1
|
Carvalho D, Diaz-Amarilla P, Smith MR, Santi MD, Martinez-Busi M, Go YM, Jones DP, Duarte P, Savio E, Abin-Carriquiry JA, Arredondo F. Untargeted metabolomics of 3xTg-AD neurotoxic astrocytes. J Proteomics 2025; 310:105336. [PMID: 39448026 DOI: 10.1016/j.jprot.2024.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting approximately 47 M people worldwide. Histological features and genetic risk factors, among other evidence, supported the amyloid hypothesis of the disease. This neuronocentric paradigm is currently undergoing a shift, considering evidence of the role of other cell types, such as microglia and astrocytes, in disease progression. Previously, we described a particular astrocyte subtype obtained from the 3xTg-AD murine model that displays neurotoxic properties in vitro. We continue here our exploratory analysis through the lens of metabolomics to identify potentially altered metabolites and biological pathways. Cell extracts from neurotoxic and control astrocytes were compared using high-resolution mass spectrometry-based metabolomics. Around 12 % of metabolic features demonstrated significant differences between neurotoxic and control astrocytes, including alterations in the key metabolite glutamate. Consistent with our previous transcriptomic study, the present results illustrate many homeostatic and regulatory functions of metabolites, suggesting that neurotoxic 3xTg-AD astrocytes exhibit alterations in the Krebs cycle as well as the prostaglandin pathway. This is the first metabolomic study performed in 3xTg-AD neurotoxic astrocytes. These results provide insight into metabolic alterations potentially associated with neurotoxicity and pathology progression in the 3xTg-AD mouse model and strengthen the therapeutic potential of astrocytes in AD. BIOLOGICAL SIGNIFICANCE: Our study is the first high-resolution metabolomic characterization of the novel neurotoxic 3xTg-AD astrocytes. We propose key metabolites and pathway alterations, as well as possible associations with gene expression alterations in the model. Our results are in line with recent hypotheses beyond the amyloid cascade, considering the involvement of several stress response cascades during the development of Alzheimer's disease. This work could inspire other researchers to initiate similar studies in related models. Furthermore, this work illustrates a powerful workflow for metabolite annotation and selection that can be implemented in other studies.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Área de Matemática - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Mathew R Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA; Atlanta Veterans Affairs Healthcare System, Decatur, GA, USA
| | - María Daniela Santi
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
| | - Marcela Martinez-Busi
- Plataforma de Servicios Analíticos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA
| | - Pablo Duarte
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Laboratorio de Biofármacos, Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay.
| |
Collapse
|
2
|
Zhao G, Zhang H, Xu Y, Chu X. Research on magnetic resonance imaging in diagnosis of Alzheimer's disease. Eur J Med Res 2024; 29:632. [PMID: 39734227 DOI: 10.1186/s40001-024-02172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/23/2024] [Indexed: 12/31/2024] Open
Abstract
As a common disease in the elderly, the diagnosis of Alzheimer's disease (AD) is of great significance to the treatment and prognosis of the patients. Studies have found that magnetic resonance imaging plays an important role in the early diagnosis of Alzheimer's disease. This article tries to review the application of magnetic resonance imaging in the diagnosis and differential diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Guohua Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Haixia Zhang
- Department of Hyperbaric Oxygen, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| | - Xiuli Chu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Alagiakrishnan K, Halverson T, Ahmed A, Frishman WH, Aronow WS. Hypertension and Cognitive Disorders. Cardiol Rev 2024:00045415-990000000-00385. [PMID: 39714291 DOI: 10.1097/crd.0000000000000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Systemic hypertension is possibly the most important modifiable risk factor for the development of cognitive decline, both for mild cognitive impairment (MCI) and dementia. For effective blood pressure (BP) control, it requires proper assessment, using brachial, central, and ambulatory measurements, and monitoring with a focus on different BP parameters. Different BP parameters like pulse pressure, mean arterial pressure, BP variability, and circadian parameters, like nondippers and early morning surge, should be considered in the evaluation for the risk of cognitive decline due to hypertension in middle age and older adults. Chronic hypertension causes vascular remodeling in the brain and leads to brain failure or cognitive decline. Achieving specific BP goals can improve clinical outcomes and possibly slow down cognitive decline for patients with comorbid hypertension and cognitive impairment.
Collapse
Affiliation(s)
| | - Tyler Halverson
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ali Ahmed
- Department of Medicine, Washington, DC VA Medical Center, George Washington University School of Medicine, and Georgetown University School of Medicine, Washington, DC
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
Shukla A, Meena K, Gupta A, Sandhir R. 1H NMR-Based Metabolomic Signatures in Rodent Models of Sporadic Alzheimer's Disease and Metabolic Disorders. ACS Chem Neurosci 2024; 15:4478-4499. [PMID: 39629865 DOI: 10.1021/acschemneuro.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological disorder that impacts the elderly population all over the globe. Evidence suggests association between AD and metabolic disorders such as diabetes mellitus (DM) and obesity (OB). The present study is an attempt to evaluate metabolic alterations in the serum and brain through NMR spectroscopy with the aim to identify shared metabolic signatures. AD was induced in rats by stereotactic intracerebroventricular injection of oligomerized Aβ-42 peptide into the brain. DM and OB were induced by intraperitoneal injection of streptozotocin and feeding rats on a high-fat diet, respectively. The metabolic alterations obtained through 1H NMR spectroscopy were further subjected to multivariate analysis by principal component analysis and partial least-squares discrimination for identification of metabolic signatures. In the serum, the levels of lactate and betaine were increased in AD, DM, and OB rats. On the other hand, the metabolite profile of brain indicated increase in the levels of lactate, N-acetylaspartate, and creatinine in AD, DM, and OB rats. Additionally, the concentration of neurochemicals such as glutamate, GABA, N-acetylglutamate, and myo-inositol were also elevated. The alterations in neurotransmitters and cerebral energy metabolism were accompanied by deficits in cognition assessed by Morris water maze in AD, DM, and OB rats. The perturbed metabolic profiles were accompanied by the presence of pathogenic amyloid deposits visualized by Congo red stain in the brains of AD, DM, and OB rats. Overall, the study identifies common metabolic signatures in AD, DM, and OB that may be involved in etiopathogenesis and also suggests linkages between these three conditions.
Collapse
Affiliation(s)
- Ananya Shukla
- Department of Biochemistry, Hargobind Khorana Block (BMS Block II), Panjab University, Sector-25, Chandigarh 160014, India
| | - Khushbhu Meena
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow, Uttar Pradesh 226014, India
| | - Ashish Gupta
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow, Uttar Pradesh 226014, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block (BMS Block II), Panjab University, Sector-25, Chandigarh 160014, India
| |
Collapse
|
5
|
Ozpak L, Bağca BG. Neuroprotective effects of resveratrol through modulation of PI3K/Akt/GSK-3β pathway and metalloproteases. IUBMB Life 2024; 76:1199-1208. [PMID: 39159067 DOI: 10.1002/iub.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024]
Abstract
To analyze the expressional changes in the PI3K/Akt/GSK-3β pathway and metalloprotease in the cellular Alzheimer's Disease (AD) model with the effect of antioxidant resveratrol. Neuron-like cells were obtained by a two-step method of neuronal differentiation by using a combination of retinoic acid (RA) and brain-derived factor (BDNF) exposure. Then, the application of the amyloid beta peptide 25-35 (Aβ25-35) to the cell culture mimicked the environmental toxicity observed in AD. Afterward, cell viability and apoptosis assays were performed to determine whether the resveratrol exerts a cytotoxic and apoptotic effect. Finally, the expressional changes in genes in the cellular AD model with the effect of resveratrol were analyzed by Real-Time PCR. The analysis in silico was assessed using the STRING V12.0 database in each group. Apoptosis data findings were decreased by 1.5-fold and 2.5-fold respectively by Differentiated+Resveratrol (RES) and RES when compared to control but no significant difference was observed between RES and AD model groups. Real-time PCR analysis results revealed PI3K (3.38-fold), AKT (3.95-fold), and RELN (1.99-fold) expressions were significantly higher (p < .001), and also GSK-3β, TAU, ADAMTS-4, ADAMTS-5, and TIMP-3 gene expression levels were significantly downregulated (2.53-, 1.79-, 2.85-, 4.09-, and 6.62-fold, respectively) in the Differentiated+Aβ + RES groups compared to the Differentiated+Aβ group (p < .001). Network analysis shows the functional enrichment of 23 Alzheimer-related GO terms in the Wnt signaling, proteolysis, and extracellular matrix organization pathways. Resveratrol has inhibited GSK-3β by activating the PI3K/Akt insulin pathway in a neurotoxic environment. In addition, TAU, RELN, metalloproteases, and their inhibitors associated with Alzheimer's pathology have been regulated supporting the neuroprotective effect of resveratrol.
