1
|
Li G, Cao L, Liu K, Dong Y, Yang Z, Luo J, Gao W, Lei L, Song Y, Du X, Li X, Gao W, Liu G. Targeting PHB2-mediated mitophagy alleviates nonesterified fatty acid-induced mitochondrial dysfunction in bovine mammary epithelial cells. J Dairy Sci 2024; 107:8494-8507. [PMID: 38876225 DOI: 10.3168/jds.2024-24800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Mitochondrial dysfunction has been reported to occur in the mammary gland of dairy cows suffering from ketosis. Prohibitin 2 (PHB2) plays a crucial role in regulating mitophagy, which clears impaired mitochondria to maintain normal mitochondrial function. Therefore, the current study aimed to investigate how PHB2 mediates mitophagy, thereby influencing mitochondrial function in the immortalized bovine mammary epithelial cell line (MAC-T cells). First, mammary gland tissue and blood samples were collected from healthy cows (n = 15, BHB <0.6 mM) and cows with clinical ketosis (n = 15, BHB >3.0 mM). Compared with healthy cows, cows with clinical ketosis exhibited lower DMI, milk production, milk protein, milk lactose, and serum glucose. In contrast, milk fat, serum nonesterified fatty acids (NEFA) and BHB were greater in cows with clinical ketosis. The protein abundance of PHB2, peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), mitofusin 2 (MFN2) in whole cell lysates (WCL), as well as PHB2, sequestosome-1 (SQSTM1, also called p62), microtubule-associated protein 1 light chain 3-II (MAP1LC3-II, also called LC3-II), and ubiquitinated proteins in mitochondrial fraction were significantly lower in cows with clinical ketosis. The ATP content of mammary gland tissue in cows with clinical ketosis was lower than that of healthy cows. Second, MAC-T were cultured and treated with NEFA (0, 0.3, 0.6, 1.2 mM). The MAC-T treated with 1.2 mM NEFA displayed decreased protein abundance of PHB2, PGC-1α, and MFN2 in WCL, as well as protein abundance of PHB2, p62, LC3-II, and ubiquitinated proteins in mitochondrial fraction. The content of ATP and JC-1 aggregates in 1.2 mM NEFA group were lower than in the 0 mM NEFA group. Additionally, 1.2 mM NEFA disrupted the fusion between mitochondria and lysosomes. The MAC-T were then pretreated with 100 nM rapamycin, followed by treatment with or without NEFA. Rapamycin alleviated impaired mitophagy and mitochondria dysfunction induced by 1.2 mM NEFA. Third, MAC-T were transfected with small interfering RNA to silence PHB2 or a plasmid for overexpression of PHB2, followed by treatment with or without NEFA. The silencing of PHB2 aggravated 1.2 mM NEFA-induced impaired mitophagy and mitochondrial dysfunction, whereas the overexpression of PHB2 alleviated these effects. Overall, this study provides evidence that PHB2, in regulation of mitophagy, is a mechanism for bovine mammary epithelial cells to counteract NEFA-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guojin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Liguang Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kai Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yifei Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zifeng Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianchun Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenrui Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Yu S, Zhu W, Yu L. The role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes. Open Life Sci 2024; 19:20220958. [PMID: 39290494 PMCID: PMC11406223 DOI: 10.1515/biol-2022-0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to clarify the role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes and the role of voltage-dependent anion channel 1 (VDAC1) in the PINK1/Parkin signaling pathway in mouse glomerular podocytes. For this purpose, podocytes were cultured with rapamycin and observed using microscopy. The apoptosis rate of podocytes was detected by flow cytometry. Changes in the mitochondrial membrane potential were measured. The autophagy-related proteins VDAC1, PINK1, Parkin, and LC3 were detected, and mitochondrial autophagosomes were observed via transmission electron microscopy. In the present study, we demonstrated that the number of podocytes treated with rapamycin was significantly reduced. Compared with those in the control group, the apoptosis rate of podocytes and the degree of mitochondrial membrane potential depolarization were significantly higher. We also found the expression levels of VDAC1, PINK1, Parkin, and LC3 were significantly increased. In the rapamycin-treated group, the numbers of swollen mitochondria and mitochondrial autophagosomes were significantly higher. Finally, we showed that rapamycin can upregulate the expression of VDAC1, PINK1, Parkin, and LC3 in glomerular podocytes, which is correlated with mitophagy. VDAC1 is involved in mitophagy and is related to the PINK1/Parkin signaling pathway, serving as an indicator of mitophagy in podocytes.
Collapse
Affiliation(s)
- Shengyou Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P. R. China
| | - Weixue Zhu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P. R. China
| |
Collapse
|
3
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Arachchige DL, Dwivedi SK, Olowolagba AM, Peters J, Beatty AC, Guo A, Wang C, Werner T, Luck RL, Liu H. Dynamic insights into mitochondrial function: Monitoring viscosity and SO 2 levels in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112986. [PMID: 39084140 PMCID: PMC11419399 DOI: 10.1016/j.jphotobiol.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Ashlyn Colleen Beatty
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Alicia Guo
- Trinity School at River Ridge/Eagan, St Paul, MN 55121, United States of America
| | - Crystal Wang
- Houghton High School, 1603 Gundlach Rd, Houghton, MI 49931, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| |
Collapse
|
5
|
Wu J, Yang Y, Lin D, Wang Z, Ma J. SIRT3 and RORα are two prospective targets against mitophagy during simulated ischemia/reperfusion injury in H9c2 cells. Heliyon 2024; 10:e30568. [PMID: 38784556 PMCID: PMC11112282 DOI: 10.1016/j.heliyon.2024.e30568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy during myocardial ischemia/reperfusion (MI/R) exacerbates cardiomyocyte injury. Melatonin (Mel) alleviates myocardial damage by regulating mitochondrial function and mitophagy, but the role of mitophagy in melatonin-induced cardioprotection remains unclear. This study aimed to explore the roles of sirtuin3 (SIRT3) and retinoid-related orphan nuclear receptor-α (RORα) in mitophagy during simulated ischemia reperfusion (SIR) in H9c2 cells. Our data showed that mitophagy was excessively activated after SIR injury, which was consistent with reduced cell survival, enhanced oxidative responses and mitochondrial dysfunction in H9c2 myocytes. Melatonin greatly enhanced cell viability, reduced oxidative stress and improved mitochondrial function. The effects of melatonin protection were involved in excessive mitophagy inhibition, as demonstrated by the reduced levels of mitophagy-linked proteins, including Parkin, Beclin1, NIX and BNIP3, and the LC3 II/LC3 I ratio and elevations in p62. Additionally, the decreases in SIRT3 and RORα in H9c2 myocytes after SIR were reversed by melatonin, and the above effects of melatonin were eliminated by small interfering RNA (siRNA)-mediated knockdown of SIRT3 and RORα. In brief, SIRT3 and RORα are two prospective targets in the cardioprotection of melatonin against mitophagy during SIR in H9c2 myocytes.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| |
Collapse
|
6
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhang Y, Ma X, Liu C, Bie Z, Liu G, Liu P, Yang Z. Identification of HSPD1 as a novel invasive biomarker associated with mitophagy in pituitary adenomas. Transl Oncol 2024; 41:101886. [PMID: 38290248 PMCID: PMC10840335 DOI: 10.1016/j.tranon.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The crucial role of mitophagy in tumor progression has been recognized. Therefore, our study aimed to investigate the potential correlation between pituitary adenoma invasiveness and the mitophagy processes. METHODS In this study, we used transcriptomics of postoperative tissue from 32 patients and quantitative proteomics of 19 patients to screen for mitophagy-related invasion genes in pituitary adenomas. The invasive predictive value of target genes was analyzed by Lasso regression model, CytoHubba plugin and expression validation. Co-expression correlation analysis was used to identify paired proteins for target genes, and a predictive model for pituitary adenoma invasiveness was constructed by target genes and paired proteins and assessed using ROC analysis, calibration curves and DCA. GO function, pathway (GSEA or GSVA) and immune cell analysis (ssGSEA or CIBERSORT) were further utilized to explore the action mechanism of target gene. Finally, immunohistochemistry and cell function experiments were used to detect the differential expression and key roles of the target genes in pituitary adenomas. RESULTS Finally, Heat shock protein family D member 1 (HSPD1) was identified as a target gene. The quality of a predictive model for pituitary adenoma invasiveness consisting of HSPD1 and its paired protein expression profiles was satisfactory. Moreover, the expression of HSPD1 was significantly lower in invasive pituitary adenomas than in non-invasive pituitary adenomas. Downregulation of HSPD1 may be significantly related to invasion process, mitochondria-related pathway and immune cell regulation in pituitary adenomas. CONCLUSION The downregulation of HSPD1 may serve as a predictive indicator for identifying invasive pituitary adenomas.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Congyu Liu
- School of Life Science, Tsinghua University, Beijing, PR China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Gemingtian Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
8
|
Su Y, Yang J, Wang MM, Fang HB, Liu HK, Yu ZH, Su Z. Cyclometalated iridium(III) complexes as anti-breast cancer and anti-metastasis agents via STAT3 inhibition. J Inorg Biochem 2024; 251:112427. [PMID: 37979498 DOI: 10.1016/j.jinorgbio.2023.112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second‑leading cause of cancer deaths in women. Signal transducer and activator of transcription 3 (STAT3) plays a critical role in promoting breast cancer cell proliferation, invasion, angiogenesis, and metastasis, and the high expression of STAT3 is related to the occurrence and poor chemotherapy sensitivity of breast cancer. Iridium(III) complexes Ir-PTS-1- 4 containing a pterostilbene-derived ligand were synthesized to inhibit the STAT3 pathway in breast cancer. Ir-PTS-4 inhibited the proliferation of breast cancer cells by suppressing the expression of phosphorylated STAT3 and STAT3-related cyclin D1, arresting cell cycle in the S-phase, inducing DNA damage and reactive oxygen species (ROS) generation, eventually leading to autophagic cell death. The cell metastasis and invasion were also inhibited after Ir-PTS-4 treatment. Besides, Ir-PTS-4 exhibited excellent anti-proliferation activity in 3D multicellular tumor spheroids, showing potential for the treatment of solid tumors. This work presents the rational design of metal-based anticancer agents to block the STAT3 pathway for simultaneously inhibiting breast cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Yan Su
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Kane MS, Benavides GA, Osuma E, Johnson MS, Collins HE, He Y, Westbrook D, Litovsky SH, Mitra K, Chatham JC, Darley-Usmar V, Young ME, Zhang J. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics. Sci Rep 2023; 13:21638. [PMID: 38062139 PMCID: PMC10703790 DOI: 10.1038/s41598-023-49018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria morphology and function, and their quality control by mitophagy, are essential for heart function. We investigated whether these are influenced by time of the day (TOD), sex, and fed or fasting status, using transmission electron microscopy (EM), mitochondrial electron transport chain (ETC) activity, and mito-QC reporter mice. We observed peak mitochondrial number at ZT8 in the fed state, which was dependent on the intrinsic cardiac circadian clock, as hearts from cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit different TOD responses. In contrast to mitochondrial number, mitochondrial ETC activities do not fluctuate across TOD, but decrease immediately and significantly in response to fasting. Concurrent with the loss of ETC activities, ETC proteins were decreased with fasting, simultaneous with significant increases of mitophagy, mitochondrial antioxidant protein SOD2, and the fission protein DRP1. Fasting-induced mitophagy was lost in CBK mice, indicating a direct role of BMAL1 in regulating mitophagy. This is the first of its kind report to demonstrate the interactions between sex, fasting, and TOD on cardiac mitochondrial structure, function and mitophagy. These studies provide a foundation for future investigations of mitochondrial functional perturbation in aging and heart diseases.
