1
|
Rojo M, Ball AL, Penrose MT, Weir SM, LeBaron H, Terasaki M, Cobb GP, Lavado R. Accumulation of Parabens, Their Metabolites, and Halogenated Byproducts in Migratory Birds of Prey: A Comparative Study in Texas and North Carolina, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2365-2376. [PMID: 39172001 DOI: 10.1002/etc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;43:2365-2376. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Mike T Penrose
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | | | - Masanori Terasaki
- Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
2
|
Xiao S, Yin H, Lv X, Wang Z, Jiang L, Xia Y, Liu Y. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by darolutamide: Prediction of in vivo drug-drug interactions. Chem Biol Interact 2024; 403:111246. [PMID: 39278459 DOI: 10.1016/j.cbi.2024.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Darolutamide is a potent second-generation, selective nonsteroidal androgen receptor inhibitor (ARI), which has been approved by the US Food and Drug Administration (FDA) in treating castrate-resistant, non-metastatic prostate cancer (nmCRPC). Whether darolutamide affects the activity of UDP-glucuronosyltransferases (UGTs) is unknown. The purpose of the present study is to evaluate the inhibitory effect of darolutamide on recombinant human UGTs and pooled human liver microsomes (HLMs), and explore the potential for drug-drug interactions (DDIs) mediated by darolutamide through UGTs inhibition. The product formation rate of UGTs substrates with or without darolutamide was determined by HPLC or UPLC-MS/MS to estimate the inhibitory effect and inhibition modes of darolutamide on UGTs were evaluated by using the inhibition kinetics experiments. The results showed that 100 μM darolutamide exhibited inhibitory effects on most of the 12 UGTs tested. Inhibition kinetic studies of the enzyme revealed that darolutamide noncompetitively inhibited UGT1A1 and competitively inhibited UGT1A7 and 2B15, with the Ki of 14.75 ± 0.78 μM, 14.05 ± 0.42 μM, and 6.60 ± 0.08 μM, respectively. In particular, it also potently inhibited SN-38, the active metabolite of irinotecan, glucuronidation in HLMs with an IC50 value of 3.84 ± 0.46 μM. In addition, the in vitro-in vivo extrapolation (IVIVE) method was used to quantitatively predict the risk of darolutamide-mediated DDI via inhibiting UGTs. The prediction results showed that darolutamide may increase the risk of DDIs when administered in combination with substrates of UGT1A1, UGT1A7, or UGT2B15. Therefore, the combined administration of darolutamide and drugs metabolized by the above UGTs should be used with caution to avoid the occurrence of potential DDIs.
Collapse
Affiliation(s)
- Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yangliu Xia
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
3
|
Metcalfe-Roach A, Cirstea MS, Yu AC, Ramay HR, Coker O, Boroomand S, Kharazyan F, Martino D, Sycuro LK, Appel-Cresswell S, Finlay BB. Metagenomic Analysis Reveals Large-Scale Disruptions of the Gut Microbiome in Parkinson's Disease. Mov Disord 2024; 39:1740-1751. [PMID: 39192744 DOI: 10.1002/mds.29959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) has been consistently linked to alterations within the gut microbiome. OBJECTIVE Our goal was to identify microbial features associated with PD incidence and progression. METHODS Metagenomic sequencing was used to characterize taxonomic and functional changes to the PD microbiome and to explore their relation to bacterial metabolites and disease progression. Motor and non-motor symptoms were tracked using Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and levodopa equivalent dose across ≤5 yearly study visits. Stool samples were collected at baseline for metagenomic sequencing (176 PD, 100 controls). RESULTS PD-derived stool samples had reduced intermicrobial connectivity and seven differentially abundant species compared to controls. A suite of bacterial functions differed between PD and controls, including depletion of carbohydrate degradation pathways and enrichment of ribosomal genes. Faecalibacterium prausnitzii-specific reads contributed significantly to more than half of all differentially abundant functional terms. A subset of disease-associated functional terms correlated with faster progression of MDS-UPDRS part IV and separated those with slow and fast progression with moderate accuracy within a random forest model (area under curve = 0.70). Most PD-associated microbial trends were stronger in those with symmetric motor symptoms. CONCLUSION We provide further evidence that the PD microbiome is characterized by reduced intermicrobial communication and a shift to proteolytic metabolism in lieu of short-chain fatty acid production, and suggest that these microbial alterations may be relevant to disease progression. We also describe how our results support the existence of gut-first versus brain-first PD subtypes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Avril Metcalfe-Roach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mihai S Cirstea
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam C Yu
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Olabisi Coker
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seti Boroomand
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faezeh Kharazyan
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura K Sycuro
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Ewing LE, Harpenau RJ, Skinner CM, Clement K, Quick CM, Yee EU, Williams DK, Walker LA, ElSohly MA, Gurley BJ, Koturbash I. Inter-strain variability in responses to a single administration of the cannabidiol-rich cannabis extract in mice. Food Chem Toxicol 2024; 192:114909. [PMID: 39128689 PMCID: PMC11381146 DOI: 10.1016/j.fct.2024.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Cannabidiol (CBD) has gained widespread popularity; however, its pharmacological and toxicological profiles in the context of human genetic diversity remain largely unexplored. Here, we investigated the variability in metabolism and toxicity of CBD-rich cannabis extract (CRCE) in genetically diverse mouse models: C57BL/6J, B6C3F1/J, and NZO/HlLtJ strains. Mice received a single dose of CRCE containing 57.9% CBD at dosages of 0, 246, 738, and 2460 mg/kg of CBD. At 24 h after treatment, no appreciable histomorphological changes were detected in the liver. Plasma bilirubin levels increased markedly in all strains at the highest CBD dose. Mice in all treatment groups displayed significant but distinct increases in ALT and AST levels. While B6C3F1/J and NZO/HlLtJ mice had negligible plasma CBD levels at 738 mg/kg, C57BL/6J mice exhibited levels exceeding 7000 ng/mL. At 2460 mg/kg, high CBD concentrations were found in B6C3F1/J and C57BL/6J mice, but markedly lower levels were seen in NZO/HlLtJ mice. Gene expression profiling showed significant increases in Cyp2b10 across all strains but varying responses in Cyp1a1 expression, indicating strain-specific CYP dysregulation. Genetically diverse mice exhibited differential pharmacological and toxicological responses to CRCE, suggesting a high potential for inter-individual variability in the pharmacology and toxicology of CBD in humans.
Collapse
Affiliation(s)
- Laura E Ewing
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ryan J Harpenau
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Charles M Skinner
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Kirsten Clement
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Charles M Quick
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - D Keith Williams
- Department of Biostatistics, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Larry A Walker
- National Center for Natural Products Research, University of Mississippi University, MS, 38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi University, MS, 38677, USA; ElSohly Laboratories, Inc. (ELI), Oxford, MS, 38677, USA
| | - Bill J Gurley
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; National Center for Natural Products Research, University of Mississippi University, MS, 38677, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
5
|
Gunasaykaran SY, Chear NJY, Ismail S, Mohammad NA, Murugaiyah V, Ramanathan S. Drug-drug interactions of plant alkaloids derived from herbal medicines on the phase II UGT enzymes: an introductory review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03418-8. [PMID: 39325152 DOI: 10.1007/s00210-024-03418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Herbal medicines are widely used as alternative or complementary therapies to treat and prevent chronic diseases. However, these can lead to drug-drug interactions (DDIs) that affect the glucuronidation reaction of UDP glucuronosyltransferases (UGTs), which convert drugs into metabolites. Plant extracts derived from medicinal herbs contain a diverse array of compounds categorized into different functional groups. While numerous studies have examined the inhibition of UGT enzymes by various herbal compounds, it remains unclear which group of compounds exerts the most significant impact on DDIs in the glucuronidation reaction. Recently, alkaloids derived from medicinal herbs, including kratom (Mitragyna speciosa), have gained attention due to their diverse pharmacological properties. This review primarily focuses on the DDIs of plant alkaloids from medicinal herbs, including kratom on the phase II UGT enzymes. Kratom is a new emerging herbal product in Western countries that is often used to self-treat chronic pain, opioid withdrawal, or as a replacement for prescription and non-prescription opioids. Kratom is well-known for its psychoactive alkaloids, which have a variety of psychopharmacological effects. However, the metabolism mechanism of kratom alkaloids, particularly on the phase II pathway, is still poorly understood. Simultaneously using kratom or other herbal products containing alkaloids with prescribed medicines may have an impact on the drug metabolism involving the phase II UGT enzymes. To ensure the safety and efficacy of treatments, gaining a better understanding of the DDIs when using herbal products with conventional medicine is crucial.