Collapse
Affiliation(s)
- Lütfiye Ozpak
- Department of Medical Biology, Faculty of Medicine, Sutçu Imam University, Kahramanmaraş, Turkey
| | - Bakiye Göker Bağca
- Department of Medical Biology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
6
|
Santos VD, Costa AC, Junior NC, Delaere FJ, Serlet S, Dourado MCN. Virtual reality interventions and their effects on the cognition of individuals with Alzheimer's disease: A systematic review and meta-analysis. J Alzheimers Dis 2024:13872877241299037. [PMID: 39584354 DOI: 10.1177/13872877241299037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Dementia due to Alzheimer's disease (AD) is the most prevalent neurocognitive disorder in the world and impacts the individual's cognitive functions and functionality in the early stages of the condition. Virtual reality (VR) interventions can assist in non-pharmacological treatment in a more ecological way, positively impacting cognitive abilities. However, there are few studies on VR exclusively involving people with AD in randomized controlled trials. OBJECTIVE To evaluate the effects of VR intervention on the cognitive functions of people with AD. METHODS A systematically conducted search was carried out in MEDLINE, EMBASE, BVS, Web of Science, and Scopus. Eligible studies were randomized controlled trials comparing the efficacy of VR and traditional cognitive interventions in people with AD. Methodologic quality was assessed with the Cochrane risk of bias tool, and outcomes were calculated as risk ratios (for dichotomous outcomes) and mean differences (for continuous outcomes) with 95% confidence interval. RESULTS A total of three randomized controlled trials with 75 participants were included. An improvement in the performance of the VR group was observed in memory, especially when comparing the usual treatment [MD = 0.99; CI95%: 0.33; 1.66; I2 = 0%]. VR has little or no effect on participants' executive function [MD = 1.36; 95%CI: -1.12; 3.85; I2 = 0%] compared to the usual treatment. CONCLUSIONS Our study results cautiously suggest, despite the small number of participants, that VR intervention may be a suitable memory treatment for individuals diagnosed with AD.
Collapse
Affiliation(s)
- Vanessa Daudt Santos
- Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Adriana Coelho Costa
- Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nelson Carvas Junior
- Department of Evidence-Based Health, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
7
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
8
|
Lim AWY, Schneider L, Loy C. Galantamine for dementia due to Alzheimer's disease and mild cognitive impairment. Cochrane Database Syst Rev 2024; 11:CD001747. [PMID: 39498781 PMCID: PMC11536474 DOI: 10.1002/14651858.cd001747.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
BACKGROUND Dementia leads to progressive cognitive decline, and represents a significant health and societal burden. Its prevalence is growing, with Alzheimer's disease as the leading cause. There is no cure for Alzheimer's disease, but there are regulatory-approved pharmacological interventions, such as galantamine, for symptomatic relief. This review updates the 2006 version. OBJECTIVES To assess the clinical effects, including adverse effects, of galantamine in people with probable or possible Alzheimer's disease or mild cognitive impairment, and to investigate potential moderators of effect. SEARCH METHODS We systematically searched the Cochrane Dementia and Cognitive Improvement Group's Specialised Register on 14 December 2022 using the term 'galantamine'. The Register contains records of clinical trials identified from major electronic databases (including CENTRAL, MEDLINE, and Embase), trial registries, grey literature sources, and conference proceedings. We manually searched reference lists and collected information from US Food and Drug Administration documents and unpublished trial reports. We imposed no language restrictions. SELECTION CRITERIA We included double-blind, parallel-group, randomised controlled trials comparing oral galantamine with placebo for a treatment duration exceeding four weeks in people with dementia due to Alzheimer's disease or with mild cognitive impairment. DATA COLLECTION AND ANALYSIS Working independently, two review authors selected studies for inclusion, assessed their quality, and extracted data. Outcomes of interest included cognitive function, change in global function, activities of daily living, functional disability, behavioural function, and adverse events. We used a fixed-effect model for meta-analytic synthesis, and presented results as Peto odds ratios (OR) or weighted mean differences (MD) with 95% confidence intervals. We used Cochrane's original risk of bias tool (RoB 1) to assess the risk of bias in the included studies. MAIN RESULTS We included 21 studies with a total of 10,990 participants. The average age of participants was 74 years, and 37% were male. The studies' durations ranged from eight weeks to two years, with 24 weeks being the most common duration. One newly included study assessed the effects of galantamine at two years, and another newly included study involved participants with severe Alzheimer's disease. Nineteen studies with 10,497 participants contributed data to the meta-analysis. All studies had low to unclear risk of bias for randomisation, allocation concealment, and blinding. We judged four studies to be at high risk of bias due to attrition and two due to selective outcome reporting. Galantamine for dementia due to Alzheimer's disease We summarise only the results for galantamine given at 8 to 12 mg twice daily (total galantamine 16 mg to 24 mg/day), assessed at six months. See the full review for results of other dosing regimens and assessment time points. There is high-certainty evidence that, compared to placebo, galantamine improves: cognitive function, as assessed with the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) (MD-2.86, 95% CI -3.29 to -2.43; 6 studies, 3049 participants; minimum clinically important effect (MCID) = 2.6- to 4-point change); functional disability, as assessed with the Disability Assessment for Dementia (DAD) scale (MD 2.12, 95% CI 0.75 to 3.49; 3 studies, 1275 participants); and behavioural function, as assessed with the Neuropsychiatric Inventory (NPI) (MD -1.63, 95% CI -3.07 to -0.20; 2 studies, 1043 participants) at six months. Galantamine may improve global function at six months, as assessed with the Clinician's Interview-Based Impression of Change plus Caregiver Input (CIBIC-plus) (OR 1.58, 95% CI 1.36 to 1.84; 6 studies, 3002 participants; low-certainty evidence). Participants who received galantamine were more likely than placebo-treated participants to discontinue prematurely (22.7% versus 17.2%) (OR 1.41, 95% CI 1.19 to 1.68; 6 studies, 3336 participants; high-certainty evidence), and experience nausea (20.9% versus 8.4%) (OR 2.89, 95% CI 2.40 to 3.49; 7 studies, 3616 participants; high-certainty evidence) during the studies. Galantamine reduced death rates at six months: 1.3% of participants in the galantamine groups had died compared to 2.3% in the placebo groups (OR 0.56, 95% CI 0.33 to 0.96; 6 studies, 3493 participants; high-certainty evidence). Galantamine for mild cognitive impairment We summarise results, assessed at two years, from two studies that gave participants galantamine at 8 to 12 mg twice daily (total galantamine 16 mg to 24 mg/day). Compared to placebo, galantamine may not improve cognitive function, as assessed with the expanded ADAS-cog for mild cognitive impairment (MD -0.21, 95% CI -0.78 to 0.37; 2 studies, 1901 participants; low-certainty evidence) or activities of daily living, assessed with the Alzheimer's Disease Cooperative Study - Activities of Daily Living scale for mild cognitive impairment (MD 0.30, 95% CI -0.26 to 0.86; 2 studies, 1901 participants; low-certainty evidence). Participants who received galantamine were probably more likely to discontinue prematurely than placebo-treated participants (40.7% versus 28.6%) (OR 1.71, 95% CI 1.42 to 2.05; 2 studies, 2057 participants) and to experience nausea (29.4% versus 10.7%) (OR 3.49, 95% CI 2.75 to 4.44; 2 studies, 2057 participants), both with moderate-certainty evidence. Galantamine may not reduce death rates at 24 months compared to placebo (0.5% versus 0.1%) (OR 5.03, 95% CI 0.87 to 29.10; 2 studies, 2057 participants; low-certainty evidence). Results from subgroup analysis and meta-regression suggest that an imbalance in discontinuation rates between galantamine and placebo groups, together with the use of the 'last observation carried forward' approach to outcome assessment, may potentially bias cognitive outcomes in favour of galantamine. AUTHORS' CONCLUSIONS Compared to placebo, galantamine (when given at a total dose of 16 mg to 24 mg/day) slows the decline in cognitive function, functional ability, and behaviour at six months in people with dementia due to Alzheimer's disease. Galantamine probably also slows declines in global function at six months. The changes observed in cognition, assessed with the ADAS-cog scale, were clinically meaningful. Gastrointestinal-related adverse events are the primary concerns associated with galantamine use in people with dementia, which may limit its tolerability. Although death rates were generally low, participants in the galantamine groups had a reduced risk of death compared to those in the placebo groups. There is no evidence to support the use of galantamine in people with mild cognitive impairment.
Collapse
Affiliation(s)
- Amanda Wei Yin Lim
- Centre for Clinical Epidemiology, Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Lon Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Clement Loy
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Tanikawa T, Yu J, Hsu K, Chen S, Ishii A, Kitamura M. Effect of Nattokinase in D-galactose- and Aluminum Chloride-induced Alzheimer's Disease Model of Rat. In Vivo 2024; 38:2672-2679. [PMID: 39477413 PMCID: PMC11535913 DOI: 10.21873/invivo.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM Alzheimer's disease (AD) is the most common form of dementia worldwide. Nattokinase is a serine protease extracellularly produced by natto, a fermented product of Bacillus subtilis var. natto. In this study, we investigated the therapeutic effects of nattokinase in a rat model of AD induced by aluminum and D-galactose. MATERIALS AND METHODS Forty Wistar rats were randomly divided into four groups: normal, vehicle, and orally administered nattokinase (NK65 and NK130 groups). Except for the normal group, all groups were treated with AlCl3 and D-galactose for 10 weeks. The NK65 and NK130 groups additionally received 65 mg/kg/day and 130 mg/kg/day nattokinase, respectively. We analyzed β-amyloid levels in the cerebrospinal fluid (CSF), and the spatial reference test was evaluated using the Morris water maze test. After the Morris water maze test, rats of all groups were subjected to micro-computed tomography (μCT) to assess constructional changes in the brain. Aluminum concentration and β-amyloid levels were analyzed by histochemical staining in all brain tissues. RESULTS Oral administration of nattokinase in the AD rat model increased free-form β-amyloid levels in the CSF and improved aluminum and amyloid plaque accumulation in the brain. Brain μCT images showed enhanced brain volume with fewer constructional changes after treatment with nattokinase. In the behavioral tests, both the escape latency time in the spatial reference test and the time taken to cross the platform area in the spatial probe test improved partially. CONCLUSION The results suggest that nattokinase has potential therapeutic applications in the treatment of AD.