Collapse
Affiliation(s)
- Mariame S Kane
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Birmingham VA Health Care System (BVACS), Birmingham, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Edie Osuma
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Baylor College of Medicine, Houston, USA
| | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Helen E Collins
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Department of Medicine, University of Louisville, Louisville, USA
| | - Yecheng He
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - David Westbrook
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Silvio H Litovsky
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Ashoka University, Sonipat, NCR (Delhi), India
| | - John C Chatham
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, 703 19th St. S., ZRB 308, Birmingham, AL, 35294, USA.
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA.
| |
Collapse
|
10
|
Fang J, Zou X, Gong L, Xi J, Liu Y, Yang X, Zhang X, Gui C. Acid ground nano-realgar processed product inhibits breast cancer by inducing mitophagy via the p53/BNIP3/NIX pathway. J Cell Mol Med 2023; 27:3478-3490. [PMID: 37610095 PMCID: PMC10660646 DOI: 10.1111/jcmm.17917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Breast cancer is a highly prevalent malignancy with the first morbidity and the primary reason for female cancer-related deaths worldwide. Acid ground nano-realgar processed product (NRPP) could inhibit breast cancer cell proliferation and induce autophagy in our previous research; however, the underlying mechanisms are still unclear. Therefore, this research aimed to verify whether NRPP induces breast cancer mitophagy and explore the mitophagy-mediated mechanism. Primarily, rhodamine-123 assay and transmission electron microscopy were applied to detect mitochondrial membrane potential (MMP) and ultrastructural changes in the MDA-MB-435S cells, respectively. Mito-Tracker Green/Lyso-Tracker Red staining, western blot, immunofluorescence and RT-PCR were used to explore molecular mechanisms of NRPP-induced mitophagy in vitro. MDA-MB-435S breast cancer xenograft models were established to assess the activity and mechanisms of NRPP in vivo. Our results showed that NRPP decreased MMP and increased autophagosome numbers in MDA-MB-435S cells and activated mitophagy. Furthermore, mitophagy was consolidated because mitochondria and lysosomes colocalized phenomenology were observed, and the expression of LC3II/I and COXIV was upregulated. Additionally, we found the p53/BNIP3/NIX pathway was activated. Finally, NRPP inhibited tumour growth and downregulated the levels of TNF-α, IL-1β and IL-6. Necrosis, damaged mitochondria and autophagosomes were observed in xenograft tumour cells, and proteins and mRNA levels of LC3, p53, BNIP3 and NIX were increased. Overall, NRPP inhibited MDA-MB-435S cell proliferation and tumour growth by inducing mitophagy via the p53/BNIP3/NIX pathway. Thus, NRPP is a promising candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Jiahui Fang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Pharmacy, Taihe HospitalHubei University of MedicineShiyanHubeiChina
| | - Xue Zou
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Ling Gong
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Juan Xi
- College of InspectionHubei University of Chinese MedicineWuhanHubeiChina
| | - Yi Liu
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xiaoli Yang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xiuqiao Zhang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Chun Gui
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| |
Collapse
|
11
|
Xiang Y, Duan X, Shao Y, Sun L. NEDD4 activates mitophagy by interacting with LC3 to restrain reactive oxygen species and apoptosis in Apostichopus japonicus challenged with Vibrio splendidus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109037. [PMID: 37640120 DOI: 10.1016/j.fsi.2023.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Mitophagy, the selective degradation of damaged mitochondria by autophagy, plays a crucial role in the survival of coelomocytes in Apostichopus japonicus following Vibrio splendidus infection by suppressing the generation of reactive oxygen species (ROS) and attenuating cell apoptosis. A recent study revealed that reducing the expression of the neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4), an enzyme 3 (E3) ubiquitin ligase, significantly affects mitochondrial degradation. Prior to the present study, the functional role of NEDD4 in marine invertebrates was largely unexplored. Therefore, we investigated the role of NEDD4 in the activation of mitophagy, modulation of ROS levels, and induction of apoptosis in A. japonicus infected with V. splendidus. The results demonstrated that V. splendidus infection and lipopolysaccharide (LPS) challenge significantly increased the mRNA levels of NEDD4 in A. japonicus coelomocytes, which was consistent with changes in mitophagy under the same conditions. Knockdown of AjNEDD4 using specific small interfering RNAs (siRNAs) impaired mitophagy and caused accumulation of damaged mitochondria, as observed using transmission electron microscopy (TEM) and confocal microscopy. Furthermore, AjNEDD4 was localized to the mitochondria in both coelomocytes and HEK293T cells. Simultaneously, coelomocytes were treated with the inhibitor indole-3-carbinol (I3C) to confirm the regulatory role of AjNEDD4 in mitophagy. The accumulation of AjNEDD4 in the mitochondria and the level of mitophagy decreased. Subsequent investigations demonstrated that AjNEDD4 interacts directly with the microtubule-associated protein light chain 3 (LC3), a key regulator of autophagy and mitophagy, indicating its involvement in the mitophagy pathway. Moreover, AjNEDD4 interference hindered the interaction between AjNEDD4 and LC3, thereby impairing the engulfment and subsequent clearance of damaged mitochondria. Finally, AjNEDD4 interference led to a significant increase in intracellular ROS levels, followed by increased apoptosis. Collectively, these findings suggest that NEDD4 acts as a crucial regulator of mitophagy in A. japonicus and plays a vital role in maintaining cellular homeostasis following V. splendidus infection. NEDD4 suppresses ROS production and subsequent apoptosis by promoting mitophagy, thereby safeguarding the survival of A. japonicus under pathogenic conditions. Further investigation of the mechanisms underlying NEDD4-mediated mitophagy may provide valuable insights into the development of novel strategies for disease control in aquaculture farms.
