Health Science, 1902 Austin Ave, Ann Arbor, MI 48104
| | - Steven R. Patierno
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- GW Cancer Institute, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Susan Ceryak
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- GW Cancer Institute, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| |
Collapse
|
34
|
A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A 2012; 109:621-6. [PMID: 22190495 DOI: 10.1073/pnas.1109237109] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.
Collapse
|
35
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2011; 45:489-99. [PMID: 22130738 DOI: 10.1007/s00726-011-1168-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/18/2011] [Indexed: 01/21/2023]
Abstract
Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.
Collapse
Affiliation(s)
- M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
37
|
Lee CH, Wu SB, Hong CH, Liao WT, Wu CY, Chen GS, Wei YH, Yu HS. Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2066-76. [PMID: 21514422 DOI: 10.1016/j.ajpath.2011.01.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Arsenic-induced Bowen's disease (As-BD), a cutaneous carcinoma in situ, is thought to arise from gene mutation and uncontrolled proliferation. However, how mitochondria regulate the arsenic-induced cell proliferation remains unclear. The aim of this study was to clarify whether arsenic interfered with mitochondrial biogenesis and function, leading to aberrant cell proliferation in As-BD. Skin biopsy samples from patients with As-BD and controls were stained for cytochrome c oxidase (Complex IV), measured for mitochondrial DNA (mtDNA) copy number and the expression levels of mitochondrial biogenesis-related genes, including peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (mtTFA). The results showed that expression of cytochrome c oxidase, mtTFA, NRF-1, and PGC-1α was increased in As-BD compared with in healthy subjects. Treatment of primary keratinocytes with arsenic at concentrations lower than 1.0 μmol/L induced cell proliferation, along with enhanced mitochondrial biogenesis. Furthermore, we observed that the mitochondrial oxygen consumption rate and intracellular ATP level were increased in arsenic-treated keratinocytes. Blocking of mitochondrial function by oligomycin A (Complex V inhibitor) or knockdown of mtTFA by RNA interference abrogated arsenic-induced cell proliferation without affecting cyclin D1 expression. We concluded that mtTFA up-regulation, augmented mitochondrial biogenesis, and enhanced mitochondrial functions may contribute to arsenic-induced cell proliferation. Targeting mitochondrial biogenesis may help treat arsenical cancers at the stage of cell proliferation.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Department of Dermatology, Graduate Institute of Medicine, Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tiao MM, Lin TK, Chen JB, Liou CW, Wang PW, Huang CC, Chou YM, Huang YH, Chuang JH. Dexamethasone decreases cholestatic liver injury via inhibition of intrinsic pathway with simultaneous enhancement of mitochondrial biogenesis. Steroids 2011; 76:660-6. [PMID: 21419148 DOI: 10.1016/j.steroids.2011.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mitochondria are known to be involved in cholestatic liver injury. We tested the hypothesis that glucocorticoids can modulate mitochondrial function to alleviate cholestatic liver injury. METHODS A rat model of cholestasis was established by bile duct ligation (BDL), with a sham group receiving laparotomy without BDL, and a group receiving dexamethasone (DEX) treatment after BDL. RESULTS The liver function including total bilirubin levels, alanine transaminase and aspartate transaminase activities was significantly improved in the DEX treatment group in comparison to the BDL group. There was a significant upregulation of liver peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial transcriptional factor A protein between 6 and 72 h was found in the DEX group. DEX treatment significantly down-regulated Bax, caspase 9 and caspase 3 expression induced by BDL at 24-72 h, but had little effect on the expression of caspase 8, Bcl(2,) Fas and Fas-FasL complex. Consequently, the number of apoptotic liver cells in the DEX group was significantly less than in the BDL group at 72 h. CONCLUSION Our results indicate that glucocorticoids decreases cholestatic liver injury within hours after BDL. Early glucocorticoids treatment can enhance the mitochondrial biogenesis and modulate the intrinsic but not extrinsic pathway of apoptosis following BDL.
Collapse
Affiliation(s)
- Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Choi JS, Choi KM, Lee CK. Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2011; 409:308-14. [PMID: 21575595 DOI: 10.1016/j.bbrc.2011.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 10/18/2022]
Abstract
Caloric restriction (CR) is known to extend lifespan in a variety of species; however, the mechanism remains unclear. In this study, we found that CR potentiated the mitochondrial electron transport chain (ETC) at both the transcriptional and translational levels. Indeed, mitochondrial membrane potential (MMP) was increased by CR, and, regardless of ages, overall reactive oxygen species (ROS) generation was decreased by CR. With these changes, overall growth rate of cells was maintained under various CR conditions, just like cells under a non-restricted condition. All of these data support increased efficiency and capacity of the ETC by CR, and this change might lead to extension of lifespan.
