1
|
Uchaipichat V. Inhibitory effects of Kratom constituents, mitragynine and 7-hydroxymitragynine, on 4-methylumbelliferone glucuronidation by human UDP-glucuronosyltransferases. Toxicol Rep 2025; 14:101951. [PMID: 40026476 PMCID: PMC11872117 DOI: 10.1016/j.toxrep.2025.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
As Kratom use increases, concerns about potential herb-drug interactions with liver enzymes, particularly UDP-glucuronosyltransferases (UGTs), have emerged. This study investigated the inhibitory effects of Kratom leaf constituents, mitragynine and 7-hydroxymitragynine, on 4-methylumbelliferone (4MU) glucuronidation by a panel of recombinant human UGT enzymes, including UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B7, and UGT2B15. The degree of inhibition exhibited by mitragynine and 7-hydroxymitragynine on UGTs varied. Mitragynine exhibited the highest inhibitory potency on UGT1A3 with an IC50 value of 72 µM. Moderate inhibition potency of mitragynine were observed for UGT1A6, UGT1A9 and UGT2B15, with IC50 value of 121, 131, and 152 µM, respectively, whereas the inhibition on UGT1A1 and UGT2B7 was low (IC50 > 200 µM). 7-Hydroxymitragynine exhibited the highest inhibitory potency on UGT1A9, with IC50 value of 51 µM, while moderate potency was observed for UGT1A1 and UGT1A3, with IC50 value of 196 and 141 µM, respectively. The inhibitory potency of 7-hydroxymitragynine on UGT2B15 was low (IC50 > 200 µM), while negligible effects were observed for UGT1A6 and UGT2B7. Kinetic inhibition study revealed that mitragynine noncompetitively inhibited UGT1A3 (Ki = 45 µM) and competitively inhibited UGT1A9 (Ki = 114 µM), while 7-hydroxymitragynine competitively inhibited UGT1A3 (Ki = 33 µM) and noncompetitively inhibited UGT1A9 (Ki = 29 µM). The experimental Ki values found here are relatively high compared to the maximum plasma concentrations of mitragynine and 7-hydroxymitragynine reported in humans, suggesting an unlikely potential for herb-drug interactions via UGT inhibition.
Collapse
Affiliation(s)
- Verawan Uchaipichat
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Xue J, Li Q, Wang Y, Yin R, Zhang J. Insight into the structure, oligomerization, and the role in drug resistance of human UDP-glucuronosyltransferases. Arch Toxicol 2025; 99:1153-1165. [PMID: 39812829 DOI: 10.1007/s00204-024-03929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms. A recent analysis of C-terminal structures, compared with original data, underscores the pivotal role of α3, α4, and β4 functional domains in selectively recognizing diverse glycosyl donors. Accumulating evidence suggests that UGTs function as homo- and heterodimers, with oligomers likely stabilizing UGTs and modulating their activity. The review sheds light on the implications of UGT oligomerization on substrate glucuronidation and the interplay between protein-protein interaction and glucuronidation activity. UGT-mediated drug resistance, often underestimated, emerges as a clinically relevant form of chemical resistance, with delineated outcomes in tumors and other diseases. This review provides a multifaceted exploration of the physiological significance of UGTs, spanning genetics, proteins, oligomerization, drug resistance, and more, offering insights into their metabolic mechanisms. Understanding interactions between UGT isoforms is crucial for predicting drug-drug interactions, preventing drug toxicity, and enabling precision treatment.
Collapse
Affiliation(s)
- Jia Xue
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyi Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruxi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Sepehri S, De Win D, Heymans A, Van Goethem F, Rodrigues RM, Rogiers V, Vanhaecke T. Next Generation Risk Assessment of Hair Dye HC Yellow No. 13: Ensuring Protection From Liver Steatogenic Effects. Regul Toxicol Pharmacol 2025:105794. [PMID: 40024558 DOI: 10.1016/j.yrtph.2025.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
This study employs animal-free Next Generation Risk Assessment (NGRA) principles to evaluate the safety of repeated dermal exposure to 2.5% (w/w) HC Yellow No. 13 (HCY13) hair dye. As multiple in silico tools consistently flagged hepatotoxic potential, likely due to HCY13's trifluoromethyl group, which is known to interfere with hepatic lipid metabolism, liver steatosis was chosen as the primary mode of action for evaluation. AOP-guided in vitro tests were conducted, exposing human stem cell-derived hepatic cells to varying HCY13 concentrations over 72 hours. The expression of 11 lipid metabolism-related marker genes (AHR, PPARA, LXRA, APOB, ACOX1, CPT1A, FASN, SCD1, DGAT2, CD36, and PPARG) and triglyceride accumulation, a phenotypic hallmark of steatosis, were measured. PROAST software was used to calculate in vitro Points of Departure (PoDNAM) for each biomarker. Using GastroPlus 9.9, physiologically-based pharmacokinetic (PBPK) models estimated internal liver concentrations (Cmax liver) of HCY13, ranging from 4 to 20 pM. All PoDNAM values significantly exceeded the predicted Cmax liver, indicating that HCY13 at 2.5% (w/w) is unlikely to induce liver steatosis under the assumed conditions. This research demonstrates the utility of NGRA, integrating AOP-based in vitro assays and computational models to protect human health and support regulatory decision-making without animal testing.
Collapse
Affiliation(s)
- Sara Sepehri
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Dinja De Win
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Anja Heymans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Freddy Van Goethem
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Fashe MM, Tiley JB, Lee CR. Mechanisms of altered hepatic drug disposition during pregnancy: small molecules. Expert Opin Drug Metab Toxicol 2025:1-18. [PMID: 39992297 DOI: 10.1080/17425255.2025.2470792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Pregnancy alters the systemic exposure and clearance of many hepatically cleared drugs that are commonly used by obstetric patients. Understanding the molecular mechanisms underlying the changes in factors that affect hepatic drug clearance (blood flow, protein binding, and intrinsic clearance) is essential to more precisely predict systemic drug exposure and dose requirements in obstetric patients. AREAS COVERED This review (1) summarizes the anatomic, physiologic, and biochemical changes in maternal hepatic, cardiovascular, endocrine, and renal systems relevant to hepatic drug clearance and (2) reviews the molecular mechanisms underlying the altered hepatic metabolism and intrinsic clearance of drugs during pregnancy via a comprehensive PubMed search. It also identifies knowledge gaps in the molecular mechanisms and factors that modulate hepatic drug clearance during pregnancy. EXPERT OPINION Pharmacokinetic studies have shown that pregnancy alters systemic exposure, protein binding, and clearance of many drugs during gestation in part due to pregnancy-associated decreases in plasma albumin, increases in organ blood flow, and changes in the activity of drug-metabolizing enzymes (DMEs) and transporters. The changes in the activity of certain DMEs and transporters during pregnancy are likely driven by hormonal-changes that inhibit their activity or alter the expression of these proteins through activation of transcription factors.
Collapse
Affiliation(s)
- Muluneh M Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline B Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Hervieu L, Groo AC, Bellien J, Guerrot D, Malzert-Fréon A. Glucuronidation of orally administered drugs and the value of nanocarriers in strategies for its overcome. Pharmacol Ther 2025; 266:108773. [PMID: 39647710 DOI: 10.1016/j.pharmthera.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The gastrointestinal tract (GIT) plays a pivotal role in the absorption of orally administered drugs, with the small intestine serving as the primary site due to its extensive surface area and specialized cell types, including enterocytes and M cells. After oral administration, drugs are generally transported via the portal vein to the liver, where they undergo first-pass metabolism. This process involves various enzymatic reactions, including glucuronidation, facilitated by uridine diphosphate-glucuronosyltransferase (UGT), a major phase 2 reaction in mammalian metabolism. UGTs conjugate glucuronic acid to a wide array of endogenous and exogenous substrates, enhancing their solubility and excretion, but significantly affecting the bioavailability and therapeutic efficacy of drugs. UGT enzymes are ubiquitously distributed across tissues, prominently in the liver, but also in the GIT, kidneys, brain, and other organs where they play crucial roles in xenobiotic metabolism. Species-specific differences in UGT expression and activity impact the selection of animal models for pharmacological studies. Various experimental models - ranging from computational simulations (in silico) to laboratory experiments (in vitro) and animal studies (in vivo) - are employed throughout drug discovery and development to evaluate drug metabolism, including UGT activity. Effective strategies to counter pre-systemic metabolism are critical for improving drug bioavailability. This review explores several approaches including prodrugs, co-administration of specific molecules or use of inhibiting excipients in formulations. Strategies incorporating these excipients in nanoformulations demonstrate notable increases in drug absorption and bioavailability. This review highlights the importance of targeted delivery systems and excipient selection in overcoming metabolic barriers, aiming to optimize drug efficacy and patient outcomes.