Collapse
Affiliation(s)
- Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuemei Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lianlian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
12
|
Ouyang X, Bakshi S, Benavides GA, Sun Z, Hernandez‐Moreno G, Collins HE, Kane MS, Litovsky S, Young ME, Chatham JC, Darley‐Usmar V, Wende AR, Zhang J. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload. Physiol Rep 2023; 11:e15686. [PMID: 37144628 PMCID: PMC10161215 DOI: 10.14814/phy2.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 05/06/2023] Open
Abstract
Autophagy is important for protein and organelle quality control. Growing evidence demonstrates that autophagy is tightly controlled by transcriptional mechanisms, including repression by zinc finger containing KRAB and SCAN domains 3 (ZKSCAN3). We hypothesize that cardiomyocyte-specific ZKSCAN3 knockout (Z3K) disrupts autophagy activation and repression balance and exacerbates cardiac pressure-overload-induced remodeling following transverse aortic constriction (TAC). Indeed, Z3K mice had an enhanced mortality compared to control (Con) mice following TAC. Z3K-TAC mice that survived exhibited a lower body weight compared to Z3K-Sham. Although both Con and Z3K mice exhibited cardiac hypertrophy after TAC, Z3K mice exhibited TAC-induced increase of left ventricular posterior wall thickness at end diastole (LVPWd). Conversely, Con-TAC mice exhibited decreases in PWT%, fractional shortening (FS%), and ejection fraction (EF%). Autophagy genes (Tfeb, Lc3b, and Ctsd) were decreased by the loss of ZKSCAN3. TAC suppressed Zkscan3, Tfeb, Lc3b, and Ctsd in Con mice, but not in Z3K. The Myh6/Myh7 ratio, which is related to cardiac remodeling, was decreased by the loss of ZKSCAN3. Although Ppargc1a mRNA and citrate synthase activities were decreased by TAC in both genotypes, mitochondrial electron transport chain activity did not change. Bi-variant analyses show that while in Con-Sham, the levels of autophagy and cardiac remodeling mRNAs form a strong correlation network, such was disrupted in Con-TAC, Z3K-Sham, and Z3K-TAC. Ppargc1a also forms different links in Con-sham, Con-TAC, Z3K-Sham, and Z3K-TAC. We conclude that ZKSCAN3 in cardiomyocytes reprograms autophagy and cardiac remodeling gene transcription, and their relationships with mitochondrial activities in response to TAC-induced pressure overload.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sayan Bakshi
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gloria A. Benavides
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zhihuan Sun
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gerardo Hernandez‐Moreno
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/DevicesThe University of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Helen E. Collins
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Division of Environmental Medicine, Center for Cardiometabolic ScienceThe University of LouisvilleLouisvilleKYUSA
| | - Mariame S. Kane
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Birmingham VA Health Care System (BVACS)ALUSA
| | - Silvio Litovsky
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Martin E. Young
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John C. Chatham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Victor Darley‐Usmar
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam R. Wende
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jianhua Zhang
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Birmingham VA Medical CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
13
|
Dasatinib causes keratinocyte apoptosis via inhibiting high mobility group Box 1-mediated mitophagy. Toxicol Lett 2023; 373:22-32. [PMID: 36375637 DOI: 10.1016/j.toxlet.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Dasatinib, a second-generation BCR-ABL inhibitor, is currently used as first-line treatment for patients with chronic myeloid leukemia. However, dasatinib treatment increases the risk of severe cutaneous toxicity, which limits its long-term safe use in clinic. The underlying mechanism for dasatinib-induced cutaneous toxicity has not been clarified. In this study, we tested the toxicity of dasatinib on human immortal keratinocyte line (HaCaT) and normal human epidermal keratinocytes (NHEK). We found that dasatinib directly caused cytotoxicity on keratinocytes, which could be the explanation of the clinical characteristic of pathology. Mechanistically, dasatinib impaired mitophagy by downregulating HMGB1 protein level in keratinocytes, which led to the accumulation of dysfunctional mitochondria. Mitochondria-derived ROS caused DNA damage and cell apoptosis. More importantly, we confirmed that overexpression of HMGB1 could reverse dasatinib-induced keratinocyte apoptosis, and preliminarily explored the intervention effect of saikosaponin A, which could increase HMGB1 expression, on cutaneous toxicity caused by dasatinib. Collectively, our study revealed that dasatinib induced keratinocyte apoptosis via inhibiting HMGB1-mediated mitophagy and saikosaponin A could be a viable strategy for prevention of dasatinib-induced cutaneous toxicity.
Collapse
|
14
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
15
|
Asthana J, Shravage BV. Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson’s disease. Front Aging Neurosci 2022; 14:986849. [PMID: 36337696 PMCID: PMC9632658 DOI: 10.3389/fnagi.2022.986849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most popular age-associated neurodegenerative disorder after Alzheimer’s disease. The degeneration of dopaminergic neurons, aggregation of α-synuclein (α-syn), and locomotor defects are the main characteristic features of PD. The main cause of a familial form of PD is associated with a mutation in genes such as SNCA, PINK1, Parkin, DJ-1, LRKK2, and others. Recent advances have uncovered the different underlying mechanisms of PD but the treatment of PD is still unknown due to the unavailability of effective therapies and preventive medicines in the current scenario. The pathophysiology and genetics of PD have been strongly associated with mitochondria in disease etiology. Several studies have investigated a complex molecular mechanism governing the identification and clearance of dysfunctional mitochondria from the cell, a mitochondrial quality control mechanism called mitophagy. Reduced mitophagy and mitochondrial impairment are found in both sporadic and familial PD. Pharmacologically modulating mitophagy and accelerating the removal of defective mitochondria are of common interest in developing a therapy for PD. However, despite the extensive understanding of the mitochondrial quality control pathway and its underlying mechanism, the therapeutic potential of targeting mitophagy modulation and its role in PD remains to be explored. Thus, targeting mitophagy using chemical agents and naturally occurring phytochemicals could be an emerging therapeutic strategy in PD prevention and treatment. We discuss the current research on understanding the role of mitophagy modulators in PD using Drosophila melanogaster as a model. We further explore the contribution of Drosophila in the pathophysiology of PD, and discuss comprehensive genetic analysis in flies and pharmacological drug screening to develop potential therapeutic molecules for PD.
Collapse
Affiliation(s)
- Jyotsna Asthana
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Bhupendra V. Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
- *Correspondence: Bhupendra V. Shravage,
| |
Collapse
|
16
|
Zhang J, Liu X, Nie J, Shi Y. Restoration of mitophagy ameliorates cardiomyopathy in Barth syndrome. Autophagy 2022; 18:2134-2149. [PMID: 34985382 PMCID: PMC9466615 DOI: 10.1080/15548627.2021.2020979] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked genetic disorder caused by mutations in the TAFAZZIN/Taz gene which encodes a transacylase required for cardiolipin remodeling. Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining mitochondrial membrane structure, respiration, mtDNA biogenesis, and mitophagy. Mutations in the TAFAZZIN gene deplete mature cardiolipin, leading to mitochondrial dysfunction, dilated cardiomyopathy, and premature death in BTHS patients. Currently, there is no effective treatment for this debilitating condition. In this study, we showed that TAFAZZIN deficiency caused hyperactivation of MTORC1 signaling and defective mitophagy, leading to accumulation of autophagic vacuoles and dysfunctional mitochondria in the heart of Tafazzin knockdown mice, a rodent model of BTHS. Consequently, treatment of TAFAZZIN knockdown mice with rapamycin, a potent inhibitor of MTORC1, not only restored mitophagy, but also mitigated mitochondrial dysfunction and dilated cardiomyopathy. Taken together, these findings identify MTORC1 as a novel therapeutic target for BTHS, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for BTHS.Abbreviations: BTHS: Barth syndrome; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CL: cardiolipin; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; KD: knockdown; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LV: left ventricle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; OCR: oxygen consumption rate; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB/S6K: ribosomal protein S6 kinase beta; SQSTM1/p62: sequestosome 1; TLCL: tetralinoleoyl cardiolipin; WT: wild-type.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xueling Liu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China,CONTACT Yuguang Shi Joe R. & Teresa Lozano Long Distinguished Chair in Metabolic Biology, Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center, San Antonio 4939 Charles Katz Drive, San Antonio, TX78229, USA
| |
Collapse
|
17
|
Liu B, Wang D, Cao Y, Wu J, Zhou Y, Wu W, Wu J, Zhou J, Qiu J. MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy. Eur J Pharmacol 2022; 929:175136. [DOI: 10.1016/j.ejphar.2022.175136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
|
18
|
Role of Mitophagy in neurodegenerative Diseases and potential tagarts for Therapy. Mol Biol Rep 2022; 49:10749-10760. [PMID: 35794507 DOI: 10.1007/s11033-022-07738-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Mitochondria dysfunction has been defined as one of the hallmarks of aging-related diseases as is characterized by the destroyed integrity, abnormal distribution and size, insufficient ATP supply, increased ROS production, and subsequently damage and oxidize the proteins, lipids and nucleic acid. Mitophagy, an efficient way of removing damaged or defective mitochondria by autophagy, plays a pivotal role in maintaining the mitochondrial quantity and quality control enabling the degradation of unwanted mitochondria, and thus rescues cellular homeostasis in response to stress. Accumulating evidence demonstrates that impaired mitophagy has been associated with many neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) in a variety of patients and disease models with neural death, oxidative stress and disturbed metabolism, either as the cause or consequence. These findings suggest that modulation of mitophagy may be considered as a valid therapeutic strategy in neurodegenerative diseases. In this review, we summarize recent findings on the mechanisms of mitophagy and its role in neurodegenerative diseases, with a particular focus on mitochondrial proteins acting as receptors that mediate mitophagy in these diseases.