Collapse
Affiliation(s)
| | | | - Sabariah Ismail
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | | | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Zheng J, Chen X, Xie Y, Zhang Y, Huang Y, Wu P, Lv J, Qiu L. Knocking Out of UDP-Glycosyltransferase Gene UGT2B10 via CRISPR/Cas9 in Helicoverpa armigera Reveals Its Function in Detoxification of Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20862-20871. [PMID: 39269786 DOI: 10.1021/acs.jafc.4c05055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene UGT2B10 was previously found overexpressed in a fenvalerate-resistant strain of Helicoverpa armigera. Herein, UGT2B10 was cloned, and its involvement in insecticide detoxification was investigated. UGT2B10 was highly expressed in the larvae, mainly in the fat body and midgut. Treatment with UGT inhibitors 5-nitrouracil and sulfinpyrazone significantly enhanced the fenvalerate toxicity. Knocking down UGT2B10 by RNAi significantly increased the larvae mortality by 17.89%. UGT2B10 was further knocked out by CRISPR/Cas9, and a homozygous strain (HD-dUGT2B10) with a C-base deletion at exon 2 was obtained. The sensitivity of HD-dUGT2B10 to fenvalerate, deltamethrin, cyantraniliprole, acetamiprid, and lufenuron increased significantly, with sensitivity index increased 2.523-, 2.544-, 2.250-, 2.473-, and 3.556-fold, respectively. These results suggested that UGT2B10 was involved in the detoxification of H. armigera to insecticides mentioned above, shedding light upon further understanding of the detoxification mechanisms of insecticides by insect UGTs.
Collapse
Affiliation(s)
- Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Youse MS, Abutaleb NS, Nocentini A, S Abdelsattar A, Ali F, Supuran CT, Seleem MN, Flaherty DP. Optimization of Ethoxzolamide Analogs with Improved Pharmacokinetic Properties for In Vivo Efficacy against Neisseria gonorrhoeae. J Med Chem 2024; 67:15537-15556. [PMID: 39141375 DOI: 10.1021/acs.jmedchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-resistant gonorrhea is caused by the bacterial pathogen Neisseria gonorrhoeae, for which there is no recommended oral treatment. We have demonstrated that the FDA-approved human carbonic anhydrase inhibitor ethoxzolamide potently inhibits N. gonorrhoeae; however, is not effective at reducing N. gonorrhoeae bioburden in a mouse model. Thus, we sought to optimize the pharmacokinetic properties of the ethoxzolamide scaffold. These efforts resulted in analogs with improved activity against N. gonorrhoeae, increased metabolic stability in mouse liver microsomes, and improved Caco-2 permeability compared to ethoxzolamide. Improvement in these properties resulted in increased plasma exposure in vivo after oral dosing. Top compounds were investigated for in vivo efficacy in a vaginal mouse model of gonococcal genital tract infection, and they significantly decreased the gonococcal burden compared to vehicle and ethoxzolamide controls. Altogether, results from this study provide evidence that ethoxzolamide-based compounds have the potential to be effective oral therapeutics against gonococcal infection.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Farman Ali
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Sharma N, Au V, Martin K, Edgley ML, Moerman D, Mains PE, Gilleard JS. Multiple UDP glycosyltransferases modulate benzimidazole drug sensitivity in the nematode Caenorhabditis elegans in an additive manner. Int J Parasitol 2024; 54:535-549. [PMID: 38806068 DOI: 10.1016/j.ijpara.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.
Collapse
Affiliation(s)
- Nidhi Sharma
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Vinci Au
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Kiana Martin
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Mark L Edgley
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Don Moerman
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Paul E Mains
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Glucuronidation of tizoxanide, an active metabolite of nitazoxanide, in liver and small intestine: Species differences in humans, monkeys, dogs, rats, and mice and responsible UDP-glucuronosyltransferase isoforms in humans. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109962. [PMID: 38889874 DOI: 10.1016/j.cbpc.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Yoko Mori
- Division of Environmental Chemistry, Ntional Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
10
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2024. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Yin H, Lv X, Wang Z, Xiao S, Liang J, Sun J, Jiang L, Liu Y. In vitro inhibitory effects of selumetinib on activity of human UDP-glucuronosyltransferases and prediction of in vivo drug-drug interactions. Toxicol In Vitro 2024; 99:105863. [PMID: 38823552 DOI: 10.1016/j.tiv.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Selumetinib is an oral, effective, and selective tyrosine kinase inhibitor targeting mitogen-activated protein kinase 1 and 2 (MEK1/2), which is clinically active in multiple tumor types, such as neurofibromatosis type 1 (NF1), melanoma, gliomas and non-small cell lung cancer (NSCLC). The purpose of this article was to assess the effects of selumetinib on the activities of twelve human UDP-glucosyltransferases (UGTs) including UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, and its potential for inducing clinical drug-drug interactions (DDIs). The results demonstrated that selumetinib potently inhibited the activity of UGT2B7 through the mechanism of mixed inhibition with the inhibition constant value of 5.79 ± 0.65 μM. Furthermore, the plasma concentration of UGT2B7 substrate as the co-administered drug was predicted to be increased by at least 84 % when patients took selumetinib 75 mg twice daily, suggesting a high potential to induce clinical DDIs. Selumetinib exhibited weak inhibitory effects on other human UGTs and was unlikely to trigger off UGTs-mediated DDIs except for UGT2B7. Therefore, the combination of selumetinib with the substrate drug of UGT2B7 requires additional attention to avoid adverse events in clinical treatment.
Collapse
Affiliation(s)
- Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jiaqi Liang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jie Sun
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
12
|
Newman LA, Useckaite Z, Wu T, Sorich MJ, Rowland A. Establishing the capacity to monitor proteins relevant to the study of drug exposure and response using liver-derived extracellular vesicles. Br J Clin Pharmacol 2024. [PMID: 39078327 DOI: 10.1111/bcp.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Drug exposure and response is determined by pharmacokinetic (PK) and pharmacodynamic (PD) profiles. Interindividual differences in abundance of drug metabolizing enzymes (DMEs) and drug target proteins underpin PK and PD variability and impact treatment efficacy and tolerability. Extracellular vesicles (EVs) carry protein cargo inherited from originating cells and may be useful for defining differences in key proteins related to hepatic drug metabolism and the treatment of metabolic-associated fatty liver disease (MAFLD). We sought to quantify these proteins in liver-derived EVs and establish the profile relative to paired tissue. METHODS EVs were recovered from human liver tissue samples (LT-EV, n = 11). Targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) assays were employed for absolute quantification of proteins in EV isolates and matched liver tissue. RESULTS DMEs and MAFLD drug targets were readily detected and quantified in LT-EVs. Twelve of 15 DMEs exhibited moderate to strong correlation (Spearman ⍴ = 0.618-0.973) between tissue and EVs. Correlation in protein abundance was influenced by the extent of extra-hepatic expression of the target. CONCLUSIONS This study provides evidence that key proteins related to PK and PD profiles can be measured in liver-derived EVs and abundance of liver-enriched DMEs are robustly correlated between paired tissue and EVs. The robust detection of protein markers related to drug PD profile in MAFLD opens the possibility to track within-subject changes in MAFLD and lays the foundation for future development of a liver-derived EV liquid biopsy to assess markers of drug exposure and response in vivo.
Collapse
Affiliation(s)
- Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ting Wu
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Olubamiwa AO, Liao TJ, Zhao J, Dehanne P, Noban C, Angin Y, Barberan O, Chen M. Drug interaction with UDP-Glucuronosyltransferase (UGT) enzymes is a predictor of drug-induced liver injury. Hepatology 2024:01515467-990000000-00962. [PMID: 39024247 DOI: 10.1097/hep.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND AIMS DILI frequently contributes to the attrition of new drug candidates and is a common cause for the withdrawal of approved drugs from the market. Although some noncytochrome P450 (non-CYP) metabolism enzymes have been implicated in DILI development, their association with DILI outcomes has not been systematically evaluated. APPROACH AND RESULTS In this study, we analyzed a large data set comprising 317 drugs and their interactions in vitro with 42 non-CYP enzymes as substrates, inducers, and/or inhibitors retrieved from historical regulatory documents using multivariate logistic regression. We examined how these in vitro drug-enzyme interactions are correlated with the drugs' potential for DILI concern, as classified in the Liver Toxicity Knowledge Base database. Our study revealed that drugs that inhibit non-CYP enzymes are significantly associated with high DILI concern. Particularly, interaction with UDP-glucuronosyltransferases (UGT) enzymes is an important predictor of DILI outcomes. Further analysis indicated that only pure UGT inhibitors and dual substrate inhibitors, but not pure UGT substrates, are significantly associated with high DILI concern. CONCLUSIONS Drug interactions with UGT enzymes may independently predict DILI, and their combined use with the rule-of-two model further improves overall predictive performance. These findings could expand the currently available tools for assessing the potential for DILI in humans.