Collapse
Affiliation(s)
- Laura Hervieu
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France; Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France
| | - Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France
| | - Jérémy Bellien
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Pharmacology Department, Rouen University Hospital, 76000 Rouen, France
| | - Dominique Guerrot
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Nephrology Department, Rouen University Hospital, 76000 Rouen, France
| | | |
Collapse
|
6
|
Gunasaykaran SY, Chear NJY, Ismail S, Mohammad NA, Murugaiyah V, Ramanathan S. Drug-drug interactions of plant alkaloids derived from herbal medicines on the phase II UGT enzymes: an introductory review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1447-1464. [PMID: 39325152 DOI: 10.1007/s00210-024-03418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Herbal medicines are widely used as alternative or complementary therapies to treat and prevent chronic diseases. However, these can lead to drug-drug interactions (DDIs) that affect the glucuronidation reaction of UDP glucuronosyltransferases (UGTs), which convert drugs into metabolites. Plant extracts derived from medicinal herbs contain a diverse array of compounds categorized into different functional groups. While numerous studies have examined the inhibition of UGT enzymes by various herbal compounds, it remains unclear which group of compounds exerts the most significant impact on DDIs in the glucuronidation reaction. Recently, alkaloids derived from medicinal herbs, including kratom (Mitragyna speciosa), have gained attention due to their diverse pharmacological properties. This review primarily focuses on the DDIs of plant alkaloids from medicinal herbs, including kratom on the phase II UGT enzymes. Kratom is a new emerging herbal product in Western countries that is often used to self-treat chronic pain, opioid withdrawal, or as a replacement for prescription and non-prescription opioids. Kratom is well-known for its psychoactive alkaloids, which have a variety of psychopharmacological effects. However, the metabolism mechanism of kratom alkaloids, particularly on the phase II pathway, is still poorly understood. Simultaneously using kratom or other herbal products containing alkaloids with prescribed medicines may have an impact on the drug metabolism involving the phase II UGT enzymes. To ensure the safety and efficacy of treatments, gaining a better understanding of the DDIs when using herbal products with conventional medicine is crucial.
Collapse
Affiliation(s)
| | | | - Sabariah Ismail
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | | | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
7
|
Koyama S, Etkins J, Jun J, Miller M, So GC, Gisch DL, Eadon MT. Utilization of Cannabidiol in Post-Organ-Transplant Care. Int J Mol Sci 2025; 26:699. [PMID: 39859413 PMCID: PMC11765766 DOI: 10.3390/ijms26020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, Cannabis sativa, widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility. CBD exhibits diverse pharmacological properties, most notably anti-inflammatory effects. Additionally, it interacts with key drug-metabolizing enzyme families, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT), which mediate phase I and phase II metabolism, respectively. By binding to these enzymes, CBD can inhibit the metabolism of co-administered drugs, which can potentially enhance their toxicity or therapeutic effects. Mild to moderate adverse events associated with CBD use have been reported. Advances in chemical formulation techniques have recently enabled strategies to minimize these effects. This review provides an overview of CBD, covering its historical background, recent clinical trials, adverse event profiles, and interactions with molecular targets such as receptors, channels, and enzymes. We particularly emphasize the mechanisms underlying its anti-inflammatory effects and interaction with drugs relevant to organ transplantation. Finally, we explore recent progress in the chemical formulation of CBD in order to enhance its bioavailability, which will enable decreasing the dose to use and increase its safety and efficacy.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Jumar Etkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Joshua Jun
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Matthew Miller
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA;
| | - Gerald C. So
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Debora L. Gisch
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| |
Collapse
|
8
|
Gorecka A, Schacht H, Fraser MK, Teriosina A, London JA, Barsukov IL, Powell AK, Cartmell A, Stachulski AV, Yates EA. Synthetic β-d-Glucuronides: Substrates for Exploring Glucuronide Degradation by Human Gut Bacteria. ACS OMEGA 2025; 10:1419-1428. [PMID: 39829562 PMCID: PMC11740244 DOI: 10.1021/acsomega.4c09036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
The human gut microbiota (HGM) is a complex ecosystem subtly dependent on the interplay between hundreds of bacterial species and numerous metabolites. Dietary phenols, whether ingested (e.g., plant-derived guaiacol, mequinol, or resveratrol) or products of bacterial fermentation (e.g., p-cresol), have been attributed with influencing bacterial growth and host health. They are cleared by phase II metabolism, one form utilizing β-d-glucuronidation, but encounter bacterially derived glucuronidases capable of hydrolyzing them to release their phenolic and glucuronic acid moieties with potential effects on host cells or the surrounding bacterial population. Tools to enable the detailed study of their activity are currently lacking. Syntheses of β-d-glucuronides from methyl 1,2,3,4 tetra-acetyl β-d-glucopyranosyluronate by direct glycosylation with 2-, 3-, or 4-methoxy- and 4-fluorophenol acceptors employing trimethylsilyl triflate catalysis are reported. Yields (methoxy series) were modest. An improved route from methyl 1,2,3,4-tetra-acetyl β-d-glucopyranosyluronate via selective anomeric deprotection (N-methyl piperazine) and conversion to an α-trichloroacetimidate glycosyl donor was employed. Coupling with 2- and 3-methoxyphenol acceptors and deprotection provided 2- and 3-methoxyphenyl β-d-glucuronides in 2-fold improved overall yield. These naturally occurring methoxyphenyl glucuronides augment available model substrates of dietary glucuronides, which include 3- and 4'-linked resveratrol. The use of model glucuronides as substrates was illustrated in studies of β-d-glucuronidase activity employing cell lysates of 9 species of HGM (Bacteroidetes), revealing distinct outcomes. Contrasting effects on bacterial growth were also observed between the free phenolic components, their respective glucuronides, and glucuronic acid. The glucuronide of 4-fluorophenol provided sensitive and background-free detection of β-glucuronidase activity using 19F NMR.
Collapse
Affiliation(s)
- Aleksandra Gorecka
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Heidi Schacht
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Megan K. Fraser
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Aleksandra Teriosina
- School
of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - James A. London
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Igor L. Barsukov
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Andrew K. Powell
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Alan Cartmell
- Department
of Biology, University of York, Heslington, York YO10 5DD, U.K.
| | | | - Edwin A. Yates
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
9
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2025; 45:311-343. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Shaver AO, Andersen EC. Integrating metabolomics into the diagnosis and investigation of anthelmintic resistance. Trends Parasitol 2024; 40:1097-1106. [PMID: 39572328 DOI: 10.1016/j.pt.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024]
Abstract
Anthelmintic resistance (AR) in parasitic nematodes poses a global health problem in livestock and domestic animals and is an emerging problem in humans. Consequently, we must understand the mechanisms of AR, including target-site resistance (TSR), in which mutations affect drug binding, and non-target site resistance (NTSR), which involves alterations in drug metabolism and detoxification processes. Because much of the focus has been on TSR, NTSR has received less attention. Here, we describe how metabolomics approaches using Caenorhabditis elegans offer the ability to disentangle nematode drug metabolism, identify metabolic changes associated with resistance, uncover novel biomarkers, and enhance diagnostic methods.
Collapse
Affiliation(s)
- Amanda O Shaver
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Newman LA, Useckaite Z, Wu T, Sorich MJ, Rowland A. Establishing the capacity to monitor proteins relevant to the study of drug exposure and response using liver-derived extracellular vesicles. Br J Clin Pharmacol 2024; 90:3146-3159. [PMID: 39078327 PMCID: PMC11602949 DOI: 10.1111/bcp.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Drug exposure and response is determined by pharmacokinetic (PK) and pharmacodynamic (PD) profiles. Interindividual differences in abundance of drug metabolizing enzymes (DMEs) and drug target proteins underpin PK and PD variability and impact treatment efficacy and tolerability. Extracellular vesicles (EVs) carry protein cargo inherited from originating cells and may be useful for defining differences in key proteins related to hepatic drug metabolism and the treatment of metabolic-associated fatty liver disease (MAFLD). We sought to quantify these proteins in liver-derived EVs and establish the profile relative to paired tissue. METHODS EVs were recovered from human liver tissue samples (LT-EV, n = 11). Targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) assays were employed for absolute quantification of proteins in EV isolates and matched liver tissue. RESULTS DMEs and MAFLD drug targets were readily detected and quantified in LT-EVs. Twelve of 15 DMEs exhibited moderate to strong correlation (Spearman ⍴ = 0.618-0.973) between tissue and EVs. Correlation in protein abundance was influenced by the extent of extra-hepatic expression of the target. CONCLUSIONS This study provides evidence that key proteins related to PK and PD profiles can be measured in liver-derived EVs and abundance of liver-enriched DMEs are robustly correlated between paired tissue and EVs. The robust detection of protein markers related to drug PD profile in MAFLD opens the possibility to track within-subject changes in MAFLD and lays the foundation for future development of a liver-derived EV liquid biopsy to assess markers of drug exposure and response in vivo.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ting Wu
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Michael J. Sorich
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
12
|
Ramírez-Mejía MM, Castillo-Castañeda SM, Pal SC, Qi X, Méndez-Sánchez N. The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. J Clin Transl Hepatol 2024; 12:939-948. [PMID: 39544246 PMCID: PMC11557368 DOI: 10.14218/jcth.2024.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Bilirubin, the primary breakdown product of hemoproteins, particularly hemoglobin, plays a key role in the diagnosis, prognosis, and monitoring of liver diseases. In acute liver diseases, such as acute liver failure, drug-induced liver injury, and viral hepatitis, bilirubin serves as a biomarker reflecting the extent of hepatocyte loss and liver damage. Chronic liver diseases, including alcohol-related liver disease, chronic hepatitis C virus infection, metabolic dysfunction-associated fatty liver disease, and autoimmune liver diseases, are marked by persistent liver injury and inflammation. Bilirubin levels in chronic liver diseases provide insight into liver function, disease severity, and prognosis. As a versatile biomarker, bilirubin offers valuable information on the pathophysiology of liver diseases and aids in guiding clinical decision-making regarding the treatment of liver diseases and their complications. This review aimed to explore the multifunctional role of bilirubin in liver diseases by analyzing its biological functions beyond its role as a biomarker of liver damage.
