1
|
Jin H, Wang S, Sheng J, Yang X, Li J, Li B. Konjac Glucomannan and Its Degradation Products Inhibit Intestinal Lipid Absorption by Regulating Gut Microbiota and the Production of Short-Chain Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39743788 DOI: 10.1021/acs.jafc.4c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The effect of konjac glucomannan (KGM) on lipid absorption is related to the viscosity effect and hepatic lipid synthesis. However, the molecular mechanism of regulation of intestinal lipid absorption by KGM and its correlation with gut microbiota have not been studied. This study explored the effects of KGM and degradation products of KGM (DKGM) on intestinal lipid absorption and output in obese mice and their potential mechanisms. The results showed that KGM significantly reduces blood lipids and intestinal lipid accumulation compared to DKGM in obese mice. Moreover, KGM and DKGM downregulated intestinal HDAC3 and NFLI3 expression to suppress CD36, SREBP1, FABP1, and PPARα expression. Notably, KGM more effectively inhibited fatty acid uptake in extraintestinal tissues than DKGM. Importantly, KGM more effectively enhanced the intestinal barrier, altered microbe abundance associated with lipid absorption, and promoted SCFA production than DKGM. Correlation analysis found that KGM and DKGM inhibited intestinal lipid absorption, which were positively correlated with the abundance of Lactobacillus, Desulfovibrio, Allobaculum etc. In conclusion, KGM more effectively inhibits intestinal lipid absorption and output in high-fat diet mice than DKGM, which is related to viscosity, intestinal HDAC3 activity, and differential remodeling of the microbiome. These findings provide insights into how microbe-dietary fiber interactions regulate the host energy balance.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University Ministry of Education, Wuhan 430070, China
| | - Shenwan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University Ministry of Education, Wuhan 430070, China
| | - Jie Sheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University Ministry of Education, Wuhan 430070, China
| | - Xiaotong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
3
|
Yousef M, O’Croinin C, Le TS, Park C, Zuo J, Bou Chacra N, Davies NM, Löbenberg R. In Vitro Predictive Model for Intestinal Lymphatic Uptake: Exploration of Additional Enhancers and Inhibitors. Pharmaceutics 2024; 16:768. [PMID: 38931889 PMCID: PMC11207518 DOI: 10.3390/pharmaceutics16060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Drug absorption via chylomicrons holds significant implications for both pharmacokinetics and pharmacodynamics. However, a mechanistic understanding of predicting in vivo intestinal lymphatic uptake remains largely unexplored. This study aimed to delve into the intestinal lymphatic uptake of drugs, investigating both enhancement and inhibition using various excipients through our previously established in vitro model. It also examined the applicability of the model by assessing the lymphatic uptake enhancement of a lymphotropic formulation with linoleoyl polyoxyl-6 glycerides using the same model. The model successfully differentiated among olive, sesame, and peanut oils in terms of lymphatic uptake. However, it did not distinguish between oils containing long-chain fatty acids and coconut oil. Coconut oil, known for its abundance of medium-chain fatty acids, outperformed other oils. This heightened uptake was attributed to the superior emulsification of this oil in artificial chylomicron media due to its high content of medium-chain fatty acids. Additionally, the enhanced uptake of the tested formulation with linoleoyl polyoxyl-6 glycerides underscored the practical applicability of this model in formulation optimization. Moreover, data suggested that increasing the zeta potential of Intralipid® using sodium lauryl sulfate (SLS) and decreasing it using (+/-) chloroquine led to enhanced and reduced uptake in the in vitro model, respectively. These findings indicate the potential influence of the zeta potential on intestinal lymphatic uptake in this model, though further research is needed to explore the possible translation of this mechanism in vivo.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (C.O.); (T.S.L.); (J.Z.)
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Conor O’Croinin
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (C.O.); (T.S.L.); (J.Z.)
| | - Tyson S. Le
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (C.O.); (T.S.L.); (J.Z.)
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jieyu Zuo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (C.O.); (T.S.L.); (J.Z.)
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (C.O.); (T.S.L.); (J.Z.)