Collapse
Affiliation(s)
- AyoOluwa O Olubamiwa
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tsung-Jen Liao
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jinwen Zhao
- Department of Information Science, University of Arkansas at Little Rock, Arkansas, USA
| | - Patrice Dehanne
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | - Catherine Noban
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | - Yeliz Angin
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | | | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
14
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Kishi Y, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 2024; 187:3563-3584.e26. [PMID: 38889727 PMCID: PMC11246231 DOI: 10.1016/j.cell.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas H Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jean M Badroos
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joani W Viliunas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuriko Kishi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julian M Wagner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David R Miller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mina Yousefelahiyeh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Taro Eldredge
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacy Pirro
- Iridian Genomes, 613 Quaint Acres Dr., Silver Spring, MD 20904, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven R Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Liu J, Tian M, Qin H, Chen D, Mzava SM, Wang X, Bigambo FM. Maternal bisphenols exposure and thyroid function in children: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1420540. [PMID: 39010904 PMCID: PMC11246848 DOI: 10.3389/fendo.2024.1420540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background Evidence from animal experiments and epidemiological studies has reported controversial results about the effects of prenatal bisphenols (BPs) exposure on childhood thyroid function. This study aims to explore the associations of prenatal exposure to BPs with thyroid-related hormones (THs) in newborns and early childhood, with a particular focus on the sex-dependent and exposure level effects. Methods Correlated studies were systematically searched from PubMed, Web of Science, Medline, Cochrane, and Embase until February 21, 2024. The exposures assessed include bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF), and tetrachlorobisphenol A (TCBPA). THs measured were thyroid stimulating hormone (TSH), total tri-iodothyronine (TT3), total thyroxine (TT4), free tri-iothyronine (FT3), and free thyroxine (FT4). Effect estimates were quantified using coefficients from multivariable regression models. Statistical analyses were completed using Stata 16.0. The methodological quality of the included studies was evaluated using the Newcastle-Ottawa Scale (NOS). Results Eleven cohort studies comprising 5,363 children were included in our meta-analysis. Prenatal bisphenol concentrations were statistically significant related to alterations in thyroid hormones in children, exclusively in female offspring, including reduced TSH (β = -0.020, 95% CI: -0.036, -0.005) and increased TT3 levels (β = 0.011, 95% CI: 0.001, 0.021), and exposure to high concentration of bisphenols (>1.5 ug/g creatinine) significantly reduced FT3 levels in children (β = -0.011, 95% CI: -0.020, -0.003). Conclusion Prenatal bisphenol exposure is linked to alterations in thyroid hormone levels in girls, necessitating enhanced measures to control bisphenol exposure levels during pregnancy for child health protection. Systematic Review Registration https://inplasy.com, identifier INPLASY202450129.
Collapse
Affiliation(s)
- Jiani Liu
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Tian
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyue Qin
- Nanjing Foreign Language School, Nanjing, China
| | - Danrong Chen
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Francis Manyori Bigambo
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Xu C, Jiang Z, Qian M, Zuo L, Xue H, Hu N. Influence of UDP-Glucuronosyltransferase Polymorphisms on Mycophenolic Acid Metabolism in Renal Transplant Patients. Transplant Proc 2024; 56:1280-1289. [PMID: 39054222 DOI: 10.1016/j.transproceed.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the effects of UDP-glucuronosyltransferase (UGT) polymorphisms on mycophenolic acid (MPA) metabolism in renal transplant patients. A total of 11 single nucleotide polymorphisms (SNPs) of UGT1A1, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B7 were genotyped in 79 renal transplant patients. The associations of SNPs and clinical factors with dose-adjusted MPA area under the plasma concentration-time curve (AUC/D), the dose-adjusted plasma concentration (C0/D) of 7-O-MPA-glucuronide (MPAG), and the dose-adjusted plasma concentration (C0/D) of acyl MPAG (AcMPAG) were analyzed. In the univariate analysis, UGT1A1 rs4148323, age, and anion gap were associated with MPA AUC/D. MPA AUC/D was higher in patients with the GA genotype of UGT1A1 rs4148323 compared to patients with the GG genotype. UGT1A1 rs4148323, UGT1A9 rs2741049 and clinical factors, including age, serum total bilirubin, adenosine deaminase, anion gap, urea, and creatinine, were associated with MPAG C0/D. UGT2B7 rs7438135, UGT2B7 rs7439366, and UGT2B7 rs7662029 also were associated with AcMPAG C0/D. Multiple linear regression analysis showed that UGT1A9 rs2741049 and indirect bilirubin were negatively correlated with MPAG C0/D (P = .001; P = .039), and UGT2B7 rs7662029 was positively correlated with AcMPAG C0/D (P = .008). This study demonstrates a significant influence of UGT1A9 rs2741049 and UGT2B7 rs7662029 polymorphisms on the metabolism of MPA in vivo.
Collapse
Affiliation(s)
- Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Hui Xue
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Ozbey AC, Keemink J, Wagner B, Pugliano A, Krähenbühl S, Annaert P, Fowler S, Parrott N, Umehara K. Physiologically Based Pharmacokinetic Modeling to Predict the Impact of Liver Cirrhosis on Glucuronidation via UGT1A4 and UGT2B7/2B4-A Case Study with Midazolam. Drug Metab Dispos 2024; 52:614-625. [PMID: 38653501 DOI: 10.1124/dmd.123.001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatic impairment, due to liver cirrhosis, decreases the activity of cytochrome P450 enzymes (CYPs). The use of physiologically based pharmacokinetic (PBPK) modeling to predict this effect for CYP substrates has been well-established, but the effect of cirrhosis on uridine-glucuronosyltransferase (UGT) activities is less studied and few PBPK models have been reported. UGT enzymes are involved in primary N-glucuronidation of midazolam and glucuronidation of 1'-OH-midazolam following CYP3A hydroxylation. In this study, Simcyp was used to establish PBPK models for midazolam, its primary metabolites midazolam-N-glucuronide (UGT1A4) and 1'-OH midazolam (CYP3A4/3A5), and the secondary metabolite 1'-OH-midazolam-O-glucuronide (UGT2B7/2B4), allowing to simulate the impact of liver cirrhosis on the primary and secondary glucuronidation of midazolam. The model was verified in noncirrhotic subjects before extrapolation to cirrhotic patients of Child-Pugh (CP) classes A, B, and C. Our model successfully predicted the exposures of midazolam and its metabolites in noncirrhotic and cirrhotic patients, with 86% of observed plasma concentrations within 5th-95th percentiles of predictions and observed geometrical mean of area under the plasma concentration curve between 0 hours to infinity and maximal plasma concentration within 0.7- to 1.43-fold of predictions. The simulated metabolic ratio defined as the ratio of the glucuronide metabolite AUC over the parent compound AUC (AUCglucuronide/AUCparent, metabolic ratio [MR]), was calculated for midazolam-N-glucuronide to midazolam (indicative of UGT1A4 activity) and decreased by 40% (CP A), 48% (CP B), and 75% (CP C). For 1'-OH-midazolam-O-glucuronide to 1'-OH-midazolam, the MR (indicative of UGT2B7/2B4 activity) dropped by 35% (CP A), 51% (CP B), and 64% (CP C). These predicted MRs were corroborated by the observed data. This work thus increases confidence in Simcyp predictions of the effect of liver cirrhosis on the pharmacokinetics of UGT1A4 and UGT2B7/UGT2B4 substrates. SIGNIFICANCE STATEMENT: This article presents a physiologically based pharmacokinetic model for midazolam and its metabolites and verifies the accurate simulation of pharmacokinetic profiles when using the Simcyp hepatic impairment population models. Exposure changes of midazolam-N-glucuronide and 1'-OH-midazolam-O-glucuronide reflect the impact of decreases in UGT1A4 and UGT2B7/2B4 glucuronidation activity in cirrhotic patients. The approach used in this study may be extended to verify the modeling of other uridine glucuronosyltransferase enzymes affected by liver cirrhosis.
Collapse
Affiliation(s)
- Agustos C Ozbey
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Janneke Keemink
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Bjoern Wagner
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Alessandra Pugliano
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Pieter Annaert
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Yang K, Jia RY, Li XS, Lu SY, Liu JJ, Zhang ZP, Fang ZZ. Identification of UDP-glucuronosyltransferase (UGT) isoforms involved in the metabolism of Chlorophenols (CPs). CHEMOSPHERE 2024; 358:142249. [PMID: 38705405 DOI: 10.1016/j.chemosphere.2024.142249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Chlorophenols (CPs) are a group of pollutants that pose a great threat to the environment, they are widely used in industrial and agricultural wastes, pesticides, herbicides, textiles, pharmaceuticals and plastics. Among CPs, pentachlorophenol was listed as one of the persistent organic pollutants (POPs) by the Stockholm convention. This study aims to identify the UDP-glucosyltransferase (UGT) isoforms involved in the metabolic elimination of CPs. CPs' mono-glucuronide was detected in the human liver microsomes (HLMs) incubation mixture with co-factor uridine-diphosphate glucuronic acid (UDPGA). HLMs-catalyzed glucuronidation metabolism reaction equations followed Michaelis-Menten or substrate inhibition type. Recombinant enzymes and chemical reagents inhibition experiments were utilized to phenotype the main UGT isoforms involved in the glucuronidation of CPs. UGT1A6 might be the major enzyme in the glucuronidation of mono-chlorophenol isomer. UGT1A1, UGT1A6, UGT1A9, UGT2B4 and UGT2B7 were the most important five UGT isoforms for metabolizing the di-chlorophenol and tri-chlorophenol isomers. UGT1A1 and UGT1A3 were the most important UGT isoforms in the catalysis of tetra-chlorophenol and pentachlorophenol isomers. Species differences were investigated using rat liver microsomes (RLMs), pig liver microsomes (PLMs), dog liver microsomes (DLMs), and monkey liver microsomes (MyLMs). All these results were helpful for elucidating the metabolic elimination and toxicity of CPs.