Collapse
Affiliation(s)
- Takashi Tanikawa
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan;
| | - James Yu
- Contek Life Science Co., Ltd., Taipei, Taiwan, R.O.C
| | - Kate Hsu
- Contek Life Science Co., Ltd., Taipei, Taiwan, R.O.C
| | - Shinder Chen
- Contek Life Science Co., Ltd., Taipei, Taiwan, R.O.C
| | | | - Masashi Kitamura
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan;
| |
Collapse
|
10
|
Fiolo V, Bertoldo EG, Pagliuca S, Boveri S, Pugliese S, Anguissola M, Gelpi F, Cairo B, Bari V, Porta A, Callus E. Pre- and Post-Operative Cognitive Assessment in Patients Undergoing Surgical Aortic Valve Replacement: Insights from the PEARL Project. NEUROSCI 2024; 5:485-500. [PMID: 39585103 PMCID: PMC11587439 DOI: 10.3390/neurosci5040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Aortic valve stenosis (AVS) is a common valvular heart disease affecting millions of people worldwide. It leads to significant neurocognitive and neuropsychological impairments, impacting patients' quality of life. OBJECTIVE The objective of this article is to identify and discuss the potential neurocognitive effects on patients with aortic stenosis before and after undergoing surgical aortic valve replacement (SAVR). METHOD Our study involved the assessment of 64 patients undergoing aortic valve replacement (SAVR) using a neurocognitive evaluation comprising a battery of 11 different cognitive tests. These tests were designed to analyze the patients' overall cognitive functioning, executive abilities, short- and long-term memory, and attentional performance. The tests were administered to patients before the aortic valve surgery (T0) and after the surgery (T1). From a statistical perspective, numerical variables are presented as means (±standard deviation) and medians (IQR), while categorical variables are presented as counts and percentages. Normality was assessed using the Shapiro-Wilk test. T0 and T1 scores were compared with the Wilcoxon signed rank test, with p < 0.05 considered significant. Analyses were performed using SAS version 9.4. RESULTS Conducted as part of a fully financed Italian Ministry of Health project (RF-2016-02361069), the study found that most patients showed normal cognitive functioning at baseline. Cognitive assessments showed that executive functions, attention, language, and semantic knowledge were within the normal range for the majority of participants. After SAVR, cognitive outcomes remained stable or improved, particularly in executive functions and language. Notably, verbal episodic memory demonstrated significant improvement, with the percentage of patients scoring within the normal range on the BSRT increasing from 73.4% at T0 to 92.2% at T1 (p < 0.0001). However, visuospatial and visuoconstructive abilities showed stability or slight decline, while attentional skills remained relatively stable. The Clock Drawing Test indicated the maintenance of cognitive functions. CONCLUSIONS The findings of our study indicate a global stability in cognitive status among patients after undergoing SAVR, with significant improvement noted in verbal episodic memory. While other cognitive domains did not demonstrate statistically significant changes, these insights are valuable for understanding the cognitive effects of SAVR and can guide future research and clinical practice in selecting the most effective surgical and rehabilitative options for patients. Monitoring cognitive outcomes in patients undergoing aortic valve replacement surgery remains crucial.
Collapse
Affiliation(s)
- Valentina Fiolo
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (V.F.); (S.P.); (E.C.)
| | - Enrico Giuseppe Bertoldo
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (V.F.); (S.P.); (E.C.)
| | - Silvana Pagliuca
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (V.F.); (S.P.); (E.C.)
| | - Sara Boveri
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS Policlinico San Donato, 20097 Milan, Italy;
| | - Sara Pugliese
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.P.); (M.A.); (V.B.); (A.P.)
| | - Martina Anguissola
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.P.); (M.A.); (V.B.); (A.P.)
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.)
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.)
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.P.); (M.A.); (V.B.); (A.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.)
| | - Alberto Porta
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.P.); (M.A.); (V.B.); (A.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.)
| | - Edward Callus
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (V.F.); (S.P.); (E.C.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.)
| |
Collapse
|
11
|
Afshin N, Mushtaq N, Ahmed M, Sher N, Alhag SK, Khalil FMA, Al-Shuraym LA, Hameed H, Badshah F, Hussain R. Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom. Microsc Res Tech 2024. [PMID: 39367638 DOI: 10.1002/jemt.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
This study aims to examine the biogenic production, characterization, and anti-acetylcholinesterase (AAChE) properties of polyherbal formulation PHF-extract-synthesized silver nanoparticles (PHF-AgNPs). The Elapidae snake Bungarus sindanus has extremely dangerous venom for humans and contains a high amount of AChE (acetylcholinesterase). Inhibiting AChE leads to acetylcholine buildup, affecting neurotransmission. The study tested silver nanoparticles as AChE inhibitors using kinetics. Their production was confirmed through ultraviolet (UV) spectrometry at 425 nm (SPR peak of 1.94), and stabilizing functional groups were identified via Fourier transform infrared spectroscopy (FT-IR). The average length of 20 nm was confirmed by analyzing the scanning electron microscopy (SEM) data. Energy-dispersive X-ray spectroscopy (EDX) identified silver as the primary component of PHF-AgNPs (26%). Statistical analysis showed that the activity of AChE in krait venom decreased by up to 45% and 37% at a given dose of ACh (0.5 mM) by PHF and AgNPs, respectively. Utilizing the Lineweaver-Burk plot for kinetic analysis, a competitive type of inhibition is found. RESEARCH HIGHLIGHTS: Successfully synthesized PHF-extract-induced silver nanoparticles (PHF-AgNPs) demonstrated through UV spectrometry and characterized as crystalline with an average size of 45 nm by X-ray diffraction. PHF-AgNPs effectively inhibited acetylcholinesterase (AChE), an enzyme critical in neurotransmission, reducing its activity in krait venom by up to 45% at certain concentrations. Kinetic analysis revealed that the inhibition mechanism of AChE by PHF-AgNPs is competitive, offering potential for therapeutic applications in neurologically related conditions.
Collapse
Affiliation(s)
- Noshaba Afshin
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| | - Nadia Mushtaq
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology Bannu-KPK, Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology Bannu-KPK, Pakistan
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | | | - Laila A Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Riaz Hussain
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| |
Collapse
|
12
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Braatz C, Komes MP, Ravichandran KA, de Fragas MG, Griep A, Schwartz S, McManus RM, Heneka MT. NLRP3-directed antisense oligonucleotides reduce microglial immunoactivities in vitro. J Neurochem 2024; 168:3467-3481. [PMID: 36799439 DOI: 10.1111/jnc.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is associated with the cerebral deposition of Amyloid-β (Aβ) peptide, which leads to NLRP3 inflammasome activation and subsequent release of interleukin-1β (IL-1β) and interleukin-18 (IL-18). NLRP3 reduction has been found to increase microglial clearance, protect from synapse loss, and suppress both the changes to synaptic plasticity and spatial memory dysfunction observed in murine AD models. Here, we test whether NLRP3-directed antisense oligonucleotides (ASOs) can be harnessed as immune modulators in primary murine microglia and human THP-1 cells. NLRP3 mRNA degradation was achieved at 72 h of ASO treatment in primary murine microglia. Consequently, NLRP3-directed ASOs significantly reduced the levels of cleaved caspase-1 and mature IL-1β when microglia were either activated by LPS and nigericin or LPS and Aβ. In human THP-1 cells NLRP3-targeted ASOs also significantly reduced the LPS plus nigericin- or LPS plus Aβ-induced release of mature IL-1β. Together, NLRP3-directed ASOs can suppress NLRP3 inflammasome activity and subsequent release of IL-1β in primary murine microglia and THP-1 cells. ASOs may represent a new and alternative approach to modulate NLRP3 inflammasome activation in neurodegenerative diseases, in addition to attempts to inhibit the complex pharmacologically.
Collapse
Affiliation(s)
- Charlotte Braatz
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
| | - Max P Komes
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
| | - Kishore Aravind Ravichandran
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matheus Garcia de Fragas
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angelika Griep
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Róisín M McManus
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
14
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
15
|
Yakkundi A, Gupta R, Ramesh K, Verma A, Khan U, Ansari MA. Implications of Convolutional Neural Network for Brain MRI Image Classification to Identify Alzheimer's Disease. PARKINSON'S DISEASE 2024; 2024:6111483. [PMID: 39220822 PMCID: PMC11362580 DOI: 10.1155/2024/6111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is a chronic clinical condition that is predominantly seen in age groups above 60 years. The early detection of the disease through image classification aids in effective diagnosis and suitable treatment. The magnetic resonance imaging (MRI) data on Alzheimer's disease have been collected from Kaggle which is a freely available data source. These datasets are divided into training and validation sets. The present study focuses on training MRI datasets using TinyNet architecture that suits small-scale image classification problems by overcoming the disadvantages of large convolutional neural networks. The architecture is designed such that convergence time is reduced and overall generalization is improved. Though the number of parameters used in this architecture is lesser than the existing networks, still this network can provide better results. Training MRI datasets achieved an accuracy of 98% with the method used with a 2% error rate and 80% for the validation MRI datasets with a 20% error rate. Furthermore, to validate the model-supporting data collected from Kaggle and other open-source platforms, a comparative analysis is performed to substantiate TinyNet's applicability and is projected in the discussion section. Transfer learning techniques are employed to infer the differences and to improve the model's efficiency. Furthermore, experiments are included for fine-tuning attempts at the TinyNet architecture to assess how the nuances in convolutional neural networks have an impact on its performance.