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (C.O.); (T.S.L.); (J.Z.)
| |
Collapse
|
4
|
Stevens CM, Jain SK. Vitamin D/Bone Mineral Density and Triglyceride Paradoxes Seen in African Americans: A Cross-Sectional Study and Review of the Literature. Int J Mol Sci 2024; 25:1305. [PMID: 38279305 PMCID: PMC10816015 DOI: 10.3390/ijms25021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Vitamin D is known to have a positive effect on bone health. Despite the greater frequency of vitamin D deficiency in African Americans (AA), they have a higher bone mineral density (BMD) compared to whites, demonstrating a disconnect between BMD and vitamin D levels in AA. Another intriguing relationship seen in AA is the triglyceride (TG) paradox, an unusual phenomenon in which a normal TG status is observed even when patients house conditions known to be characterized by high TG levels, such as Type II diabetes. To the best of our knowledge, no study has examined whether these two paradoxical relationships exist simultaneously in AA subjects with Type II diabetes. In this study, we compared levels of blood markers, including HbA1c, TG, and vitamin D, measured as serum 25-hydroxyvitamin D [25(OH)VD] µM/mL, [25(OH)VD]/TG, calcium, and BMD in AA (n = 56) and white (n = 26) subjects with Type II diabetes to see whether these relationships exist concurrently. We found that AA subjects had significantly lower TG and [25(OH)VD] levels and a significantly higher BMD status compared to white subjects, even when the ages, BMI, duration of diabetes, HbA1c, and calcium levels were similar between the two groups. This demonstrates that these two paradoxical relationships exist simultaneously in Type II diabetic AA subjects. In addition to these findings, we discuss the current hypotheses in the literature that attempt to explain why these two intriguing relationships exist. This review also discusses four novel hypotheses, such as altered circulating levels and the potential role of estrogen and hydrogen sulfide on BMD and HMG-CoA reductase as a possible contributor to the TG paradox in AA subjects. This manuscript demonstrates that there are still many unanswered questions regarding these two paradoxical relationships and further research is needed to determine why they exist and how they can be implemented to improve healthcare.
Collapse
Affiliation(s)
| | - Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
5
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
7
|
Pilon M, Ruiz M. PAQR proteins and the evolution of a superpower: Eating all kinds of fats: Animals rely on evolutionarily conserved membrane homeostasis proteins to compensate for dietary variation. Bioessays 2023; 45:e2300079. [PMID: 37345585 DOI: 10.1002/bies.202300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Recently published work showed that members of the PAQR protein family are activated by cell membrane rigidity and contribute to our ability to eat a wide variety of diets. Cell membranes are primarily composed of phospholipids containing dietarily obtained fatty acids, which poses a challenge to membrane properties because diets can vary greatly in their fatty acid composition and could impart opposite properties to the cellular membranes. In particular, saturated fatty acids (SFAs) can pack tightly and form rigid membranes (like butter at room temperature) while unsaturated fatty acids (UFAs) form more fluid membranes (like vegetable oils). Proteins of the PAQR protein family, characterized by the presence of seven transmembrane domains and a cytosolic N-terminus, contribute to membrane homeostasis in bacteria, yeasts, and animals. These proteins respond to membrane rigidity by stimulating fatty acid desaturation and incorporation of UFAs into phospholipids and explain the ability of animals to thrive on diets with widely varied fat composition. Also see the video abstract here: https://youtu.be/6ckcvaDdbQg.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Kulshrestha S, Devkar R. Circadian control of Nocturnin and its regulatory role in health and disease. Chronobiol Int 2023; 40:970-981. [PMID: 37400970 DOI: 10.1080/07420528.2023.2231081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Circadian rhythms are generated by intrinsic 24-h oscillations that anticipate the extrinsic changes associated with solar day. A conserved transcriptional-translational feedback loop generates these molecular oscillations of clock genes at the organismal and the cellular levels. One of the recently discovered outputs of circadian clock is Nocturnin (Noct) or Ccrn4l. In mice, Noct mRNA is broadly expressed in cells throughout the body, with a particularly high-amplitude rhythm in liver. NOCT belongs to the EEP family of proteins with the closest similarity to the CCR4 family of deadenylases. Multiple studies have investigated the role of Nocturnin in development, adipogenesis, lipid metabolism, inflammation, osteogenesis, and obesity. Further, mice lacking Noct (Noct KO or Noct-/-) are protected from high-fat diet-induced obesity and hepatic steatosis. Recent studies had provided new insights by investigating various aspects of Nocturnin, ranging from its sub-cellular localization to identification of its target transcripts. However, a profound understanding of its molecular function remains elusive. This review article seeks to integrate the available literature into our current understanding of the functions of Nocturnin, their regulatory roles in key tissues and to throw light on the existing scientific lacunae.
