1
|
Zhao X, Lin T, Jiang W, Lin Y, Xiao L, Tian Y, Ma K, Zhang C, Ji F, Mahsa GC, Rui X, Li W. Lactobacillus helveticus LZ-R-5 Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Enhancing Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:464-477. [PMID: 39688942 DOI: 10.1021/acs.jafc.4c07895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lactobacillus helveticus LZ-R-5 (R-5), a strain with high epithelial adhesion and bioactive exopolysaccharide production, was isolated from Tibetan kefir grains. This study investigated its potential to alleviate intestinal inflammation using a DSS-induced colitis model in BALB/c mice. We integrated microbial diversity and serological analyses to assess changes in gut flora and cytokines following the R-5 treatment. Pathological assessments showed that R-5 reduced crypt distortion in the proximal colon and mitigated hepatic immune challenges by enhancing gut barrier function. The increased relative expression of TGF-β1 and the downregulation of NLRP3-related inflammatory factors were conducive to preventing organ damage in the thymus and spleen of mice with colitis. Additionally, R-5 stimulated GPR43 expression and improved epithelial nutrition, promoting mucin production to prevent enterotoxin leakage. It also modulated the gut microbiota by suppressing Bacteroides and Erysipelatoclostridium, leading to a microbiota composition more akin to that of normal flora.
Collapse
Affiliation(s)
- Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tao Lin
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, PR China
| | - Wenkai Jiang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yihan Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjing 301617, PR China
| | - Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yufang Tian
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
2
|
Li P, Luo J, Jiang Y, Pan X, Dong M, Chen B, Wang J, Zhou H, Jiang H, Duan Y, Lin N. Downregulation of OATP2B1 by proinflammatory cytokines leads to 5-ASA hyposensitivity in Ulcerative colitis. Chem Biol Interact 2024; 398:111074. [PMID: 38844255 DOI: 10.1016/j.cbi.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
5-Aminosalicylic acid (5-ASA) is a first-line agent in both remission and maintenance therapy for ulcerative colitis (UC). However, the mucosal concentration of 5-ASA was significantly lower in patients with severe histological inflammation, which further led to a poor response to 5-ASA treatment. Our study aimed to clarify the mechanism of 5-ASA uptake into colonic epithelial cells and to further explore the reason for the decreased colonic mucosal 5-ASA concentration in UC patients. Our results demonstrated that the colonic 5-ASA concentration was notably reduced in DSS-induced colitis mice and inversely correlated with colonic inflammation. 5-ASA was not a substrate of carnitine/organic cation transporter 1/2 (OCTN1/2) or multidrug resistance protein 1 (MDR1), whereas organic anion transporting polypeptide 2B1 (OATP2B1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) mediated the uptake of 5-ASA, with a greater contribution from OATP2B1 than SMCT1. Inhibitors and siRNAs targeting OATP2B1 significantly reduced 5-ASA absorption in colonic cell lines. Moreover, OATP2B1 expression was dramatically downregulated in colon tissues from UC patients and dextran sodium sulfate (DSS)-induced colitis mice, and was also negatively correlated with colonic inflammation. Mechanistically, mixed proinflammatory cytokines downregulated the expression of OATP2B1 in a time- and concentration-dependent manner through the hepatocyte nuclear factor 4 α (HNF4α) pathway. In conclusion, OATP2B1 was the pivotal transporter involved in colonic 5-ASA uptake, which indicated that inducing OATP2B1 expression may be a strategy to promote 5-ASA uptake and further improve the concentration and anti-inflammatory efficacy of 5-ASA in UC.
Collapse
Affiliation(s)
- Ping Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyi Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jinhai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yangri Duan
- Department of Gastroenterology, The Third People's Hospital of Yuhang District, Hangzhou, China.
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Department of Gastroenterology, The Third People's Hospital of Yuhang District, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Partovi M, Rezayati S, Ramazani A, Ahmadi Y, Taherkhani H. Recyclable mesalamine-functionalized magnetic nanoparticles (mesalamine/GPTMS@SiO 2@Fe 3O 4) for tandem Knoevenagel-Michael cyclocondensation: grinding technique for the synthesis of biologically active 2-amino-4 H-benzo[ b]pyran derivatives. RSC Adv 2023; 13:33566-33587. [PMID: 38020042 PMCID: PMC10658220 DOI: 10.1039/d3ra06560j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
In the present study, mesalamine-functionalized on magnetic nanoparticles (mesalamine/GPTMS@SiO2@Fe3O4) is fabricated as an efficient and magnetically recoverable nanocatalyst. The as-prepared nanocatalyst was successfully synthesized in three steps using a convenient and low-cost method via modification of the surface of Fe3O4 nanoparticles with silica and GPTMS, respectively, to afford GPTMS@SiO2@Fe3O4. Finally, treatment with mesalamine as a powerful antioxidant generates the final nanocatalyst. Then, its structure was characterized by FT-IR, SEM, TEM, EDX, XRD, BET, VSM, and TGA techniques. The average size was found to be approximately 38 nm using TEM analysis and the average crystallite size was found to be approximately 27.02 nm using XRD analysis. In particular, the synthesized nanocatalyst exhibited strong thermal stability up to 400 °C and high magnetization properties. The activity of the synthesized nanocatalyst was evaluated in the tandem Knoevenagel-Michael cyclocondensation of various aromatic aldehydes, dimedone and malononitrile under a dry grinding method at room temperature to provide biologically active 2-amino-4H-benzo[b]pyran derivatives products in a short time with good yields. The presented procedure offers several advantages including gram-scale synthesis, good green chemistry metrics (GCM), easy fabrication of the catalyst, atom economy (AE), no use of column chromatography, and avoiding the generation of toxic materials. Furthermore, the nanocatalyst can be reused for 8 cycles with no loss of performance by using an external magnet.
Collapse
Affiliation(s)
- Mahdiyeh Partovi
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| | - Yavar Ahmadi
- Department of Chemistry Education, Farhangian University P. O. Box 14665-889, Tehran Iran
| | - Hooman Taherkhani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
4
|
Othman SA, Abou-Ghadir OF, Ramadan WS, Mostafa YA, El-Awady R, Abdu-Allah HHM. The design, synthesis, biological evaluation, and molecular docking of new 5-aminosalicylamide-4-thiazolinone hybrids as anticancer agents. Arch Pharm (Weinheim) 2023; 356:e2300315. [PMID: 37551741 DOI: 10.1002/ardp.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
New 5-aminosalicylamide-4-thiazolinone hybrids (27) were efficiently synthesized, characterized, and evaluated to explore their structure-activity relationship as anticancer agents. The antiproliferative activities of the new hybrids were evaluated against eight cancer cell lines using the sulforhodamine B assay. The most potent compound (24b) possessed high selectivity on the tested cell lines in the low micromolar range, with much lower effects on normal fibroblast cells (IC50 > 50 µM). The cell lines derived from leukemia (Jurkat), cervix (HeLa), and colon (HCT116) cancers appeared to be the most sensitive, with IC50 of 2 µM. 24b is the N-ethylamide derivative with p-dimethylaminobenzylidene at position 5 of the 4-thiazolinone moiety. Other N-substituents or arylidene derivatives showed lower activity. Hybrids with salicylamides showed lower activity than with methyl salicylate. The results clearly show that the modifications of the carboxy group and arylidene moiety greatly affect the activity. Investigating the possible molecular mechanisms of these hybrids revealed that they act through cell-cycle arrest and induction of apoptosis and epidermal growth factor receptor (EGFR) inhibition. Molecular docking studies rationalize the molecular interactions of 24b with EGFR. This work expands our knowledge of the structural requirements to improve the anticancer activity of 5-aminosalicylic-thiazolinone hybrids and pave the way toward multitarget anticancer salicylates.
Collapse
Affiliation(s)
- Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Ghorbanzadeh F, Jafari-Gharabaghlou D, Dashti MR, Hashemi M, Zarghami N. Advanced nano-therapeutic delivery of metformin: potential anti-cancer effect against human colon cancer cells through inhibition of GPR75 expression. Med Oncol 2023; 40:255. [PMID: 37515667 DOI: 10.1007/s12032-023-02120-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The high incidence rate coupled with significant mortality makes colorectal cancer one of the most prevalent and devastating cancers worldwide. Research is currently underway to explore new forms of treatment that could potentially maximize treatment outcomes while minimizing the side effects associated with conventional chemotherapy. Metformin, a natural biguanide drug, has anti-cancer properties that can inhibit the growth and proliferation of cancer cells. However, due to its short half-life and low bioavailability, the efficacy of Metf as an anti-cancer agent is limited. The purpose of this research is to assess the potency of PEGylated niosomes as a nano-delivery system for Metf, with the aim of increasing its anti-cancer effects on CaCo2 colorectal cancer cells through the effect on the expression of genes, including GPR75, hTERT, Bax, Bcl2, and Cyclin D1. Metf-loaded niosomal NPs (N-Metf) were synthesized using the thin-film hydration method and then characterized using SEM, FTIR, AFM, and DLS techniques. The release pattern of the drug from the nanoparticles (NPS) was determined using the dialysis membrane method. Furthermore, the cytotoxic effect of the metformin-loaded PEGylated niosome on the CaCo2 cell line was evaluated by the MTT test. Additionally, an apoptosis assay was conducted to assess the effect of free Metf and Metf-loaded NPS on the programmed death of the CaCo2 cells, and the impact on the cell cycle was studied through a cell cycle test. Finally, the expression levels of hTERT, Cyclin D1, BCL2, GPR75, and BAX genes were assessed in the presence of free Metf and Metf-loaded NPs by RT-PCR. Characterization experiments showed successful loading of metformin into PEGylated niosomes. The results of cytotoxicity evaluation showed that Metf-NPs had more cytotoxicity than free Metf in a dose-dependent manner. Furthermore, nuclear fragmentation and the percentage of apoptotic cells induced by Metf-NPs were significantly higher than those induced by free Metf. Additionally, Metf-NPs were found to induce more cell cycle arrest at the sub-G1 checkpoint than free Metf did. Compared with Metf-treated cells, the mRNA expression levels of GPR75, Cyclin D1, and hTERT were significantly changed in cells treated with Metf-NPs. Ultimately, it is hypothesized the nano-encapsulation of Metf into PEGylated niosomal NPs could be a worthwhile drug delivery system to enhance its effectiveness in treating colorectal cancer cells.