Collapse
Affiliation(s)
- Joon-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | |
Collapse
|
40
|
Serviddio G, Bellanti F, Vendemiale G, Altomare E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5:233-44. [PMID: 21476918 DOI: 10.1586/egh.11.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly understood and the mechanisms are still being elucidated. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of free radicals that in turn trigger lipid peroxidation and cell death. In this article, we review the role of mitochondria in fat metabolism, energy homeostasis and reactive oxygen species production, with a focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. The potential effects of some molecules targeted to mitochondria are also discussed.
Collapse
Affiliation(s)
- Gaetano Serviddio
- CURE (Centre for Liver Disease Research and Treatment), Department of Medical and Occupational Sciences, University of Foggia, 70124 Foggia, Italy.
| | | | | | | |
Collapse
|
41
|
Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 2010; 120:477-89. [PMID: 20473509 DOI: 10.1007/s00401-010-0697-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 01/24/2023]
Abstract
Mitochondrial-mediated oxidative stress in response to high glucose is proposed as a primary cause of dorsal root ganglia (DRG) neuron injury in the pathogenesis of diabetic neuropathy. In the present study, we report a greater number of mitochondria in both myelinated and unmyelinated dorsal root axons in a well-established model of murine diabetic neuropathy. No similar changes were seen in younger diabetic animals without neuropathy or in the ventral motor roots of any diabetic animals. These findings led us to examine mitochondrial biogenesis and fission in response to hyperglycemia in the neurites of cultured DRG neurons. We demonstrate overall mitochondrial biogenesis via increases in mitochondrial transcription factors and increases in mitochondrial DNA in both DRG neurons and axons. However, this process occurs over a longer time period than a rapidly observed increase in the number of mitochondria in DRG neurites that appears to result, at least in part, from mitochondrial fission. We conclude that during acute hyperglycemia, mitochondrial fission is a prominent response, and excessive mitochondrial fission may result in dysregulation of energy production, activation of caspase 3, and subsequent DRG neuron injury. During more prolonged hyperglycemia, there is evidence of compensatory mitochondrial biogenesis in axons. Our data suggest that an imbalance between mitochondrial biogenesis and fission may play a role in the pathogenesis of diabetic neuropathy.
Collapse
|
42
|
Balakrishnan VS, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, Castaneda-Sceppa C. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol 2010; 5:996-1002. [PMID: 20498251 DOI: 10.2215/cjn.09141209] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Muscle wasting, a common complication in chronic kidney disease (CKD), contributes to poor outcomes. Mitochondrial biogenesis is critical for the maintenance of skeletal muscle function and structural integrity. The present study--a secondary analysis from a published randomized controlled trial--examined the effect of resistance exercise training on skeletal muscle mitochondrial (mt)DNA copy number and determined its association with skeletal muscle phenotype (muscle mass and strength). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Twenty-three patients with moderate-to-severe CKD were randomized to resistance training (n = 13) or an attention-control (n = 10) group for 12 weeks. After a run-in period of a low-protein diet that continued during the intervention, mtDNA copy number in the vastus lateralis muscle was estimated by quantitative real-time PCR at baseline and 12 weeks. RESULTS Participants mean age was 64 +/- 10 (SD) years and median (interquartile range, IQR) GFR 27.5 (37.0) ml/min. There were no differences between groups at baseline. Median (IQR) mtDNA copy number was 13,713 (10,618). There was a significant increase in muscle mtDNA with exercise compared with controls (1306 [13306] versus -3747 [15467], P = 0.01). The change in muscle mtDNA copy number was positively correlated with previously reported changes in types I and II muscle fiber cross-sectional area. CONCLUSIONS In this pilot study, resistance training was highly effective in enhancing mitochondrial content in patients with moderate-to-severe CKD. This finding suggests that the mitochondrial dysfunction observed with chronic disease could potentially be restored with this exercise modality and should be investigated further.