Collapse
|
19
|
Dodson M, Benavides GA, Darley-Usmar V, Zhang J. Differential Effects of 2-Deoxyglucose and Glucose Deprivation on 4-Hydroxynonenal Dependent Mitochondrial Dysfunction in Primary Neurons. FRONTIERS IN AGING 2022; 3:812810. [PMID: 35821809 PMCID: PMC9261388 DOI: 10.3389/fragi.2022.812810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction and metabolic decline are prevalent features of aging and age-related disorders, including neurodegeneration. Neurodegenerative diseases are associated with a progressive loss of metabolic homeostasis. This pathogenic decline in metabolism is the result of several factors, including decreased mitochondrial function, increased oxidative stress, inhibited autophagic flux, and altered metabolic substrate availability. One critical metabolite for maintaining neuronal function is glucose, which is utilized by the brain more than any other organ to meet its substantial metabolic demand. Enzymatic conversion of glucose into its downstream metabolites is critical for maintaining neuronal cell growth and overall metabolic homeostasis. Perturbation of glycolysis could significantly hinder neuronal metabolism by affecting key metabolic pathways. Here, we demonstrate that the glucose analogue 2-deoxyglucose (2DG) decreases cell viability, as well as both basal and maximal mitochondrial oxygen consumption in response to the neurotoxic lipid 4-hydroxynonenal (HNE), whereas glucose deprivation has a minimal effect. Furthermore, using a cell permeabilization assay we found that 2DG has a more pronounced effect on HNE-dependent inhibition of mitochondrial complex I and II than glucose deprivation. Importantly, these findings indicate that altered glucose utilization plays a critical role in dictating neuronal survival by regulating the mitochondrial response to electrophilic stress.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gloria A. Benavides
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianhua Zhang,
| |
Collapse
|
20
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Chowdhury R. Mitophagy and oral cancers. Natl J Maxillofac Surg 2022; 13:11-19. [PMID: 35911821 PMCID: PMC9326198 DOI: 10.4103/njms.njms_123_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/10/2020] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
Mitophagy is a progressive process that selectively targets weakened, old and damaged mitochondria, by an autophagic pathway, causing its destruction. Mitophagy maintains normal cellular physiology and tissue development, thereby controlling the cohesiveness of the mitochondrial pool. The mechanisms of mitophagy, tumorogenesis, and cell death are usually interrelated with each other and could be initiated by definite stressful conditions like hypoxia and nutrient starvation, which leads to the overall reduction in mitochondrial mass. This impedes the production of reactive oxygen species, and conserves nutrition, leading to cell survival in such extreme conditions. The inability to harmonize and regulate mitochondrial outcome in response to oncogenic stress can either stimulate or suppress tumorogenesis. Therefore, the relationship between mitophagy, tumorogenesis, and cell death plays an important role in the identification of potential targets of cell death and selective wiping out of cancer cells. This review portrays the mechanism of mitophagy, along with its role in cancers especially on oral cancers, and its importance in cancer therapeutics.
Collapse
|
22
|
Guo J, Chiang WC. Mitophagy in aging and longevity. IUBMB Life 2021; 74:296-316. [PMID: 34889504 DOI: 10.1002/iub.2585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
The clearance of damaged or unwanted mitochondria by autophagy (also known as mitophagy) is a mitochondrial quality control mechanism postulated to play an essential role in cellular homeostasis, metabolism, and development and confers protection against a wide range of diseases. Proper removal of damaged or unwanted mitochondria is essential for organismal health. Defects in mitophagy are associated with Parkinson's, Alzheimer's disease, cancer, and other degenerative disorders. Mitochondria regulate organismal fitness and longevity via multiple pathways, including cellular senescence, stem cell function, inflammation, mitochondrial unfolded protein response (mtUPR), and bioenergetics. Thus, mitophagy is postulated to be pivotal for maintaining organismal healthspan and lifespan and the protection against aged-related degeneration. In this review, we will summarize recent understanding of the mechanism of mitophagy and aspects of mitochondrial functions. We will focus on mitochondria-related cellular processes that are linked to aging and examine current genetic evidence that supports the hypothesis that mitophagy is a pro-longevity mechanism.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
University of Alabama at Birmingham Nathan Shock Center: comparative energetics of aging. GeroScience 2021; 43:2149-2160. [PMID: 34304389 DOI: 10.1007/s11357-021-00414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/09/2022] Open
Abstract
The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging. The link between energetics and aging is increasingly understood in terms of dysregulated mitochondrial function, altered metabolic signaling, and aberrant nutrient responsiveness with increasing age. The center offers world-class expertise in comprehensive, integrated energetic assessment and analysis from the level of the organelle to the organism and across species from the size of worms to rats as well as state-of-the-art data analytics. The range of services offered by our three research cores, (1) The Organismal Energetics Core, (2) Mitometabolism Core, and (3) Data Analytics Core, is described herein.
Collapse
|
24
|
Wang WW, Han R, He HJ, Wang Z, Luan XQ, Li J, Feng L, Chen SY, Aman Y, Xie CL. Delineating the Role of Mitophagy Inducers for Alzheimer Disease Patients. Aging Dis 2021; 12:852-867. [PMID: 34094647 PMCID: PMC8139196 DOI: 10.14336/ad.2020.0913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in elderly that serves to be a formidable socio-economic and healthcare challenge in the 21st century. Mitochondrial dysfunction and impairment of mitochondrial-specific autophagy, namely mitophagy, have emerged as important components of the cellular processes contributing to the development of AD pathologies, namely amyloid-β plaques (Aβ) and neurofibrillary tangles (NFT). Here, we highlight the recent advances in the association between impaired mitophagy and AD, as well as delineate the potential underlying mechanisms. Furthermore, we conduct a systematic review the current status of mitophagy modulators and analyzed their relevant mechanisms, evaluating on their advantages, limitations and current applications in clinical trials for AD patients. Finally, we describe how deep learning may be a promising method to rapid and efficient discovery of mitophagy inducers as well as general guidance for the workflow of the process.
Collapse
Affiliation(s)
- Wen-Wen Wang
- 1The center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Ruiyu Han
- 3NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute for Family Planning Science and Technology, Shijiazhuang, Hebei 050071, China
| | - Hai-Jun He
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhen Wang
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao-Qian Luan
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jia Li
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liang Feng
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Si-Yan Chen
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yahyah Aman
- 4Department of Clinical Molecular Biology, University of Oslo, Akershus University Hospital, Lørenskog, Norway
| | - Cheng-Long Xie
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
25
|
Whitty A, Kind KL, Dunning KR, Thompson JG. Effect of oxygen and glucose availability during in vitro maturation of bovine oocytes on development and gene expression. J Assist Reprod Genet 2021; 38:1349-1362. [PMID: 34031767 DOI: 10.1007/s10815-021-02218-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/02/2021] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Oxygen tension during the in vitro maturation (IVM) of oocytes is important for oocyte developmental competence. A conflict exists in the literature as to whether low oxygen during IVM is detrimental or beneficial to the oocyte. Many research and clinical labs use higher than physiological oxygen tension perhaps believing that low-oxygen tension is detrimental to oocyte development. Other studies show that glucose is important if low-oxygen tension is used during maturation. In this study, we look at the link between low oxygen and glucose availability during IVM to resolve misconceptions around low-oxygen tension during IVM. METHODS Bovine cumulus oocyte complexes (COCs) were matured at 20% vs 7% oxygen in media containing differing glucose concentrations or varying availability. Cleavage and blastocyst rates were recorded. RT-PCR determined expression levels of metabolic, oxygen, and stress-responsive genes following IVM. RESULTS Embryo development in 7% oxygen groups with 2.3mM glucose/low glucose availability was lower than 20% oxygen groups. Under 7% oxygen with 5.6mM glucose or higher glucose availability, rates were restored to those seen in 20% oxygen. Expressions of BNIP3, ENO1, GAPDH, and SLC2A1, were upregulated in 7% oxygen/low glucose, compared to 20% oxygen groups. BNIP3 expression was higher in 7% oxygen group with low glucose availability compared to the 20% groups. CONCLUSION Oocyte developmental competence is negatively impacted following IVM in low oxygen when glucose availability is limited. Glucose concentration and physical culture conditions need to be considered when comparing the effects of different oxygen concentrations during IVM.
Collapse
Affiliation(s)
- Annie Whitty
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia. .,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Medical School, University of Adelaide, Level 2, Helen Mayo South Building, Frome Rd, Adelaide, 5005, Australia.
| | - Jeremy G Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Li S, Zhang J, Liu C, Wang Q, Yan J, Hui L, Jia Q, Shan H, Tao L, Zhang M. The Role of Mitophagy in Regulating Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617256. [PMID: 34113420 PMCID: PMC8154277 DOI: 10.1155/2021/6617256] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are multifaceted organelles that serve to power critical cellular functions, including act as power generators of the cell, buffer cytosolic calcium overload, production of reactive oxygen species, and modulating cell survival. The structure and the cellular location of mitochondria are critical for their function and depend on highly regulated activities such as mitochondrial quality control (MQC) mechanisms. The MQC is regulated by several sets of processes: mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy, and other mitochondrial proteostasis mechanisms such as mitochondrial unfolded protein response (mtUPR) or mitochondrial-derived vesicles (MDVs). These processes are important for the maintenance of mitochondrial homeostasis, and alterations in the mitochondrial function and signaling are known to contribute to the dysregulation of cell death pathways. Recent studies have uncovered regulatory mechanisms that control the activity of the key components for mitophagy. In this review, we discuss how mitophagy is controlled and how mitophagy impinges on health and disease through regulating cell death.