Collapse
Affiliation(s)
- Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ruo-Yong Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Song Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shao-You Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jian-Jun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
19
|
Kandalgaonkar MR, Kumar V, Vijay‐Kumar M. Digestive dynamics: Unveiling interplay between the gut microbiota and the liver in macronutrient metabolism and hepatic metabolic health. Physiol Rep 2024; 12:e16114. [PMID: 38886098 PMCID: PMC11182692 DOI: 10.14814/phy2.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.
Collapse
Affiliation(s)
- Mrunmayee R. Kandalgaonkar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Virender Kumar
- College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - Matam Vijay‐Kumar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
20
|
Oesterle I, Ayeni KI, Ezekiel CN, Berry D, Rompel A, Warth B. Insights into the early-life chemical exposome of Nigerian infants and potential correlations with the developing gut microbiome. ENVIRONMENT INTERNATIONAL 2024; 188:108766. [PMID: 38801800 DOI: 10.1016/j.envint.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Early-life exposure to natural and synthetic chemicals can impact acute and chronic health conditions. Here, a suspect screening workflow anchored on high-resolution mass spectrometry was applied to elucidate xenobiotics in breast milk and matching stool samples collected from Nigerian mother-infant pairs (n = 11) at three time points. Potential correlations between xenobiotic exposure and the developing gut microbiome, as determined by 16S rRNA gene amplicon sequencing, were subsequently explored. Overall, 12,192 and 16,461 features were acquired in the breast milk and stool samples, respectively. Following quality control and suspect screening, 562 and 864 features remained, respectively, with 149 of these features present in both matrices. Taking advantage of 242 authentic reference standards measured for confirmatory purposes of food bio-actives and toxicants, 34 features in breast milk and 68 features in stool were identified and semi-quantified. Moreover, 51 and 78 features were annotated with spectral library matching, as well as 416 and 652 by in silico fragmentation tools in breast milk and stool, respectively. The analytical workflow proved its versatility to simultaneously determine a diverse panel of chemical classes including mycotoxins, endocrine-disrupting chemicals (EDCs), antibiotics, plasticizers, perfluorinated alkylated substances (PFAS), and pesticides, although it was originally optimized for polyphenols. Spearman rank correlation of the identified features revealed significant correlations between chemicals of the same classification such as polyphenols. One-way ANOVA and differential abundance analysis of the data obtained from stool samples revealed that molecules of plant-based origin elevated as complementary foods were introduced to the infants' diets. Annotated compounds in the stool, such as tricetin, positively correlated with the genus Blautia. Moreover, vulgaxanthin negatively correlated with Escherichia-Shigella. Despite the limited sample size, this exploratory study provides high-quality exposure data of matched biospecimens obtained from mother-infant pairs in sub-Saharan Africa and shows potential correlations between the chemical exposome and the gut microbiome.
Collapse
Affiliation(s)
- Ian Oesterle
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute for Bioanalytics and Agro-Metabolomics, Konrad-Lorenz Str. 20, 3430 Tulln, Austria
| | - David Berry
- University of Vienna, Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, 1030 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
21
|
Wang L, Wang L, Sun X, Fu L, Wang X, Wang X, Chen L, Huang Y. Detection of uridine diphosphate glucuronosyltransferase 1A1 for pancreatic cancer imaging and treatment via a "turn-on" fluorescent probe. Analyst 2024; 149:2877-2886. [PMID: 38567989 DOI: 10.1039/d4an00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is expressed ubiquitously in cancer cells and can metabolize exogenous substances. Studies show higher UGT1A1 levels in pancreatic cancer cells than normal cells. Therefore, we need a method to monitor the activity level of UGT1A1 in pancreatic cancer cells and in vivo. Here, we report a fluorescent probe, BCy-panc, for UGT1A1 imaging in cells and in vivo. Compared with other molecular probes, this probe is readily prepared, with high selectivity and sensitivity for the detection of UGT1A1. Our results show that BCy-panc rapidly detects UGT1A1 in pancreatic cancer. In addition, there is an urgent need for evidence to clarify the relationship between UGT1A1 and pancreatic cancer development. The present investigation found that the increase of UGT1A1 by chrysin was effective in inducing apoptosis in pancreatic cancer cells. These results indicate that the synergistic effect of chrysin and cisplatin at the cellular level is superior to that of cisplatin alone. The UGT1A1 level may be a biomarker for early diagnosis of cancer. Meanwhile, UGT1A1 plays a crucial role in pancreatic cancer, and the combination of chrysin and cisplatin may provide effective ideas for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lingxiao Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Lingyun Wang
- Jinan Zhangqiu District People's Hospital, Jinan 250000, China
| | - Xiao Sun
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xinlei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
22
|
Olivares-Vicente M, Sánchez-Marzo N, Herranz-López M, Micol V. Analysis of Lemon Verbena Polyphenol Metabolome and Its Correlation with Oxidative Stress under Glucotoxic Conditions in Adipocyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9768-9781. [PMID: 38629896 PMCID: PMC11066870 DOI: 10.1021/acs.jafc.3c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Lemon verbena has been shown to ameliorate obesity-related oxidative stress, but the intracellular final effectors underlying its antioxidant activity are still unknown. The purpose of this study was to correlate the antioxidant capacity of plasma metabolites of lemon verbena (verbascoside, isoverbascoside, hydroxytyrosol, caffeic acid, ferulic acid, homoprotocatechuic acid, and luteolin-7-diglucuronide) with their uptake and intracellular metabolism in hypertrophic adipocytes under glucotoxic conditions. To this end, intracellular ROS levels were measured, and the intracellular metabolites were identified and quantified by high-performance liquid chromatography with a diode array detector coupled to mass spectrometry (HPLC-DAD-MS). The results showed that the plasma metabolites of lemon verbena are absorbed by adipocytes and metabolized through phase II reactions and that the intracellular appearance of these metabolites correlates with the decrease in the level of glucotoxicity-induced oxidative stress. It is postulated that the biotransformation and accumulation of these metabolites in adipocytes contribute to the long-term antioxidant activity of the extract.
Collapse
Affiliation(s)
- Mariló Olivares-Vicente
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - Noelia Sánchez-Marzo
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - María Herranz-López
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - Vicente Micol
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
- CIBER:
CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición,
CIBERobn, Instituto de Salud Carlos III
(ISCIII), Madrid 28029, Spain
| |
Collapse
|
23
|
Zhang H, Yang L, Shen D, Zhu Y, Zhang L. Identification of Bromophenols' glucuronidation and its induction on UDP- glucuronosyltransferases isoforms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116281. [PMID: 38581907 DOI: 10.1016/j.ecoenv.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 μM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Shen
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Zhang
- Department of Pediatric Urology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
24
|
Kim W, Kim M, Kim B. Unraveling the enigma: housekeeping gene Ugt1a7c as a universal biomarker for microglia. Front Psychiatry 2024; 15:1364201. [PMID: 38666091 PMCID: PMC11043603 DOI: 10.3389/fpsyt.2024.1364201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.
Collapse
Affiliation(s)
| | | | - Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
25
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
26
|
Wu C, Luo M, Xie D, Zhong S, Xu J, Lu D. Kinetic Characterization of Estradiol Glucuronidation by Liver Microsomes and Expressed UGT Enzymes: The Effects of Organic Solvents. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00888-2. [PMID: 38472634 DOI: 10.1007/s13318-024-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND OBJECTIVE In vitro glucuronidation of 17β-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Miao YS, Wang JY, Zhuang RR, Huo XK, Yi ZC, Sun XN, Yu ZL, Tian XG, Ning J, Feng L, Ma XC, Lv X. A high-affinity fluorescent probe for human uridine-disphosphate glucuronosyltransferase 1A9 function monitoring under environmental pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133439. [PMID: 38218035 DOI: 10.1016/j.jhazmat.2024.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.