Collapse
Affiliation(s)
- Ananya Yakkundi
- Department of Computer Science and EngineeringDayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Radha Gupta
- Department of MathematicsDayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Kokila Ramesh
- Department of MathematicsFaculty of Engineering and TechnologyJain (Deemed-to-be University), Bangalore, Karnataka, India
| | - Amit Verma
- Department of Computer Science & EngineeringUniversity Centre for Research & DevelopmentChandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Umair Khan
- Department of Computer Science and MathematicsLebanese American University, Byblos, Lebanon
- Department of MathematicsFaculty of ScienceSakarya University, Serdivan, Sakarya 54050, Türkiye
- Department of Mechanics and MathematicsWestern Caspian University, Baku 1001, Azerbaijan
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Wang J, Ye Q, Chou L, Qiu S, Xu X, Chen Z. Miniaturized Head-Mount Doppler Optical Coherence Tomography Scope for Freely Moving Mouse. ACS PHOTONICS 2024; 11:3381-3389. [PMID: 39184188 PMCID: PMC11342407 DOI: 10.1021/acsphotonics.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
This study presents a miniaturized head-mount optical coherence tomography (OCT) system tailored for high-resolution brain imaging in freely moving mice, providing an advanced noninvasive imaging tool in neuroscience research. Leveraging optical coherence tomography technology, the system enables depth-resolved imaging and integrates functional OCT extensions, including angiography and Doppler imaging. Remarkably lightweight at 1.5 g, the device allows for the preservation of natural mouse behavior during imaging sessions. With a maximum 4 × 4 mm field of view and 7.4 μm axial resolution, the system offers reliable imaging capabilities. Noteworthy features include focal adjustability, rotary joint integration for fiber-twist-free operation, and a high-speed swept-source OCT laser at 200 kHz, facilitating real-time imaging. By providing insights into brain mechanisms and neurological disorders without disrupting natural behavior, this innovative system holds promise as a powerful tool in neuroscience research. Its compact design and comprehensive imaging capabilities make it well-suited for studying various brain regions and dynamic processes, contributing significantly to our understanding of brain function and pathology.
Collapse
Affiliation(s)
- Jingyi Wang
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
- Department
of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92612, United States
| | - Qiao Ye
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
- Department
of Anatomy and Neurobiology, University
of California Irvine, Irvine, California 92697, United States
| | - Lidek Chou
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Saijun Qiu
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
| | - Xiangmin Xu
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
- Department
of Anatomy and Neurobiology, University
of California Irvine, Irvine, California 92697, United States
| | - Zhongping Chen
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
- Department
of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92612, United States
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
| |
Collapse
|
17
|
Ferré-González L, Balaguer Á, Roca M, Ftara A, Lloret A, Cháfer-Pericás C. Plasma lipidomics in early APP/PS1 female mouse model and its relationship with brain: Is it affected by the estrous cycle? Alzheimers Res Ther 2024; 16:183. [PMID: 39143583 PMCID: PMC11323474 DOI: 10.1186/s13195-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent dementia, showing higher incidence in women. Besides, lipids play an essential role in brain, and they could be dysregulated in neurodegeneration. Specifically, impaired plasma lipid levels could predict early AD diagnosis. This work aims to identify the main plasma lipids altered in early AD female mouse model and evaluate their relationship with brain lipidome. Also, the possible involvement of the estrous cycle in lipid metabolism has been evaluated. METHODS Plasma samples of wild-type (n = 10) and APP/PS1 (n = 10) female mice of 5 months of age were collected, processed, and analysed using a lipidomic mass spectrometry-based method. A statistical analysis involving univariate and multivariate approaches was performed to identify significant lipid differences related to AD between groups. Also, cytology tests were conducted to confirm estrous cycle phases. RESULTS Three hundred thirty lipids were detected in plasma, 18 of them showed significant differences between groups; specifically, some triacylglycerols, cholesteryl esters, lysophosphatidylcholines, phosphatidylcholines, and ether-linked phosphatidylcholines, increased in early AD; while other phosphatidylcholines, phosphatidylethanolamines, ceramides, and ether-linked phosphatidylethanolamines decreased in early AD. A multivariate approach was developed from some lipid variables, showing high diagnostic indexes (70% sensitivity, 90% specificity, 80% accuracy). From brain and plasma lipidome, some significant correlations were observed, mainly in the glycerophospholipid family. Also, some differences were found in both plasma and brain lipids, according to the estrous cycle phase. CONCLUSIONS Therefore, lipid alterations can be identified in plasma at early AD stages in mice females, with a relationship with brain lipid metabolism for most of the lipid subfamilies, suggesting some lipids as potential AD biomarkers. In addition, the estrous cycle monitoring could be relevant in female studies.
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, Avda de Fernando Abril Martorell, 106; 46026, Valencia, Spain
| | - Ángel Balaguer
- Faculty of Mathematics, University of Valencia, Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Artemis Ftara
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, Avda de Fernando Abril Martorell, 106; 46026, Valencia, Spain.
| |
Collapse
|
18
|
Shi SS, Hu T. Network pharmacology study on fermented soybeans for the prevention of Alzheimer's disease in older individuals. Biomed Chromatogr 2024; 38:e5921. [PMID: 38886007 DOI: 10.1002/bmc.5921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.
Collapse
Affiliation(s)
- Shuo-Shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Behl T, Kaur I, Sehgal A, Khandige PS, Imran M, Gulati M, Khalid Anwer M, Elossaily GM, Ali N, Wal P, Gasmi A. The link between Alzheimer's disease and stroke: A detrimental synergism. Ageing Res Rev 2024; 99:102388. [PMID: 38914265 DOI: 10.1016/j.arr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-β plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Ishnoor Kaur
- University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Prasanna Shama Khandige
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangaluru, Karnataka, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Baisc Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Pranay Wal
- PSIT Kanpur, Department of Pharmacy, Uttar Pradesh, India
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
20
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
21
|
Zabot GC, Medeiros EB, Macarini BMN, Peruchi BB, Keller GS, Lídio AV, Boaventura A, de Jesus LC, de Bem Silveira G, Silveira PCL, Chede BC, Réus GZ, Budni J. The involvement of neuroinflammation in an animal model of dementia and depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:110999. [PMID: 38552774 DOI: 10.1016/j.pnpbp.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) and depression are inflammatory pathologies, leading to increased inflammatory response and neurotoxicity. Therefore, this study aimed to evaluate the effect of the treatment with fluoxetine and/or galantamine and/or donepezil on the levels of proinflammatory and anti-inflammatory cytokines in a mixed animal model of depression and dementia. Adult male Wistar rats underwent chronic mild stress (CMS) protocol for 40 days and were subjected to stereotaxic surgery for intra-hippocampal administration of amyloid-beta (Aꞵ) peptide or artificial cerebrospinal fluid (ACSF) to mimic the dementia animal model. On the 42nd day, animals were treated with water, galantamine, donepezil, and/or fluoxetine, orally for 17 days. On the 57th and 58th days, the Splash and Y-maze tests for behavior analysis were performed. The frontal cortex and hippocampus were used to analyze the tumor necrosis factor alfa (TNF-α), interleukin 1 beta (IL-1ꞵ), IL-6, and IL-10 levels. The results of this study show that animals subjected to CMS and administration of Aꞵ had anhedonia, cognitive impairment, increased TNF-α and IL-1ꞵ levels in the frontal cortex, and reduced IL-10 levels in the hippocampus. All treatment groups were able to reverse the cognitive impairment. Only donepezil did not decrease the TNF-α levels in the hippocampus. Fluoxetine + galantamine and fluoxetine + donepezil reversed the anhedonia. Fluoxetine reversed the anhedonia and IL-1ꞵ levels in the frontal cortex. In addition, fluoxetine + donepezil reversed the reduction of IL-10 levels in the hippocampus. The results indicate a pathophysiological interaction between AD and depression, and the association of medications in the future may be a possible therapeutic strategy to reduce inflammation, especially the fluoxetine-associated treatments.
Collapse
Affiliation(s)
- Gabriel Casagrande Zabot
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bárbara Machado Naspolini Macarini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bruno Búrigo Peruchi
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela Serafim Keller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Adrielly Vargas Lídio
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Amanda Boaventura
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Laura Ceolin de Jesus
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Beatriz Costa Chede
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
22
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
23
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
25
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. Aging Dis 2024:AD.2024.0429. [PMID: 38913039 DOI: 10.14336/ad.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, suggesting that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, suggesting that DEGs exert more impact on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we observe an overall downregulation of astrocyte and microglia modules across all brain regions in AD, indicating a prevailing trend of functional repression in glial cells across these regions. Notable genes from the CALM and HSP90 families emerged as hub genes across neuronal modules in all brain regions, suggesting conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis to comprehensively understand the cell-type-specific roles of genes in AD-related biological processes.