Collapse
Affiliation(s)
- Mariana M. Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Stephany M. Castillo-Castañeda
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Medical, Dental and Health Sciences Master and Doctorate Program, National Autonomous University of Mexico, Mexico City, Mexico
| | - Shreya C. Pal
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
13
|
Pawłowska M, Kulesza J, Paluszkiewicz E, Augustin E, Mazerska Z. Unsymmetrical Bisacridines' Interactions with ABC Transporters and Their Cellular Impact on Colon LS 174T and Prostate DU 145 Cancer Cells. Molecules 2024; 29:5582. [PMID: 39683740 DOI: 10.3390/molecules29235582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Multidrug resistance (MDR) is a process that constitutes a significant obstacle to effective anticancer therapy. Here, we examined whether unsymmetrical bisacridines (UAs) are substrates for ABC transporters and can influence their expression in human colon LS 174T and prostate DU 145 cancer cells. Moreover, we investigated the cytotoxicity and the cellular response induced by UAs in these cells. The ATPase activities of MDR1, MRP1, and MRP2 were measured using vesicles prepared from insect Sf9 cells expressing particular ABC transporters. The gene expression and protein levels were analyzed using qPCR and Western blotting. The cellular effects were studied by MTT (cytotoxicity), flow cytometry (cell cycle analysis and phosphatidylserine externalization), and fluorescence microscopy. We showed that UAs are substrates for MDR1. Importantly, they did not influence remarkably the expressions of the ABCB1, ABCC1, and ABCC2 genes and the levels of the MDR1 and PXR proteins in the studied cells. Furthermore, the cytotoxicity and the level of apoptosis triggered by UAs in LS 174T cells possessing higher expressions of metabolic enzymes were lower compared with DU 145 cells. These results indicate that during possible UA treatment, the occurrence of drug resistance could be limited, which could favor the use of such compounds as potential candidates for future studies.
Collapse
Affiliation(s)
- Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Jolanta Kulesza
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
14
|
Świzdor A, Janeczko T, Panek A. Modification of B-Nor Steroids Mediated by Filamentous Fungus Fusarium culmorum: Focus on 15α-Hydroxylase Activity. Int J Mol Sci 2024; 25:11913. [PMID: 39595983 PMCID: PMC11594044 DOI: 10.3390/ijms252211913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The metabolic activities of microorganisms to modify the chemical structures of organic compounds are an effective tool for the production of high-value steroidal drugs or active pharmaceutical ingredients (APIs). The integration of biotransformation into the synthesis of APIs can greatly reduce the number of reaction steps and achieve higher process efficiency, thus enabling their greener production. The current research efforts are focused on either the optimization of existing processes or identification of new potentially useful bioconversions. This study aimed to assess the catalytic abilities of the filamentous fungus Fusarium culmorum AM 282 to transform B-nor analogues (5(6→7)abeo compounds) of steroid hormones: androstenedione (AD), dehydroepiandrosterone (DHEA) and its acetate. Our previous studies have demonstrated that this strain is an active hydroxylating catalyst for many steroidal compounds with diverse structures. The results presented in this work showed that the hydroxylation of B-nor steroids occurred with the regio- and stereoselectivity typical of this strain in relation to the corresponding natural hormones of the standard 6:6 A/B series. After the transformations of B-nor-DHEA and its acetate, 15α-hydroxy-B-nor-DHEA was obtained as the sole product of the reaction, while the transformation of the AD analogue resulted in a mixture of its 15α- and 6α-hydroxy derivatives. A detailed analysis of the transformation course indicated that all the obtained hydroxy derivatives could be the result of the activity of the same enzyme. The presented results may provide a basis for research aimed at understanding the molecular nature of cytochrome P-450 monooxygenase from F. culmorum AM 282 with its ability for 15α-hydroxylation of steroidal compounds. An analysis of the pharmacokinetic and pharmacodynamic properties of the obtained metabolites with cheminformatics tools suggests their potential biological activity.
Collapse
Affiliation(s)
- Alina Świzdor
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | | | - Anna Panek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
15
|
Rojo M, Ball AL, Penrose MT, Weir SM, LeBaron H, Terasaki M, Cobb GP, Lavado R. Accumulation of Parabens, Their Metabolites, and Halogenated Byproducts in Migratory Birds of Prey: A Comparative Study in Texas and North Carolina, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2365-2376. [PMID: 39172001 DOI: 10.1002/etc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;43:2365-2376. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Mike T Penrose
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | | | - Masanori Terasaki
- Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
16
|
Xiao S, Yin H, Lv X, Wang Z, Jiang L, Xia Y, Liu Y. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by darolutamide: Prediction of in vivo drug-drug interactions. Chem Biol Interact 2024; 403:111246. [PMID: 39278459 DOI: 10.1016/j.cbi.2024.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Darolutamide is a potent second-generation, selective nonsteroidal androgen receptor inhibitor (ARI), which has been approved by the US Food and Drug Administration (FDA) in treating castrate-resistant, non-metastatic prostate cancer (nmCRPC). Whether darolutamide affects the activity of UDP-glucuronosyltransferases (UGTs) is unknown. The purpose of the present study is to evaluate the inhibitory effect of darolutamide on recombinant human UGTs and pooled human liver microsomes (HLMs), and explore the potential for drug-drug interactions (DDIs) mediated by darolutamide through UGTs inhibition. The product formation rate of UGTs substrates with or without darolutamide was determined by HPLC or UPLC-MS/MS to estimate the inhibitory effect and inhibition modes of darolutamide on UGTs were evaluated by using the inhibition kinetics experiments. The results showed that 100 μM darolutamide exhibited inhibitory effects on most of the 12 UGTs tested. Inhibition kinetic studies of the enzyme revealed that darolutamide noncompetitively inhibited UGT1A1 and competitively inhibited UGT1A7 and 2B15, with the Ki of 14.75 ± 0.78 μM, 14.05 ± 0.42 μM, and 6.60 ± 0.08 μM, respectively. In particular, it also potently inhibited SN-38, the active metabolite of irinotecan, glucuronidation in HLMs with an IC50 value of 3.84 ± 0.46 μM. In addition, the in vitro-in vivo extrapolation (IVIVE) method was used to quantitatively predict the risk of darolutamide-mediated DDI via inhibiting UGTs. The prediction results showed that darolutamide may increase the risk of DDIs when administered in combination with substrates of UGT1A1, UGT1A7, or UGT2B15. Therefore, the combined administration of darolutamide and drugs metabolized by the above UGTs should be used with caution to avoid the occurrence of potential DDIs.