Collapse
Affiliation(s)
- Fatemeh Ghorbanzadeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Dashti
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
6
|
Słoka J, Madej M, Strzalka-Mrozik B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023; 28:5081. [PMID: 37446747 DOI: 10.3390/molecules28135081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoprevention is one of the ways to fight colorectal cancer, which is a huge challenge in oncology. Numerous pieces of evidence indicate that chronic inflammation in the course of Crohn's disease or ulcerative colitis (UC) is a significant cancer risk factor. Epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), including mesalazine, has beneficial effects on colitis-associated colorectal cancer. Mesalazine is a first-line therapy for UC and is also widely used for maintaining remission in UC. Data showed that mesalazine has antiproliferative properties associated with cyclooxygenase (COX) inhibition but can also act through COX-independent pathways. This review summarizes knowledge about mesalazine's molecular mechanisms of action and chemopreventive effect by which it could interfere with colorectal cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Joanna Słoka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater 2022; 152:495-506. [PMID: 36087871 DOI: 10.1016/j.actbio.2022.08.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Despite the extensive explorations of nanoscale metal-organic frameworks (nanoMOFs) in drug delivery, the intrinsic bioactivity of nanoMOFs, such as anticancer activity, is severely underestimated owing to the overlooked integration of the hierarchical components including nanosized MOFs and molecular-level organic ligands and metal-organic complexes. Herein, we propose a de novo design of multifunctional bioactive nanoMOFs ranging from molecular to nanoscale level, and demonstrate this proof-of-concept by a copper-olsalazine (Olsa, a clinically approved drug for inflammatory bowel disease, here as a bioactive linker and DNA hypomethylating agent) nanoMOF displaying a multifaceted anticancer mechanism: (1) Cu-Olsa nanoMOF-mediated redox dyshomeostasis for enhanced catalytic tumor therapy, (2) targeting downregulation of cyclooxygenase-2 by the organic complex of Cu2+ and Olsa, and (3) Olsa-mediated epigenetic regulation. Cu-Olsa nanoMOF displayed an enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors, improved the expression of tumor suppressors TIMP3 and AXIN2 by epigenetic modulation, and fulfilled selective inhibition of colorectal cancer cells over normal cells. The hyaluronic acid-modified nanoMOF further verified the efficient suppression of CT26 colorectal tumor growth and metastasis in murine models. Overall, these results suggest that Olsa-based MOF presents a platform of epigenetic therapy-synergized nanomedicine for efficient cancer treatment and provides a powerful strategy for the design of intrinsically bioactive nanoMOFs. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs) with intrinsic bioactivities such as anticancer and antibacterial activity are of great interest. Herein, we reported a bioactive copper-olsalazine (Cu-Olsa) nanoMOF as a nanodrug for colorectal cancer treatment. This nanoMOF per se displayed enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors for nanocatalytic tumor therapy. Upon dissociation into small molecular copper-organic complex and olsalazine in cancer cells, COX-2 inhibition and epigenetic modulation were fulfilled for selective inhibition of colorectal cancer growth and metastasis.
Collapse
|
8
|
Sun K, Yu J, Hu J, Chen J, Song J, Chen Z, Cai Z, Lu Z, Zhang L, Wang Z. Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment. Acta Biomater 2022; 148:230-243. [PMID: 35724919 DOI: 10.1016/j.actbio.2022.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022]
Abstract
The delivery of salicylic acid or its derivatives to tumor tissue in the form of nanomedicine is critical for the studies on their potential synergistic mechanism in tumor therapy and chemoprevention considering the dangerous bleeding in the high-dose oral administration. To deepen the understanding of their role in adjusting immunosuppressive tumor microenvironment (ITM), herein, we firstly developed a hypoxia-sensitive Fe-5,5'-azosalicylic acid nanoscale coordination polymer nanomedicines (FeNCPs) via a "old drugs new tricks" strategy for synergistic chemodynamic therapy (CDT) and remodulation of ITM to elevate antitumor immunotherapy effect. PEGylated FeNCPs could be reductively cleaved to release 5-aminosalicylic acid (5-ASA) and ferric ions by azo-reductase under hypoxic conditions, which could induce tumor cell death by Fenton reaction-catalysis enhanced CDT and 5-ASA-converted carboxylquinone to promote the production of •OH. Meanwhile, cyclooxygenase-2 (COX-2) and its enzymatic product prostaglandin E2 (PGE2), as immune negative regulatory molecules, can promote tumor progression and immune tolerance. The released 5-ASA as a COX inhibitor could suppress the expression of PGE2, and Fe3+ was employed to reeducate M2-like tumor-associated macrophages (TAMs) to M1-like phenotype, which could initiate antitumor immune response to reach better antitumor immunotherapy. This work broadens the application of salicylic acid derivatives in antitumor immunotherapy, and provides a new strategy for their "old drugs new tricks". STATEMENT OF SIGNIFICANCE: Cyclooxygenase-2 (COX-2) and its enzymatic product prostaglandin E2 (PGE2), as immune negative regulatory molecules, facilitate the differentiation of immune cells into immunosuppressive cells to build the immunosuppressive tumor microenvironment, which can promote tumor progression and immune tolerance. Thus, down-regulation of COX-2/PGE2 expression may be a key approach to tumor treatments. Meanwhile, as a class of inhibitors of COX-2/PGE2, the potential mechanism of aspirin or 5-aminosalicylic acid has been a mystery in tumor therapy and chemoprevention. To expand the application of aspirin family nanomedicine in biomedicine, herein, we firstly developed a hypoxia-sensitive Fe-5,5'-azosalicylic acid nanoscale coordination polymer nanomedicines via a "old drugs new tricks" strategy for synergistic chemodynamic therapy and remodulation of immunosuppressive tumor microenvironment to elevate antitumor immunotherapy effect.
Collapse
Affiliation(s)
- Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhuoxuan Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Liming Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
9
|
Takakura H, Horinaka M, Imai A, Aono Y, Nakao T, Miyamoto S, Iizumi Y, Watanabe M, Narita T, Ishikawa H, Mutoh M, Sakai T. Sodium salicylate and 5-aminosalicylic acid synergistically inhibit the growth of human colon cancer cells and mouse intestinal polyp-derived cells. J Clin Biochem Nutr 2022; 70:93-102. [PMID: 35400827 PMCID: PMC8921728 DOI: 10.3164/jcbn.21-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse. The combination induced cell-cycle arrest at the G1 phase along with inhibition of cell growth and colony-forming ability in these cells. The combination reduced cyclin D1 via proteasomal degradation and activated retinoblastoma protein. The combination inhibited the colony-forming ability of mouse colonic mucosa cells by about 50% and the colony-forming ability of mouse intestinal polyp-derived cells by about 90%. The expression level of cyclin D1 in colon mucosa cells was lower than that in intestinal polyp-derived cells. These results suggest that this combination may be more effective in inhibiting cell growth of intestinal polyps through cyclin D1 down-regulation.
Collapse
Affiliation(s)
- Hideki Takakura
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Ayaka Imai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Yuichi Aono
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshimasa Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Shingo Miyamoto
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| |
Collapse
|
10
|
Tang-Fichaux M, Branchu P, Nougayrède JP, Oswald E. Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet? Toxins (Basel) 2021; 13:toxins13120897. [PMID: 34941734 PMCID: PMC8703417 DOI: 10.3390/toxins13120897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Jean-Philippe Nougayrède
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
- Service de Bactériology-Hygiène, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
11
|
Nayar S, Cho JH. From single-target to cellular niche targeting in Crohn's disease: intercepting bad communications. EBioMedicine 2021; 74:103690. [PMID: 34773892 PMCID: PMC8601974 DOI: 10.1016/j.ebiom.2021.103690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mainstay of moderate to severe Crohn's disease (CD), anti-TNF treatment, shows no clinical benefit in ∼40% of patients, likely due to incomplete cellular targeting and delayed treatment institution. While single-target therapeutics have been highly effective for some CD patients, substantial limitations with respect to safety, efficacy, and long-term, complete remission remain. Deconvolution of the cellular and molecular circuitry of tissue lesions underscores the importance of combinatorial strategies targeting cellular niches. This review aims to evaluate current therapeutic approaches used to manage CD, and highlight recent advances to our cellular, genetic, and molecular understanding of mechanisms driving pathogenic niche activation in CD. We propose new frameworks outlining that combinatorial therapies, along with serial tissue sampling and studies guided by genetics and genomics, can advance on current treatment approaches and will inform newer strategies upon which we can move towards precision therapeutics in IBD.