Collapse
Affiliation(s)
- Yi-Sheng Miao
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia-Yue Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Rui-Rui Zhuang
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zi-Chang Yi
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Nan Sun
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xia Lv
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
28
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Hepatic glucuronidation of tetrabromobisphenol A and tetrachlorobisphenol A: interspecies differences in humans and laboratory animals and responsible UDP-glucuronosyltransferase isoforms in humans. Arch Toxicol 2024; 98:837-848. [PMID: 38182911 DOI: 10.1007/s00204-023-03659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, 790-8578, Japan
| | - Yoko Mori
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| |
Collapse
|
29
|
Bardhi K, Coates S, Chen G, Lazarus P. Cannabinoid-Induced Stereoselective Inhibition of R-S-Oxazepam Glucuronidation: Cannabinoid-Oxazepam Drug Interactions. Pharmaceutics 2024; 16:243. [PMID: 38399297 PMCID: PMC10892093 DOI: 10.3390/pharmaceutics16020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Benzodiazepines (BZDs) such as oxazepam are commonly prescribed depressant drugs known for their anxiolytic, hypnotic, muscle relaxant, and anticonvulsant effects and are frequently used in conjunction with other illicit drugs including cannabis. Oxazepam is metabolized in an enantiomeric-specific manner by glucuronidation, with S-oxazepam metabolized primarily by UGT2B15 and R-oxazepam glucuronidation mediated by both UGT 1A9 and 2B7. The goal of the present study was to evaluate the potential inhibitory effects of major cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and major THC metabolites, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), on the UGT-mediated metabolism of R- and S-oxazepam. The cannabinoids and metabolites were screened as inhibitors of R- and S-oxazepam glucuronidation in microsomes isolated from HEK293 cells overexpressing individual UGT enzymes (rUGTs). The IC50 values were determined in human liver microsomes (HLM), human kidney microsomes (HKM), and rUGTs and utilized to estimate the nonspecific, binding-corrected Ki (Ki,u) values and predict the area under the concentration-time curve ratio (AUCR). The estimated Ki,u values observed in HLM for S- and R-oxazepam glucuronidation by CBD, 11-OH-THC, and THC were in the micromolar range (0.82 to 3.7 µM), with the Ki,u values observed for R-oxazepam glucuronidation approximately 2- to 5-fold lower as compared to those observed for S-oxazepam glucuronidation. The mechanistic static modeling predicted a potential clinically significant interaction between oral THC and CBD with oxazepam, with the AUCR values ranging from 1.25 to 3.45. These data suggest a pharmacokinetic drug-drug interaction when major cannabinoids like CBD or THC and oxazepam are concurrently administered.
Collapse
Affiliation(s)
| | | | | | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA 99202, USA
| |
Collapse
|
30
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
Osborne MJ, Sulekha A, Culjkovic-Kraljacic B, Gasiorek J, Ruediger E, Jolicouer E, Marinier A, Assouline S, Borden KLB. Medicinal Chemistry and NMR Driven Discovery of Novel UDP-glucuronosyltransferase 1A Inhibitors That Overcome Therapeutic Resistance in Cells. J Mol Biol 2024; 436:168378. [PMID: 38043731 PMCID: PMC10841659 DOI: 10.1016/j.jmb.2023.168378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity. Here, we identified for the first time that UGT1A4 is highly elevated in acute myeloid leukemia (AML) patients and its reduction corresponded to objective clinical responses. To develop inhibitors to UGT1A4, we leveraged previous NMR-based fragment screening data against the C-terminal domain of UGT1A (UGT1A-C). NMR and medicinal chemistry strategies identified novel chemical matter based on fragment compounds with the capacity to bind ∼20 fold more tightly to UGT1A-C (Kd ∼ 600 μM vs ∼30 μM). Some compounds differentially inhibited UGT1A4 versus UGT1A1 enzyme activity and restored drug sensitivity in resistant human cancer cells. NMR-based NOE experiments revealed these novel compounds recognised a region distal to the catalytic site suggestive of allosteric regulation. This binding region is poorly conserved between UGT1A and UGT2B C-terminal sequences, which otherwise exhibit high similarity. Consistently, these compounds did not bind to the C-terminal domain of UGT2B7 nor a triple mutant of UGT1A-C replaced with UGT2B7 residues in this region. Overall, we discovered a site on UGTs that can be leveraged to differentially target UGT1As and UGT2Bs, identified UGT1A4 as a therapeutic target, and found new chemical matter that binds the UGT1A C-terminus, inhibits glucuronidation and restores drug sensitivity.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Anamika Sulekha
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Edward Ruediger
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Eric Jolicouer
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Anne Marinier
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Sarit Assouline
- Jewish General Hospital and McGill University, 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
33
|
Li P, Zhang R, Zhou J, Guo P, Liu Y, Shi S. Vancomycin relieves tacrolimus-induced hyperglycemia by eliminating gut bacterial beta-glucuronidase enzyme activity. Gut Microbes 2024; 16:2310277. [PMID: 38332701 PMCID: PMC10860355 DOI: 10.1080/19490976.2024.2310277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Up to 40% of transplant recipients treated long-term with tacrolimus (TAC) develop post-transplant diabetes mellitus (PTDM). TAC is an important risk factor for PTDM, but is also essential for immunosuppression after transplantation. Long-term TAC treatment alters the gut microbiome, but the mechanisms of TAC-induced gut microbiota in the pathogenesis of PTDM are poorly characterized. Here, we showed that vancomycin, an inhibitor of bacterial beta-glucuronidase (GUS), prevents TAC-induced glucose disorder and insulin resistance in mice. Metagenomics shows that GUS-producing bacteria are predominant and flourish in the TAC-induced hyperglycemia mouse model, with upregulation of intestinal GUS activity. Targeted metabolomics analysis revealed that in the presence of high GUS activity, the hydrolysis of bile acid (BAs)-glucuronic conjugates is increased and most BAs are overproduced in the serum and liver, which, in turn, activates the ileal farnesoid X receptor (FXR) and suppresses GLP-1 secretion by L-cells. The GUS inhibitor vancomycin significantly eliminated GUS-producing bacteria and inhibited bacterial GUS activity and BAs levels, thereby enhancing L-cell GLP-1 secretion and preventing hyperglycemia. Our results propose a novel clinical strategy for inhibiting the bacterial GUS enzyme to prevent hyperglycemia without requiring withdrawal of TAC treatment. This strategy exerted its effect through the ileal bile acid-FXR-GLP-1 pathway.
Collapse
Affiliation(s)
- Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Panek A, Wójcik P, Świzdor A, Szaleniec M, Janeczko T. Biotransformation of Δ 1-Progesterone Using Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 25:508. [PMID: 38203679 PMCID: PMC10779271 DOI: 10.3390/ijms25010508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This research aimed at obtaining new derivatives of pregn-1,4-diene-3,20-dione (Δ1-progesterone) (2) through microbiological transformation. For the role of catalysts, we used six strains of entomopathogenic filamentous fungi (Beauveria bassiana KCh J1.5, Beauveria caledonica KCh J3.3, Isaria fumosorosea KCh J2, Isaria farinosa KCh KW1.1, Isaria tenuipes MU35, and Metarhizium robertsii MU4). The substrate (2) was obtained by carrying out an enzymatic 1,2-dehydrogenation on an increased scale (3.5 g/L) using a recombinant cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans. All selected strains were characterized by the high biotransformation capacity for the used substrate. As a result of the biotransformation, six steroid derivatives were obtained: 11α-hydroxypregn-1,4-diene-3,20-dione (3), 6β,11α-dihydroxypregn-1,4-diene-3,20-dione (4), 6β-hydroxypregn-1,4-diene-3,11,20-trione (5), 6β,17α-dihydroxypregn-1,4-diene-3,20-dione (6), 6β,17β-dihydroxyandrost-1,4-diene-3-one (7), and 12β,17α-dihydroxypregn-1,4-diene-3,20-dione (8). The results show evident variability of the biotransformation process between strains of the tested biocatalysts from different species described as entomopathogenic filamentous fungi. The obtained products were tested in silico using cheminformatics tools for their pharmacokinetic and pharmacodynamic properties, proving their potentially high biological activities. This study showed that the obtained compounds may have applications as effective inhibitors of testosterone 17β-dehydrogenase. Most of the obtained products should, also with a high probability, find potential uses as androgen antagonists, a prostate as well as menopausal disorders treatment. They should also demonstrate immunosuppressive, erythropoiesis-stimulating, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anna Panek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Alina Świzdor
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
35
|
Xu T, Lv Y, Cui Y, Liu D, Xu T, Lu B, Yang X. Properties of Dietary Flavone Glycosides, Aglycones, and Metabolites on the Catalysis of Human Endoplasmic Reticulum Uridine Diphosphate Glucuronosyltransferase 2B7 (UGT2B7). Nutrients 2023; 15:4941. [PMID: 38068799 PMCID: PMC10708323 DOI: 10.3390/nu15234941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Flavone glycosides, their aglycones, and metabolites are the major phytochemicals in dietary intake. However, there are still many unknowns about the cellular utilization and active sites of these natural products. Uridine diphosphate glucuronosyltransferases (UGTs) in the endoplasmic reticulum have gene polymorphism distribution in the population and widely mediate the absorption and metabolism of endogenous and exogenous compounds by catalyzing the covalent addition of glucuronic acid and various lipophilic chemicals. Firstly, we found that rutin, a typical flavone O-glycoside, has a stronger UGT2B7 binding effect than its metabolites. After testing a larger number of flavonoids with different aglycones, their aglycones, and metabolites, we demonstrated that typical dietary flavone O-glycosides generally have high binding affinities towards UGT2B7 protein, but the flavone C-glycosides and the phenolic acid metabolites of flavones had no significant effect on this. With the disposition of 4-methylumbelliferone examined by HPLC assay, we determined that 10 μM rutin and nicotifiorin could significantly inhibit the activity of recombinant UGT2B7 protein, which is stronger than isovitexin, vitexin, 3-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid. In addition, in vitro experiments showed that in normal and doxorubicin-induced lipid composition, both flavone O-glycosides rutin and flavone C-glycosides isovitexin at 10 μM had no significant effect on the expression of UGT1A1, UGT2B4, UGT2B7, and UGT2B15 genes for 24 h exposure. The obtained results enrich the regulatory properties of dietary flavone glycosides, aglycones, and metabolites towards the catalysis of UGTs and will contribute to the establishment of a precise nutritional intervention system based on lipid bilayers and theories of nutrients on endoplasmic reticulum and mitochondria communication.