Collapse
Affiliation(s)
- Sunao Li
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Jiaxin Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Chao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Hui
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Qiufang Jia
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Lu C, Wu B, Liao Z, Xue M, Zou Z, Feng J, Sheng J. DUSP1 overexpression attenuates renal tubular mitochondrial dysfunction by restoring Parkin-mediated mitophagy in diabetic nephropathy. Biochem Biophys Res Commun 2021; 559:141-147. [PMID: 33940385 DOI: 10.1016/j.bbrc.2021.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, and renal tubular cell dysfunction contributes to the pathogenesis of many kidney diseases. Our previous study demonstrated that dual-specificity protein phosphatase 1 (DUSP1) reduced hyperglycemia-mediated mitochondrial damage; however, its role in hyperglycemia-driven dysfunction of tubular cells is still not fully understood. In this study, we found that DUSP1 is reduced in human proximal tubular epithelial (HK-2) cells under high-glucose conditions. DUSP1 overexpression in HK-2 cells partially restored autophagic flux, improved mitochondrial function, and reduced reactive oxygen species generation and cell apoptosis under high-glucose conditions. Surprisingly, overexpressing DUSP1 abolished the decrease in mitochondrial parkin expression caused by high-glucose stimulation. In addition, knockdown of parkin in HK-2 cells reversed the effects of DUSP1 overexpression on mitophagy and apoptosis under high-glucose conditions. Overall, these data indicate that DUSP1 plays a defensive role in the pathogenesis of DN by restoring parkin-mediated mitophagy, suggesting that it may be considered a prospective therapeutic strategy for the amelioration of DN.
Collapse
Affiliation(s)
- Chang Lu
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Bo Wu
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuojun Liao
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Ming Xue
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Zhouping Zou
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Jianxun Feng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| | - Junqin Sheng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| |
Collapse
|
28
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
29
|
Badr MT, Omar M, Häcker G. Comprehensive Integration of Genome-Wide Association and Gene Expression Studies Reveals Novel Gene Signatures and Potential Therapeutic Targets for Helicobacter pylori-Induced Gastric Disease. Front Immunol 2021; 12:624117. [PMID: 33717131 PMCID: PMC7945594 DOI: 10.3389/fimmu.2021.624117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that colonizes the human gastric mucosa and can lead to gastric inflammation, ulcers, and stomach cancer. Due to the increase in H. pylori antimicrobial resistance new methods to identify the molecular mechanisms of H. pylori-induced pathology are urgently needed. Here we utilized a computational biology approach, harnessing genome-wide association and gene expression studies to identify genes and pathways determining disease development. We mined gene expression data related to H. pylori-infection and its complications from publicly available databases to identify four human datasets as discovery datasets and used two different multi-cohort analysis pipelines to define a H. pylori-induced gene signature. An initial Helicobacter-signature was curated using the MetaIntegrator pipeline and validated in cell line model datasets. With this approach we identified cell line models that best match gene regulation in human pathology. A second analysis pipeline through NetworkAnalyst was used to refine our initial signature. This approach defined a 55-gene signature that is stably deregulated in disease conditions. The 55-gene signature was validated in datasets from human gastric adenocarcinomas and could separate tumor from normal tissue. As only a small number of H. pylori patients develop cancer, this gene-signature must interact with other host and environmental factors to initiate tumorigenesis. We tested for possible interactions between our curated gene signature and host genomic background mutations and polymorphisms by integrating genome-wide association studies (GWAS) and known oncogenes. We analyzed public databases to identify genes harboring single nucleotide polymorphisms (SNPs) associated with gastric pathologies and driver genes in gastric cancers. Using this approach, we identified 37 genes from GWA studies and 61 oncogenes, which were used with our 55-gene signature to map gene-gene interaction networks. In conclusion, our analysis defines a unique gene signature driven by H. pylori-infection at early phases and that remains relevant through different stages of pathology up to gastric cancer, a stage where H. pylori itself is rarely detectable. Furthermore, this signature elucidates many factors of host gene and pathway regulation in infection and can be used as a target for drug repurposing and testing of infection models suitability to investigate human infection.
Collapse
Affiliation(s)
- Mohamed Tarek Badr
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- IMM-PACT-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Wang M, Luo P, Shi W, Guo J, Huo S, Yan D, Peng L, Zhang C, Lv J, Lin L, Li S. S-Nitroso-L-Cysteine Ameliorated Pulmonary Hypertension in the MCT-Induced Rats through Anti-ROS and Anti-Inflammatory Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621232. [PMID: 33574976 PMCID: PMC7861928 DOI: 10.1155/2021/6621232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/05/2022]
Abstract
Pulmonary hypertension (PH) is a progressive and life-threatening chronic disease in which increased pulmonary artery pressure (PAP) and pulmonary vasculature remodeling are prevalent. Inhaled nitric oxide (NO) has been used in newborns to decrease PAP in the clinic; however, the effects of NO endogenous derivatives, S-nitrosothiols (SNO), on PH are still unknown. We have reported that S-nitroso-L-cysteine (CSNO), one of the endogenous derivatives of NO, inhibited RhoA activity through oxidative nitrosation of its C16/20 residues, which may be beneficial for both vasodilation and remodeling. In this study, we presented data to show that inhaled CSNO attenuated PAP in the monocrotaline- (MCT-) induced PH rats and, moreover, improved right ventricular (RV) hypertrophy and fibrosis induced by RV overloaded pressure. In addition, aerosolized CSNO significantly inhibited the hyperactivation of signal transducers and activators of transduction 3 (STAT3) and extracellular regulated protein kinases (ERK) pathways in the lung of MCT-induced rats. CSNO also regulated the expression of smooth muscle contractile protein and improved aberrant endoplasmic reticulum (ER) stress and mitophagy in lung tissues following MCT induction. On the other hand, CSNO inhibited reactive oxygen species (ROS) production in vitro, which is induced by angiotensin II (AngII) as well as interleukin 6 (IL-6). In addition, CSNO inhibited excessive ER stress and mitophagy induced by AngII and IL-6 in vitro; finally, STAT3 and ERK phosphorylation was inhibited by CSNO in a concentration-dependent manner. Taken together, CSNO led to pulmonary artery relaxation and regulated pulmonary circulation remodeling through anti-ROS and anti-inflammatory pathways and may be used as a therapeutic option for PH treatment.
Collapse
Affiliation(s)
- Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Shen Y, Iwao T, Motomura T, Nagasato C. Cytoplasmic inheritance of mitochondria and chloroplasts in the anisogamous brown alga Mutimo cylindricus (Phaeophyceae). PROTOPLASMA 2021; 258:19-32. [PMID: 32862312 DOI: 10.1007/s00709-020-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Based on the morphology of gametes, sexual reproduction in brown algae is usually classified into three types: isogamy, anisogamy, and oogamy. In isogamy, chloroplasts and chloroplast DNA (chlDNA) in the sporophyte cells are inherited biparentally, while mitochondria (or mitochondrial DNA, mtDNA) is inherited maternally. In oogamy, chloroplasts and mitochondria are inherited maternally. However, the patterns of mitochondrial and chloroplast inheritance in anisogamy have not been clarified. Here, we examined derivation of mtDNA and chlDNA in the zygotes through strain-specific PCR analysis using primers based on single nucleotide polymorphism in the anisogamous brown alga Mutimo cylindricus. In 20-day-old sporophytes after fertilization, mtDNA and chlDNA derived from female gametes were detected, thus confirming the maternal inheritance of both organelles. Additionally, the behavior of mitochondria and chloroplasts in the zygotes was analyzed by examining the consecutive serial sections using transmission electron microscopy. Male mitochondria were isolated or compartmentalized by a double-membrane and then completely digested into a multivesicular structure 2 h after fertilization. Meanwhile, male chloroplasts with eyespots were observed even in 4-day-old, seven-celled sporophytes. The final fate of male chloroplasts could not be traced. Organelle DNA copy number was also examined in female and male gametes. The DNA copy number per chloroplast and mitochondria in male gametes was lower compared with female organelles. The degree of difference is bigger in mtDNA. Thus, changes in different morphology and DNA amount indicate that maternal inheritance of mitochondria and chloroplasts in this species may be based on different processes and timing after fertilization.