Collapse
Affiliation(s)
- Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yangliu Xia
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
17
|
Metcalfe-Roach A, Cirstea MS, Yu AC, Ramay HR, Coker O, Boroomand S, Kharazyan F, Martino D, Sycuro LK, Appel-Cresswell S, Finlay BB. Metagenomic Analysis Reveals Large-Scale Disruptions of the Gut Microbiome in Parkinson's Disease. Mov Disord 2024; 39:1740-1751. [PMID: 39192744 DOI: 10.1002/mds.29959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) has been consistently linked to alterations within the gut microbiome. OBJECTIVE Our goal was to identify microbial features associated with PD incidence and progression. METHODS Metagenomic sequencing was used to characterize taxonomic and functional changes to the PD microbiome and to explore their relation to bacterial metabolites and disease progression. Motor and non-motor symptoms were tracked using Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and levodopa equivalent dose across ≤5 yearly study visits. Stool samples were collected at baseline for metagenomic sequencing (176 PD, 100 controls). RESULTS PD-derived stool samples had reduced intermicrobial connectivity and seven differentially abundant species compared to controls. A suite of bacterial functions differed between PD and controls, including depletion of carbohydrate degradation pathways and enrichment of ribosomal genes. Faecalibacterium prausnitzii-specific reads contributed significantly to more than half of all differentially abundant functional terms. A subset of disease-associated functional terms correlated with faster progression of MDS-UPDRS part IV and separated those with slow and fast progression with moderate accuracy within a random forest model (area under curve = 0.70). Most PD-associated microbial trends were stronger in those with symmetric motor symptoms. CONCLUSION We provide further evidence that the PD microbiome is characterized by reduced intermicrobial communication and a shift to proteolytic metabolism in lieu of short-chain fatty acid production, and suggest that these microbial alterations may be relevant to disease progression. We also describe how our results support the existence of gut-first versus brain-first PD subtypes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Avril Metcalfe-Roach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mihai S Cirstea
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam C Yu
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Olabisi Coker
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seti Boroomand
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faezeh Kharazyan
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura K Sycuro
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Ewing LE, Harpenau RJ, Skinner CM, Clement K, Quick CM, Yee EU, Williams DK, Walker LA, ElSohly MA, Gurley BJ, Koturbash I. Inter-strain variability in responses to a single administration of the cannabidiol-rich cannabis extract in mice. Food Chem Toxicol 2024; 192:114909. [PMID: 39128689 PMCID: PMC11381146 DOI: 10.1016/j.fct.2024.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Cannabidiol (CBD) has gained widespread popularity; however, its pharmacological and toxicological profiles in the context of human genetic diversity remain largely unexplored. Here, we investigated the variability in metabolism and toxicity of CBD-rich cannabis extract (CRCE) in genetically diverse mouse models: C57BL/6J, B6C3F1/J, and NZO/HlLtJ strains. Mice received a single dose of CRCE containing 57.9% CBD at dosages of 0, 246, 738, and 2460 mg/kg of CBD. At 24 h after treatment, no appreciable histomorphological changes were detected in the liver. Plasma bilirubin levels increased markedly in all strains at the highest CBD dose. Mice in all treatment groups displayed significant but distinct increases in ALT and AST levels. While B6C3F1/J and NZO/HlLtJ mice had negligible plasma CBD levels at 738 mg/kg, C57BL/6J mice exhibited levels exceeding 7000 ng/mL. At 2460 mg/kg, high CBD concentrations were found in B6C3F1/J and C57BL/6J mice, but markedly lower levels were seen in NZO/HlLtJ mice. Gene expression profiling showed significant increases in Cyp2b10 across all strains but varying responses in Cyp1a1 expression, indicating strain-specific CYP dysregulation. Genetically diverse mice exhibited differential pharmacological and toxicological responses to CRCE, suggesting a high potential for inter-individual variability in the pharmacology and toxicology of CBD in humans.
Collapse
Affiliation(s)
- Laura E Ewing
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ryan J Harpenau
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Charles M Skinner
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Kirsten Clement
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Charles M Quick
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - D Keith Williams
- Department of Biostatistics, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Larry A Walker
- National Center for Natural Products Research, University of Mississippi University, MS, 38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi University, MS, 38677, USA; ElSohly Laboratories, Inc. (ELI), Oxford, MS, 38677, USA
| | - Bill J Gurley
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; National Center for Natural Products Research, University of Mississippi University, MS, 38677, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
19
|
Zheng J, Chen X, Xie Y, Zhang Y, Huang Y, Wu P, Lv J, Qiu L. Knocking Out of UDP-Glycosyltransferase Gene UGT2B10 via CRISPR/Cas9 in Helicoverpa armigera Reveals Its Function in Detoxification of Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20862-20871. [PMID: 39269786 DOI: 10.1021/acs.jafc.4c05055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene UGT2B10 was previously found overexpressed in a fenvalerate-resistant strain of Helicoverpa armigera. Herein, UGT2B10 was cloned, and its involvement in insecticide detoxification was investigated. UGT2B10 was highly expressed in the larvae, mainly in the fat body and midgut. Treatment with UGT inhibitors 5-nitrouracil and sulfinpyrazone significantly enhanced the fenvalerate toxicity. Knocking down UGT2B10 by RNAi significantly increased the larvae mortality by 17.89%. UGT2B10 was further knocked out by CRISPR/Cas9, and a homozygous strain (HD-dUGT2B10) with a C-base deletion at exon 2 was obtained. The sensitivity of HD-dUGT2B10 to fenvalerate, deltamethrin, cyantraniliprole, acetamiprid, and lufenuron increased significantly, with sensitivity index increased 2.523-, 2.544-, 2.250-, 2.473-, and 3.556-fold, respectively. These results suggested that UGT2B10 was involved in the detoxification of H. armigera to insecticides mentioned above, shedding light upon further understanding of the detoxification mechanisms of insecticides by insect UGTs.
Collapse
Affiliation(s)
- Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Youse MS, Abutaleb NS, Nocentini A, S Abdelsattar A, Ali F, Supuran CT, Seleem MN, Flaherty DP. Optimization of Ethoxzolamide Analogs with Improved Pharmacokinetic Properties for In Vivo Efficacy against Neisseria gonorrhoeae. J Med Chem 2024; 67:15537-15556. [PMID: 39141375 DOI: 10.1021/acs.jmedchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-resistant gonorrhea is caused by the bacterial pathogen Neisseria gonorrhoeae, for which there is no recommended oral treatment. We have demonstrated that the FDA-approved human carbonic anhydrase inhibitor ethoxzolamide potently inhibits N. gonorrhoeae; however, is not effective at reducing N. gonorrhoeae bioburden in a mouse model. Thus, we sought to optimize the pharmacokinetic properties of the ethoxzolamide scaffold. These efforts resulted in analogs with improved activity against N. gonorrhoeae, increased metabolic stability in mouse liver microsomes, and improved Caco-2 permeability compared to ethoxzolamide. Improvement in these properties resulted in increased plasma exposure in vivo after oral dosing. Top compounds were investigated for in vivo efficacy in a vaginal mouse model of gonococcal genital tract infection, and they significantly decreased the gonococcal burden compared to vehicle and ethoxzolamide controls. Altogether, results from this study provide evidence that ethoxzolamide-based compounds have the potential to be effective oral therapeutics against gonococcal infection.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Farman Ali
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Sharma N, Au V, Martin K, Edgley ML, Moerman D, Mains PE, Gilleard JS. Multiple UDP glycosyltransferases modulate benzimidazole drug sensitivity in the nematode Caenorhabditis elegans in an additive manner. Int J Parasitol 2024; 54:535-549. [PMID: 38806068 DOI: 10.1016/j.ijpara.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.
Collapse
Affiliation(s)
- Nidhi Sharma
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Vinci Au
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Kiana Martin
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Mark L Edgley
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Don Moerman
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Paul E Mains
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Glucuronidation of tizoxanide, an active metabolite of nitazoxanide, in liver and small intestine: Species differences in humans, monkeys, dogs, rats, and mice and responsible UDP-glucuronosyltransferase isoforms in humans. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109962. [PMID: 38889874 DOI: 10.1016/j.cbpc.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Yoko Mori
- Division of Environmental Chemistry, Ntional Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
23
|
Yin H, Lv X, Wang Z, Xiao S, Liang J, Sun J, Jiang L, Liu Y. In vitro inhibitory effects of selumetinib on activity of human UDP-glucuronosyltransferases and prediction of in vivo drug-drug interactions. Toxicol In Vitro 2024; 99:105863. [PMID: 38823552 DOI: 10.1016/j.tiv.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Selumetinib is an oral, effective, and selective tyrosine kinase inhibitor targeting mitogen-activated protein kinase 1 and 2 (MEK1/2), which is clinically active in multiple tumor types, such as neurofibromatosis type 1 (NF1), melanoma, gliomas and non-small cell lung cancer (NSCLC). The purpose of this article was to assess the effects of selumetinib on the activities of twelve human UDP-glucosyltransferases (UGTs) including UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, and its potential for inducing clinical drug-drug interactions (DDIs). The results demonstrated that selumetinib potently inhibited the activity of UGT2B7 through the mechanism of mixed inhibition with the inhibition constant value of 5.79 ± 0.65 μM. Furthermore, the plasma concentration of UGT2B7 substrate as the co-administered drug was predicted to be increased by at least 84 % when patients took selumetinib 75 mg twice daily, suggesting a high potential to induce clinical DDIs. Selumetinib exhibited weak inhibitory effects on other human UGTs and was unlikely to trigger off UGTs-mediated DDIs except for UGT2B7. Therefore, the combination of selumetinib with the substrate drug of UGT2B7 requires additional attention to avoid adverse events in clinical treatment.