Collapse
Affiliation(s)
- Ting Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yangjun Lv
- Hangzhou Tea Research Institute, China Co-Op, Hangzhou 310016, China
| | - Yuhan Cui
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dongchen Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Yang F, Wenzel M, Bureik M, Parr MK. Glucuronidation Pathways of 5- and 7-Hydroxypropranolol: Determination of Glucuronide Structures and Enzyme Selectivity. Molecules 2023; 28:7783. [PMID: 38067513 PMCID: PMC10707847 DOI: 10.3390/molecules28237783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Propranolol, a non-selective beta-blocker medication, has been utilized in the treatment of cardiovascular diseases for several decades. Its hydroxynaphthyl metabolites have been recognized to possess varying degrees of beta-blocker activity due to the unaltered side-chain. This study achieved the successful separation and identification of diastereomeric glucuronic metabolites derived from 4-, 5-, and 7-hydroxypropranolol (4-OHP, 5-OHP, and 7-OHP) in human urine. Subsequently, reaction phenotyping of 5- and 7-hydroxypropranolol by different uridine 5'-diphospho-glucuronosyltransferases (UGTs) was carried out, with a comparison to the glucuronidation of 4-hydroxypropranolol (4-OHP). Among the 19 UGT enzymes examined, UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2A1, and UGT2A2 were found to be involved in the glucuronidation of 5-OHP. Furthermore, UGT1A6 exhibited glucuronidation activity towards 7-OHP, along with the aforementioned eight UGTs. Results obtained by glucuronidation of corresponding methoxypropranolols and MS/MS analysis of 1,2-dimethylimidazole-4-sulfonyl (DMIS) derivatives of hydroxypropranolol glucuronides suggest that both the aromatic and aliphatic hydroxy groups of the hydroxypropranolols may be glucuronidated in vitro. However, the analysis of human urine samples collected after the administration of propranolol leads us to conclude that aromatic-linked glucuronidation is the preferred pathway under physiological conditions.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| | - Maxi Wenzel
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| |
Collapse
|
37
|
Zhou Z, Zhuo L, Fu X, Zou Q. Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs. Brief Bioinform 2023; 25:bbad483. [PMID: 38171927 PMCID: PMC10764208 DOI: 10.1093/bib/bbad483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial responses to drugs, the models are constrained by the imprecise representation of microbes and drugs. To this end, we combine deep autoencoder and subgraph augmentation technology for the first time to propose a model called JDASA-MRD, which can identify the potential indistinguishable responses of microbes to drugs. In the JDASA-MRD model, we begin by feeding the established similarity matrices of microbe and drug into the deep autoencoder, enabling to extract robust initial features of both microbes and drugs. Subsequently, we employ the MinHash and HyperLogLog algorithms to account intersections and cardinality data between microbe and drug subgraphs, thus deeply extracting the multi-hop neighborhood information of nodes. Finally, by integrating the initial node features with subgraph topological information, we leverage graph neural network technology to predict the microbes' responses to drugs, offering a more effective solution to the 'over-smoothing' challenge. Comparative analyses on multiple public datasets confirm that the JDASA-MRD model's performance surpasses that of current state-of-the-art models. This research aims to offer a more profound insight into the adaptability of microbes to drugs and to furnish pivotal guidance for drug treatment strategies. Our data and code are publicly available at: https://github.com/ZZCrazy00/JDASA-MRD.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730, Chengdu, China
| |
Collapse
|
38
|
Principi N, Petropulacos K, Esposito S. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals (Basel) 2023; 16:1596. [PMID: 38004461 PMCID: PMC10675377 DOI: 10.3390/ph16111596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Polymorphisms of genes encoding drug metabolizing enzymes and transporters can significantly modify pharmacokinetics, and this can be associated with significant differences in drug efficacy, safety, and tolerability. Moreover, genetic variants of some components of the immune system can explain clinically relevant drug-related adverse events. However, the implementation of drug dose individualization based on pharmacogenomics remains scarce. In this narrative review, the impact of genetic variations on the disposition, safety, and tolerability of the most commonly prescribed drugs is reported. Moreover, reasons for poor implementation of pharmacogenomics in everyday clinical settings are discussed. The literature analysis showed that knowledge of how genetic variations can modify the effectiveness, safety, and tolerability of a drug can lead to the adjustment of usually recommended drug dosages, improve effectiveness, and reduce drug-related adverse events. Despite some efforts to introduce pharmacogenomics in clinical practice, presently very few centers routinely use genetic tests as a guide for drug prescription. The education of health care professionals seems critical to keep pace with the rapidly evolving field of pharmacogenomics. Moreover, multimodal algorithms that incorporate both clinical and genetic factors in drug prescribing could significantly help in this regard. Obviously, further studies which definitively establish which genetic variations play a role in conditioning drug effectiveness and safety are needed. Many problems must be solved, but the advantages for human health fully justify all the efforts.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
39
|
Li Z, Ru S, Li J, Yang Y, Wang W. Continuous exposure to bisphenol S increases the accumulation of endogenous metabolic toxicants by obstructing the glucuronic acid pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122433. [PMID: 37659633 DOI: 10.1016/j.envpol.2023.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Uridine diphosphate glucuronic acid (UDPGA) is an essential substrate in the glucuronidation of exogenous and endogenous lipophilic compounds via the liver glucuronic acid pathway, and its synthesis depends on glucose and energy in the body. Bisphenol S (BPS), as a lipophilic environmental pollutant, has been widely utilized in the manufacturing of daily necessities. The biological effect of BPS in interference with liver energy metabolism might affect UDPGA synthesis and the excretion of lipophilic compounds, but this was not clearly revealed. Here, female zebrafish that were exposed to BPS for 35 days exhibited a significant decrease in UDPGA in the liver with significant accumulation of exogenous BPS and endogenous bilirubin in the body. One vital reason may be that the exposure to BPS for 35 days promoted the lipid formation through PPARg signaling and reduced energy levels in the liver, resulting in the decreased raw materials for UDPGA production in glucuronic acid pathway. Meanwhile, transcriptome analysis showed that BPS inhibited the mRNA expression levels of genes related to the glucuronic acid pathway. The accumulation of endogenous and exogenous lipophilic compounds can trigger a variety of toxicological effect. Thus, weakened liver detoxification might be the primary cause of the toxicological effects of lipophilic pollutants.