Collapse
Affiliation(s)
- Yuan Shen
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toyoki Iwao
- Toba Fisheries Science Center, Toba, 517-0005, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan.
| |
Collapse
|
33
|
Zhang J. The Promise of a Golden Era for Exploring the Frontiers of Aging, Metabolism and Redox Biology. FRONTIERS IN AGING 2020; 1:610406. [PMID: 36212526 PMCID: PMC9541140 DOI: 10.3389/fragi.2020.610406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
|
34
|
Townley AR, Wheatley SP. Mitochondrial survivin reduces oxidative phosphorylation in cancer cells by inhibiting mitophagy. J Cell Sci 2020; 133:jcs247379. [PMID: 33077555 DOI: 10.1242/jcs.247379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023] Open
Abstract
Survivin (also known as BIRC5) is a cancer-associated protein that is pivotal for cellular life and death - it is an essential mitotic protein and an inhibitor of apoptosis. In cancer cells, a small pool of survivin localises to the mitochondria, the function of which remains to be elucidated. Here, we report that mitochondrial survivin inhibits the selective form of autophagy called 'mitophagy', causing an accumulation of respiratory-defective mitochondria. Mechanistically, the data reveal that survivin prevents recruitment of the E3-ubiquitin ligase Parkin to mitochondria and their subsequent recognition by the autophagosome. The data also demonstrate that cells in which mitophagy has been blocked by survivin expression have an increased dependency on glycolysis. As these effects were found exclusively in cancer cells, they suggest that the primary act of mitochondrial survivin is to steer cells towards the implementation of the Warburg transition by inhibiting mitochondrial turnover, which enables them to adapt and survive.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amelia R Townley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sally P Wheatley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
35
|
A A MA, Ameenudeen S, Kumar A, Hemalatha S, Ahmed N, Ali N, AlAsmari AF, Aashique M, Waseem M. Emerging Role of Mitophagy in Inflammatory Diseases: Cellular and Molecular Episodes. Curr Pharm Des 2020; 26:485-491. [PMID: 31914907 DOI: 10.2174/1381612826666200107144810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
Mitochondria are the crucial regulators for the major source of ATP for different cellular events. Due to damage episodes, mitochondria have been established for a plethora ofalarming signals of stress that lead to cellular deterioration, thereby causing programmed cell death. Defects in mitochondria play a key role in arbitrating pathophysiological machinery with recent evince delineating a constructive role in mitophagy mediated mitochondrial injury. Mitophagy has been known for the eradication of damaged mitochondria via the autophagy process. Mitophagy has been investigated as an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis. Impaired mitophagy has been critically linked with the pathogenesis of inflammatory diseases. Nevertheless, the exact mechanism is not quite revealed, and it is still debatable. The purpose of this review was to investigate the possible role of mitophagy and its associated mechanism in inflammation-mediated diseases at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Mohamed Adil A A
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India.,SSE, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shabnam Ameenudeen
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Ashok Kumar
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - S Hemalatha
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Neesar Ahmed
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Aashique
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Mohammad Waseem
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| |
Collapse
|
36
|
Yehualashet AS, Belachew TF, Kifle ZD, Abebe AM. Targeting Cardiac Metabolic Pathways: A Role in Ischemic Management. Vasc Health Risk Manag 2020; 16:353-365. [PMID: 32982263 PMCID: PMC7501978 DOI: 10.2147/vhrm.s264130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Among the vast number of noncommunicable diseases encountered worldwide, cardiovascular diseases accounted for about 17.8 million deaths in 2017 and ischemic heart disease (IHD) remains the single-largest cause of death in countries across all income groups. Because conventional medications are not without shortcomings and patients still refractory to these medications, scientific investigation is ongoing to advance the management of IHD, and shows a great promise for better treatment modalities, but additional research can warrant improvement in terms of the quality of life of patients. Metabolic modulation is one promising strategy for the treatment of IHD, because alterations in energy metabolism are involved in progression of the disease. Therefore, the purpose of this review was to strengthen attention toward the use of metabolic modulators and to review the current level of knowledge on cardiac energy metabolic pathways.
Collapse
Affiliation(s)
- Awgichew Shewasinad Yehualashet
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | | | - Zemene Demelash Kifle
- School of Pharmacy, Department of Pharmacology, University of Gondar, Gondar, Ethiopia
| | - Ayele Mamo Abebe
- Department of Nursing, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
37
|
Drp-1 as Potential Therapeutic Target for Lipopolysaccharide-Induced Vascular Hyperpermeability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5820245. [PMID: 32685096 PMCID: PMC7336239 DOI: 10.1155/2020/5820245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/26/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
Mitochondria-dependent apoptotic signaling has a critical role in the pathogenesis of vascular hyperpermeability (VH). Dynamin-related protein-1- (Drp-1-) mediated mitochondrial fission plays an important role in mitochondrial homeostasis. In the present study, we studied the involvement of Drp-1 in resistance to VH induced by lipopolysaccharide (LPS). To establish the model of LPS-induced VH, LPS at 15 mg/kg was injected into rats in vivo and rat pulmonary microvascular endothelial cells were exposed to 500 ng/ml LPS in vitro. We found that depletion of Drp-1 remarkedly exacerbated the mitochondria-dependent apoptosis induced by LPS, as evidenced by reduced apoptosis, mitochondrial membrane potential (MMP) depolarization, and activation of caspase-3 and caspase-9. Increased FITC-dextran flux indicated endothelial barrier disruption. In addition, overexpression of Drp-1 prevented LPS-induced endothelial hyperpermeability and upregulated mitophagy, as evidenced by the loss of mitochondrial mass and increased PINK1 expression and mitochondrial Parkin. However, the mitophagy inhibitor, 3-Methyladenine, blocked these protective effects of Drp-1. Furthermore, inhibition of Drp-1 using mitochondrial division inhibitor 1 markedly inhibited LPS-induced mitophagy and aggravated LPS-induced VH, as shown by increased FITC-dextran extravasation. These findings implied that Drp-1 strengthens resistance to mitochondria-dependent apoptosis by regulating mitophagy, suggesting Drp-1 as a possible therapeutic target in LPS-induced VH.
Collapse
|
38
|
Wu J, Yang Y, Gao Y, Wang Z, Ma J. Melatonin Attenuates Anoxia/Reoxygenation Injury by Inhibiting Excessive Mitophagy Through the MT2/SIRT3/FoxO3a Signaling Pathway in H9c2 Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2047-2060. [PMID: 32546969 PMCID: PMC7260543 DOI: 10.2147/dddt.s248628] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Purpose Autophagy caused by ischemia/reperfusion (I/R) increases the extent of cardiomyocyte damage. Melatonin (Mel) diminishes cardiac injury through regulating autophagy and mitochondrial dynamics. However, illustrating the specific role of mitophagy in the cardioprotective effects of melatonin remains a challenge. The aim of our research was to investigate the impact and underlying mechanisms of melatonin in connection with mitophagy during anoxia/reoxygenation (A/R) injury in H9c2 cells. Methods H9c2 cells were pretreated with melatonin with or without the melatonin membrane receptor 2 (MT2) antagonist 4-P-PDOT, the MT2 agonist IIK7 and the sirtuin 3 (SIRT3) inhibitor 3-TYP for 4 hours and then subjected to A/R injury. Cell viability, cellular apoptosis, necrosis levels and oxidative markers were assessed. The expression of SIRT3 and forkhead box O3a (FoxO3a), mitochondrial function and the levels of mitophagy-related proteins were also evaluated. Results A/R injury provoked enhanced mitophagy in H9c2 myocytes. In addition, increased mitophagy was correlated with decreased cellular viability, increased oxidative stress and mitochondrial dysfunction in H9c2 cells. However, melatonin pretreatment notably increased cell survival and decreased cell apoptosis and oxidative response after A/R injury, accompanied by restored mitochondrial function. The inhibition of excessive mitophagy is involved in the cardioprotective effects of melatonin, as shown by the decreased expression of the mitophagy-related molecules Parkin, Beclin1, and BCL2-interacting protein 3-like (BNIP3L, best known as NIX) and decreased light chain 3 II/light chain 3 I (LC3 II/LC3 I) ratio and upregulation of p62 expression. Moreover, the decreased expression of SIRT3 and FoxO3a in A/R-injured H9c2 cells was abrogated by melatonin, but these beneficial effects were attenuated by the MT2 antagonist 4-P-PDOT or the SIRT3 inhibitor 3-TYP and enhanced by the MT2 agonist IIK7. Conclusion These results indicate that melatonin protects H9c2 cells during A/R injury through suppressing excessive mitophagy by activating the MT2/SIRT3/FoxO3a pathway. Melatonin may be a useful candidate for alleviating myocardial ischemia/reperfusion (MI/R) injury in the future, and the MT2 receptor might become a therapeutic target.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yafen Gao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
39
|
Yang T, Zhao X, Zhang Y, Xie J, Zhou A. 6‴-Feruloylspinosin alleviated beta-amyloid induced toxicity by promoting mitophagy in Caenorhabditis elegans (GMC101) and PC12 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136953. [PMID: 32007901 DOI: 10.1016/j.scitotenv.2020.136953] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the neuroprotective effects of 6‴-feruloylspinosin (6-FS), one of the main active flavonoid components in Sour Jujube seeds, on beta-amyloid (Aβ) protein transgenic Caenorhabditis elegans (GMC101) and PC12 cells, and determine the molecular mechanism of its action. We found that 6-FS could ameliorate the progression of the Alzheimer's disease (AD) phenotype by delaying the aging, decreasing the rate of paralysis, enhancing resistance to heat stress, and increasing the chemotaxis ability, and promotes autophagy activity though autophagy/lysosome pathway in GMC101. Furthermore, 6-FS reduced Aβ-induced toxicity by inhibiting the deposition of Aβ and the aggregated proteins, increasing the level of mitophagy in PC12 through promoting the expression of Pink1/Parkin in the mitophagy pathway. Our findings suggest that 6-FS may be used as a medicinal supplement for treating AD.