Collapse
Affiliation(s)
- Shruti Kulshrestha
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
9
|
Ni HM, Ding B, Chen A. Loss of hepatic VMP1 trapped VLDL in the bilayer of endoplasmic reticulum membrane ☆. LIVER RESEARCH 2023; 7:161-163. [PMID: 38405163 PMCID: PMC10888528 DOI: 10.1016/j.livres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
11
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
DeLoid GM, Cao X, Coreas R, Bitounis D, Singh D, Zhong W, Demokritou P. Incineration-Generated Polyethylene Micro-Nanoplastics Increase Triglyceride Lipolysis and Absorption in an In Vitro Small Intestinal Epithelium Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12288-12297. [PMID: 35973094 PMCID: PMC9559972 DOI: 10.1021/acs.est.2c03195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite mounting evidence of micro-nanoplastics (MNPs) in food and drinking water, little is known of the potential health risks of ingested MNPs, and nothing is known of their potential impact on nutrient digestion and absorption. We assessed the effects of environmentally relevant secondary MNPs generated by incineration of polyethylene (PE-I), on digestion and absorption of fat in a high fat food model using a 3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model. The presence of 400 μg/mL PE-I increased fat digestion by 33% and increased fat absorption by 147 and 145% 1 and 2 h after exposure. Analysis of the PE-I lipid corona during digestion revealed predominantly triacylglycerols with enrichment of fatty acids in the small intestinal phase. Protein corona analysis showed enrichment of triacylglycerol lipase and depletion of β-casein in the small intestinal phase. These findings suggest digestion of triacylglycerol by lipase on the surface of lipid-coated MNPs as a potential mechanism. Further studies are needed to investigate the mechanisms underlying the greater observed increase in fat absorption, to verify these results in an animal model, and to determine the MNP properties governing their effects on lipid digestion and absorption.
Collapse
Affiliation(s)
- Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roxana Coreas
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Dimitrios Bitounis
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dilpreet Singh
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Flaxseed Polysaccharide Alters Colonic Gene Expression of Lipid Metabolism and Energy Metabolism in Obese Rats. Foods 2022; 11:foods11131991. [PMID: 35804806 PMCID: PMC9265598 DOI: 10.3390/foods11131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is one of the most serious public health challenges. Recently, we found that flaxseed polysaccharides (FPs) had an anti-obesity effect through promoting lipid metabolism, but the obesity-inhibiting pathway of FP is still unclear. In this study, after FP intervention in an obese rat model, a transcriptome study was performed to further investigate how FP intervention alters the gene expression of colonic epithelial tissues (CETs). The results showed that there were 3785 genes differentially expressed due to the FP intervention, namely 374 downregulated and 3411 upregulated genes. After analyzing all the differentially expressed genes, two classical KEGG pathways were found to be related to obesity, namely the PPAR-signaling pathway and energy metabolism, involving genes Fabp1–5, Lpl, Gyk, Qqp7, Pparg, Rxrg, Acsl1, Acsl4, Acsl6, Cpt1c, Car1–4, Ca5b, Car8, Car12–14, Cps1, Ndufa4l2, Cox6b2, Atp6v1g2, Ndufa4l2 and Cox4i2. QRT-PCR results showed a consistent expression trend. Our results indicate that FP promotes lipid metabolism by changing the expression of some key genes of CETs, thus inhibiting obesity.
Collapse
|
14
|
Dałek P, Drabik D, Wołczańska H, Foryś A, Jagas M, Jędruchniewicz N, Przybyło M, Witkiewicz W, Langner M. Bioavailability by design — Vitamin D3 liposomal delivery vehicles. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 43:102552. [PMID: 35346834 PMCID: PMC8957331 DOI: 10.1016/j.nano.2022.102552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Vitamin D3 deficiency has serious health consequences, as demonstrated by its effect on severity and recovery after COVID-19 infection. Because of high hydrophobicity, its absorption and subsequent redistribution throughout the body are inherently dependent on the accompanying lipids and/or proteins. The effective oral vitamin D3 formulation should ensure penetration of the mucus layer followed by internalization by competent cells. Isothermal titration calorimetry and computer simulations show that vitamin D3 molecules cannot leave the hydrophobic environment, indicating that their absorption is predominantly driven by the digestion of the delivery vehicle. In the clinical experiment, liposomal vitamin D3 was compared to the oily formulation. The results obtained show that liposomal vitamin D3 causes a rapid increase in the plasma concentration of calcidiol. No such effect was observed when the oily formulation was used. The effect was especially pronounced for people with severe vitamin D3 deficiency.