Collapse
Affiliation(s)
- Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jiaqi Liang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jie Sun
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
24
|
Olubamiwa AO, Liao TJ, Zhao J, Dehanne P, Noban C, Angin Y, Barberan O, Chen M. Drug interaction with UDP-Glucuronosyltransferase (UGT) enzymes is a predictor of drug-induced liver injury. Hepatology 2024:01515467-990000000-00962. [PMID: 39024247 DOI: 10.1097/hep.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND AIMS DILI frequently contributes to the attrition of new drug candidates and is a common cause for the withdrawal of approved drugs from the market. Although some noncytochrome P450 (non-CYP) metabolism enzymes have been implicated in DILI development, their association with DILI outcomes has not been systematically evaluated. APPROACH AND RESULTS In this study, we analyzed a large data set comprising 317 drugs and their interactions in vitro with 42 non-CYP enzymes as substrates, inducers, and/or inhibitors retrieved from historical regulatory documents using multivariate logistic regression. We examined how these in vitro drug-enzyme interactions are correlated with the drugs' potential for DILI concern, as classified in the Liver Toxicity Knowledge Base database. Our study revealed that drugs that inhibit non-CYP enzymes are significantly associated with high DILI concern. Particularly, interaction with UDP-glucuronosyltransferases (UGT) enzymes is an important predictor of DILI outcomes. Further analysis indicated that only pure UGT inhibitors and dual substrate inhibitors, but not pure UGT substrates, are significantly associated with high DILI concern. CONCLUSIONS Drug interactions with UGT enzymes may independently predict DILI, and their combined use with the rule-of-two model further improves overall predictive performance. These findings could expand the currently available tools for assessing the potential for DILI in humans.
Collapse
Affiliation(s)
- AyoOluwa O Olubamiwa
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tsung-Jen Liao
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jinwen Zhao
- Department of Information Science, University of Arkansas at Little Rock, Arkansas, USA
| | - Patrice Dehanne
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | - Catherine Noban
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | - Yeliz Angin
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | | | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
25
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Kishi Y, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 2024; 187:3563-3584.e26. [PMID: 38889727 PMCID: PMC11246231 DOI: 10.1016/j.cell.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas H Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jean M Badroos
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joani W Viliunas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuriko Kishi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julian M Wagner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David R Miller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mina Yousefelahiyeh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Taro Eldredge
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacy Pirro
- Iridian Genomes, 613 Quaint Acres Dr., Silver Spring, MD 20904, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven R Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Liu J, Tian M, Qin H, Chen D, Mzava SM, Wang X, Bigambo FM. Maternal bisphenols exposure and thyroid function in children: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1420540. [PMID: 39010904 PMCID: PMC11246848 DOI: 10.3389/fendo.2024.1420540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background Evidence from animal experiments and epidemiological studies has reported controversial results about the effects of prenatal bisphenols (BPs) exposure on childhood thyroid function. This study aims to explore the associations of prenatal exposure to BPs with thyroid-related hormones (THs) in newborns and early childhood, with a particular focus on the sex-dependent and exposure level effects. Methods Correlated studies were systematically searched from PubMed, Web of Science, Medline, Cochrane, and Embase until February 21, 2024. The exposures assessed include bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF), and tetrachlorobisphenol A (TCBPA). THs measured were thyroid stimulating hormone (TSH), total tri-iodothyronine (TT3), total thyroxine (TT4), free tri-iothyronine (FT3), and free thyroxine (FT4). Effect estimates were quantified using coefficients from multivariable regression models. Statistical analyses were completed using Stata 16.0. The methodological quality of the included studies was evaluated using the Newcastle-Ottawa Scale (NOS). Results Eleven cohort studies comprising 5,363 children were included in our meta-analysis. Prenatal bisphenol concentrations were statistically significant related to alterations in thyroid hormones in children, exclusively in female offspring, including reduced TSH (β = -0.020, 95% CI: -0.036, -0.005) and increased TT3 levels (β = 0.011, 95% CI: 0.001, 0.021), and exposure to high concentration of bisphenols (>1.5 ug/g creatinine) significantly reduced FT3 levels in children (β = -0.011, 95% CI: -0.020, -0.003). Conclusion Prenatal bisphenol exposure is linked to alterations in thyroid hormone levels in girls, necessitating enhanced measures to control bisphenol exposure levels during pregnancy for child health protection. Systematic Review Registration https://inplasy.com, identifier INPLASY202450129.
Collapse
Affiliation(s)
- Jiani Liu
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Tian
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyue Qin
- Nanjing Foreign Language School, Nanjing, China
| | - Danrong Chen
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Francis Manyori Bigambo
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Xu C, Jiang Z, Qian M, Zuo L, Xue H, Hu N. Influence of UDP-Glucuronosyltransferase Polymorphisms on Mycophenolic Acid Metabolism in Renal Transplant Patients. Transplant Proc 2024; 56:1280-1289. [PMID: 39054222 DOI: 10.1016/j.transproceed.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the effects of UDP-glucuronosyltransferase (UGT) polymorphisms on mycophenolic acid (MPA) metabolism in renal transplant patients. A total of 11 single nucleotide polymorphisms (SNPs) of UGT1A1, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B7 were genotyped in 79 renal transplant patients. The associations of SNPs and clinical factors with dose-adjusted MPA area under the plasma concentration-time curve (AUC/D), the dose-adjusted plasma concentration (C0/D) of 7-O-MPA-glucuronide (MPAG), and the dose-adjusted plasma concentration (C0/D) of acyl MPAG (AcMPAG) were analyzed. In the univariate analysis, UGT1A1 rs4148323, age, and anion gap were associated with MPA AUC/D. MPA AUC/D was higher in patients with the GA genotype of UGT1A1 rs4148323 compared to patients with the GG genotype. UGT1A1 rs4148323, UGT1A9 rs2741049 and clinical factors, including age, serum total bilirubin, adenosine deaminase, anion gap, urea, and creatinine, were associated with MPAG C0/D. UGT2B7 rs7438135, UGT2B7 rs7439366, and UGT2B7 rs7662029 also were associated with AcMPAG C0/D. Multiple linear regression analysis showed that UGT1A9 rs2741049 and indirect bilirubin were negatively correlated with MPAG C0/D (P = .001; P = .039), and UGT2B7 rs7662029 was positively correlated with AcMPAG C0/D (P = .008). This study demonstrates a significant influence of UGT1A9 rs2741049 and UGT2B7 rs7662029 polymorphisms on the metabolism of MPA in vivo.
Collapse
Affiliation(s)
- Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Hui Xue
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
28
|
Ozbey AC, Keemink J, Wagner B, Pugliano A, Krähenbühl S, Annaert P, Fowler S, Parrott N, Umehara K. Physiologically Based Pharmacokinetic Modeling to Predict the Impact of Liver Cirrhosis on Glucuronidation via UGT1A4 and UGT2B7/2B4-A Case Study with Midazolam. Drug Metab Dispos 2024; 52:614-625. [PMID: 38653501 DOI: 10.1124/dmd.123.001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatic impairment, due to liver cirrhosis, decreases the activity of cytochrome P450 enzymes (CYPs). The use of physiologically based pharmacokinetic (PBPK) modeling to predict this effect for CYP substrates has been well-established, but the effect of cirrhosis on uridine-glucuronosyltransferase (UGT) activities is less studied and few PBPK models have been reported. UGT enzymes are involved in primary N-glucuronidation of midazolam and glucuronidation of 1'-OH-midazolam following CYP3A hydroxylation. In this study, Simcyp was used to establish PBPK models for midazolam, its primary metabolites midazolam-N-glucuronide (UGT1A4) and 1'-OH midazolam (CYP3A4/3A5), and the secondary metabolite 1'-OH-midazolam-O-glucuronide (UGT2B7/2B4), allowing to simulate the impact of liver cirrhosis on the primary and secondary glucuronidation of midazolam. The model was verified in noncirrhotic subjects before extrapolation to cirrhotic patients of Child-Pugh (CP) classes A, B, and C. Our model successfully predicted the exposures of midazolam and its metabolites in noncirrhotic and cirrhotic patients, with 86% of observed plasma concentrations within 5th-95th percentiles of predictions and observed geometrical mean of area under the plasma concentration curve between 0 hours to infinity and maximal plasma concentration within 0.7- to 1.43-fold of predictions. The simulated metabolic ratio defined as the ratio of the glucuronide metabolite AUC over the parent compound AUC (AUCglucuronide/AUCparent, metabolic ratio [MR]), was calculated for midazolam-N-glucuronide to midazolam (indicative of UGT1A4 activity) and decreased by 40% (CP A), 48% (CP B), and 75% (CP C). For 1'-OH-midazolam-O-glucuronide to 1'-OH-midazolam, the MR (indicative of UGT2B7/2B4 activity) dropped by 35% (CP A), 51% (CP B), and 64% (CP C). These predicted MRs were corroborated by the observed data. This work thus increases confidence in Simcyp predictions of the effect of liver cirrhosis on the pharmacokinetics of UGT1A4 and UGT2B7/UGT2B4 substrates. SIGNIFICANCE STATEMENT: This article presents a physiologically based pharmacokinetic model for midazolam and its metabolites and verifies the accurate simulation of pharmacokinetic profiles when using the Simcyp hepatic impairment population models. Exposure changes of midazolam-N-glucuronide and 1'-OH-midazolam-O-glucuronide reflect the impact of decreases in UGT1A4 and UGT2B7/2B4 glucuronidation activity in cirrhotic patients. The approach used in this study may be extended to verify the modeling of other uridine glucuronosyltransferase enzymes affected by liver cirrhosis.