Collapse
Affiliation(s)
- Tingting Yang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xiaotong Zhao
- Department of Chemistry, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Aimin Zhou
- Department of Chemistry, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
40
|
Zhang J, Yuan G, Liang T, Pan P, Li X, Li H, Shen H, Wang Z, Chen G. Nix Plays a Neuroprotective Role in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. Front Neurosci 2020; 14:245. [PMID: 32265644 PMCID: PMC7108665 DOI: 10.3389/fnins.2020.00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 01/13/2023] Open
Abstract
Nix is located in the outer membrane of mitochondria, mediates mitochondrial fission and implicated in many neurological diseases. However, the association between Nix and subarachnoid hemorrhage (SAH) has not previously been reported. Therefore, the present study was designed to evaluate the expression of Nix and its role in early brain injury (EBI) after SAH. Adult male Sprague-Dawley (SD) rats were randomly assigned to various time points for investigation after SAH. A rat model of SAH was induced by injecting 0.3 ml of autologous non-heparinized arterial blood into the prechiasmatic cistern. The expression of Nix was investigated by Western blot and immunohistochemistry. Next, Nix-specific overexpression plasmids and small interfering RNAs (siRNAs) were separately administered. Western blot, neurological scoring, Morris water maze, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and fluoro-jade B (FJB) staining were performed to evaluate the role of Nix in EBI following SAH. We found that Nix was expressed in neurons and its expression level in the SAH groups was higher than that in the Sham group, which peaked at 24 h after SAH. Overexpression of Nix following SAH significantly decreased the expression of translocase of outer mitochondrial membrane 20 (TOMM20, a marker of mitochondria), ameliorated neurological/cognitive deficits induced by SAH, and reduced the total number of apoptotic/neurodegenerative cells, whereas siRNA knockdown of Nix yielded opposite effects. Taken together, our findings demonstrated that the expression of Nix is increased in neurons after experimental SAH in rats, and may play a neuroprotective role in EBI following SAH.
Collapse
Affiliation(s)
- Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengjie Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Jiang XS, Chen XM, Hua W, He JL, Liu T, Li XJ, Wan JM, Gan H, Du XG. PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes. Biochem Biophys Res Commun 2020; 525:954-961. [PMID: 32173525 DOI: 10.1016/j.bbrc.2020.02.170] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN), the primary cause of end-stage renal disease (ESRD), is often accompanied by dyslipidemia, which is closely related to the occurrence and development of DN and even the progression to ESRD. Mitophagy, the selective degradation of damaged and dysfunctional mitochondria by autophagy, is a crucial mitochondrial quality control mechanism, and largely regulated by PINK1 (PTEN-induced putative kinase 1)/Parkin signaling pathway. In the present study, we demonstrated that PA induced mitochondrial damage and excessive mitoROS generation in podocytes. We also found PA treatment resulted in the activation of mitophagy by increasing co-localization of GFP-LC3 with mitochondria and enhancing the formation of mitophagosome, stabilization of PINK1 and mitochondrial translocation of Parkin, which indicated that PINK1/Parkin pathway was involved in PA-induced mitophagy in podocytes. Furthermore, inhibition of mitophagy by silencing Parkin dramatically aggravated PA-induced mitochondrial dysfunction, mitoROS production, and further enhanced PA-induced apoptosis of podocytes. Finally, we showed that PINK1/Parkin pathway were up-regulated in kidney of high fat diet (HFD)-induced obese rats. Taken together, our results suggest that PINK1/Parkin mediated mitophagy plays a protective role in PA-induced podocytes apoptosis through reducing mitochondrial ROS production and that enhancing mitophagy provides a potential therapeutic strategy for kidney diseases with hyperlipidemia, such as DN.
Collapse
Affiliation(s)
- Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Xue-Mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Wei Hua
- Department of Nephrology, Occupational Disease Prevention and Control Hospital of Chongqing, Chongqing, China
| | - Jun-Ling He
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Xun-Jia Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Jiang-Min Wan
- Department of Nephrology, Chongqing Qijiang People's Hospital, Tuowai, Chongqing, 401420, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Xiao-Gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China.
| |
Collapse
|
42
|
Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, Cao Y, Li T, Lin B. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med 2020; 18:114. [PMID: 32131850 PMCID: PMC7055075 DOI: 10.1186/s12967-020-02283-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We have reported that polydatin (PD) alleviates mitochondrial dysfunction in rat models of sepsis-induced acute kidney injury (SI-AKI), but the mechanism is not well understood. Here, we investigated the role of Parkin-mediated mitophagy in the protective effects of PD in SI-AKI in mice. METHODS Sepsis was induced in the mice by caecal ligation and puncture. Mitophagy was determined by mitochondrial mass. NLRP3 inflammasome activation was determined by NLRP3, ASC and caspase-1. Mitophagy was blocked by treatment with mitochondrial division inhibitor-1 and Parkin knockout. KEY RESULTS PD treatment increased the sepsis-induced loss of mitochondrial mass, indicating the upregulation of mitophagy. Furthermore, PD treatment mediated Parkin translocation from the cytoplasm to the mitochondria. This suggests that Parkin-mediated mitophagy is an underlying mechanism. This was confirmed by the suppression of PD-induced mitophagy in Parkin-/- mice and in mice that were treated with a mitophagy inhibitor. PD-induced Parkin translocation and mitophagy were blocked by inhibiting SIRT1; thus, activation of SIRT1 might be an important molecular mechanism that is triggered by PD. Additionally, PD treatment protected against sepsis-induced kidney injury. These effects were blocked by inhibition of Parkin-dependent mitophagy. Furthermore, PD also protected against mitochondrial dysfunction and mitochondria-dependent apoptosis, and the effect was blocked when Parkin-dependent mitophagy was inhibited. Finally, PD suppressed NLRP3 inflammasome activation that was also dependent on Parkin-mediated mitophagy. CONCLUSIONS These findings indicate that Parkin-mediated mitophagy is important for the protective effect of PD in SI-AKI, and the underlying mechanisms include the inhibition of mitochondrial dysfunction and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Youguang Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Xingui Dai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Yunfeng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Guicheng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Xianzhong Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Chenmu Ai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Yuanyuan Cao
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China.
| | - Bo Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
43
|
Li Y, Wang KN, He L, Ji LN, Mao ZW. Synthesis, photophysical and anticancer properties of mitochondria-targeted phosphorescent cyclometalated iridium(III) N-heterocyclic carbene complexes. J Inorg Biochem 2019; 205:110976. [PMID: 31926377 DOI: 10.1016/j.jinorgbio.2019.110976] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Metal N-Heterocyclic carbene (NHC) complexes are expected to be new opportunities for the development of anticancer metallodrugs. In this work, two near-infrared (NIR) emitting iridium(III)-NHC complexes Ir1 and Ir2 have been explored as mitochondria-targeted anticancer and photodynamic agents. These complexes are more cytotoxic than cisplatin against the cancer cells screened, and display higher cytotoxicity in the presence of 450 nm and 630 nm LED light. Colocalization and quantitative studies indicated that these complexes could specially localize to mitochondria. Mechanism studies show that these complexes increase intracellular reactive oxygen species (ROS) level, reduce mitochondrial membrane potential (MMP) and induce some degree of early apoptosis. Further studies found that Ir1could induce mitophagy at dark and necrocytosis under the irradiation of 630 nm LED light. The in vitro and in vivo photoxicity studies revealed that Ir1 is a promising photodynamic therapy (PDT) agent and could significantly inhibit tumor growth.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liang He
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
44
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
45
|
Raut GK, Chakrabarti M, Pamarthy D, Bhadra MP. Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via Prohibitin 1 upregulation in human breast cancer cells. Free Radic Biol Med 2019; 145:428-441. [PMID: 31614178 DOI: 10.1016/j.freeradbiomed.2019.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
In recent years there has been an upsurge in research focusing on reprogramming cancer cells through understanding of their metabolic signatures. Alterations in mitochondrial bioenergetics and impaired mitochondrial function may serve as effective targeting strategies especially in triple-negative breast cancers (TNBCs) where hormone receptors and endocrine therapy are absent. Glucose starvation (GS) of MDA-MB-231 and MCF-7 breast cancer cells showed decrease in mitochondrial Oxygen Consumption Rate (OCR), which was rescuable to control level through addition of exogenous antioxidant N-Acetyl Cysteine (NAC). Mechanistically, GS led to increase in mitochondrial ROS and upregulation of the pleiotropic protein, Prohibitin 1 (PHB1), leading to its dissociation from Dynamin-related protein 1 (DRP1), perturbance of mitochondrial membrane potential (MMP) and triggering of the apoptosis cascade. PHB1 also reduced the invasive and migratory potential of both cell lines. We emphasize that glucose starvation remarkably sensitized the highly glycolytic metastatic TNBC cell line, MDA-MB-231 to apoptosis and decreased its migratory potential. Based on our findings, additional TNBC cell lines can be evaluated and a nutritional paradigm be proposed for anticancer therapy.