Collapse
|
26
|
Zuo CY, Hu Z, Hao XY, Li MJ, Shi JJ, Guo MN, Ma DR, Li SJ, Liang YY, Zhang C, Mao CY, Xu Y, Shi CH. The potential protective role of peripheral immunophenotypes in Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1403077. [PMID: 38903900 PMCID: PMC11188398 DOI: 10.3389/fnagi.2024.1403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.
Collapse
Affiliation(s)
- Chun-yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-jing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong-rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang-jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng-yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Laurell AAS, Venkataraman AV, Schmidt T, Montagnese M, Mueller C, Stewart R, Lewis J, Mundell C, Isaacs JD, Krishnan MS, Barber R, Rittman T, Underwood BR. Estimating demand for potential disease-modifying therapies for Alzheimer's disease in the UK. Br J Psychiatry 2024; 224:198-204. [PMID: 38235531 DOI: 10.1192/bjp.2023.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
BACKGROUND Phase three trials of the monoclonal antibodies lecanemab and donanemab, which target brain amyloid, have reported statistically significant differences in clinical end-points in early Alzheimer's disease. These drugs are already in use in some countries and are going through the regulatory approval process for use in the UK. Concerns have been raised about the ability of healthcare systems, including those in the UK, to deliver these treatments, considering the resources required for their administration and monitoring. AIMS To estimate the scale of real-world demand for monoclonal antibodies for Alzheimer's disease in the UK. METHOD We used anonymised patient record databases from two National Health Service trusts for the year 2019 to collect clinical, demographic, cognitive and neuroimaging data for these cohorts. Eligibility for treatment was assessed using the inclusion criteria from the clinical trials of donanemab and lecanemab, with consideration given to diagnosis, cognitive performance, cerebrovascular disease and willingness to receive treatment. RESULTS We examined the records of 82 386 people referred to services covering around 2.2 million people. After applying the trial criteria, we estimate that a maximum of 906 people per year would start treatment with monoclonal antibodies in the two services, equating to 30 200 people if extrapolated nationally. CONCLUSIONS Monoclonal antibody treatments for Alzheimer's disease are likely to present a significant challenge for healthcare services to deliver in terms of the neuroimaging and treatment delivery. The data provided here allows health services to understand the potential demand and plan accordingly.
Collapse
Affiliation(s)
- Axel A S Laurell
- Department of Psychiatry, University of Cambridge, UK; and Older People and Adult Community Directorate, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Ashwin V Venkataraman
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and South London and Maudsley NHS Foundation Trust, London, UK
| | - Tatjana Schmidt
- Department of Clinical Neurosciences, University of Cambridge, UK
| | | | - Christoph Mueller
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and South London and Maudsley NHS Foundation Trust, London, UK
| | - Robert Stewart
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and South London and Maudsley NHS Foundation Trust, London, UK
| | - Jonathan Lewis
- Informatics Department, Cambridgeshire and Peterborough NHS Foundation Trust, UK
| | - Clare Mundell
- Pharmacy Department, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Jeremy D Isaacs
- Department of Neurology, Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, UK; and Molecular and Clinical Sciences Research Institute, St George's, University of London, UK
| | - Mani S Krishnan
- Department of Old Age Psychiatry, Tees, Esk and Wear Valleys NHS Foundation Trust, Darlington, UK
| | - Robert Barber
- Department of Old Age Psychiatry, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Benjamin R Underwood
- Department of Psychiatry, University of Cambridge, UK; and Older People and Adult Community Directorate, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
28
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
29
|
Yan D, Hu B, Darst BF, Mukherjee S, Kunkle BW, Deming Y, Dumitrescu L, Wang Y, Naj A, Kuzma A, Zhao Y, Kang H, Johnson SC, Carlos C, Hohman TJ, Crane PK, Engelman CD, Lu Q. Biobank-wide association scan identifies risk factors for late-onset Alzheimer's disease and endophenotypes. eLife 2024; 12:RP91360. [PMID: 38787369 PMCID: PMC11126309 DOI: 10.7554/elife.91360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.
Collapse
Affiliation(s)
- Donghui Yan
- University of Wisconsin-MadisonMadisonUnited States
| | - Bowen Hu
- Department of Statistics, University of Wisconsin-MadisonMadisonUnited States
| | - Burcu F Darst
- Department of Population Health Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - Shubhabrata Mukherjee
- Division of General Internal Medicine, Department of Medicine, University of WashingtonSeattleUnited States
| | - Brian W Kunkle
- University of Miami Miller School of MedicineMiamiUnited States
| | - Yuetiva Deming
- Department of Population Health Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yunling Wang
- University of Wisconsin-MadisonMadisonUnited States
| | - Adam Naj
- School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amanda Kuzma
- School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yi Zhao
- School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hyunseung Kang
- Department of Statistics, University of Wisconsin-MadisonMadisonUnited States
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA HospitalMadisonUnited States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Cruchaga Carlos
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Paul K Crane
- Division of General Internal Medicine, Department of Medicine, University of WashingtonSeattleUnited States
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin-MadisonMadisonUnited States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | | | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-MadisonMadisonUnited States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
30
|
Hossain R, Noonong K, Nuinoon M, Lao-On U, Norris CM, Sompol P, Rahman MA, Majima HJ, Tangpong J. Alzheimer's diseases in America, Europe, and Asian regions: a global genetic variation. PeerJ 2024; 12:e17339. [PMID: 38756443 PMCID: PMC11097964 DOI: 10.7717/peerj.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Alzheimer's disease (AD) is one of the multifaceted neurodegenerative diseases influenced by many genetic and epigenetic factors. Genetic factors are merely not responsible for developing AD in the whole population. The studies of genetic variants can provide significant insights into the molecular basis of Alzheimer's disease. Our research aimed to show how genetic variants interact with environmental influences in different parts of the world. Methodology We searched PubMed and Google Scholar for articles exploring the relationship between genetic variations and global regions such as America, Europe, and Asia. We aimed to identify common genetic variations susceptible to AD and have no significant heterogeneity. To achieve this, we analyzed 35 single-nucleotide polymorphisms (SNPs) from 17 genes (ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, TOMM40, MS4A6A, ARID5B, SORL1, APOC1, MTHFD1L, BDNF, TFAM, and PICALM) from different regions based on previous genomic studies of AD. It has been reported that rs3865444, CD33, is the most common polymorphism in the American and European populations. From TOMM40 and APOE rs2075650, rs429358, and rs6656401, CR1 is the common investigational polymorphism in the Asian population. Conclusion The results of all the research conducted on AD have consistently shown a correlation between genetic variations and the incidence of AD in the populations of each region. This review is expected to be of immense value in future genetic research and precision medicine on AD, as it provides a comprehensive understanding of the genetic factors contributing to the development of this debilitating disease.
Collapse
Affiliation(s)
- Rahni Hossain
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
| | - Udom Lao-On
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Christopher M. Norris
- Department of Pharmacology & Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Pradoldej Sompol
- Department of Pharmacology & Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Md. Atiar Rahman
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Hideyuki J. Majima
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
31
|
Lauretani F, Giallauria F, Testa C, Zinni C, Lorenzi B, Zucchini I, Salvi M, Napoli R, Maggio MG. Dopamine Pharmacodynamics: New Insights. Int J Mol Sci 2024; 25:5293. [PMID: 38791331 PMCID: PMC11121567 DOI: 10.3390/ijms25105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Dopamine is a key neurotransmitter involved in physiological processes such as motor control, motivation, reward, cognitive function, and maternal and reproductive behaviors. Therefore, dysfunctions of the dopaminergic system are related to a plethora of human diseases. Dopamine, via different circuitries implicated in compulsive behavior, reward, and habit formation, also represents a key player in substance use disorder and the formation and perpetuation of mechanisms leading to addiction. Here, we propose dopamine as a model not only of neurotransmission but also of neuromodulation capable of modifying neuronal architecture. Abuse of substances like methamphetamine, cocaine, and alcohol and their consumption over time can induce changes in neuronal activities. These modifications lead to synaptic plasticity and finally to morphological and functional changes, starting from maladaptive neuro-modulation and ending in neurodegeneration.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, via S. Pansini 5, 80131 Naples, Italy; (F.G.); (R.N.)
| | - Crescenzo Testa
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Claudia Zinni
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Beatrice Lorenzi
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Irene Zucchini
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Marco Salvi
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Raffaele Napoli
- Department of Translational Medical Sciences, “Federico II” University of Naples, via S. Pansini 5, 80131 Naples, Italy; (F.G.); (R.N.)