Collapse
Affiliation(s)
- Shikha Nayar
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Hess CSM Building Room 8-201, New York, NY 10029, USA.
| | - Judy H Cho
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Hess CSM Building Room 8-201, New York, NY 10029, USA
| |
Collapse
|
12
|
Beiranvand M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): an anti-ulcer and anti-oxidant drug. Inflammopharmacology 2021; 29:1279-1290. [PMID: 34410540 DOI: 10.1007/s10787-021-00856-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Mesalazine, also known as 5-aminosalicylic acid (5-ASA), is a synthetic drug from the family of nonsteroidal anti-inflammatory drugs (NSAIDs) used for inflammatory diseases of the gastrointestinal tract. However, 5-ASA has also been used for various other diseases due to its pharmacological effects, but they are usually scattered across various publications, which may limit further research and clinical use of this drug. This review is a summary of published information on the biological and pharmacological effects of 5-ASA with the aim of identifying its anti-oxidant role and medicinal use. 5-ASA data have been collected from 1987 to February 2021 using major databases such as Web of Science, PubMed, Elsevier, Wiley Online Library, Springer, Google Scholar, etc. According to research, the pharmacological and biological effects of 5-ASA include treatment of inflammatory bowel disease, and anti-oxidant, anti-inflammatory, antibacterial, antifungal, anticancer, anti-amyloid, gastric protection (gastroprotective), and antidiverticulosis properties. Numerous pharmacological studies have shown that 5-ASA is an anti-oxidant and anti-ulcer compound with high therapeutic potential that, if the appropriate dose is discovered, its chemical structure changes and its effectiveness is optimized, 5-ASA has been used experimentally for other diseases.
Collapse
Affiliation(s)
- Mohammad Beiranvand
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
13
|
5-Aminosalicylic acid inhibits stem cell function in human adenoma-derived cells: implications for chemoprophylaxis in colorectal tumorigenesis. Br J Cancer 2021; 124:1959-1969. [PMID: 33785874 PMCID: PMC8184823 DOI: 10.1038/s41416-021-01354-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
Background Most colorectal cancers (CRC) arise sporadically from precursor lesions: colonic polyps. Polyp resection prevents progression to CRC. Risk of future polyps is proportional to the number and size of polyps detected at screening, allowing identification of high-risk individuals who may benefit from effective chemoprophylaxis. We aimed to investigate the potential of 5-aminosalicylic acid (5-ASA), a medication used in the treatment of ulcerative colitis, as a possible preventative agent for sporadic CRC. Methods Human colorectal adenoma (PC/AA/C1, S/AN/C1 and S/RG/C2), transformed adenoma PC/AA/C1/SB10 and carcinoma cell lines (LS174T and SW620) were treated with 5-ASA. The effect on growth in two- and three-dimensional (3D) culture, β-catenin transcriptional activity and on cancer stemness properties of the cells were investigated. Results 5-ASA was shown, in vitro, to inhibit the growth of adenoma cells and suppress β-catenin transcriptional activity. Downregulation of β-catenin was found to repress expression of stem cell marker LGR5 (leucine-rich G protein-coupled receptor-5) and functionally suppress stemness in human adenoma and carcinoma cells using 3D models of tumorigenesis. Conclusions 5-ASA can suppress the cancer stem phenotype in adenoma-derived cells. Affordable and well-tolerated, 5-ASA is an outstanding candidate as a chemoprophylactic medication to reduce the risk of colorectal polyps and CRC in those at high risk.
Collapse
|
14
|
Cheon JH. Advances in Management of Intestinal Behçet's Disease: A Perspective From Gastroenterologists. JOURNAL OF RHEUMATIC DISEASES 2021; 28:4-16. [PMID: 37476392 PMCID: PMC10324954 DOI: 10.4078/jrd.2021.28.1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 07/22/2023]
Abstract
Intestinal Behçet's disease (intestinal BD) is a rare chronic inflammatory disorder of the intestine that is characterized by recurrent intestinal manifestations with other systemic features of BD. Intestinal BD is diagnosed when a typically shaped ulcer is observed in the gastrointestinal tract, and the clinical findings meet the diagnostic criteria for BD. Owing to the small number of patients, intestinal BD is easily underestimated. On the other hand, but it often requires surgical treatment because of severe complications, including intestinal perforations or massive bleeding. The same treatment strategies used for inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, are used for intestinal BD. 5-Aminosalicylic acids, corticosteroids, and immunomodulators are considered conventional therapies, but a considerable number of patients eventually become unresponsive to these pharmaceutical treatments. Recently, biologic agents, such as anti-tumor necrosis factor-alpha inhibitors, have also been suggested as a new treatment option for intestinal BD. This article reviews the pathogenesis and diagnosis of intestinal BD and the current treatment strategies that are expected to be useful for rheumatologic specialists.
Collapse
Affiliation(s)
- Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Induction of DNA damage, apoptosis and cell cycle perturbation mediate cytotoxic activity of new 5-aminosalicylate–4-thiazolinone hybrid derivatives. Biomed Pharmacother 2020; 131:110571. [DOI: 10.1016/j.biopha.2020.110571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022] Open
|
16
|
Rafoxanide Induces Immunogenic Death of Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12051314. [PMID: 32455811 PMCID: PMC7281008 DOI: 10.3390/cancers12051314] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related death in the world. Emerging evidence suggests that the clinical success of conventional chemotherapy does not merely rely on cell toxicity, but also results from the restoration of tumor immune surveillance. Anti-tumor immune response can be primed by immunogenic cell death (ICD), a form of apoptosis associated with endoplasmic reticulum stress (ERS) induction and the expression/release of specific damage-associated molecular patterns (DAMPs). Unfortunately, a limited number of ICD inducers have been identified so far. The anti-helmintic drug rafoxanide has recently showed anti-tumor activity in different cancer types, including CRC. As such latter effects relied on ERS activation, we here investigated whether rafoxanide could promote ICD of CRC cells. The potential of rafoxanide to induce ICD-related DAMPs in both human and mouse CRC cells was assessed by flow-cytometry, chemiluminescent assay and ELISA. In addition, the immunogenic potential of rafoxanide was assessed in vivo using a vaccination assay. Rafoxanide induced all the main DAMPs (ecto-calreticulin exposure, adenosine triphosphate (ATP)/high mobility group box 1 (HMGB1) release) required for ICD. We observed a marked increase of tumor-free survival among immunocompetent mice immunized with rafoxanide-treated dying tumor cells as compared with sham. Altogether, our data indicate rafoxanide as a bona fide ICD inducer.
Collapse
|
17
|
Li M, Luo T, Huang Y, Su J, Li D, Chen X, Zhang Y, Huang L, Li S, Jiao C, Li W, Xie Y, Li W. Polysaccharide from Pycnoporus sanguineus ameliorates dextran sulfate sodium-induced colitis via helper T cells repertoire modulation and autophagy suppression. Phytother Res 2020; 34:2649-2664. [PMID: 32281697 DOI: 10.1002/ptr.6695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disease associated with various risk factors. Pycnoporus sanguineus (L.) Murrill is a saprotrophic fungus used worldwide for its industrial and medical purposes. Here, polysaccharide from P. sanguineus (PPS) was explored for its antiinflammatory potential in a murine colitis model of IBD induced by dextran sulfate sodium (DSS). PPS ameliorated the colitis as manifested by the lowered disease activity index (DAI), prolonged colon, and reduced serum lipopolysaccharide (LPS). PPS recovered the histological lesion by upregulating the expressions of Zonula occludens-1 (ZO-1), E-cadherin, and proliferating cell nuclear antigen (PCNA). PPS inhibited the helper T cells (Th)-mediated immune response by decreasing the proportions of Th cells (including Th2 cells, Th17 cells, and regulatory T cells), which was accompanied with reductions on myeloperoxidase (MPO) activity and releases of several interleukins and chemokines within the colon. Moreover, PPS exhibited an evident inhibition on autophagy, in which the ratio of light chain 3 (LC3) II/I was declined, while the expression of p62 and Beclin-1 was increased. The present study highlighted important clinical implications for the treatment application of PPS against IBD, which relies on the regulation of Th cells repertoire and autophagy suppression to restore epithelium barrier.