Collapse
Affiliation(s)
- Paulina Dałek
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland.
| | - Dominik Drabik
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | | | - Magdalena Przybyło
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Specialized Hospital in Wrocław, Wrocław, Poland
| | - Marek Langner
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland
| |
Collapse
|
15
|
He B, Wang Z, Moreau R. Chylomicron production is repressed by RPTOR knockdown, R-α-lipoic acid and 4-phenylbutyric acid in human enterocyte-like Caco-2 cells. J Nutr Biochem 2022; 108:109087. [PMID: 35691593 DOI: 10.1016/j.jnutbio.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Although the role of mechanistic target of rapamycin complex 1 (mTORC1) in lipid metabolism has been the subject of previous research, its function in chylomicron production is not known. In this study, we created three stable human colorectal adenocarcinoma Caco-2 cell lines exhibiting normal, low or high mTORC1 kinase activity, and used these cells to investigate the consequences of manipulating mTORC1 activity on enterocyte differentiation and chylomicron-like particle production. Constitutively active mTORC1 induced Caco-2 cell proliferation and differentiation (as judged by alkaline phosphatase activity) but weakened transepithelial electrical resistance (TEER). Repressed mTORC1 activity due to the knockdown of RPTOR significantly decreased the expression of lipogenic genes FASN, DGAT1 and DGAT2, lipoprotein assembly genes APOB and MTTP, reduced protein expression of APOB, MTTP and FASN, downregulated the gene expression of very long-chain fatty acyl-CoA ligase (FATP2), acyl-CoA binding protein (DBI), and prechylomicron transport vesicle-associated proteins VAMP7 (vesicle-associated membrane protein 7) and SAR1B (secretion associated Ras related GTPase 1B) resulting in the repression of apoB-containing triacylglycerol-rich lipoprotein secretion. Exposure of Caco-2 cells harboring a constitutively active mTORC1 to short-chain fatty acid derivatives, R-α-lipoic acid and 4-phenylbutyric acid, downregulated chylomicron-like particle secretion by interfering with the lipidation and assembly of the particles, and concomitantly repressed mTORC1 activity with no change to Raptor abundance or PRAS40 (Thr246) phosphorylation. R-α-lipoic acid and 4-phenylbutyric acid may be useful to mitigate intestinal lipoprotein overproduction and associated postprandial inflammation.
Collapse
Affiliation(s)
- Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhigang Wang
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
16
|
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022; 21:964-998. [PMID: 35181987 DOI: 10.1111/1541-4337.12924] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, β-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, β-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| | - YuanFa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| |
Collapse
|
17
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
18
|
Pan SY, Zhang Y, Song XL, Lin ZH, Yu Q, Tai HC, Luo G, Wang XY, Zhu PL, Sun N, Chu ZS, Yu ZL, Ko KM, Zhang Y. Schisandrae Fructus oil-induced elevation in serum triglyceride and lipoprotein concentrations associated with physiologic hepatomegaly in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
New Insights into Intestinal Permeability in Irritable Bowel Syndrome-Like Disorders: Histological and Ultrastructural Findings of Duodenal Biopsies. Cells 2021; 10:cells10102593. [PMID: 34685576 PMCID: PMC8533783 DOI: 10.3390/cells10102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Diarrhea, abdominal pain, and bloating are frequent in irritable bowel syndrome (IBS)-like disorders, although little is known about their intestinal ultrastructural alterations. The aim of the present study was to study duodenal biopsies from IBS-like patients to find ultrastructural alterations. MATERIALS AND METHODS Study design: descriptive comparative pilot study. Thirty outpatients (9 male and 21 female; median age 37.7 years; range, 20 to 65 years) complaining of IBS-like symptoms were enrolled between January 2015 to May 2019 and were divided into 6 groups, each equally consisting of 5 patients: (A) untreated celiac disease (uCD); (B) treated celiac disease (tCD); (C) wheat allergy (WA); (D) Non-celiac gluten sensitivity (NCGS); (E) Nickel allergic contact mucositis (Ni ACM); (F) controls affected by GERD. Transmission electron microscopy (TEM) morphological characteristics were: microvilli length, intermicrovillar distance, junctional complexes (JC) gap width, autophagic bodies, apoptosis, altered mitochondria, lipid/chylomicron droplets, and mast cells. Regarding JC, we focused on tight junctions (TJ), adherens junctions (AJ), and desmosomes. RESULTS Major alterations in microvilli length and intermicrovillar distance have been observed in the subjects affected by uCD. Microvilli of tCD patients showed marked recovery after adequate GFD, although not comparable to controls. Intermediate microvillar alterations were instead observed in NCGS and Ni ACM, while characteristics of WA subjects appeared more similar to tCD. Regarding JC, TJ did not show significant differences between all groups studied, including controls. The AJ were significantly more dilated in all groups compared to controls, while no significant differences were found between the pathological groups. The distance between desmosomes was greater in uCD, NCGS, and Ni ACM than in tCD, WA, and controls. Finally, intracellular alterations have been detected in most of the groups studied although they seemed more unspecific. CONCLUSIONS TEM analysis confirmed damages to the intestinal barrier and defense mechanisms by enterocytes in IBS-like patients, probably linked to low-grade inflammation or adverse reactions triggered by food allergens, heavy metals, or other unknown. On the other hand, our study needs confirmation and further investigations with larger populations to facilitate diagnosis, therapy, and prevention of IBS-like disorders in the future.