Collapse
Affiliation(s)
- Agustos C Ozbey
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Janneke Keemink
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Bjoern Wagner
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Alessandra Pugliano
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Pieter Annaert
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.C.O., J.K., B.W., A.P., S.F., N.P., K.U.); Drug Delivery and Disposition Laboratory, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (A.C.O., A.P., P.A.); BioNotus GCV, Niel, Belgium (P.A.); Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland (S.K.); Department of Clinical Research (S.K.) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences (S.K.), University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Oesterle I, Ayeni KI, Ezekiel CN, Berry D, Rompel A, Warth B. Insights into the early-life chemical exposome of Nigerian infants and potential correlations with the developing gut microbiome. ENVIRONMENT INTERNATIONAL 2024; 188:108766. [PMID: 38801800 DOI: 10.1016/j.envint.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Early-life exposure to natural and synthetic chemicals can impact acute and chronic health conditions. Here, a suspect screening workflow anchored on high-resolution mass spectrometry was applied to elucidate xenobiotics in breast milk and matching stool samples collected from Nigerian mother-infant pairs (n = 11) at three time points. Potential correlations between xenobiotic exposure and the developing gut microbiome, as determined by 16S rRNA gene amplicon sequencing, were subsequently explored. Overall, 12,192 and 16,461 features were acquired in the breast milk and stool samples, respectively. Following quality control and suspect screening, 562 and 864 features remained, respectively, with 149 of these features present in both matrices. Taking advantage of 242 authentic reference standards measured for confirmatory purposes of food bio-actives and toxicants, 34 features in breast milk and 68 features in stool were identified and semi-quantified. Moreover, 51 and 78 features were annotated with spectral library matching, as well as 416 and 652 by in silico fragmentation tools in breast milk and stool, respectively. The analytical workflow proved its versatility to simultaneously determine a diverse panel of chemical classes including mycotoxins, endocrine-disrupting chemicals (EDCs), antibiotics, plasticizers, perfluorinated alkylated substances (PFAS), and pesticides, although it was originally optimized for polyphenols. Spearman rank correlation of the identified features revealed significant correlations between chemicals of the same classification such as polyphenols. One-way ANOVA and differential abundance analysis of the data obtained from stool samples revealed that molecules of plant-based origin elevated as complementary foods were introduced to the infants' diets. Annotated compounds in the stool, such as tricetin, positively correlated with the genus Blautia. Moreover, vulgaxanthin negatively correlated with Escherichia-Shigella. Despite the limited sample size, this exploratory study provides high-quality exposure data of matched biospecimens obtained from mother-infant pairs in sub-Saharan Africa and shows potential correlations between the chemical exposome and the gut microbiome.
Collapse
Affiliation(s)
- Ian Oesterle
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute for Bioanalytics and Agro-Metabolomics, Konrad-Lorenz Str. 20, 3430 Tulln, Austria
| | - David Berry
- University of Vienna, Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, 1030 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
30
|
Yang K, Jia RY, Li XS, Lu SY, Liu JJ, Zhang ZP, Fang ZZ. Identification of UDP-glucuronosyltransferase (UGT) isoforms involved in the metabolism of Chlorophenols (CPs). CHEMOSPHERE 2024; 358:142249. [PMID: 38705405 DOI: 10.1016/j.chemosphere.2024.142249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Chlorophenols (CPs) are a group of pollutants that pose a great threat to the environment, they are widely used in industrial and agricultural wastes, pesticides, herbicides, textiles, pharmaceuticals and plastics. Among CPs, pentachlorophenol was listed as one of the persistent organic pollutants (POPs) by the Stockholm convention. This study aims to identify the UDP-glucosyltransferase (UGT) isoforms involved in the metabolic elimination of CPs. CPs' mono-glucuronide was detected in the human liver microsomes (HLMs) incubation mixture with co-factor uridine-diphosphate glucuronic acid (UDPGA). HLMs-catalyzed glucuronidation metabolism reaction equations followed Michaelis-Menten or substrate inhibition type. Recombinant enzymes and chemical reagents inhibition experiments were utilized to phenotype the main UGT isoforms involved in the glucuronidation of CPs. UGT1A6 might be the major enzyme in the glucuronidation of mono-chlorophenol isomer. UGT1A1, UGT1A6, UGT1A9, UGT2B4 and UGT2B7 were the most important five UGT isoforms for metabolizing the di-chlorophenol and tri-chlorophenol isomers. UGT1A1 and UGT1A3 were the most important UGT isoforms in the catalysis of tetra-chlorophenol and pentachlorophenol isomers. Species differences were investigated using rat liver microsomes (RLMs), pig liver microsomes (PLMs), dog liver microsomes (DLMs), and monkey liver microsomes (MyLMs). All these results were helpful for elucidating the metabolic elimination and toxicity of CPs.
Collapse
Affiliation(s)
- Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ruo-Yong Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Song Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shao-You Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jian-Jun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
31
|
Kandalgaonkar MR, Kumar V, Vijay‐Kumar M. Digestive dynamics: Unveiling interplay between the gut microbiota and the liver in macronutrient metabolism and hepatic metabolic health. Physiol Rep 2024; 12:e16114. [PMID: 38886098 PMCID: PMC11182692 DOI: 10.14814/phy2.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.
Collapse
Affiliation(s)
- Mrunmayee R. Kandalgaonkar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Virender Kumar
- College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - Matam Vijay‐Kumar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
32
|
Wang L, Wang L, Sun X, Fu L, Wang X, Wang X, Chen L, Huang Y. Detection of uridine diphosphate glucuronosyltransferase 1A1 for pancreatic cancer imaging and treatment via a "turn-on" fluorescent probe. Analyst 2024; 149:2877-2886. [PMID: 38567989 DOI: 10.1039/d4an00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is expressed ubiquitously in cancer cells and can metabolize exogenous substances. Studies show higher UGT1A1 levels in pancreatic cancer cells than normal cells. Therefore, we need a method to monitor the activity level of UGT1A1 in pancreatic cancer cells and in vivo. Here, we report a fluorescent probe, BCy-panc, for UGT1A1 imaging in cells and in vivo. Compared with other molecular probes, this probe is readily prepared, with high selectivity and sensitivity for the detection of UGT1A1. Our results show that BCy-panc rapidly detects UGT1A1 in pancreatic cancer. In addition, there is an urgent need for evidence to clarify the relationship between UGT1A1 and pancreatic cancer development. The present investigation found that the increase of UGT1A1 by chrysin was effective in inducing apoptosis in pancreatic cancer cells. These results indicate that the synergistic effect of chrysin and cisplatin at the cellular level is superior to that of cisplatin alone. The UGT1A1 level may be a biomarker for early diagnosis of cancer. Meanwhile, UGT1A1 plays a crucial role in pancreatic cancer, and the combination of chrysin and cisplatin may provide effective ideas for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lingxiao Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Lingyun Wang
- Jinan Zhangqiu District People's Hospital, Jinan 250000, China
| | - Xiao Sun
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xinlei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
33
|
Olivares-Vicente M, Sánchez-Marzo N, Herranz-López M, Micol V. Analysis of Lemon Verbena Polyphenol Metabolome and Its Correlation with Oxidative Stress under Glucotoxic Conditions in Adipocyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9768-9781. [PMID: 38629896 PMCID: PMC11066870 DOI: 10.1021/acs.jafc.3c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Lemon verbena has been shown to ameliorate obesity-related oxidative stress, but the intracellular final effectors underlying its antioxidant activity are still unknown. The purpose of this study was to correlate the antioxidant capacity of plasma metabolites of lemon verbena (verbascoside, isoverbascoside, hydroxytyrosol, caffeic acid, ferulic acid, homoprotocatechuic acid, and luteolin-7-diglucuronide) with their uptake and intracellular metabolism in hypertrophic adipocytes under glucotoxic conditions. To this end, intracellular ROS levels were measured, and the intracellular metabolites were identified and quantified by high-performance liquid chromatography with a diode array detector coupled to mass spectrometry (HPLC-DAD-MS). The results showed that the plasma metabolites of lemon verbena are absorbed by adipocytes and metabolized through phase II reactions and that the intracellular appearance of these metabolites correlates with the decrease in the level of glucotoxicity-induced oxidative stress. It is postulated that the biotransformation and accumulation of these metabolites in adipocytes contribute to the long-term antioxidant activity of the extract.
Collapse
Affiliation(s)
- Mariló Olivares-Vicente
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - Noelia Sánchez-Marzo
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - María Herranz-López
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - Vicente Micol
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
- CIBER:
CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición,
CIBERobn, Instituto de Salud Carlos III
(ISCIII), Madrid 28029, Spain
| |
Collapse
|
34
|
Zhang H, Yang L, Shen D, Zhu Y, Zhang L. Identification of Bromophenols' glucuronidation and its induction on UDP- glucuronosyltransferases isoforms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116281. [PMID: 38581907 DOI: 10.1016/j.ecoenv.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 μM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Shen
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Zhang
- Department of Pediatric Urology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
35
|
Kim W, Kim M, Kim B. Unraveling the enigma: housekeeping gene Ugt1a7c as a universal biomarker for microglia. Front Psychiatry 2024; 15:1364201. [PMID: 38666091 PMCID: PMC11043603 DOI: 10.3389/fpsyt.2024.1364201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.