Collapse
Affiliation(s)
- Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
40
|
Chen X, Hao Z, Wang N, Zhu J, Yi H, Tang S. Genetic Polymorphisms of UDP-Glucuronosyltransferases and Susceptibility to Antituberculosis Drug-Induced Liver Injury: A Systematic Review and Meta-Analysis. J Trop Med 2023; 2023:5044451. [PMID: 37868740 PMCID: PMC10586897 DOI: 10.1155/2023/5044451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Methods The PRISMA statement was strictly followed, and the protocol was registered in PROSPERO (CRD42022339317). The PICOS framework was used: patients received antituberculosis treatment, UGTs polymorphisms (mutants), UGTs polymorphisms (wild), AT-DILI, and case-control studies. Eligible studies were searched through nine databases up to April 27, 2022. The study's qualities were assessed by the revised Little's recommendations. Meta-analysis was conducted with a random-effects model using odds ratios (ORs) with 95% confidence intervals (95% CIs) as the effect size. Results Twelve case-control studies with 2128 cases and 4338 controls were included, and 32 single nucleotide polymorphisms (SNPs) in the seven UGT genes have been reported in Chinese and Korean. All studies were judged as high quality. The pooled results indicated that UGT1A1 rs3755319 (AC vs. AA, OR = 1.454, 95% CI: 1.100-1.921, P = 0.009), UGT2B7 rs7662029 (G vs. A, OR = 1.547, 95% CI: 1.249-1.917, P < 0.0001; GG + AG vs. AA, OR = 2.371, 95% CI: 1.779-3.160, P < 0.0001; AG vs. AA, OR = 2.686, 95% CI: 1.988-3.627, P < 0.0001), and UGT2B7 rs7439366 (C vs. T, OR = 0.585, 95% CI: 0.477-0.717, P < 0.0001; CC + TC vs. TT, OR = 0.347, 95% CI: 0.238-0.506, P < 0.0001; CC vs. TC + TT, OR = 0.675, 95% CI: 0.507-0.898, P = 0.007) might be associated with the risk of AT-DILI. Conclusions The polymorphisms of UGT1A1 rs3755319, UGT2B7 rs7662029, and UGT2B7 rs7439366 were significantly associated with AT-DILI susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and the relatively small sample size.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nannan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Havlasek J, Vrba J, Zatloukalova M, Papouskova B, Modriansky M, Storch J, Vacek J. Hepatic biotransformation of non-psychotropic phytocannabinoids and activity screening on cytochromes P450 and UDP-glucuronosyltransferases. Toxicol Appl Pharmacol 2023; 476:116654. [PMID: 37574147 DOI: 10.1016/j.taap.2023.116654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
This study examined the biotransformation of phytocannabinoids in human hepatocytes. The susceptibility of the tested compounds to transformations in hepatocytes exhibited the following hierarchy: cannabinol (CBN) > cannabigerol (CBG) > cannabichromene (CBC) > cannabidiol (CBD). Biotransformation included hydroxylation, oxidation to a carboxylic acid, dehydrogenation, hydrogenation, dehydration, loss/shortening of alkyl, glucuronidation and sulfation. CBN was primarily metabolized by oxidation of a methyl to a carboxylic acid group, while CBD, CBG and CBC were preferentially metabolized by direct glucuronidation. The study also screened for the activity of recombinant human cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs), which could catalyze the hydroxylation and glucuronidation of the tested compounds, respectively. We found that CBD was hydroxylated mainly by CYPs 2C8, 2C19, 2D6; CBN by 1A2, 2C9, 2C19 and 2D6; and CBG by 2B6, 2C9, 2C19 and 2D6. CBC exhibited higher susceptibility to CYP-mediated transformation than the other tested compounds, mainly with CYPs 1A2, 2B6, 2C8, 2C19, 2D6 and 3A4 being involved. Further, CBD was primarily glucuronidated by UGTs 1A3, 1A7, 1A8, 1A9 and 2B7; CBN by 1A7, 1A8, 1A9 and 2B7; CBG by 1A3, 1A7, 1A8, 1A9, 2B4, 2B7 and 2B17; and the glucuronidation of CBC was catalyzed by UGTs 1A1, 1A8, 1A9 and 2B7.
Collapse
Affiliation(s)
- Jakub Havlasek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515 Olomouc, Czech Republic
| | - Jiri Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515 Olomouc, Czech Republic.
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515 Olomouc, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Martin Modriansky
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515 Olomouc, Czech Republic
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojova 135, 16502 Prague, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515 Olomouc, Czech Republic.
| |
Collapse
|
42
|
Zhang C, Su D, Choo EF, Liu L, Bobba S, Jorski JD, Ho Q, Wang J, Kenny JR, Khojasteh SC, Zhang D. Identification of a Discrete Diglucuronide of GDC-0810 in Human Plasma after Oral Administration. Drug Metab Dispos 2023; 51:1284-1294. [PMID: 37349116 DOI: 10.1124/dmd.122.001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
GDC-0810 is a small molecule therapeutic agent having potential to treat breast cancer. In plasma of the first-in-human study, metabolite M2, accounting for 20.7% of total drug-related materials, was identified as a discrete diglucuronide that was absent in rats. Acyl glucuronide M6 and N-glucuronide M4 were also identified as prominent metabolites in human plasma. Several in vitro studies were conducted in incubations of [14C]GDC-0810, synthetic M6 and M4 with liver microsomes, intestinal microsomes, and hepatocytes of different species as well as recombinant UDP-glucuronosyltransferase (UGT) enzymes to further understand the formation of M2. The results suggested that 1) M2 was more efficiently formed from M6 than from M4, and 2) acyl glucuronidation was mainly catalyzed by UGT1A8/7/1 that is highly expressed in the intestines whereas N-glucuronidation was mainly catalyzed by UGT1A4 that is expressed in the human liver. This complicated mechanism presented challenges in predicting M2 formation using human in vitro systems. The absence of M2 and M4 in rats can be explained by low to no expression of UGT1A4 in rodents. M2 could be the first discrete diglucuronide that was formed from both acyl- and N-glucuronidation on a molecule identified in human plasma. SIGNIFICANCE STATEMENT: A discrete diglucuronidation metabolite of GDC-0810, a breast cancer drug candidate, was characterized as a unique circulating metabolite in humans that was not observed in rats or little formed in human in vitro system.
Collapse
Affiliation(s)
- Chenghong Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Dian Su
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Lichuan Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Sudheer Bobba
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Jamie D Jorski
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Quynh Ho
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Jing Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| |
Collapse
|
43
|
Demir M, Altinoz E, Koca O, Elbe H, Onal MO, Bicer Y, Karayakali M. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue Cell 2023; 84:102182. [PMID: 37523948 DOI: 10.1016/j.tice.2023.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Doxorubicin (DXR) is widely used in cancer treatment. However, it has not yet been possible to prevent the side effects of DXR. The aim of this study was to investigate the hepatoprotective effect of crocin against DXR used in cancer treatment. For this reason; forty Wistar rats (male-250-300 g) were allocated into four groups (n = 10/group): Control, Crocin, DXR and DXR+Crocin. Control and Crocin groups were administered saline and crocin (40 mg/kg, i.p) for 15 days, respectively. DXR group, cumulative dose 12 mg/kg DXR, was administered for 12 days via 48 h intervals in six injections (2 mg/kg each, i.p). DXR+Crocin group, crocin (40 mg/kg-i.p) was administered for 15 days, and DXR was given as in the DXR group. The results revealed that serum liver markers (alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) increased significantly after DXR administration but recovered after crocin therapy. In addition, lipid peroxidation (MDA), and inflammatory cytokine (TNF-α) increased after DXR application and the antioxidative defense system (GSH, SOD, CAT) significantly decreased and re-achieved by crocin treatment. Our results conclude that crocin treatment was related to ameliorated hepatocellular architecture and reduced hepatic oxidative stress and inflammation in rats with DXR-induced hepatotoxicity.
Collapse
Affiliation(s)
- M Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - O Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - M O Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Y Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
44
|
Pedersen S, Kverneland M, Rudi K, Gervin K, Landmark CJ, Iversen PO, Selmer KK. Decreased serum concentrations of antiseizure medications in children with drug resistant epilepsy following treatment with ketogenic diet. Epilepsia Open 2023; 8:858-866. [PMID: 37057954 PMCID: PMC10472394 DOI: 10.1002/epi4.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 04/15/2023] Open
Abstract
OBJECTIVE To examine the potential influence of a ketogenic diet on serum concentrations of antiseizure medications (ASMs) in children with drug resistant epilepsy. METHODS We investigated the serum concentrations of ASMs in 25 children with drug resistant epilepsy, 2-13 years of age, treated with a classical ketogenic diet for 12 weeks. The patients were recruited from the National Centre for Epilepsy from August 15th, 2017, to January 24th, 2022. Changes in ASM serum concentrations were analyzed using a mixed effect model analysis. Significance level was set at P < 0.05 for all comparisons. RESULTS The participants used 12 different ASMs during the study. The mean number of ASMs was 2.4 (±SD 0.7). None of the participants changed the type or dose of the ASMs during the intervention period. The serum concentrations of clobazam (n = 9, P = 0.002), desmethylclobazam (n = 9, P = 0.010), and lamotrigine (n = 6, P = 0.016) decreased significantly during the dietary treatment. The analytes with the largest reduction in serum concentration after 12 weeks of dietary treatment were clobazam (mean change -38%) and desmethylclobazam (mean change -37%). We found no significant change in the serum concentrations of levetiracetam, topiramate, and valproic acid. SIGNIFICANCE We identified a significant decrease in the serum concentrations of clobazam, desmethylclobazam, and lamotrigine following a 12-week ketogenic diet intervention in children with drug resistant epilepsy. An unintended decrease in the serum concentrations of ASMs may render the patient prone to seizures. Measurements of ASM serum concentrations might be useful in patients on a ketogenic diet, especially in patients with lack of efficacy of the dietary treatment.