Collapse
Affiliation(s)
- Muxia Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ting Luo
- Jinan University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, People's Republic of China
| | - Yong Huang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Dan Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Xiaohong Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yifan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Longhua Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Shunxian Li
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratoryof Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-ASA) in treatment of inflammatory bowel diseases: An in vitro study. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Laudisi F, Cherubini F, Di Grazia A, Dinallo V, Di Fusco D, Franzè E, Ortenzi A, Salvatori I, Scaricamazza S, Monteleone I, Sakamoto N, Monteleone G, Stolfi C. Progranulin sustains STAT3 hyper-activation and oncogenic function in colorectal cancer cells. Mol Oncol 2019; 13:2142-2159. [PMID: 31361391 PMCID: PMC6763778 DOI: 10.1002/1878-0261.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent activation of Signal Transducer and Activator of Transcription (STAT)3 occurs in a high percentage of tumors, including colorectal cancer (CRC), thereby contributing to malignant cell proliferation and survival. Although STAT3 is recognized as an attractive therapeutic target in CRC, conventional approaches aimed at inhibiting its functions have met with several limitations. Moreover, the factors that sustain hyper-activation of STAT3 in CRC are not yet fully understood. The identification of tumor-specific STAT3 cofactors may facilitate the development of compounds that interfere exclusively with STAT3 activity in cancer cells. Here, we show that progranulin, a STAT3 cofactor, is upregulated in human CRC as compared to nontumor tissue/cells and its expression correlates with STAT3 activation. Progranulin physically interacts with STAT3 in CRC cells, and its knockdown with a specific antisense oligonucleotide (ASO) inhibits STAT3 activation and restrains the expression of STAT3-related oncogenic proteins, thus causing cell cycle arrest and apoptosis. Moreover, progranulin knockdown reduces STAT3 phosphorylation and cell proliferation induced by tumor-infiltrating leukocyte (TIL)-derived supernatants in CRC cell lines and human CRC explants. These findings indicate that CRC exhibits overexpression of progranulin, and suggest a role for this protein in amplifying the STAT3 pathway in CRC.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Fabio Cherubini
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | | | - Vincenzo Dinallo
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Davide Di Fusco
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Eleonora Franzè
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Angela Ortenzi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | | | - Silvia Scaricamazza
- IRCCS Fondazione Santa LuciaRomeItaly
- Department of BiologyUniversity of ‘Tor Vergata’RomeItaly
| | - Ivan Monteleone
- Department of Biomedicine and PreventionUniversity of ‘Tor Vergata’RomeItaly
| | - Naoya Sakamoto
- Department of Molecular PathologyHiroshima UniversityHiroshimaJapan
| | | | - Carmine Stolfi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| |
Collapse
|
20
|
Laudisi F, Di Grazia A, De Simone V, Cherubini F, Colantoni A, Ortenzi A, Franzè E, Dinallo V, Di Fusco D, Monteleone I, Fearon ER, Monteleone G, Stolfi C. Induction of endoplasmic reticulum stress and inhibition of colon carcinogenesis by the anti-helmintic drug rafoxanide. Cancer Lett 2019; 462:1-11. [PMID: 31351087 DOI: 10.1016/j.canlet.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of mortality worldwide. Drug repositioning is a promising approach for new cancer therapies, as it provides the opportunity to rapidly advance potentially promising agents into clinical trials. The FDA-approved anti-helminthic drug rafoxanide was recently reported to antagonize the oncogenic function of the BRAF V600E mutant protein, commonly found in CRCs, as well as to inhibit the proliferation of skin cancer cells. These observations prompted us to investigate the potential anti-cancer effects of rafoxanide in CRC models. We found rafoxanide inhibited proliferation in CRC cells, but not in normal colonic epithelial cells. Rafoxanide's anti-proliferative action was associated with marked reduction in cyclin D1 protein levels and accumulation of cells in the G0/G1 phase. These effects relied on selective induction of the endoplasmic reticulum stress (ERS) response in CRC cells and were followed by caspase-dependent cell death. Systemic administration of rafoxanide to Apcmin/+ mice induced to develop CRCs caused ERS activation, proliferation inhibition and apoptosis induction in the neoplastic cells. Collectively, our data suggest rafoxanide might be repurposed as an anti-cancer drug for the treatment of CRC.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Veronica De Simone
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Fabio Cherubini
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of "Tor Vergata", Rome, Italy
| | - Eric R Fearon
- Department of Internal Medicine, Human Genetics and Pathology, University of Michigan, Ann Arbor, USA
| | | | - Carmine Stolfi
- Department of Systems Medicine, University of "Tor Vergata", Rome, Italy.
| |
Collapse
|
21
|
Ma B, Duan X, Zhou Q, Liu J, Yang X, Zhang D, Yang S, Du Y, Li H, Su C. Use of aspirin in the prevention of colorectal cancer through TIGIT-CD155 pathway. J Cell Mol Med 2019; 23:4514-4522. [PMID: 31090213 PMCID: PMC6584546 DOI: 10.1111/jcmm.14332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most widespread malignant cancers, with a high incidence and mortality all over the world. Aspirin (ASA) otherwise known as acetylsalicylic acid, is a non‐steroidal anti‐inflammatory drug that has shown promising results in the prevention of chronic diseases, including several cancers. In previous studies, aspirin has been shown to reduce the incidence of CRC. Immune checkpoint blockade of T cell Ig and ITIM domain receptor (TIGIT) alone or combined with other immune checkpoint blockades moleculars has gained impressive results in the treatment of the melanoma and glioblastoma. Here, we found that TIGIT and Poliovirus receptor (PVR, CD155) are expressed in tumour cells; the TIGIT and CD155 protein expression in cancer tissue has been found to be significantly higher than that in the precancerous tissue. T cell Ig and ITIM domain receptor and CD226 were expressed in the lymphocytes near the tumour tissue and the adjacent tissues. Aspirin has been found to inhibit cancer cell viability and promote CRC cell apoptosis.Similarly, aspirin has also been found to increase pro‐apoptotic protein Bax's expression. We found that the expression of TIGIT decreased with an increase in the concentration of aspirin and that the suppression of TIGIT can affect the effect of aspirin on cell proliferation. In this paper, we found that aspirin attenuates cancer cell proliferation and induces CRC cells apoptosis by down‐regulating the expression of TIGIT, which provides new evidence for the application of aspirin in cancer treatment.
Collapse
Affiliation(s)
- Bin Ma
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Xiangguo Duan
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qiunan Zhou
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Juanxi Liu
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Yang
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dong Zhang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yong Du
- Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hai Li
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
22
|
Siegrist KJ, Romo D, Upham BL, Armstrong M, Quinn K, Vanderlinden L, Osgood RS, Velmurugan K, Elie M, Manke J, Reinhold D, Reisdorph N, Saba L, Bauer AK. Early Mechanistic Events Induced by Low Molecular Weight Polycyclic Aromatic Hydrocarbons in Mouse Lung Epithelial Cells: A Role for Eicosanoid Signaling. Toxicol Sci 2019; 169:180-193. [PMID: 30690640 PMCID: PMC6484882 DOI: 10.1093/toxsci/kfz030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are under regulated environmental contaminants (eg, secondhand smoke) that lead to gap junction dysregulation, p38 MAPK activation, and increased mRNA production of inflammatory mediators, such as cytokines and cyclooxygenase (COX2), in lung epithelial cells. However, the early mechanisms involving lipid signaling through the arachidonic acid pathway and subsequent eicosanoid production leading to these downstream events are not known. Common human exposures are to mixtures of LMW PAHs, thus C10 cells (a mouse lung epithelial cell line) were exposed to a representative binary PAH mixture, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), for 30 min-24 h with and without p38 and cytosolic phospholipase A2 (cPLA2) inhibitors. Cytosolic phospholipase A2 inhibition reversed PAH-induced phospho-p38 MAPK activation and gap junction dysregulation at 30 min. A significant biphasic increase in cPLA2 protein was observed at 30 min, 2, and 4 h, as well as COX2 protein at 2 and 8 h. Untargeted metabolomics demonstrated a similar trend with significantly changing metabolites at 30 min and 4 h of exposure relative to 1 h; a "cPLA2-like" subset of metabolites within the biphasic response were predominately phospholipids. Targeted metabolomics showed several eicosanoids (eg, prostaglandin D2 (PGD2), PGE2α) were significantly increased at 4, 8, and 12 h following exposure to the binary PAH mixture and this effect was p38-dependent. Finally, PAH metabolism was not observed until after 8 h. These results indicate an early lipid signaling mechanism of LMW PAH toxicity in lung epithelial cells due to parent PAH compounds.
Collapse
Affiliation(s)
- Katelyn J Siegrist
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - DeeDee Romo
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren Vanderlinden
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ross S Osgood
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Harvard T.H. Chan School of Public Health, Cambridge
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marc Elie
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Saba
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Effect of Long-Term Mesalamine Therapy on Cancer-Associated Gene Expression in Colonic Mucosa of Patients with Ulcerative Colitis. Dig Dis Sci 2019; 64:740-750. [PMID: 30478770 DOI: 10.1007/s10620-018-5378-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND The role of 5-aminosalicylic acid (5-ASA or mesalamine) in the prevention of colorectal cancer in ulcerative colitis (UC) patients was reported, but the effect on molecular targets in UC colon mucosa is unknown. AIM This observational study evaluates gene expression levels of 5-ASA targets using serial colon biopsy specimens from UC patients undergoing long-term 5-ASA therapy. METHODS Transcript levels were compared between colonoscopic biopsy specimens collected from 62 patients at initial and final follow-up colonoscopy at 2-6 years. All patients had mild-to-moderate UC and were undergoing long-term 5-ASA maintenance. Stepwise multiple linear regression analyses were performed to correlate changes in transcript levels with therapeutic response (Mayo clinical score endoscopy and DAI and/or Nancy histopathology score) and nonclinical variables. RESULTS The transcript levels of colorectal carcinogenesis-associated known 5-ASA target genes were significantly reduced after prolonged 5-ASA therapy (P < 0.005-0.03). Multiple linear regression models predicted significant association between transcript levels of Ki-67, NF-kB (p65), PPARγ, COX-2 and IL-8, CDC25A, and CXCL10 with duration of drug (5-ASA) exposure (P ≤ 0.05). Ki-67, NF-kB (p65), and CXCL10 transcripts were also correlated with reduced endoscopy sub-score (P ≤ 0.05). COX-2, IL-8, CDC25A, and TNF transcripts strongly correlated with DAI sub-scores (P ≤ 0.05). Only COX-2 and IL-8 transcript levels correlated (P ≤ 0.05) with Nancy histological score. CONCLUSION This study provides molecular evidence of changes in carcinogenesis-related targets/pathways in colon tissue during long-term 5-ASA maintenance therapy that may contribute to the observed chemopreventive effects of 5-ASA in UC patients.