Collapse
Affiliation(s)
| | | | - Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
36
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
37
|
Wu C, Luo M, Xie D, Zhong S, Xu J, Lu D. Kinetic Characterization of Estradiol Glucuronidation by Liver Microsomes and Expressed UGT Enzymes: The Effects of Organic Solvents. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00888-2. [PMID: 38472634 DOI: 10.1007/s13318-024-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND OBJECTIVE In vitro glucuronidation of 17β-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Miao YS, Wang JY, Zhuang RR, Huo XK, Yi ZC, Sun XN, Yu ZL, Tian XG, Ning J, Feng L, Ma XC, Lv X. A high-affinity fluorescent probe for human uridine-disphosphate glucuronosyltransferase 1A9 function monitoring under environmental pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133439. [PMID: 38218035 DOI: 10.1016/j.jhazmat.2024.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.
Collapse
Affiliation(s)
- Yi-Sheng Miao
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia-Yue Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Rui-Rui Zhuang
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zi-Chang Yi
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Nan Sun
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xia Lv
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
39
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Hepatic glucuronidation of tetrabromobisphenol A and tetrachlorobisphenol A: interspecies differences in humans and laboratory animals and responsible UDP-glucuronosyltransferase isoforms in humans. Arch Toxicol 2024; 98:837-848. [PMID: 38182911 DOI: 10.1007/s00204-023-03659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, 790-8578, Japan
| | - Yoko Mori
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| |
Collapse
|
40
|
Bardhi K, Coates S, Chen G, Lazarus P. Cannabinoid-Induced Stereoselective Inhibition of R-S-Oxazepam Glucuronidation: Cannabinoid-Oxazepam Drug Interactions. Pharmaceutics 2024; 16:243. [PMID: 38399297 PMCID: PMC10892093 DOI: 10.3390/pharmaceutics16020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Benzodiazepines (BZDs) such as oxazepam are commonly prescribed depressant drugs known for their anxiolytic, hypnotic, muscle relaxant, and anticonvulsant effects and are frequently used in conjunction with other illicit drugs including cannabis. Oxazepam is metabolized in an enantiomeric-specific manner by glucuronidation, with S-oxazepam metabolized primarily by UGT2B15 and R-oxazepam glucuronidation mediated by both UGT 1A9 and 2B7. The goal of the present study was to evaluate the potential inhibitory effects of major cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and major THC metabolites, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), on the UGT-mediated metabolism of R- and S-oxazepam. The cannabinoids and metabolites were screened as inhibitors of R- and S-oxazepam glucuronidation in microsomes isolated from HEK293 cells overexpressing individual UGT enzymes (rUGTs). The IC50 values were determined in human liver microsomes (HLM), human kidney microsomes (HKM), and rUGTs and utilized to estimate the nonspecific, binding-corrected Ki (Ki,u) values and predict the area under the concentration-time curve ratio (AUCR). The estimated Ki,u values observed in HLM for S- and R-oxazepam glucuronidation by CBD, 11-OH-THC, and THC were in the micromolar range (0.82 to 3.7 µM), with the Ki,u values observed for R-oxazepam glucuronidation approximately 2- to 5-fold lower as compared to those observed for S-oxazepam glucuronidation. The mechanistic static modeling predicted a potential clinically significant interaction between oral THC and CBD with oxazepam, with the AUCR values ranging from 1.25 to 3.45. These data suggest a pharmacokinetic drug-drug interaction when major cannabinoids like CBD or THC and oxazepam are concurrently administered.
Collapse
Affiliation(s)
| | | | | | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA 99202, USA
| |
Collapse
|
41
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
42
|
Osborne MJ, Sulekha A, Culjkovic-Kraljacic B, Gasiorek J, Ruediger E, Jolicouer E, Marinier A, Assouline S, Borden KLB. Medicinal Chemistry and NMR Driven Discovery of Novel UDP-glucuronosyltransferase 1A Inhibitors That Overcome Therapeutic Resistance in Cells. J Mol Biol 2024; 436:168378. [PMID: 38043731 PMCID: PMC10841659 DOI: 10.1016/j.jmb.2023.168378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity. Here, we identified for the first time that UGT1A4 is highly elevated in acute myeloid leukemia (AML) patients and its reduction corresponded to objective clinical responses. To develop inhibitors to UGT1A4, we leveraged previous NMR-based fragment screening data against the C-terminal domain of UGT1A (UGT1A-C). NMR and medicinal chemistry strategies identified novel chemical matter based on fragment compounds with the capacity to bind ∼20 fold more tightly to UGT1A-C (Kd ∼ 600 μM vs ∼30 μM). Some compounds differentially inhibited UGT1A4 versus UGT1A1 enzyme activity and restored drug sensitivity in resistant human cancer cells. NMR-based NOE experiments revealed these novel compounds recognised a region distal to the catalytic site suggestive of allosteric regulation. This binding region is poorly conserved between UGT1A and UGT2B C-terminal sequences, which otherwise exhibit high similarity. Consistently, these compounds did not bind to the C-terminal domain of UGT2B7 nor a triple mutant of UGT1A-C replaced with UGT2B7 residues in this region. Overall, we discovered a site on UGTs that can be leveraged to differentially target UGT1As and UGT2Bs, identified UGT1A4 as a therapeutic target, and found new chemical matter that binds the UGT1A C-terminus, inhibits glucuronidation and restores drug sensitivity.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Anamika Sulekha
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Edward Ruediger
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Eric Jolicouer
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Anne Marinier
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Sarit Assouline
- Jewish General Hospital and McGill University, 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
44
|
Eitan LA, Khair IY, Alahmad S. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Curr Drug Metab 2024; 25:465-478. [PMID: 39377381 DOI: 10.2174/0113892002323910240924145310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Drug metabolizing enzymes play a crucial role in the pharmacokinetics and pharmacodynamics of therapeutic drugs, influencing their efficacy and safety. This review explores the impact of genetic polymorphisms in drug-metabolizing genes on drug response within Arab populations. We examine the genetic diversity specific to Arab countries, focusing on the variations in key drug-metabolizing enzymes such as CYP450, GST, and UGT families. The review highlights recent research on polymorphisms in these genes and their implications for drug metabolism, including variations in allele frequencies and their effects on therapeutic outcomes. Additionally, the paper discusses how these genetic variations contribute to the variability in drug response and adverse drug reactions among individuals in Arab populations. By synthesizing current findings, this review aims to provide a comprehensive understanding of the pharmacogenetic landscape in Arab countries and offer insights into personalized medicine approaches tailored to genetic profiles. The findings underscore the importance of incorporating pharmacogenetic data into clinical practice to enhance drug efficacy and minimize adverse effects, ultimately paving the way for more effective and individualized treatment strategies in the region.
Collapse
Affiliation(s)
- Laith Al Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
45
|
Li P, Zhang R, Zhou J, Guo P, Liu Y, Shi S. Vancomycin relieves tacrolimus-induced hyperglycemia by eliminating gut bacterial beta-glucuronidase enzyme activity. Gut Microbes 2024; 16:2310277. [PMID: 38332701 PMCID: PMC10860355 DOI: 10.1080/19490976.2024.2310277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Up to 40% of transplant recipients treated long-term with tacrolimus (TAC) develop post-transplant diabetes mellitus (PTDM). TAC is an important risk factor for PTDM, but is also essential for immunosuppression after transplantation. Long-term TAC treatment alters the gut microbiome, but the mechanisms of TAC-induced gut microbiota in the pathogenesis of PTDM are poorly characterized. Here, we showed that vancomycin, an inhibitor of bacterial beta-glucuronidase (GUS), prevents TAC-induced glucose disorder and insulin resistance in mice. Metagenomics shows that GUS-producing bacteria are predominant and flourish in the TAC-induced hyperglycemia mouse model, with upregulation of intestinal GUS activity. Targeted metabolomics analysis revealed that in the presence of high GUS activity, the hydrolysis of bile acid (BAs)-glucuronic conjugates is increased and most BAs are overproduced in the serum and liver, which, in turn, activates the ileal farnesoid X receptor (FXR) and suppresses GLP-1 secretion by L-cells. The GUS inhibitor vancomycin significantly eliminated GUS-producing bacteria and inhibited bacterial GUS activity and BAs levels, thereby enhancing L-cell GLP-1 secretion and preventing hyperglycemia. Our results propose a novel clinical strategy for inhibiting the bacterial GUS enzyme to prevent hyperglycemia without requiring withdrawal of TAC treatment. This strategy exerted its effect through the ileal bile acid-FXR-GLP-1 pathway.