| | - Marcello Giuseppe Maggio
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
32
|
Ma X, Kim JK, Shin YJ, Park HS, Lee DY, Yim SV, Kim DH. Lipopolysaccharide-producing Veillonella infantium and Escherichia fergusonii cause vagus nerve-mediated cognitive impairment in mice. Brain Behav Immun 2024; 118:136-148. [PMID: 38428648 DOI: 10.1016/j.bbi.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Gut microbiota communicates bidirectionally with the brain through the nervous, immune, and endocrine systems of the gut. In our preliminary study, the fecal microbiota of volunteers with mild cognitive impairment (Fmci) exhibited a higher abundance of Escherichia fergusonii (NK2001), Veillonella infantium (NK2002), and Enterococcus faecium (NK2003) populations compared with those of healthy volunteers. Therefore, we examined the effects of Fmci, NK2001 (gram-negative), NK2002 (gram-negative-like), and NK2003 (gram-positive) on cognitive impairment-like behavior, neuroinflammation, and colitis in mice with or without antibiotics. Fmci transplantation increased cognitive impairment-like behavior, hippocampal tumor necrosis factor (TNF)-α expression, and the size of toll-like receptor (TLR)4+Iba1+, TLR2+Iba1+, and NF-κB+Iba1+ cell populations independent of antibiotic treatment. Oral gavage of NK2001, NK2002, or NK2003, which induced TNF-α expression in Caco-2 cells, significantly increased cognitive impairment-like behavior and hippocampal TNF-α expression and Iba1-positive cell populations and decreased brain-derived neurotrophic factor (BDNF) expression in mice. Celiac vagotomy significantly decreased NK2001- or NK2002-induced cognitive impairment-like behavior and hippocampal Iba1+ cell population and TNF-α expression and increased NK2001- or NK2002-suppressed hippocampal BDNF expression. However, NK2003-induced cognitive impairment-like behavior and hippocampal Iba1+ cell population and TNF-α expression were partially, but not significantly, attenuated by celiac vagotomy. Furthermore, celiac vagotomy did not affect NK2001-, NK2002-, or NK2003-induced lipopolysaccharide (LPS) levels in the blood and feces and TNF-α expression and NF-κB-positive cell population in the colon. In conclusion, LPS-producing NK2001 and NK2002 and LPS-nonproducing NK2003 may induce NF-κB-mediated neuroinflammation through the translocation of byproducts such as LPS and peptidoglycan into the brain through gut-blood/vagus nerve-brain and gut-blood-brain pathways, respectively, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea; School of Pharmacy, Jeonbuk National University, Jeonju-si, Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
33
|
Mishra CB, Shalini S, Gusain S, Kumar P, Kumari S, Choi YS, Kumari J, Moku BK, Yadav AK, Prakash A, Jeon R, Tiwari M. Multitarget action of Benzothiazole-piperazine small hybrid molecule against Alzheimer's disease: In silico, In vitro, and In vivo investigation. Biomed Pharmacother 2024; 174:116484. [PMID: 38565058 DOI: 10.1016/j.biopha.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aβ1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aβ1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 μM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aβ, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Kumari
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yong-Sung Choi
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Bala Krishna Moku
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea.
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
34
|
Cardoso C, Valentim J, Gomes R, Matos J, Rego A, Coelho I, Delgado I, Motta C, Castanheira I, Prates JAM, Bandarra NM, Afonso C. Mackerel and Seaweed Burger as a Functional Product for Brain and Cognitive Aging Prevention. Foods 2024; 13:1332. [PMID: 38731702 PMCID: PMC11083232 DOI: 10.3390/foods13091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Most world countries are experiencing a remarkable aging process. Meanwhile, 50 million people are affected by Alzheimer's disease (AD) and related dementia and there is an increasing trend in the incidence of these major health problems. In order to address these, the increasing evidence suggesting the protective effect of dietary interventions against cognitive decline during aging may suggest a response to this challenge. There are nutrients with a neuroprotective effect. However, Western diets are poor in healthy n-3 polyunsaturated fatty acids (n-3 PUFAs), such as docosahexaenoic acid (DHA), iodine (I), and other nutrients that may protect against cognitive aging. Given DHA richness in chub mackerel (Scomber colias), high vitamin B9 levels in quinoa (Chenopodium quinoa), and I abundance in the seaweed Saccorhiza polyschides, a functional hamburger rich in these nutrients by using these ingredients was developed and its formulation was optimized in preliminary testing. The effects of culinary treatment (steaming, roasting, and grilling vs. raw) and digestion on bioaccessibility were evaluated. The hamburgers had high levels of n-3 PUFAs in the range of 42.0-46.4% and low levels of n-6 PUFAs (6.6-6.9%), resulting in high n-3/n-6 ratios (>6). Bioaccessibility studies showed that the hamburgers could provide the daily requirements of eicosapentaenoic acid (EPA) + DHA with 19.6 g raw, 18.6 g steamed, 18.9 g roasted, or 15.1 g grilled hamburgers. Polyphenol enrichment by the seaweed and antioxidant activity were limited. The hamburgers contained high levels of Se and I at 48-61 μg/100 g ww and 221-255 μg/100 g ww, respectively. Selenium (Se) and I bioaccessibility levels were 70-85% and 57-70%, respectively, which can be considered high levels. Nonetheless, for reaching dietary requirements, considering the influence of culinary treatment and bioaccessibility, 152.2-184.2 g would be necessary to ensure daily Se requirements and 92.0-118.1 g for I needs.
Collapse
Affiliation(s)
- Carlos Cardoso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; (N.M.B.); (C.A.)
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| | - Jorge Valentim
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
- Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Romina Gomes
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
- MEtRICs/DCTB/NOVA, School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Almada, Portugal
| | - Joana Matos
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| | - Andreia Rego
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Inês Coelho
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Inês Delgado
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Carla Motta
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Isabel Castanheira
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - José A. M. Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Narcisa M. Bandarra
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; (N.M.B.); (C.A.)
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| | - Cláudia Afonso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; (N.M.B.); (C.A.)
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| |
Collapse
|
35
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
36
|
Santi MD, Carvalho D, Dapueto R, Bentura M, Zeni M, Martínez-González L, Martínez A, Peralta MA, Rey A, Giglio J, Ortega MG, Savio E, Abin-Carriquiry JA, Arredondo F. Prenylated Flavanone Isolated from Dalea Species as a Potential Multitarget-Neuroprotector in an In Vitro Alzheimer's Disease Mice Model. Neurotox Res 2024; 42:23. [PMID: 38578482 DOI: 10.1007/s12640-024-00703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3β-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3β. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.
Collapse
Affiliation(s)
- Maria D Santi
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
- Área de Matemática - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rosina Dapueto
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Manuela Bentura
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Maia Zeni
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Loreto Martínez-González
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Mariana A Peralta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Córdoba, Argentina
| | - Ana Rey
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Javier Giglio
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Maria G Ortega
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Córdoba, Argentina
| | - Eduardo Savio
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | | | - Florencia Arredondo
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay.
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay.
| |
Collapse
|
37
|
Asadie M, Miri A, Badri T, Hosseini Nejad J, Gharechahi J. Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis. J Mol Neurosci 2024; 74:37. [PMID: 38568322 DOI: 10.1007/s12031-024-02212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
Collapse
Affiliation(s)
- Mohamadreza Asadie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Tsay HJ, Gan YL, Su YH, Sun YY, Yao HH, Chen HW, Hsu YT, Hsu JTA, Wang HD, Shie FS. Reducing brain Aβ burden ameliorates high-fat diet-induced fatty liver disease in APP/PS1 mice. Biomed Pharmacother 2024; 173:116404. [PMID: 38471275 DOI: 10.1016/j.biopha.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
High-fat diet (HFD)-induced fatty liver disease is a deteriorating risk factor for Alzheimer's disease (AD). Mitigating fatty liver disease has been shown to attenuate AD-like pathology in animal models. However, it remains unclear whether enhancing Aβ clearance through immunotherapy would in turn attenuate HFD-induced fatty liver or whether its efficacy would be compromised by long-term exposure to HFD. Here, the therapeutic potentials of an anti-Aβ antibody, NP106, was investigated in APP/PS1 mice by HFD feeding for 44 weeks. The data demonstrate that NP106 treatment effectively reduced Aβ burden and pro-inflammatory cytokines in HFD-fed APP/PS1 mice and ameliorated HFD-aggravated cognitive impairments during the final 18 weeks of the study. The rejuvenating characteristics of microglia were evident in APP/PS1 mice with NP106 treatment, namely enhanced microglial Aβ phagocytosis and attenuated microglial lipid accumulation, which may explain the benefits of NP106. Surprisingly, NP106 also reduced HFD-induced hyperglycemia, fatty liver, liver fibrosis, and hepatic lipids, concomitant with modifications in the expressions of genes involved in hepatic lipogenesis and fatty acid oxidation. The data further reveal that brain Aβ burden and behavioral deficits were positively correlated with the severity of fatty liver disease and fasting serum glucose levels. In conclusion, our study shows for the first time that anti-Aβ immunotherapy using NP106, which alleviates AD-like disorders in APP/PS1 mice, ameliorates fatty liver disease. Minimizing AD-related pathology and symptoms may reduce the vicious interplay between central AD and peripheral fatty liver disease, thereby highlighting the importance of developing AD therapies from a systemic disease perspective.
Collapse
Affiliation(s)
- Huey-Jen Tsay
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Ling Gan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Yu-Han Su
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Yu-Yo Sun
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Heng-Hsiang Yao
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hui-Wen Chen
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Ting Hsu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - John Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Horng-Dar Wang
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Feng-Shiun Shie
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC.
| |
Collapse
|
39
|
Nichols E, Petrosyan S, Lee J. Mental Health Impacts of COVID-19: Does Prepandemic Cognition and Dementia Status Matter? J Gerontol A Biol Sci Med Sci 2024; 79:glae028. [PMID: 38267562 PMCID: PMC10972580 DOI: 10.1093/gerona/glae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic disrupted daily life and led to sharp shocks in trends for various health outcomes. Although substantial evidence exists linking the pandemic and mental health outcomes and linking dementia and mental health outcomes, little evidence exists on how cognitive status may alter the impact of COVID-19 on mental health. METHODS We used prepandemic data from the Longitudinal Aging Study in India-Diagnostic Assessment of Dementia study and 9 waves of data from the Real-Time Insights of COVID-19 in India study (N = 1 182). We estimated associations between measures of prepandemic cognition (continuous cognition based on 22 cognitive tests, dementia status) and mental health measures during the pandemic (Patient Health Questionnaire [PHQ]-4 [9 time points], PHQ-9 [2 time points], Beck Anxiety Inventory [3 time points]), adjusting for age, gender, rural/urban residence, state, education, and prepandemic mental health. RESULTS Summarizing across time points, PHQ-9 score was marginally or significantly associated with prepandemic cognition (PHQ-9 difference: -0.38 [-0.78 to 0.14] points per SD higher cognition; p = .06), and prepandemic dementia (PHQ-9 difference: 0.61 [0.11-1.13] points for those with dementia compared to no dementia; p = .02). Associations with BAI were null, whereas associations with PHQ-4 varied over time (p value for interaction = .02) and were strongest during the delta wave, when pandemic burden was highest. CONCLUSIONS We present initial evidence that mental health impacts of COVID-19 or other acute stressors may be unequally distributed across strata of cognitive outcomes. In dynamically changing environments, those with cognitive impairment or dementia may be more vulnerable to adverse mental health outcomes.