Collapse
|
24
|
Sanapalli BKR, Kannan E, Balasubramanian S, Natarajan J, Baruah UK, Karri VVSR. Pluronic lecithin organogel of 5-aminosalicylic acid for wound healing. Drug Dev Ind Pharm 2018; 44:1650-1658. [PMID: 29848103 DOI: 10.1080/03639045.2018.1483393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
5-Aminosalicylic acid (5-ASA) is an aminosalicylate anti-inflammatory drug, which is also known as mesalazine or mesalamine. Currently employed in treating inflammatory bowel disease, ulcerative colitis, inflamed anus or rectum, and maintain remission in Crohn's disease. Evidence from the researchers highlighted its significant re-epithelization in allergic asthma, aphthous, and gastric ulcerative conditions. The objective of the study was to formulate the pluronic lecithin organogel (PLO) containing 5-ASA and evaluate its wound-healing ability in a full thickness excision wound rat model. The data obtained from in silico docking studies revealed 5-ASA is having an affinity towards the transforming growth factor-beta (TGF-β) specifically towards beta1. Among various formulations prepared (F1 to F8), F1, and F6 have shown a maximum in vitro drug release with optimum pH and viscosity. From MTT assay it was found that selected PLO formulations showed no toxicity and enhanced cell proliferation in HaCaT cell lines. In vivo wound-healing studies in albino Wistar rats has revealed that PLO accelerates wound closure and reepithelization to the statistically significant level on day 3 (p < .05) in comparison with untreated wounds. In conclusion, the overall results suggest that 5-ASA PLO gel is a potential therapeutic option for the treatments of wounds, however, further studies are highly warrened to determine the various mechanisms of 5-ASA in regulating the cell migration and reepithelization in wound healing to outspread its use in clinics.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- a Department of Pharmacology , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | - Elango Kannan
- a Department of Pharmacology , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | | | - Jawahar Natarajan
- b Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | - Uday Krishna Baruah
- b Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | | |
Collapse
|
25
|
Colussi D, Bazzoli F, Ricciardiello L. Chemoprevention of Colorectal Cancer in High-Risk Patients: from Molecular Targets to Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2017. [DOI: 10.1007/s11888-017-0364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Patel YA, McCall SJ, Zhang X, Jaffe T, Shimpi RA. Radiographic and endoscopic regression of metastatic gastric cancer to the colon in the setting of 5-aminosalicylic acid use. J Gastrointest Oncol 2017; 7:E88-E92. [PMID: 28078130 DOI: 10.21037/jgo.2016.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colonic metastases from gastric cancer are a rare phenomenon and sparsely reported in the literature. We report a case of a 59-year-old woman who presented with vague abdominal symptoms and initial computer tomography (CT) imaging suggestive of a colonic apple-core lesion with serial colonoscopic biopsies diagnostic of metastatic signet ring cell gastric adenocarcinoma. This case is unique given the evolving CT and endoscopic findings that suggested a regression in colonic wall thickening in the setting of 5-aminosalicylic acid (5-ASA) use prior to histologic diagnosis.
Collapse
Affiliation(s)
- Yuval A Patel
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shannon J McCall
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Xuefeng Zhang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Tracy Jaffe
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rahul A Shimpi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
De Simone V, Ronchetti G, Franzè E, Colantoni A, Ortenzi A, Fantini MC, Rizzo A, Sica GS, Sileri P, Rossi P, MacDonald TT, Pallone F, Monteleone G, Stolfi C. Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis. Oncotarget 2016; 6:9908-23. [PMID: 25839161 PMCID: PMC4496406 DOI: 10.18632/oncotarget.3532] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/17/2015] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-21 triggers inflammatory signals that contribute to the growth of neoplastic cells in mouse models of colitis-associated colorectal cancer (CRC). Because most CRCs are sporadic and arise in the absence of overt inflammation we have investigated the role of IL-21 in these tumors in mouse and man. IL-21 was highly expressed in human sporadic CRC and produced mostly by IFN-γ-expressing T-bet/RORγt double-positive CD3+CD8− cells. Stimulation of human CRC cell lines with IL-21 did not directly activate the oncogenic transcription factors STAT3 and NF-kB and did not affect CRC cell proliferation and survival. In contrast, IL-21 modulated the production of protumorigenic factors by human tumor infiltrating T cells. IL-21 was upregulated in the neoplastic areas, as compared with non-tumor mucosa, of Apcmin/+ mice, and genetic ablation of IL-21 in such mice resulted in a marked decrease of both tumor incidence and size. IL-21 deficiency was associated with reduced STAT3/NF-kB activation in both immune cells and neoplastic cells, diminished synthesis of protumorigenic cytokines (that is, IL-17A, IL-22, TNF-α and IL-6), downregulation of COX-2/PGE2 pathway and decreased angiogenesis in the lesions of Apcmin/+ mice. Altogether, data suggest that IL-21 promotes a protumorigenic inflammatory circuit that ultimately sustains the development of sporadic CRC.
Collapse
Affiliation(s)
- Veronica De Simone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giulia Ronchetti
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo C Fantini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Angelamaria Rizzo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Pierpaolo Sileri
- Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Piero Rossi
- Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Thomas T MacDonald
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, UK
| | - Francesco Pallone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
28
|
Saber MM, Galal MA, Ain-Shoka AA, Shouman SA. Combination of metformin and 5-aminosalicylic acid cooperates to decrease proliferation and induce apoptosis in colorectal cancer cell lines. BMC Cancer 2016; 16:126. [PMID: 26896068 PMCID: PMC4759732 DOI: 10.1186/s12885-016-2157-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The link between inflammation and cancer has been confirmed by the use of anti-inflammatory therapies in cancer prevention and treatment. 5-aminosalicylic acid (5-ASA) was shown to decrease the growth and survival of colorectal cancer (CRC) cells. Studies also revealed that metformin induced apoptosis in several cancer cell lines. METHODS We investigated the combinatory effect of 5-ASA and metformin on HCT-116 and Caco-2 CRC cell lines. Apoptotic markers were determined using western blotting. Expression of pro-inflammatory cytokines was determined by RT-PCR. Inflammatory transcription factors and metastatic markers were measured by ELISA. RESULTS Metformin enhanced CRC cell death induced by 5-ASA through significant increase in oxidative stress and activation of apoptotic machinery. Moreover, metformin enhanced the anti-inflammatory effect of 5-ASA by decreasing the gene expression of IL-1β, IL-6, COX-2 and TNF-α and its receptors; TNF-R1 and TNF-R2. Significant inhibition of activation of NF-κB and STAT3 transcription factors, and their downstream targets was also observed. Metformin also enhanced the inhibitory effect of 5-ASA on MMP-2 and MMP-9 enzyme activity, indicating a decrease in metastasis. CONCLUSION The current data demonstrate that metformin potentiates the antitumor effect of 5-ASA on CRC cells suggesting their potential use as an adjuvant treatment in CRC.
Collapse
Affiliation(s)
- Mona M Saber
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - May A Galal
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Afaf A Ain-Shoka
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Samia A Shouman
- Parmacology Unit,Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
29
|
Yousefi S, Bayat S, Rahman MBA, Ismail IS, Saki E, Leong SW, Abdulmalek E. Synthesis, bioactivity evaluation, and docking study of 5-aminosalicylic acid’s fatty acid derivatives. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Cherry LN, Yunker NS, Lambert ER, Vaughan D, Lowe DK. Vedolizumab: an α4β7 integrin antagonist for ulcerative colitis and Crohn's disease. Ther Adv Chronic Dis 2015; 6:224-33. [PMID: 26336591 DOI: 10.1177/2040622315586970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are chronic, relapsing inflammatory bowel diseases associated with significant morbidity. Conventional therapies for these diseases include corticosteroids, aminosalicylates, immunomodulators, and monoclonal antibodies. Over the years tumor necrosis factor (TNF)-α antagonists alone or in combination with other therapies have emerged as the cornerstone of treatment for induction and maintenance of remission of moderate to severe UC and CD. Unfortunately, some patients with moderate to severe UC and CD are unable to attain or maintain remission with TNF-α antagonist treatment. Vedolizumab, a humanized monoclonal antibody, is the first integrin receptor antagonist approved that selectively antagonizes α4β7 gastrointestinal integrin receptors. US Food and Drug Administration approval is for treatment of patients with moderate to severe active UC and CD who have inadequate response with, lost response to, or are intolerant to a TNF-α antagonist or an immunomodulator; or have inadequate response with, are intolerant to, or demonstrate dependence on corticosteroids. When administered according to approved dosing in patients with moderate to severe CD and UC, vedolizumab induces clinical response rates up to 31.4% and 47.1% at week 6, and clinical remission rates up to 39% and 41.8% at week 52, respectively. Serious adverse events reported with vedolizumab include serious infections, malignancies, and anaphylaxis. Since vedolizumab is gastrointestinal selective, to date, it has not shown evidence of causing progressive multifocal leukoencephalopathy; however, postmarketing studies monitoring for this adverse effect are ongoing. Further assessment of vedolizumab earlier in the course of these diseases and in combination with other therapies is warranted.
Collapse
Affiliation(s)
- Lauren N Cherry
- Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Nancy S Yunker
- Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Erika R Lambert
- Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | | | - Denise K Lowe
- Virginia Commonwealth University Health System, and Virginia Commonwealth University School of Pharmacy, 401 North 12th Street, PO Box 980042, Richmond, VA 23298, USA
| |
Collapse
|
31
|
Ujhelyi Z, Kalantari A, Vecsernyés M, Róka E, Fenyvesi F, Póka R, Kozma B, Bácskay I. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells. Molecules 2015. [PMID: 26197311 PMCID: PMC6332159 DOI: 10.3390/molecules200713226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.
Collapse
Affiliation(s)
- Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen 4032, Hungary.
| | - Azin Kalantari
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen 4032, Hungary.