Collapse
Affiliation(s)
- Sigrid Pedersen
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Magnhild Kverneland
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
| | - Knut Rudi
- Department of ChemistryNorwegian University of Life SciencesÅsNorway
| | - Kristina Gervin
- Department of Research and InnovationOslo University HospitalOsloNorway
| | - Cecilie Johannessen Landmark
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
- Department of PharmacologyOslo University HospitalOsloNorway
- Department of PharmacyOslo Metropolitan UniversityOsloNorway
| | - Per Ole Iversen
- Department of NutritionUniversity of OsloOsloNorway
- Department of HematologyOslo University HospitalOsloNorway
| | - Kaja Kristine Selmer
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
- Department of Research and InnovationOslo University HospitalOsloNorway
| |
Collapse
|
45
|
Su ZY, Chien JC, Tung YC, Wu TY, Liao JA, Wei GJ. Tangeretin and 4'-demethyltangeretin prevent damage to mouse hepatocytes from oxidative stress by activating the Nrf2-related antioxidant pathway via an epigenetic mechanism. Chem Biol Interact 2023; 382:110650. [PMID: 37517432 DOI: 10.1016/j.cbi.2023.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Polymethoxyflavones (PMFs) in citrus fruits have a variety of biological activities, including antioxidant, anti-inflammatory, anticancer, and anti-atherosclerotic effects. The liver is the major detoxifying organ of the human body; however, factors such as acetaminophen (APAP) overdose may increase oxidative stress in liver cells and lead to severe liver failure. In this study we examined the effects of tangeretin (TAN), a common citrus PMF, and its metabolite 4'-demethyltangeretin (4'-OH-TAN) on activation of the Nrf2 antioxidant system in mouse AML-12 hepatocytes through regulation by epigenetic mechanisms. The ability of TAN and 4'-OH-TAN to inhibit APAP-induced hepatotoxicity was also evaluated. The results showed that TAN and 4'-OH-TAN significantly increased the mRNA and protein levels of Nrf2 and Nrf2-mediated antioxidant and detoxifying enzymes (UGT1A, HO-1, and NQO1) in AML-12 cells. TAN and 4'-OH-TAN also suppressed protein expression of histone deacetylases (HDACs) and DNA methyltransferases (DMNTs) and reduced DNA methylation of the nrf2 promoter. Furthermore, TAN and 4'-OH-TAN prevented APAP-induced injury and inhibited APAP-induced ROS generation in AML-12 cells. Based on these results, we conclude that TAN and 4'-OH-TAN may increase the antioxidant capacity of liver cells by regulating epigenetic alteration to activate the Nrf2-related antioxidant system, thereby preventing liver cells from being damaged by APAP-induced oxidative stress.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan.
| | - Jen-Chun Chien
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan
| | - Yen-Chen Tung
- Department of Food Science, National Ilan University, Yilan County, 260007, Taiwan
| | - Tien-Yuan Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110301, Taiwan
| | - Jie-An Liao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan
| | - Guor-Jien Wei
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
46
|
Yang F, Sharma SS, Bureik M, Parr MK. Mutual Modulation of the Activities of Human CYP2D6 and Four UGTs during the Metabolism of Propranolol. Curr Issues Mol Biol 2023; 45:7130-7146. [PMID: 37754235 PMCID: PMC10527876 DOI: 10.3390/cimb45090451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) are two enzyme families that play an important role in drug metabolism, catalyzing either the functionalization or glucuronidation of xenobiotics. However, their mutual interactions are poorly understood. In this study, the functional interactions of human CYP2D6 with four human UGTs (UGT1A7, UGT1A8, UGT1A9, and UGT2A1) were investigated using our previously established co-expression model system in the fission yeast Schizosaccharomyces pombe. The substrate employed was propranolol because it is well metabolized by CYP2D6. Moreover, the CYP2D6 metabolite 4-hydroxypropranolol is a known substrate for the four UGTs included in this study. Co-expression of either UGT1A7, UGT1A8, or UGT1A9 was found to increase the activity of CYP2D6 by a factor of 3.3, 2.1 or 2.8, respectively, for the conversion of propranolol to 4-hydroxypropranolol. In contrast, UGT2A1 co-expression did not change CYP2D6 activity. On the other hand, the activities of all four UGTs were completely suppressed by co-expression of CYP2D6. This data corroborates our previous report that CYP2D6 is involved in functional CYP-UGT interactions and suggest that such interactions can contribute to both adverse drug reactions and changes in drug efficacy.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
47
|
Duthaler U, Bachmann F, Ozbey AC, Umehara K, Parrott N, Fowler S, Krähenbühl S. The Activity of Members of the UDP-Glucuronosyltransferase Subfamilies UGT1A and UGT2B is Impaired in Patients with Liver Cirrhosis. Clin Pharmacokinet 2023; 62:1141-1155. [PMID: 37328712 PMCID: PMC10386950 DOI: 10.1007/s40262-023-01261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The impact of liver cirrhosis on the activity of UDP-glucuronosyltransferases (UGTs) is currently not well characterized. We investigated the glucuronidation capacity and glucuronide accumulation in patients with liver cirrhosis. METHODS We administered the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, midazolam) to patients with liver cirrhosis (n = 16 Child A, n = 15 Child B, n = 5 Child C) and n = 12 control subjects and obtained pharmacokinetic profiles of substrates and primary metabolites and their glucuronides. RESULTS Caffeine and its metabolite paraxanthine were only slightly glucuronidated. The metabolic ratio (AUCglucuronide/AUCparent, MR) was not affected for caffeine but decreased by 60% for paraxanthine glucuronide formation in Child C patients. Efavirenz was not glucuronidated whereas 8-hydroxyefavirenz was efficiently glucuronidated. The MR of 8-hydroxyefavirenz-glucuronide formation increased three-fold in Child C patients and was negatively correlated with the glomerular filtration rate. Flurbiprofen and omeprazole were not glucuronidated. 4-Hydroxyflurbiprofen and 5-hydroxyomeprazole were both glucuronidated but the corresponding MRs for glucuronide formation were not affected by liver cirrhosis. Metoprolol, but not α-hydroxymetoprolol, was glucuronidated, and the MR for metoprolol-glucuronide formation dropped by 60% in Child C patients. Both midazolam and its metabolite 1'-hydroxymidazolam underwent glucuronidation, and the corresponding MRs for glucuronide formation dropped by approximately 80% in Child C patients. No relevant glucuronide accumulation occurred in patients with liver cirrhosis. CONCLUSIONS Detailed analysis revealed that liver cirrhosis may affect the activity of UGTs of the UGT1A and UGT2B subfamilies according to liver function. Clinically significant glucuronide accumulation did not occur in the population investigated. CLINICAL TRIAL REGISTRATION NCT03337945.
Collapse
Affiliation(s)
- Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabio Bachmann
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Agustos C Ozbey
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
48
|
Parnigoni A, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. Effects of Hyaluronan on Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:3813. [PMID: 37568628 PMCID: PMC10417239 DOI: 10.3390/cancers15153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.P.); (P.M.); (M.V.); (E.K.); (A.P.)
| |
Collapse
|
49
|
Cramer EY, Bartlett J, Chan ER, Gaedigk A, Ratsimbasoa AC, Mehlotra RK, Williams SM, Zimmerman PA. Pharmacogenomic variation in the Malagasy population: implications for the antimalarial drug primaquine metabolism. Pharmacogenomics 2023; 24:583-597. [PMID: 37551613 PMCID: PMC10621762 DOI: 10.2217/pgs-2023-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Aim: Antimalarial primaquine (PQ) eliminates liver hypnozoites of Plasmodium vivax. CYP2D6 gene variation contributes to PQ therapeutic failure. Additional gene variation may contribute to PQ efficacy. Information on pharmacogenomic variation in Madagascar, with vivax malaria and a unique population admixture, is scanty. Methods: The authors performed genome-wide genotyping of 55 Malagasy samples and analyzed data with a focus on a set of 28 pharmacogenes most relevant to PQ. Results: Mainly, the study identified 110 coding or splicing variants, including those that, based on previous studies in other populations, may be implicated in PQ response and copy number variation, specifically in chromosomal regions that contain pharmacogenes. Conclusion: With this pilot information, larger genome-wide association analyses with PQ metabolism and response are substantially more feasible.
Collapse
Affiliation(s)
- Estee Y Cramer
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jacquelaine Bartlett
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Research Institute (CMRI), Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar
- Centre National d'Application de Recherche Pharmaceutique (CNARP), Antananarivo, Madagascar
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott M Williams
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
50
|
Schmidhauser M, Hankele AK, Ulbrich SE. Reconsidering "low-dose"-Impacts of oral estrogen exposure during preimplantation embryo development. Mol Reprod Dev 2023; 90:445-458. [PMID: 36864780 DOI: 10.1002/mrd.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Perturbations of estrogen signaling during developmental stages of high plasticity may lead to adverse effects later in life. Endocrine-disrupting chemicals (EDC) are compounds that interfere with the endocrine system by particularly mimicking the action of endogenous estrogens as functional agonists or antagonists. EDCs compose synthetic and naturally occurring compounds discharged into the environment, which may be taken up via skin contact, inhalation, orally due to contaminated food or water, or via the placenta during in utero development. Although estrogens are efficiently metabolized by the liver, the role of circulating glucuro- and/or sulpho-conjugated estrogen metabolites in the body has not been fully addressed to date. Particularly, the role of intracellular cleavage to free functional estrogens could explain the hitherto unknown mode of action of adverse effects of EDC at very low concentrations currently considered safe. We summarize and discuss findings on estrogenic EDC with a focus on early embryonic development to highlight the need for reconsidering low dose effects of EDC.
Collapse
Affiliation(s)
- Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|