Collapse
Affiliation(s)
- Emma Nichols
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
| | - Sarah Petrosyan
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
| | - Jinkook Lee
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
- Department of Economics, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
40
|
Shan X, Lv S, Huang P, Zhang W, Jin C, Liu Y, Li Y, Jia Y, Chu X, Peng C, Zhang C. Classic Famous Prescription Kai-Xin-San Ameliorates Alzheimer's Disease via the Wnt/β-Catenin Signaling Pathway. Mol Neurobiol 2024; 61:2297-2312. [PMID: 37874481 DOI: 10.1007/s12035-023-03707-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Kai-Xin-San (KXS) is a classic famous prescription composed of Polygalae Radix, Ginseng Radix et Rhizoma, Acori Tatarinowii Rhizoma, and Poria. Clinically, KXS is effective in treating amnesia and regulating cognitive dysfunction of Alzheimer's disease (AD), whereas its mechanism of action is still unclear. In this study, the AD model rats were established by combining intraperitoneal injection of D-galactose (150 mg/kg/day) and intracerebral injection of Aβ25-35 (10 μL) to investigate the meliorative effect of KXS on AD and explore its mechanism. After 1-month KXS treatment, Morris water maze test showed that different doses of KXS all improved the cognitive impairment of AD rats. The results of hematoxylin and eosin staining, Nissl staining, and Tunnel staining showed that the neuron injury in the hippocampal CA1 region of the AD rats was markedly improved after KXS treatment. Concurrently, KXS reversed the levels of biochemical indexes of AD rats. Furthermore, the protein expressions of Wnt1 and β-catenin in KXS groups were remarkably increased, while the expressions of Bax and caspase-3 were significantly decreased. Besides, KXS-medicated serum reduced the levels of tumor necrosis factor-α, interleukin-1β, and reactive oxygen species and regulated the protein expressions of β-catenin, glycogen synthase kinase-3β (GSK-3β), p-GSK-3β, Bax, and caspase-3 in Aβ25-35-induced pheochromocytoma cells. Most importantly, this effect was attenuated by the Wnt inhibitor IWR-1. Our results suggest that KXS improves cognitive and memory function of AD rats, and its neuroprotective mechanism may be mediated through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Shujie Lv
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Peng Huang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Wei Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chuanshan Jin
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuanxu Liu
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yangyang Li
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yong Jia
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaoqin Chu
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Can Peng
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Caiyun Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
41
|
Yang C, Liu G, Zeng X, Xiang Y, Chen X, Le W. Therapeutic effects of long-term HBOT on Alzheimer's disease neuropathologies and cognitive impairment in APP swe/PS1 dE9 mice. Redox Biol 2024; 70:103006. [PMID: 38241837 PMCID: PMC10831255 DOI: 10.1016/j.redox.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the pathological hallmarks of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Although there is a hope that anti-amyloid monoclonal antibodies may emerge as a new therapy for AD, the high cost and side effect is a big concern. Non-drug therapy is attracting more attention and may provide a better resolution for the treatment of AD. Given the fact that hypoxia contributes to the pathogenesis of AD, hyperbaric oxygen therapy (HBOT) may be an effective intervention that can alleviate hypoxia and improve AD. However, it remains unclear whether long-term HBOT intervention in the early stage of AD can slow AD progression and ultimately prevent cognitive impairment in this disease. In this study we applied consecutive 3-month HBOT interventions on 3-month-old APPswe/PS1dE9 AD mice which represent the early stage of AD. When the APPswe/PS1dE9 mice at 9-month-old which represent the disease stage we measured cognitive function, 24-h blood oxygen saturation, Aβ and tau pathologies, vascular structure and function, and neuroinflammation in APPswe/PS1dE9 mice. Our results showed that long-term HBOT can attenuate the impairments in cognitive function observed in 9-month-old APPswe/PS1dE9 mice. Most importantly, HBOT effectively reduced the progression of Aβ plaques deposition, hyperphosphorylated tau protein aggregation, and neuronal and synaptic degeneration in the AD mice. Further, long-term HBOT was able to enhance blood oxygen saturation level. Besides, long-term HBOT can improve vascular structure and function, and reduce neuroinflammation in AD mice. This study is the first to demonstrate that long-term HBOT intervention in the early stage of AD can attenuate cognitive impairment and AD-like pathologies. Overall, these findings highlight the potential of long-term HBOT as a disease-modifying approach for AD treatment.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianrong Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xiang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
42
|
Villa NAE, Wen C, Espiridion ED. Understanding the Complexity of Early-Onset Dementia. Cureus 2024; 16:e57897. [PMID: 38725758 PMCID: PMC11080675 DOI: 10.7759/cureus.57897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Dementia, particularly Alzheimer's disease, affects millions globally, with its prevalence increasing notably with age. Early-onset Alzheimer's disease, however, affects individuals under 65 years old. Unfortunately, diagnosing dementia in patients under 65 years old is quite challenging and is often delayed, missed, or wrong. Thus, we present the case of a 60-year-old female, with a medical history of hypothyroidism and presumed dementia on donepezil, who presented to the emergency department for agitation, dramatic change in personality and behavior, as well as cognitive decline that started in her late 50s. We discuss the importance of performing a thorough history and physical examination, as well as a comprehensive workup for patients who present with dramatic changes in behavior due to the wide range of potential diagnoses. While certain reversible causes, such as hypothyroidism, nutritional deficiencies, and polypharmacy, can be promptly identified and treated, chronic neurocognitive disorders such as Alzheimer's disease demand a timely evaluation for early multidisciplinary treatment to enhance patient outcomes.
Collapse
Affiliation(s)
| | - Charles Wen
- Psychiatry, Drexel University College of Medicine, Philadelphia, USA
| | - Eduardo D Espiridion
- Psychiatry, West Virginia School of Osteopathic Medicine, Lewisburg, USA
- Psychiatry, Drexel University College of Medicine, Philadelphia, USA
- Psychiatry, Philadelphia College of Osteopathic Medicine, Philadelphia, USA
- Psychiatry, Reading Hospital Tower Health Systems, West Reading, USA
| |
Collapse
|
43
|
Chen Y, Chen X, Luo Z, Kang X, Ge Y, Wan R, Wang Q, Han Z, Li F, Fan Z, Xie Y, Qi B, Zhang X, Yang Z, Zhang JH, Liu D, Xu Y, Wu D, Chen S. Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. J Adv Res 2024:S2090-1232(24)00127-9. [PMID: 38565402 DOI: 10.1016/j.jare.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is marked by cognitive deterioration and heightened neuroinflammation. The influence of Insulin-like Growth Factor 1 Receptor (IGF1R) and its post-translational modifications, especially sumoylation, is crucial in understanding the progression of AD and exploring novel therapeutic avenues. OBJECTIVES This study investigates the impact of exercise on the sumoylation of IGF1R and its role in ameliorating AD symptoms in APP/PS1 mice, with a specific focus on neuroinflammation and innovative therapeutic strategies. METHODS APP/PS1 mice were subjected to a regimen of moderate-intensity exercise. The investigation encompassed assessments of cognitive functions, alterations in hippocampal protein expressions, neuroinflammatory markers, and the effects of exercise on IGF1R and SUMO1 nuclear translocation. Additionally, the study evaluated the efficacy of KPT-330, a nuclear export inhibitor, as an alternative to exercise. RESULTS Exercise notably enhanced cognitive functions in AD mice, possibly through modulations in hippocampal proteins, including Bcl-2 and BACE1. A decrease in neuroinflammatory markers such as IL-1β, IL-6, and TNF-α was observed, indicative of reduced neuroinflammation. Exercise modulated the nuclear translocation of SUMO1 and IGF1R in the hippocampus, thereby facilitating neuronal regeneration. Mutant IGF1R (MT IGF1R), lacking SUMO1 modification sites, showed reduced SUMOylation, leading to diminished expression of pro-inflammatory cytokines and apoptosis. KPT-330 impeded the formation of the IGF1R/RanBP2/SUMO1 complex, thereby limiting IGF1R nuclear translocation, inflammation, and neuronal apoptosis, while enhancing cognitive functions and neuron proliferation. CONCLUSION Moderate-intensity exercise effectively mitigates AD symptoms in mice, primarily by diminishing neuroinflammation, through the reduction of IGF1R Sumoylation. KPT-330, as a potential alternative to physical exercise, enhances the neuroprotective role of IGF1R by inhibiting SUMOylation through targeting XPO1, presenting a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Orthopaedics, National Regional Medical Center, Jinjiang Municipal Hospital,Shanghai Sixth People's Hospital, Fujian, Jinjiang,China.