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen 4032, Hungary.
| | - Eszter Róka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen 4032, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen 4032, Hungary.
| | - Róbert Póka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | - Bence Kozma
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen 4032, Hungary.
| |
Collapse
|
32
|
De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, Monteleone G, Stolfi C. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015; 34:3493-503. [PMID: 25174402 PMCID: PMC4493653 DOI: 10.1038/onc.2014.286] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022]
Abstract
Colorectal cancers (CRCs) often show a dense infiltrate of cytokine-producing immune/inflammatory cells. The exact contribution of each immune cell subset and cytokine in the activation of the intracellular pathways sustaining CRC cell growth is not understood. Herein, we isolate tumor-infiltrating leukocytes (TILs) and lamina propria mononuclear cells (LPMCs) from the tumor area and the macroscopically unaffected, adjacent, colonic mucosa of patients who underwent resection for sporadic CRC and show that the culture supernatants of TILs, but not of LPMCs, potently enhance the growth of human CRC cell lines through the activation of the oncogenic transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-kB). Characterization of immune cell complexity of TILs and LPMCs reveals no differences in the percentages of T cells, natural killer T cells, natural killer (NK) cells, macrophages and B cells. However, T cells from TILs show a functional switch compared with those from LPMCs to produce large amounts of T helper type 17 (Th17)-related cytokines (that is, interleukin-17A (IL-17A), IL-17F, IL-21 and IL-22), tumor necrosis factor-α (TNF-α) and IL-6. Individual neutralization of IL-17A, IL-17F, IL-21, IL-22, TNF-α or IL-6 does not change TIL-derived supernatant-driven STAT3 and NF-kB activation, as well as their proproliferative effect in CRC cells. In contrast, simultaneous neutralization of both IL-17A and TNF-α, which abrogates NF-kB signaling, and IL-22 and IL-6, which abrogates STAT3 signaling, reduces the mitogenic effect of supernatants in CRC cells. IL-17A, IL-21, IL-22, TNF-α and IL-6 are also produced in excess in the early colonic lesions in a mouse model of sporadic CRC, associated with enhanced STAT3/NF-kB activation. Mice therapeutically given BP-1-102, an orally bioavailable compound targeting STAT3/NF-kB activation and cross-talk, exhibit reduced colon tumorigenesis and diminished expression of STAT3/NF-kB-activating cytokines in the neoplastic areas. These data suggest that strategies aimed at the cotargeting of STAT3/NF-kB activation and interaction between them might represent an attractive and novel approach to combat CRC.
Collapse
Affiliation(s)
- V De Simone
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - E Franzè
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - G Ronchetti
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - A Colantoni
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - M C Fantini
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - D Di Fusco
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - G S Sica
- Department of Surgery, University of Rome ‘Tor Vergata', Rome, Italy
| | - P Sileri
- Department of Surgery, University of Rome ‘Tor Vergata', Rome, Italy
| | - T T MacDonald
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, UK
| | - F Pallone
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - G Monteleone
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| | - C Stolfi
- Department of Systems Medicine, University of Rome ‘Tor Vergata', Rome, Italy
| |
Collapse
|
33
|
Five-aminosalicylic Acid: an update for the reappraisal of an old drug. Gastroenterol Res Pract 2015; 2015:456895. [PMID: 25685145 PMCID: PMC4320793 DOI: 10.1155/2015/456895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises several conditions with chronic or recurring immune response and inflammation of the gastrointestinal apparatus, of which ulcerative colitis and Crohn's disease are the commonest forms. This disease has a significant prevalence and it is of an unknown aethiology. Five-aminosalicylic acid (5-ASA) and its derivatives are among the oldest drugs approved for the treatment of the IBD. In this review we reapprise aspects of 5-ASA mechanism of action, safety, and efficacy that in our opinion make it a valuable drug that can be fruitfully tailored in personalised treatments as a therapeutic option alongside other immune-modifying agents.
Collapse
|
34
|
Somsouk M, Dunham RM, Cohen M, Albright R, Abdel-Mohsen M, Liegler T, Lifson J, Piatak M, Gorelick R, Huang Y, Wu Y, Hsue PY, Martin JN, Deeks SG, McCune JM, Hunt PW. The immunologic effects of mesalamine in treated HIV-infected individuals with incomplete CD4+ T cell recovery: a randomized crossover trial. PLoS One 2014; 9:e116306. [PMID: 25545673 PMCID: PMC4283685 DOI: 10.1371/journal.pone.0116306] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The anti-inflammatory agent, mesalamine (5-aminosalicylic acid) has been shown to decrease mucosal inflammation in ulcerative colitis. The effect of mesalamine in HIV-infected individuals, who exhibit abnormal mucosal immune activation and microbial translocation (MT), has not been established in a placebo-controlled trial. We randomized 33 HIV-infected subjects with CD4 counts <350 cells/mm3 and plasma HIV RNA levels <40 copies/ml on antiretroviral therapy (ART) to add mesalamine vs. placebo to their existing regimen for 12 weeks followed by a 12 week crossover to the other arm. Compared to placebo-treated subjects, mesalamine-treated subjects did not experience any significant change in the percent CD38+HLA-DR+ peripheral blood CD4+ and CD8+ T cells at week 12 (P = 0.38 and P = 0.63, respectively), or in the CD4+ T cell count at week 12 (P = 0.83). The percent CD38+HLA-DR+ CD4+ and CD8+ T cells also did not change significantly in rectal tissue (P = 0.86, P = 0.84, respectively). During the period of mesalamine administration, plasma sCD14, IL-6, D-dimer, and kynurenine to tryptophan ratio were not changed significantly at week 12 and were similarly unchanged at week 24. This study suggests that, at least under the conditions studied, the persistent immune activation associated with HIV infection is not impacted by the anti-inflammatory effects of mesalamine. TRIAL REGISTRATION ClinicalTrials.gov NCT01090102.
Collapse
Affiliation(s)
- Ma Somsouk
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94110, United States of America
| | - Richard M. Dunham
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Michelle Cohen
- Positive Health Program, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Rebecca Albright
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Mohamed Abdel-Mohsen
- Positive Health Program, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Teri Liegler
- Positive Health Program, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Robert Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Yong Huang
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94110, United States of America
| | - Yuaner Wu
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94110, United States of America
| | - Priscilla Y. Hsue
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Jeffrey N. Martin
- Positive Health Program, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Peter W. Hunt
- Positive Health Program, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
35
|
Cheng J, Du YF, Xiao ZY, Pan LL, Li W, Huan L, Gong ZN, Wei SH, Huang SQ, Xun W, Zhang Y, Chang LL, Xie MY, Ao GZ, Cai J, Qiu T, Wu H, Sun T, Xu GL. Growth inhibitory effect of KYKZL-1 on Hep G2 cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Toxicol Appl Pharmacol 2013; 274:96-106. [PMID: 24189224 DOI: 10.1016/j.taap.2013.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G2 growth. We found that KYKZL-1 inhibited the growth of Hep G2 cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE2 and LTB4 production in Hep G2 cells. Accordingly, exogenous addition of PGE2 or LTB4 reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S-G2 checkpoint via the activation of p21(CIP1) protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile.
Collapse
Affiliation(s)
- Jing Cheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi-Fang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhi-Yi Xiao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Li-Li Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lin Huan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhu-Nan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shao-Hua Wei
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Shi-Qian Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wei Xun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lei-Lei Chang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Meng-Yu Xie
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Gui-Zhen Ao
- Department of Medicinal Chemistry, School of Pharmacy, Soochow University, Jiangsu, China
| | - Jie Cai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ting Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Hao Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ting Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Guang-Lin Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; Department of Pharmacology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
36
|
Stolfi C, De Simone V, Pallone F, Monteleone G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int J Mol Sci 2013; 14:17972-85. [PMID: 24005861 PMCID: PMC3794763 DOI: 10.3390/ijms140917972] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. Although conclusive evidence is still lacking, epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has chemopreventive properties against CRC. Similarly, regular consumption of mesalazine, a drug structurally related to NSAIDs, seems to reduce the risk of CRC in patients with ulcerative colitis. These observations are supported by a large body of experimental data showing the ability of such drugs to inhibit multiple pathways that sustain colon carcinogenesis. This review summarizes the current information on the molecular mechanisms by which NSAIDs and mesalazine could interfere with CRC cell growth and survival.
Collapse
Affiliation(s)
- Carmine Stolfi
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-06-7259-6158 (C.S. & G.M.); Fax: +39-06-7259-6391 (C.S. & G.M.)
| | | | | | - Giovanni Monteleone
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-06-7259-6158 (C.S. & G.M.); Fax: +39-06-7259-6391 (C.S. & G.M.)
| |
Collapse
|
37
|
Stolfi C, De Simone V, Pallone F, Monteleone G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int J Mol Sci 2013. [PMID: 24005861 DOI: 10.3390/jims140917972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. Although conclusive evidence is still lacking, epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has chemopreventive properties against CRC. Similarly, regular consumption of mesalazine, a drug structurally related to NSAIDs, seems to reduce the risk of CRC in patients with ulcerative colitis. These observations are supported by a large body of experimental data showing the ability of such drugs to inhibit multiple pathways that sustain colon carcinogenesis. This review summarizes the current information on the molecular mechanisms by which NSAIDs and mesalazine could interfere with CRC cell growth and survival.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Systems Medicine, University of Tor Vergata, Via Montpellier 1, Rome 00133, Italy.