Collapse
Affiliation(s)
- Ganesh Kumar Raut
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600 113, India
| | - Moumita Chakrabarti
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600 113, India
| | - Deepika Pamarthy
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600 113, India
| | - Manika Pal Bhadra
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600 113, India.
| |
Collapse
|
46
|
Karampela I, Christodoulatos GS, Dalamaga M. The Role of Adipose Tissue and Adipokines in Sepsis: Inflammatory and Metabolic Considerations, and the Obesity Paradox. Curr Obes Rep 2019; 8:434-457. [PMID: 31637623 DOI: 10.1007/s13679-019-00360-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Sepsis has become a global health problem with rising incidence and high mortality, creating a substantial social and economic burden. Early diagnosis and treatment can improve outcome, but reliable sepsis biomarkers are lacking. This review summarizes current evidence of the pathophysiological mechanisms linking adipose tissue to sepsis and presents experimental and clinical data on adipokines and sepsis along with important insights into the obesity paradox in sepsis survival. RECENT FINDINGS Sepsis is characterized by significant alterations in circulating cytokines and adipokines, biologically active molecules produced by the adipose tissue, being implicated in metabolic and inflammatory processes. Although data are inconclusive regarding classic adipokines such as leptin and adiponectin, recent evidence have highlighted the striking elevation of resistin and visfatin in critical illness and sepsis as well as their association with sepsis severity and outcomes. Given that inflammatory and metabolic pathways are involved in sepsis, studying adipokines presents an attractive, innovative, and promising research field that may provide more powerful diagnostic and prognostic biomarkers as well as novel therapeutic targets, empowering the therapeutic armamentarium for sepsis management in order to improve survival.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
47
|
Krishnasamy Y, Gooz M, Li L, Lemasters JJ, Zhong Z. Role of mitochondrial depolarization and disrupted mitochondrial homeostasis in non-alcoholic steatohepatitis and fibrosis in mice. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:190-204. [PMID: 31777643 PMCID: PMC6872485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The pathogenesis of non-alcoholic steatohepatitis (NASH) is poorly understood. Here, relationships between mitochondrial depolarization (mtDepo) and mitochondrial homeostasis were studied in a mouse model of NASH. C57BL/6 mice were fed a Western diet (high fat, fructose and cholesterol) for 2 weeks, 2 months and 6 months, and livers were harvested for histology and biochemical analysis. Hepatic mtDepo was evaluated by intravital multiphoton microscopy. After Western diet feeding, mixed hepatic micro- and macrovesicular steatosis and leukocyte infiltration occurred at 2 weeks and continued to increase afterwards. ALT release, mild necrosis, apoptosis, and ballooning degeneration were present at 2 and 6 months. Smooth muscle α-actin expression increased at 2 weeks and longer, and increased collagen-I expression and mild fibrosis occurred at 6 months. After feeding Western diet for 2 weeks and longer, mtDepo appeared in 50-70% hepatocytes, indicating mitochondrial dysfunction at an early stage of NASH. mtDepo can initiate mitophagy, and mitophagic markers increased at 2 and 6 months. Concurrently autophagic processing became impaired. Oxidative phosphorylation proteins, mitochondrial biogenesis signals, and proteins associated with mitochondrial fission and fusion decreased after 2 months and longer of Western diet. Proinflammatory and profibrotic signaling (NLRP3 inflammasome activation, expression of IL-1, osteopontin and TGF-β1) also increased in association with mitochondrial stress/dysfunction after Western diet feeding. Taken together, we show that hepatic mtDepo occurs early in mice fed a Western diet, followed by increased mitophagic burden, suppressed mitochondrial biogenesis and dynamics, and mitochondrial depletion. These novel mitochondrial alterations in NASH most likely play an important role in promoting steatosis, inflammation, and progression to fibrosis.
Collapse
Affiliation(s)
- Yasodha Krishnasamy
- Department of Drug Discovery and Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery and Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - John J Lemasters
- Department of Drug Discovery and Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- Department of Biochemistry and Molecular Biology, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Zhi Zhong
- Department of Drug Discovery and Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| |
Collapse
|
48
|
Zhang M, Shi R, Zhang Y, Shan H, Zhang Q, Yang X, Li Y, Zhang J. Nix/BNIP3L-dependent mitophagy accounts for airway epithelial cell injury induced by cigarette smoke. J Cell Physiol 2019; 234:14210-14220. [PMID: 30618073 DOI: 10.1002/jcp.28117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Cigarette smoke-induced airway epithelial cell mitophagy is an important mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mitochondrial protein Nix (also known as BNIP3L) is a selective autophagy receptor and participates in several human diseases. However, little is known about the role of Nix in airway epithelial cell injury during the development of COPD. The aim of the present study is to investigate the effects of Nix on mitophagy and mitochondrial function in airway epithelial cells exposed to cigarette smoke extract (CSE). Our present study has found that CSE could increase Nix protein expression and induce mitophagy in airway epithelial cells. And Nix siRNA significantly inhibited mitophagy and attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. In contrast, Nix overexpression enhanced mitophagy and aggravated mitochondrial dysfunction and cell injury when airway epithelial cells were incubated with 7.5% CSE. These data suggest that Nix-dependent mitophagy promotes airway epithelial cell and mitochondria injury induced by cigarette smoke, and may be involved in the pathogenesis of COPD and other cigarette smoke-associated diseases.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rong Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yeli Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hu Shan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiuhong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yali Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Lu YT, Xiao YF, Li YF, Li J, Nan FJ, Li JY. Sulfuretin protects hepatic cells through regulation of ROS levels and autophagic flux. Acta Pharmacol Sin 2019; 40:908-918. [PMID: 30560904 PMCID: PMC6786379 DOI: 10.1038/s41401-018-0193-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/09/2022] Open
Abstract
Palmitate (PA) exposure induces stress conditions featuring ROS accumulation and upregulation of p62 expression, resulting in autophagic flux blockage and cell apoptosis. Sulfuretin (Sul) is a natural product isolated from Rhus verniciflua Stokes; the cytoprotective effect of Sul on human hepatic L02 cells and mouse primary hepatocytes under PA-induced stress conditions was investigated in this study. Sul induced mitophagy by activation of p-TBK1 and LC3 and produced a concomitant decline in p62 expression. Autophagosome formation and mitophagy were assessed by the sensitive dual fluorescence reporter mCherry-EGFP-LC3B, and mitochondrial fragmentation was analyzed using MitoTracker Deep Red FM. A preliminary structure-activity relationship (SAR) for Sul was also investigated, and the phenolic hydroxyl group was found to be pivotal for maintaining the cytoprotective bioactivity of Sul. Furthermore, experiments using flow cytometry and western blots revealed that Sul reversed the cytotoxic effect stimulated by the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ), and its cytoprotective effect was almost eliminated when the autophagy-related 5 (Atg5) gene was knocked down. These studies suggest that, in addition to its antioxidative effects, Sul stimulates mitophagy and restores impaired autophagic flux, thus protecting hepatic cells from apoptosis, and that Sul has potential future medical applications for hepatoprotection.
Collapse
Affiliation(s)
- Yu-Ting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yu-Feng Xiao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Feng Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
50
|
Wang W, Dong M, Cui J, Xu F, Yan C, Ma C, Yi L, Tang W, Dong J, Wei Y. NME4 may enhance non‑small cell lung cancer progression by overcoming cell cycle arrest and promoting cellular proliferation. Mol Med Rep 2019; 20:1629-1636. [PMID: 31257488 PMCID: PMC6625391 DOI: 10.3892/mmr.2019.10413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Nucleoside diphosphate kinase 4 (NME4) is abnormally expressed in a variety of cancer types. However, the function of the NME4 gene in non-small cell lung cancer (NSCLC) remains to be elucidated. In order to investigate the role of NME4 in NSCLC, the present study detected the expression of the NME4 gene in the Cancer Genome Atlas database, and in BEAS-2B, NCI-H1299 and A549 cell lines. NME4 was significantly overexpressed in NSCLC tissues and NSCLC cell lines. Furthermore, lentivirus-mediated knockdown vector infection, cell proliferation, cell cycle, apoptosis, colony formation and MTT assays were conducted to explore the effect of NME4 on NSCLC in vitro. After knockdown of NME4 with short hairpin RNA, the cell cycle was arrest at the G1 phase, and proliferation and colony formation were inhibited in the NCI-H1299 and A549 cell lines. The present results suggested that NME4 may serve as a novel tumor promoter, capable of enhancing NSCLC progression by overcoming cell cycle arrest and promoting proliferation.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ming Dong
- Gumei Community Health Center of Minhang District of Shanghai, Shanghai 201102, P.R. China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Cheng Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|