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, China
| | - Yunshen Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Renwen Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopaedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, China
| | - Yuchun Xie
- Jiangsu Province Geriatric Hospital, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital Lianhua Road, Shenzhen City, Guangdong Province, China
| | - Zhenwei Yang
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - John H Zhang
- Department of Neurosurgery, Department of Physiology and Pharmacology, Department of Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| | - Danping Liu
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| | - Dongyan Wu
- Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585267. [PMID: 38559218 PMCID: PMC10980062 DOI: 10.1101/2024.03.15.585267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.
Collapse
Affiliation(s)
- Temitope Adeoye
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Syed I Shah
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
45
|
Wu Y, Wang X, Fang Y. Predicting mild cognitive impairment in older adults: A machine learning analysis of the Alzheimer's Disease Neuroimaging Initiative. Geriatr Gerontol Int 2024; 24 Suppl 1:96-101. [PMID: 37734954 DOI: 10.1111/ggi.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
AIM Mild cognitive impairment (MCI) in older adults is potentially devastating, but an accurate prediction model is still lacking. We hypothesized that neuropsychological tests and MRI-related markers could predict the onset of MCI early. METHODS We analyzed data from 306 older adults who were cognitive normal (CN) attending the Alzheimer's Disease Neuroimaging Initiative sequentially (474 pairs of visits) within 3 years. There were 231 pairs of MCI conversion (CN to MCI), and 242 pairs of CN maintenance (CN to CN). Variables on demographic, neuropsychological tests, genetic, and MRI-related markers were collected. Machine learning was used to construct MCI prediction models, comparing the area under the receiver operating characteristic curve (AUC) as the primary metric of performance. Important predictors were ranked for the optimal model. RESULTS The baseline age of the study sample was 74.8 years old. The best-performing model (gradient boosting decision tree) with 13 variables predicted MCI with an AUC of 0.819, and the rank of variable importance showed that intracranial volume, hippocampal volume, and score from task 4 (word recognition) of the Alzheimer's Disease Assessment Scale were important predictors of MCI. CONCLUSIONS With the help of machine learning, fewer neuropsychological tests and MRI-related markers are required to accurately predict MCI within 3 years, thereby facilitating targeted intervention. Geriatr Gerontol Int 2024; 24: 96-101.
Collapse
Affiliation(s)
- Yafei Wu
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
| | - Xing Wang
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
| | - Ya Fang
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
46
|
Rodriguez-Ayllon M, Solis-Urra P, Arroyo-Ávila C, Álvarez-Ortega M, Molina-García P, Molina-Hidalgo C, Gómez-Río M, Brown B, Erickson KI, Esteban-Cornejo I. Physical activity and amyloid beta in middle-aged and older adults: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:133-144. [PMID: 37558161 PMCID: PMC10980893 DOI: 10.1016/j.jshs.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND One of the pathological hallmarks distinguishing Alzheimer's disease from other dementias is the accumulation of amyloid beta (Aβ). Higher physical activity is associated with decreased dementia risk, and one potential path could be through Aβ levels modulation. We aimed to explore the relationship between physical activity and Aβ in middle-aged and older adults. METHODS A systematic search of PubMed, Web of Science, PsycINFO, Cochrane Central Register of Controlled Trials, and SPORTDiscus was performed from inception to April 28, 2022. Studies were eligible if they included physical activity and Aβ data in adults aged 45 years or older. Multi-level meta-analyses of intervention and observational studies were performed to examine the role of physical activity in modulating Aβ levels. RESULTS In total, 37 articles were included (8 randomized controlled trials, 3 non-randomized controlled trials, 4 prospective longitudinal studies, and 22 cross-sectional studies). The overall effect size of physical activity interventions on changes in blood Aβ was medium (pooled standardized mean difference = -0.69, 95% confidence interval (95%CI): -1.41 to 0.03; I2 = 74.6%). However, these results were not statistically significant, and there were not enough studies to explore the effects of physical activity on cerebrospinal fluid (CSF) and brain Aβ. Data from observational studies were examined based on measurements of Aβ in the brain using positron emission tomography scans, CSF, and blood. Higher physical activity was positively associated with Aβ only in the CSF (Estimate r = 0.12; 95%CI: 0.05-0.18; I2 = 38.00%). CONCLUSION Physical activity might moderately reduce blood Aβ in middle-aged and older adults. However, results were only near statistical significance and might be interpreted with caution given the methodological limitations observed in some of the included studies. In observational studies, higher levels of physical activity were positively associated with Aβ only in CSF. Therefore, further research is needed to understand the modulating role of physical activity in the brain, CSF, and blood Aβ, as well as its implication for cognitive health.
Collapse
Affiliation(s)
- María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, GD 3015, the Netherlands
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile; Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Cristina Arroyo-Ávila
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Miriam Álvarez-Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Pablo Molina-García
- Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | | | - Manuel Gómez-Río
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Belinda Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kirk I Erickson
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Advent Health Research Institute, Neuroscience Institute Orlando, Orlando, FL 32803, USA
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Physiopathology of Obesity and Nutrition Research Center (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
47
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
48
|
Chudzik A, Śledzianowski A, Przybyszewski AW. Machine Learning and Digital Biomarkers Can Detect Early Stages of Neurodegenerative Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:1572. [PMID: 38475108 PMCID: PMC10934426 DOI: 10.3390/s24051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) are devastating conditions that can develop without noticeable symptoms, causing irreversible damage to neurons before any signs become clinically evident. NDs are a major cause of disability and mortality worldwide. Currently, there are no cures or treatments to halt their progression. Therefore, the development of early detection methods is urgently needed to delay neuronal loss as soon as possible. Despite advancements in Medtech, the early diagnosis of NDs remains a challenge at the intersection of medical, IT, and regulatory fields. Thus, this review explores "digital biomarkers" (tools designed for remote neurocognitive data collection and AI analysis) as a potential solution. The review summarizes that recent studies combining AI with digital biomarkers suggest the possibility of identifying pre-symptomatic indicators of NDs. For instance, research utilizing convolutional neural networks for eye tracking has achieved significant diagnostic accuracies. ROC-AUC scores reached up to 0.88, indicating high model performance in differentiating between PD patients and healthy controls. Similarly, advancements in facial expression analysis through tools have demonstrated significant potential in detecting emotional changes in ND patients, with some models reaching an accuracy of 0.89 and a precision of 0.85. This review follows a structured approach to article selection, starting with a comprehensive database search and culminating in a rigorous quality assessment and meaning for NDs of the different methods. The process is visualized in 10 tables with 54 parameters describing different approaches and their consequences for understanding various mechanisms in ND changes. However, these methods also face challenges related to data accuracy and privacy concerns. To address these issues, this review proposes strategies that emphasize the need for rigorous validation and rapid integration into clinical practice. Such integration could transform ND diagnostics, making early detection tools more cost-effective and globally accessible. In conclusion, this review underscores the urgent need to incorporate validated digital health tools into mainstream medical practice. This integration could indicate a new era in the early diagnosis of neurodegenerative diseases, potentially altering the trajectory of these conditions for millions worldwide. Thus, by highlighting specific and statistically significant findings, this review demonstrates the current progress in this field and the potential impact of these advancements on the global management of NDs.
Collapse
Affiliation(s)
- Artur Chudzik
- Polish-Japanese Academy of Information Technology, Faculty of Computer Science, 86 Koszykowa Street, 02-008 Warsaw, Poland; (A.C.); (A.Ś.)
| | - Albert Śledzianowski
- Polish-Japanese Academy of Information Technology, Faculty of Computer Science, 86 Koszykowa Street, 02-008 Warsaw, Poland; (A.C.); (A.Ś.)
| | - Andrzej W. Przybyszewski
- Polish-Japanese Academy of Information Technology, Faculty of Computer Science, 86 Koszykowa Street, 02-008 Warsaw, Poland; (A.C.); (A.Ś.)
- UMass Chan Medical School, Department of Neurology, 65 Lake Avenue, Worcester, MA 01655, USA
| |
Collapse
|
49
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
50
|
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int J Mol Sci 2024; 25:2327. [PMID: 38397004 PMCID: PMC10888758 DOI: 10.3390/ijms25042327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disease that is the most common cause of dementia among the elderly. In addition to dementia, which is the loss of cognitive function, including thinking, remembering, and reasoning, and behavioral abilities, AD patients also experience respiratory disturbances. The most common respiratory problems observed in AD patients are pneumonia, shortness of breath, respiratory muscle weakness, and obstructive sleep apnea (OSA). The latter is considered an outcome of Alzheimer's disease and is suggested to be a causative factor. While this narrative review addresses the bidirectional relationship between obstructive sleep apnea and Alzheimer's disease and reports on existing studies describing the most common respiratory disorders found in patients with Alzheimer's disease, its main purpose is to review all currently available studies using animal models of Alzheimer's disease to study respiratory impairments. These studies on animal models of AD are few in number but are crucial for establishing mechanisms, causation, implementing potential therapies for respiratory disorders, and ultimately applying these findings to clinical practice. This review summarizes what is already known in the context of research on respiratory disorders in animal models, while pointing out directions for future research.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (K.A.); (M.J.)
| |
Collapse
|