| | | | | | | |
Collapse
|
38
|
Antioxidant properties of mesalamine in colitis inhibit phosphoinositide 3-kinase signaling in progenitor cells. Inflamm Bowel Dis 2013; 19:2051-60. [PMID: 23867870 PMCID: PMC8754500 DOI: 10.1097/mib.0b013e318297d741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesalamine, 5-aminosalicylic acid (5-ASA), is a potent antioxidant and is known to enhance peroxisome proliferator-activated receptor γ activity in the intestine. Our previous studies suggested reduced Phosphoinositide 3-Kinase (PI3K)/β-catenin signaling as a mechanism for 5-ASA chemoprevention in chronic ulcerative colitis (CUC). We now hypothesize that 5-ASA mediates changes in intestinal epithelial cell (IEC) reactive oxygen species during colitis to affect phosphatase and tensin homolog (PTEN), PI3K, and β-catenin signaling. METHODS Here, we examined effects of 5-ASA on oxidant-induced cell signaling pathways in HT-29 cells, IECs from mice, and biopsy tissue from control and CUC patients. Samples were selected to control for inflammation between untreated and 5-ASA-treated CUC patients. RESULTS Direct evaluation of IEC in H2O2-stimulated whole colonic crypts indicated that 5-ASA reduces reactive oxygen species levels in lower crypt IECs where long-lived progenitor cells reside. Analysis of biopsies from patient samples revealed that 5-ASA increases expression of the antioxidant catalase in CUC patients. Also, 5-ASA increased nuclear peroxisome proliferator-activated receptor γ protein and target gene expression. Data showed 5-ASA-induced peroxisome proliferator-activated receptor γ DNA binding to the PTEN promoter (chromatin immunoprecipitation) and reduced both phosphorylated and oxidized (inactive) PTEN protein levels. Analysis of patient samples revealed 5-ASA that also reduced levels of active phosphorylated Akt in inflamed colitis tissue. Reduced PI3K/Akt signaling and expression of β-catenin target genes in 5-ASA-treated CUC patients additionally suggests enhanced PTEN activity as well. CONCLUSIONS Therefore, 5-ASA reduces CUC-induced reactive oxygen species in colonic progenitor cells and enhances PTEN activity, thus attenuating PI3K/Akt signaling. These data suggest that the antioxidant properties of 5-ASA may be the predominant mechanism for 5-ASA chemoprevention.
Collapse
|
39
|
Rousseaux C, El-Jamal N, Fumery M, Dubuquoy C, Romano O, Chatelain D, Langlois A, Bertin B, Buob D, Colombel JF, Cortot A, Desreumaux P, Dubuquoy L. The 5-aminosalicylic acid antineoplastic effect in the intestine is mediated by PPARγ. Carcinogenesis 2013; 34:2580-6. [PMID: 23843037 PMCID: PMC3810841 DOI: 10.1093/carcin/bgt245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epidemiological evidences suggested that 5-aminosalicylic acid (5-ASA) therapy may prevent the development of colorectal cancer in inflammatory bowel disease patients. Our aim is to investigate whether peroxisome proliferator-activated receptor-γ (PPARγ) mediates the antineoplastic effects of 5-ASA. HT-29 and Caco-2 cells were treated by 5-ASA, rosiglitazone (PPARγ ligand) or etoposide (anticarcinogenic drug). Epithelial cell growth, proliferation and apoptosis were assessed by cell count, Ki-67 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, respectively. The antineoplastic effect of 5-ASA was evaluated in a xenograft tumor model in SCID mice and in azoxymethane (AOM)-induced colon carcinogenesis in A/JOlaHsd mice. The role of PPARγ was examined by administration of PPARγ antagonist, GW9662 and in PPAR knockdown cells. Compared with untreated cells, treatment of HT-29 cells by 5-ASA inhibited significantly cell growth and cell proliferation (respectively, 60% and 63%) and induced apoptosis in 75% of cells. These effects were abolished by co-treatment with GW9662 and blunted in PPAR knockdown cells. Contrarily to etoposide, similar inhibitory effects of GW9662 were obtained in HT-29 cells treated with rosiglitazone. In the xenograft model, GW9662 abolished the therapeutic effect of 5-ASA, which decreased tumor weight and volume by 80% in SCID mice compared with untreated mice. In A/JOlaHsd mice, 5-ASA suppressed colon carcinogenesis by decreasing the number of aberrant crypt foci (75%) and aberrant crypts (22%) induced by AOM treatment with an absence of 5-ASA response after GW9662 administration. In conclusion, 5-ASA exerts potent antineoplastic effects that are mediated through PPARγ. These data provide new rational for designing more effective and safe antineoplastic PPARγ ligands with topical effects.
Collapse
Affiliation(s)
- Christel Rousseaux
- Department of Project Management, Intestinal Biotech Development, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chang WCL, Zenser TV, Cooper HS, Clapper ML. Differential response of flat and polypoid colitis-associated colorectal neoplasias to chemopreventive agents and heterocyclic amines. Cancer Lett 2013; 334:62-8. [PMID: 23415736 DOI: 10.1016/j.canlet.2013.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/06/2013] [Accepted: 02/06/2013] [Indexed: 02/09/2023]
Abstract
Individuals with ulcerative colitis face an increased risk of developing colorectal cancer and would benefit from early chemopreventive intervention. Results from preclinical studies in the mouse model of dextran sulfate sodium-induced colitis demonstrate that flat and polypoid colitis-associated dysplasias arise via distinct genetic pathways, impacted by the allelic status of p53. Furthermore, flat and polypoid dysplasias vary in their response to induction by the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and inhibition by 5-aminosalicylic acid, a common therapy for the maintenance of colitis patients. These data suggest that use of combination therapy is essential for the optimal inhibition of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Wen-Chi L Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Terry V Zenser
- Department of Internal Medicine, St. Louis University, St. Louis, MO 63103, United States
| | - Harry S Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States; Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| |
Collapse
|
41
|
Khare V, Lyakhovich A, Dammann K, Lang M, Borgmann M, Tichy B, Pospisilova S, Luciani G, Campregher C, Evstatiev R, Pflueger M, Hundsberger H, Gasche C. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1. Biochem Pharmacol 2012; 85:234-44. [PMID: 23146664 PMCID: PMC3557386 DOI: 10.1016/j.bcp.2012.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 12/29/2022]
Abstract
Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APCmin polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APCmin polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action.
Collapse
Affiliation(s)
- Vineeta Khare
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Alex Lyakhovich
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Kyle Dammann
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Michaela Lang
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Melanie Borgmann
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Boris Tichy
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine, University Hospital and Faculty of Medicine, Masaryk University and Central European Institute of Technology, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine, University Hospital and Faculty of Medicine, Masaryk University and Central European Institute of Technology, Brno, Czech Republic
| | - Gloria Luciani
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Christoph Campregher
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Rayko Evstatiev
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | | | | | - Christoph Gasche
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
- Corresponding author at: Division of Gastroenterology and Hepatology, Medical University of Vienna, Währinger Gür 18 20A 1090 Vienna, Austria. Tel.: +43 404004764; fax: +43 404004724.
| |
Collapse
|
42
|
Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, Lee JD. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res 2012. [PMID: 23176791 DOI: 10.1016/j.nutres.2012.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this review is to provide an overview of the effects that natural products have on inflammatory bowel disease (IBD) and to provide insight into the relationship between these natural products and cytokines modulation. More than 100 studies from the past 10 years were reviewed herein on the therapeutic approaches for treating IBD. The natural products having anti-IBD actions included phytochemicals, antioxidants, microorganisms, dietary fibers, and lipids. The literature revealed that many of these natural products exert anti-IBD activity by altering cytokine production. Specifically, phytochemicals such as polyphenols or flavonoids are the most abundant, naturally occurring anti-IBD substances. The anti-IBD effects of lipids were primarily related to the n-3 polyunsaturated fatty acids. The anti-IBD effects of phytochemicals were associated with modulating the levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1, IL-6, inducible nitric oxide synthase, and myeloperoxide. The anti-IBD effects of dietary fiber were mainly mediated via peroxisome proliferator-activated receptor-γ, TNF-α, nitric oxide, and IL-2, whereas the anti-IBD effects of lactic acid bacteria were reported to influence interferon-γ, IL-6, IL-12, TNF-α, and nuclear factor-κ light-chain enhancer of activated B cells. These results suggest that the anti-IBD effects exhibited by natural products are mainly caused by their ability to modulate cytokine production. However, the exact mechanism of action of natural products for IBD therapy is still unclear. Thus, future research is needed to examine the effect of these natural products on IBD and to determine which factors are most strongly correlated with reducing IBD or controlling the symptoms of IBD.
Collapse
Affiliation(s)
- Sun Jin Hur
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
2-Methoxy-5-amino-N-hydroxybenzamide, a derivative of mesalamine, inhibits colon cancer cell growth through cyclo-oxygenase-2-dependent and -independent mechanisms. Clin Sci (Lond) 2012; 123:295-306. [PMID: 22435743 DOI: 10.1042/cs20110556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
COX-2 (cyclo-oxygenase-2) and PGE₂ (prostaglandin E₂) play a key role in sustaining CRC (colorectal cancer) cell growth and survival. Indeed, the use of agents targeting the COX-2/PGE₂ axis has been associated with a reduction in the development of CRC in both humans and murine models of colon carcinogenesis. In the present study, we investigated whether 2-methoxy-5-amino-N-hydroxybenzamide (herein termed 2-14), a derivative of mesalamine that inhibits CRC cell growth both in vitro and in vivo, negatively regulates COX-2/PGE₂ expression in CRC cells and assessed whether the 2-14-mediated anti-neoplastic effect is strictly dependent on the inhibition of this pathway. Our results show that 2-14 blocks the growth and enhances the death of HT-115, a CRC cell line overexpressing COX-2, and that these effects associate with inhibition of COX-2 but not COX-1. 2-14 also down-regulates TNFα (tumour necrosis factor α)-induced COX-2 in HT-29 cells as well as COX-2/PGE₂ expression in ex vivo cultures of human CRC explants. Similarly, 2-14 reduces COX-2, but not COX-1, in tumoural areas developing in a mouse model of CAC (colitis-associated colon cancer). Finally, we show that 2-14 exhibits in vitro and in vivo anti-mitogenic effects in DLD-1, a COX-deficient CRC cell line. Taken together, these results suggest that 2-14 inhibits CRC cell growth through COX-2-dependent and -independent mechanisms.