Collapse
Affiliation(s)
- Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Panek A, Wójcik P, Świzdor A, Szaleniec M, Janeczko T. Biotransformation of Δ 1-Progesterone Using Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 25:508. [PMID: 38203679 PMCID: PMC10779271 DOI: 10.3390/ijms25010508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This research aimed at obtaining new derivatives of pregn-1,4-diene-3,20-dione (Δ1-progesterone) (2) through microbiological transformation. For the role of catalysts, we used six strains of entomopathogenic filamentous fungi (Beauveria bassiana KCh J1.5, Beauveria caledonica KCh J3.3, Isaria fumosorosea KCh J2, Isaria farinosa KCh KW1.1, Isaria tenuipes MU35, and Metarhizium robertsii MU4). The substrate (2) was obtained by carrying out an enzymatic 1,2-dehydrogenation on an increased scale (3.5 g/L) using a recombinant cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans. All selected strains were characterized by the high biotransformation capacity for the used substrate. As a result of the biotransformation, six steroid derivatives were obtained: 11α-hydroxypregn-1,4-diene-3,20-dione (3), 6β,11α-dihydroxypregn-1,4-diene-3,20-dione (4), 6β-hydroxypregn-1,4-diene-3,11,20-trione (5), 6β,17α-dihydroxypregn-1,4-diene-3,20-dione (6), 6β,17β-dihydroxyandrost-1,4-diene-3-one (7), and 12β,17α-dihydroxypregn-1,4-diene-3,20-dione (8). The results show evident variability of the biotransformation process between strains of the tested biocatalysts from different species described as entomopathogenic filamentous fungi. The obtained products were tested in silico using cheminformatics tools for their pharmacokinetic and pharmacodynamic properties, proving their potentially high biological activities. This study showed that the obtained compounds may have applications as effective inhibitors of testosterone 17β-dehydrogenase. Most of the obtained products should, also with a high probability, find potential uses as androgen antagonists, a prostate as well as menopausal disorders treatment. They should also demonstrate immunosuppressive, erythropoiesis-stimulating, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anna Panek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Alina Świzdor
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
47
|
Xu T, Lv Y, Cui Y, Liu D, Xu T, Lu B, Yang X. Properties of Dietary Flavone Glycosides, Aglycones, and Metabolites on the Catalysis of Human Endoplasmic Reticulum Uridine Diphosphate Glucuronosyltransferase 2B7 (UGT2B7). Nutrients 2023; 15:4941. [PMID: 38068799 PMCID: PMC10708323 DOI: 10.3390/nu15234941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Flavone glycosides, their aglycones, and metabolites are the major phytochemicals in dietary intake. However, there are still many unknowns about the cellular utilization and active sites of these natural products. Uridine diphosphate glucuronosyltransferases (UGTs) in the endoplasmic reticulum have gene polymorphism distribution in the population and widely mediate the absorption and metabolism of endogenous and exogenous compounds by catalyzing the covalent addition of glucuronic acid and various lipophilic chemicals. Firstly, we found that rutin, a typical flavone O-glycoside, has a stronger UGT2B7 binding effect than its metabolites. After testing a larger number of flavonoids with different aglycones, their aglycones, and metabolites, we demonstrated that typical dietary flavone O-glycosides generally have high binding affinities towards UGT2B7 protein, but the flavone C-glycosides and the phenolic acid metabolites of flavones had no significant effect on this. With the disposition of 4-methylumbelliferone examined by HPLC assay, we determined that 10 μM rutin and nicotifiorin could significantly inhibit the activity of recombinant UGT2B7 protein, which is stronger than isovitexin, vitexin, 3-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid. In addition, in vitro experiments showed that in normal and doxorubicin-induced lipid composition, both flavone O-glycosides rutin and flavone C-glycosides isovitexin at 10 μM had no significant effect on the expression of UGT1A1, UGT2B4, UGT2B7, and UGT2B15 genes for 24 h exposure. The obtained results enrich the regulatory properties of dietary flavone glycosides, aglycones, and metabolites towards the catalysis of UGTs and will contribute to the establishment of a precise nutritional intervention system based on lipid bilayers and theories of nutrients on endoplasmic reticulum and mitochondria communication.
Collapse
Affiliation(s)
- Ting Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yangjun Lv
- Hangzhou Tea Research Institute, China Co-Op, Hangzhou 310016, China
| | - Yuhan Cui
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dongchen Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Yang F, Wenzel M, Bureik M, Parr MK. Glucuronidation Pathways of 5- and 7-Hydroxypropranolol: Determination of Glucuronide Structures and Enzyme Selectivity. Molecules 2023; 28:7783. [PMID: 38067513 PMCID: PMC10707847 DOI: 10.3390/molecules28237783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Propranolol, a non-selective beta-blocker medication, has been utilized in the treatment of cardiovascular diseases for several decades. Its hydroxynaphthyl metabolites have been recognized to possess varying degrees of beta-blocker activity due to the unaltered side-chain. This study achieved the successful separation and identification of diastereomeric glucuronic metabolites derived from 4-, 5-, and 7-hydroxypropranolol (4-OHP, 5-OHP, and 7-OHP) in human urine. Subsequently, reaction phenotyping of 5- and 7-hydroxypropranolol by different uridine 5'-diphospho-glucuronosyltransferases (UGTs) was carried out, with a comparison to the glucuronidation of 4-hydroxypropranolol (4-OHP). Among the 19 UGT enzymes examined, UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2A1, and UGT2A2 were found to be involved in the glucuronidation of 5-OHP. Furthermore, UGT1A6 exhibited glucuronidation activity towards 7-OHP, along with the aforementioned eight UGTs. Results obtained by glucuronidation of corresponding methoxypropranolols and MS/MS analysis of 1,2-dimethylimidazole-4-sulfonyl (DMIS) derivatives of hydroxypropranolol glucuronides suggest that both the aromatic and aliphatic hydroxy groups of the hydroxypropranolols may be glucuronidated in vitro. However, the analysis of human urine samples collected after the administration of propranolol leads us to conclude that aromatic-linked glucuronidation is the preferred pathway under physiological conditions.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| | - Maxi Wenzel
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| |
Collapse
|
49
|
Zhou Z, Zhuo L, Fu X, Zou Q. Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs. Brief Bioinform 2023; 25:bbad483. [PMID: 38171927 PMCID: PMC10764208 DOI: 10.1093/bib/bbad483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial responses to drugs, the models are constrained by the imprecise representation of microbes and drugs. To this end, we combine deep autoencoder and subgraph augmentation technology for the first time to propose a model called JDASA-MRD, which can identify the potential indistinguishable responses of microbes to drugs. In the JDASA-MRD model, we begin by feeding the established similarity matrices of microbe and drug into the deep autoencoder, enabling to extract robust initial features of both microbes and drugs. Subsequently, we employ the MinHash and HyperLogLog algorithms to account intersections and cardinality data between microbe and drug subgraphs, thus deeply extracting the multi-hop neighborhood information of nodes. Finally, by integrating the initial node features with subgraph topological information, we leverage graph neural network technology to predict the microbes' responses to drugs, offering a more effective solution to the 'over-smoothing' challenge. Comparative analyses on multiple public datasets confirm that the JDASA-MRD model's performance surpasses that of current state-of-the-art models. This research aims to offer a more profound insight into the adaptability of microbes to drugs and to furnish pivotal guidance for drug treatment strategies. Our data and code are publicly available at: https://github.com/ZZCrazy00/JDASA-MRD.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730, Chengdu, China
| |
Collapse
|
50
|
Principi N, Petropulacos K, Esposito S. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals (Basel) 2023; 16:1596. [PMID: 38004461 PMCID: PMC10675377 DOI: 10.3390/ph16111596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Polymorphisms of genes encoding drug metabolizing enzymes and transporters can significantly modify pharmacokinetics, and this can be associated with significant differences in drug efficacy, safety, and tolerability. Moreover, genetic variants of some components of the immune system can explain clinically relevant drug-related adverse events. However, the implementation of drug dose individualization based on pharmacogenomics remains scarce. In this narrative review, the impact of genetic variations on the disposition, safety, and tolerability of the most commonly prescribed drugs is reported. Moreover, reasons for poor implementation of pharmacogenomics in everyday clinical settings are discussed. The literature analysis showed that knowledge of how genetic variations can modify the effectiveness, safety, and tolerability of a drug can lead to the adjustment of usually recommended drug dosages, improve effectiveness, and reduce drug-related adverse events. Despite some efforts to introduce pharmacogenomics in clinical practice, presently very few centers routinely use genetic tests as a guide for drug prescription. The education of health care professionals seems critical to keep pace with the rapidly evolving field of pharmacogenomics. Moreover, multimodal algorithms that incorporate both clinical and genetic factors in drug prescribing could significantly help in this regard. Obviously, further studies which definitively establish which genetic variations play a role in conditioning drug effectiveness and safety are needed. Many problems must be solved, but the advantages for human health fully justify all the efforts.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|