Collapse
|
43
|
O'Brien KM, Mueller IA. The unique mitochondrial form and function of Antarctic channichthyid icefishes. Integr Comp Biol 2010; 50:993-1008. [PMID: 21558255 DOI: 10.1093/icb/icq038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antarctic icefishes of the family Channichthyidae are the only vertebrate animals that as adults do not express the circulating oxygen-binding protein hemoglobin (Hb). Six of the 16 family members also lack the intracellular oxygen-binding protein myoglobin (Mb) in the ventricle of their hearts and all lack Mb in oxidative skeletal muscle. The loss of Hb has led to substantial remodeling in the cardiovascular system of icefishes to facilitate adequate oxygenation of tissues. One of the more curious adaptations to the loss of Hb and Mb is an increase in mitochondrial density in cardiac myocytes and oxidative skeletal muscle fibers. The proliferation of mitochondria in the aerobic musculature of icefishes does not arise through a canonical pathway of mitochondrial biogenesis. Rather, the biosynthesis of mitochondrial phospholipids is up-regulated independently of the synthesis of proteins and mitochondrial DNA, and newly-synthesized phospholipids are targeted primarily to the outer-mitochondrial membrane. Consequently, icefish mitochondria have a higher lipid-to-protein ratio compared to those from red-blooded species. Elevated levels of nitric oxide in the blood plasma of icefishes, compared to red-blooded notothenioids, may mediate alterations in mitochondrial density and architecture. Modifications in mitochondrial structure minimally impact state III respiration rates but may significantly enhance intracellular diffusion of oxygen. The rate of oxygen diffusion is greater within the hydrocarbon core of membrane lipids compared to the aqueous cytosol and impeded only by proteins within the lipid bilayer. Thus, the proliferation of icefish's mitochondrial membranes provides an optimal conduit for the intracellular diffusion of oxygen and compensates for the loss of Hb and Mb. Currently little is known about how mitochondrial phospholipid synthesis is regulated and integrated into mitochondrial biogenesis. The unique architecture of the oxidative muscle cells of icefishes highlights the need for further studies in this area.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA.
| | | |
Collapse
|
44
|
Tabbi-Anneni I, Cooksey R, Gunda V, Liu S, Mueller A, Song G, McClain DA, Wang L. Overexpression of nuclear receptor SHP in adipose tissues affects diet-induced obesity and adaptive thermogenesis. Am J Physiol Endocrinol Metab 2010; 298:E961-70. [PMID: 20124506 PMCID: PMC2867367 DOI: 10.1152/ajpendo.00655.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The orphan nuclear receptor small heterodimer partner (SHP) regulates metabolic pathways involved in hepatic bile acid production and both lipid and glucose homeostasis via the transcriptional repression of other nuclear receptors. In the present study, we generated fat-specific SHP-overexpressed transgenic (TG) mice and determined the potential role of SHP activation, specifically in adipocytes, in the regulation of adipose tissue function in response to stressors. We determined in 2 mo-old SHP TG mice body weight, fat mass index, adipose tissues morphology, thermogenic and metabolic gene expression, metabolic rates at baseline and in response to beta adrenergic receptor agonists, and brown fat ultrastructural changes in response to cold exposure (6-48 h). Mice were fed a 10-wk high-fat diet (HFD; 42% fat). Weight gain, fat mass index, adipose tissues morphology, glucose tolerance, and metabolic rates were determined at the end of the feeding. Young TG mice had increased body weight and adiposity; however, their energy metabolism was increased and brown fat function was enhanced in response to cold exposure through the activation of thermogenic genes and mitochondrial biogenesis. SHP overexpression exacerbated the diet-induced obesity phenotype as evidence by marked weight gain over time, increased adiposity, and severe glucose intolerance compared with wild-type mice fed a HFD. In addition, SHP-TG mice fed HFD had decreased diet-induced adaptive thermogenesis, increased food intake, and decreased physical activity. In conclusion, SHP activation in adipocytes strongly affects weight gain and diet-induced obesity. Developing a synthetic compound to antagonize the effect of SHP may prove to be useful in treating obesity.