Collapse
|
44
|
Mbodji K, Charpentier C, Guérin C, Querec C, Bole-Feysot C, Aziz M, Savoye G, Déchelotte P, Marion-Letellier R. Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-κB in rats with TNBS-induced colitis. J Nutr Biochem 2012; 24:700-5. [PMID: 22841543 DOI: 10.1016/j.jnutbio.2012.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 12/20/2022]
Abstract
5-aminosalicylic acid (5-ASA) is widely used for the treatment of inflammatory bowel disease (IBD). Recent studies have evaluated the potential of nutritional intervention as adjunct therapy to 5-ASA in IBD. N-3 polyunsaturated fatty acids (PUFA) have shown potent anti-inflammatory properties in gut inflammation. Therefore, we aimed to evaluate the efficacy of the dual therapy (n-3 PUFA plus 5-ASA) in rats with 2, 4, 6-trinitrobenzen sulfonic acid (TNBS)-induced colitis. Colitis was induced by intrarectal injection of TNBS while control rats received the vehicle. Rats received by gavage a fish oil-rich formula (n-3 groups) or an isocaloric and isolipidic oil formula supplemented with 5-ASA for 14 days. A dose response of 5-ASA (5-75 mg. suppression mg kg(-1) d(-1)) was tested. Colitis was evaluated and several inflammatory markers were quantified in the colon. COX-2 expression (P<.05) and pro-inflammatory eicosanoids production of prostaglandin E2 (P<.001) and leukotriene B4 (P<.001) were significantly inhibited by n-3 PUFA or 5-ASA therapy. 5-ASA also reduces mRNA levels of tumor necrosis factor α (P<.05). n-3 PUFA or 5-ASA significantly inhibits nuclear factor κB (NF-κB) activation (P<.01 and P<.05, respectively). The dual therapy n-3 PUFA plus 5-ASA also inhibited inflammatory response by lowering NF-κB activation (P<.01) or inducing peroxisome proliferator-activated receptor-γ (PPARγ) expression (P<.05). These results indicate that 5-ASA plus n-3 PUFAs are more effective than a higher dose of 5-ASA alone to reduce NF-κB activation and to induce PPARγ. By contrast, the dual therapy did not improve the effects of individual treatments on eicosanoids or cytokine production. Use of n-3 PUFA in addition to 5-ASA may reduce dose of standard therapy.
Collapse
Affiliation(s)
- Khaly Mbodji
- Appareil Digestif Environnement Nutrition (ADEN EA 4311), Medicine University, IFR 23, Institute of Biomedical Research, Rouen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Colorectal cancer chemoprevention by mesalazine and its derivatives. J Biomed Biotechnol 2012; 2012:980458. [PMID: 22701310 PMCID: PMC3373216 DOI: 10.1155/2012/980458] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/20/2012] [Indexed: 01/12/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) face an increased lifetime risk of developing colorectal cancer (CRC). Independent factors associated with increased risk include long disease duration, extensive colonic involvement, young age at onset of IBD, severity of inflammation, primary sclerosing cholangitis, backwash ileitis, and a family history of CRC, thus emphasising the role of intestinal inflammation as an underlying mechanism. This notion is also supported by the demonstration that the use of certain drugs used to attenuate the ongoing mucosal inflammation, such as mesalazine, seems to associate with a reduced incidence of colitis-associated CRC. In the last decade, work from many laboratories has contributed to delineate the mechanisms by which mesalazine alters CRC cell behaviour. In this paper, we review the available experimental data supporting the ability of mesalazine and its derivatives to interfere with intracellular signals involved in CRC cell growth.
Collapse
|
46
|
Ruiz JFM, Kedziora K, Keogh B, Maguire J, Reilly M, Windle H, Kelleher DP, Gilmer JF. A double prodrug system for colon targeting of benzenesulfonamide COX-2 inhibitors. Bioorg Med Chem Lett 2011; 21:6636-40. [PMID: 21983446 DOI: 10.1016/j.bmcl.2011.09.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 11/24/2022]
Abstract
The design, synthesis and delivery potential of a new type of benzenesulfonamide cyclo-oxygenase-2 (COX-2) inhibitor prodrug is investigated using celecoxib. The approach involves a double prodrug that is activated first by azoreductases and then by cyclization triggering drug release. We studied the intramolecular aminolysis of the acylsulfonamide. The cyclization was surprisingly rapid at physiological pH and very fast at pH 5. The prodrug is activated specifically under conditions found in the colon but highly stable in the presence of human and rodent intestinal extracts. Finally, the prototype with celecoxib was transported much more slowly in the Caco-2 transepithelial model than the parent. The design therefore shows significant promise for the site specific delivery of benzenesulfonamide COX-2 inhibitors to the colon.
Collapse
Affiliation(s)
- Juan F Marquez Ruiz
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Meyer C, Pries R, Wollenberg B. Established and novel NF-κB inhibitors lead to downregulation of TLR3 and the proliferation and cytokine secretion in HNSCC. Oral Oncol 2011; 47:818-26. [PMID: 21745758 DOI: 10.1016/j.oraloncology.2011.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/27/2011] [Accepted: 06/03/2011] [Indexed: 12/30/2022]
Abstract
The transcriptional activation of NF-κB signalling has been identified as a major pathway involved in inflammation and tumor aggressiveness in a number of human cancers. Here we identify the impact of miscellaneous known and so far unknown NF-κB inhibitors originating from different drug classes on the function and proliferation of HNSCC. In detail: HNSCC cell lines were exposed to Acetylsalicylic Acid (ASA), Celecoxib, Dexamethasone, Curcumin and EPs 7630. Our major interest was to detect upstream alterations in cell signalling after applying NF-κB inhibiting substances. The inhibition of NF-κB signalling leads to an upstream regulation of Toll-like-receptor 3 (TLR3), a predominant receptor driving cell expansion. We find a marked downregulation of TLR3 and IKK complex, documenting upstream responses to NF-κB inhibition by every agent tested. In a second step we further analyse proliferation, cytokine production and alterations in the expression of downstream proteins such as cyclin D1 and c-Myc. Our data demonstrate decreased proliferation in response to incubation with aforementioned agents. Modulation of TLR3 and NF-κB expression is accompanied by altered profiles of IL-6 and IL-8 which are relevant cytokines in HNSCC progression. Proto-oncogenes cyclin D1 and c-myc are downregulated by all substances. Apart from the interplay of cytokines and TLR3, we substantiated EPs 7630 as a new and natural NF-κB inhibitor.
Collapse
Affiliation(s)
- Christian Meyer
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein Campus Lübeck, 23538 Lübeck, Germany
| | | | | |
Collapse
|
48
|
Identification of MAGI1 as a tumor-suppressor protein induced by cyclooxygenase-2 inhibitors in colorectal cancer cells. Oncogene 2011; 31:48-59. [PMID: 21666716 DOI: 10.1038/onc.2011.218] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.
Collapse
|
49
|
Thorsteinsdottir S, Gudjonsson T, Nielsen OH, Vainer B, Seidelin JB. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol Hepatol 2011; 8:395-404. [PMID: 21647200 DOI: 10.1038/nrgastro.2011.96] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most serious complications of ulcerative colitis is the development of colorectal cancer. Screening patients with ulcerative colitis by standard histological examination of random intestinal biopsy samples might be inefficient as a method of cancer surveillance. This Review focuses on the current understanding of the pathogenesis of ulcerative colitis-associated colorectal cancer and how this knowledge can be transferred into patient management to assist clinicians and pathologists in identifying patients with ulcerative colitis who have an increased risk of colorectal cancer. Inflammation-driven mechanisms of DNA damage, including the generation and effects of reactive oxygen species, microsatellite instability, telomere shortening and chromosomal instability, are reviewed, as are the molecular responses to genomic stress. We also discuss how these mechanisms can be translated into usable biomarkers. Although progress has been made in the understanding of inflammation-driven carcinogenesis, markers based on these findings possess insufficient sensitivity or specificity to be usable as reliable biomarkers for risk of colorectal cancer development in patients with ulcerative colitis. However, screening for mutations in p53 could be relevant in the surveillance of patients with ulcerative colitis. Several other new biomarkers, including senescence markers and α-methylacyl-CoA-racemase, might be future candidates for preneoplastic markers in ulcerative colitis.
Collapse
Affiliation(s)
- Sigrun Thorsteinsdottir
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 75 Herlev Ringvej, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
50
|
Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell. BMC Cancer 2011; 11:153. [PMID: 21524287 PMCID: PMC3097003 DOI: 10.1186/1471-2407-11-153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/27/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND NSAIDs exhibit protective properties towards some cancers, especially colon cancer. Yet, it is not clear how they play their protective role. PGE2 is generally shown as the only target of the NSAIDs anticancerous activity. However, PGE2 known targets become more and more manifold, considering both the molecular pathways involved and the target cells in the tumour. The role of PGE2 in tumour progression thus appears complex and multipurpose. METHODS To gain understanding into the role of PGE2 in colon cancer, we focused on the activity of PGE2 in apoptosis in colon cancer cell lines. RESULTS We observed that an increase in intracellular PGE2 induced an apoptotic cell death, which was dependent on the expression of the proapoptotic protein Bax. This increase was induced by increasing PGE2 intracellular concentration, either by PGE2 microinjection or by the pharmacological inhibition of PGE2 exportation and enzymatic degradation. CONCLUSIONS We present here a new sight onto PGE2 in colon cancer cells opening the way to a new prospective therapeutic strategy in cancer, alternative to NSAIDs.
Collapse
|