Collapse
Affiliation(s)
- Imene Tabbi-Anneni
- Department of Medicine, and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Early transcriptional deregulation of hepatic mitochondrial biogenesis and its consequent effects on murine cholestatic liver injury. Apoptosis 2009; 14:890-9. [DOI: 10.1007/s10495-009-0357-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Bailey SM, Mantena SK, Millender-Swain T, Cakir Y, Jhala NC, Chhieng D, Pinkerton KE, Ballinger SW. Ethanol and tobacco smoke increase hepatic steatosis and hypoxia in the hypercholesterolemic apoE(-/-) mouse: implications for a "multihit" hypothesis of fatty liver disease. Free Radic Biol Med 2009; 46:928-38. [PMID: 19280709 PMCID: PMC2775483 DOI: 10.1016/j.freeradbiomed.2009.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although epidemiologic studies indicate that combined exposure to cigarette smoke and alcohol increase the risk and severity of liver diseases, the molecular mechanisms responsible for hepatotoxicity are unknown. Similarly, emerging evidence indicates a linkage among hepatic steatosis and cardiovascular disease. Herein, we hypothesize that combined exposure to alcohol and environmental tobacco smoke (ETS) on a hypercholesterolemic background increases liver injury through oxidative/nitrative stress, hypoxia, and mitochondrial damage. To test this, male apoE(-/-) mice were exposed to an ethanol-containing diet, ETS alone, or a combination of the two, and histology and functional endpoints were compared to filtered-air-exposed, ethanol-naïve controls.Whereas ethanol consumption induced a mild steatosis, combined exposure to ethanol + ETS resulted in increased hepatic steatosis, inflammation, alpha-smooth muscle actin, and collagen. Exposure to ethanol + ETS induced the largest increase in CYP2E1 and iNOS protein, as well as increased 3-nitrotyrosine, mtDNA damage, and decreased cytochrome c oxidase protein, compared to all other groups. Similarly, the largest increase in HIF1alpha expression was observed in the ethanol + ETS group, indicating enhanced hypoxia. These studies demonstrate that ETS increases alcohol-dependent steatosis and hypoxic stress. Therefore, ETS may be a key environmental "hit" that accelerates and exacerbates alcoholic liver disease in hypercholesterolemic apoE(-/-) mice.
Collapse
Affiliation(s)
- Shannon M Bailey
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 2009; 46:842-9. [PMID: 19217910 DOI: 10.1016/j.yjmcc.2009.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/22/2022]
Abstract
Diabetes is recognized as an independent risk factor for cardiovascular morbidity and mortality. This is due, in large part, to premature atherosclerosis, enhanced thrombogenicity and activation of systemic inflammatory programs with resultant vascular dysfunction. More enigmatic mechanisms underpinning diabetes-associated cardiac pathophysiology include the direct metabolic consequences of this disease on the myocardium. Nevertheless, a role for diabetes-associated disruption in cardiac contractile mechanics and in increasing cardiomyocyte susceptibility to ischemic-stress has been implicated independent of vascular pathology. This review will focus broadly on the direct effects of diabetes on the cardiac myocardium with more specific reference to the role of the modulation of cardiomyocyte mitochondrial function in these disease processes. This focus in part, stems from the growing recognition that in some instances mitochondrial dysfunction is central to the development of insulin resistance and diabetes, and in others, diabetes associated disruption in mitochondrial function exacerbates and accentuates the pathophysiology of diabetes.
Collapse
|
48
|
Leary SC, Sasarman F. Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes. Methods Mol Biol 2009; 554:143-162. [PMID: 19513673 DOI: 10.1007/978-1-59745-521-3_10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.
Collapse
Affiliation(s)
- Scot C Leary
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
49
|
Pörtner HO, Lannig G. Chapter 4 Oxygen and Capacity Limited Thermal Tolerance. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(08)00004-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
50
|
Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens 2008; 26:831-43. [PMID: 18398321 DOI: 10.1097/hjh.0b013e3282f624a0] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The obesity pandemic is closely related to hypertension and metabolic syndrome. Visceral adipose tissue plays a key role in the metabolic and cardiovascular complications of being overweight. The pathophysiological link between visceral adiposity and cardiometabolic complications focuses on insulin sensitivity, sympathetic nervous system, renin-angiotensin-aldosterone system (RAAS) and, only recently, on cardiac natriuretic peptide system (CNPS). RAAS and CNPS are endogenous antagonistic systems on sodium balance, cardiovascular system, and metabolism. The circulating RAAS is dysregulated in obese patients, and adipose tissue has a full local renin-angiotensin system that is active at local and systemic level. Adipocyte biology and metabolism are influenced by local renin-angiotensin system, with angiotensin II acting as a 'growth factor' for adipocytes. CNPS induces natriuresis and diuresis, reduces blood pressure, and, moreover, has powerful lipolytic and lipomobilizing activity in humans but not in rodents. In obesity, lower plasmatic natriuretic peptides levels with increasing BMI, waist circumference, and metabolic syndrome have been documented. Thus, reduced CNPS effects coupled with increased RAAS activity have a central role in obesity and its deadly complications. We propose herein an integrated view of the dysregulation of these two antagonistic systems in human obesity complicated with hypertension, metabolic syndrome, and increased cardiovascular risk.
Collapse
|