Collapse
|
20
|
Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 2021; 10:e66393. [PMID: 34387191 PMCID: PMC8460263 DOI: 10.7554/elife.66393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.
Collapse
Affiliation(s)
- Meredith H Wilson
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Steven A Farber
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
- Johns Hopkins University Department of BiologyBaltimoreUnited States
| |
Collapse
|
21
|
Sferra R, Pompili S, Cappariello A, Gaudio E, Latella G, Vetuschi A. Prolonged Chronic Consumption of a High Fat with Sucrose Diet Alters the Morphology of the Small Intestine. Int J Mol Sci 2021; 22:ijms22147280. [PMID: 34298894 PMCID: PMC8303301 DOI: 10.3390/ijms22147280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
(1) The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated. (2) To address this aspect, we administered a combined HFD with sucrose (HFD w/Suc, fat: 58% Kcal) regimen (18 months) to mice and investigated the morphological and molecular changes that occurred in the wall of proximal tract of the small intestine compared to the intestine of mice fed with a standard diet (SD) (fat: 18% Kcal). (3) We found an accumulation of lipid droplets in the mucosa of HFD w/Suc-fed mice that led to a disarrangement of mucosa architecture. Furthermore, we assessed the expression of several key players involved in lipid metabolism and inflammation, such as perilipin, leptin, leptin receptor, PI3K, p-mTOR, p-Akt, and TNF-α. All these molecules were increased in HFD mice compared to the SD group. We also evaluated anti-inflammatory molecules like adiponectin, adiponectin receptor, and PPAR-γ, and observed their significant reduction in the HFD w/Suc group compared to the control. Our data are in line with the knowledge that improper eating habits present a primary harmful assault on the bowel and the entire body's health. (4) These results represent a promising starting point for future studies, helping to better understand the complex and not fully elucidated spectrum of intestinal alterations induced by the overconsumption of fat.
Collapse
Affiliation(s)
- Roberta Sferra
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
- Correspondence: ; Tel.: +39-0862-433504
| | - Simona Pompili
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| |
Collapse
|
22
|
Shaik A, Rosenson RS. Genetics of Triglyceride-Rich Lipoproteins Guide Identification of Pharmacotherapy for Cardiovascular Risk Reduction. Cardiovasc Drugs Ther 2021; 35:677-690. [PMID: 33710501 DOI: 10.1007/s10557-021-07168-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Despite aggressive reduction of low-density lipoprotein cholesterol (LDL-C), there is a residual risk of cardiovascular disease (CVD). Hypertriglyceridemia is known to be associated with increased CVD risk, independently of LDL-C. Triglycerides are one component of the heterogenous class of triglyceride-rich lipoproteins (TGRLs). METHODS/RESULTS Growing evidence from biology, epidemiology, and genetics supports the contribution of TGRLs to the development of CVD via a number of mechanisms, including through proinflammatory, proapoptotic, and procoagulant pathways. CONCLUSION New genetics-guided pharmacotherapies to reduce levels of triglycerides and TGRLs and thus reduce risk of CVD have been developed and will be discussed here.
Collapse
Affiliation(s)
- Aleesha Shaik
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert S Rosenson
- Cardiometabolics Unit, Zena and Michael A Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Okawa F, Hama Y, Zhang S, Morishita H, Yamamoto H, Levine TP, Mizushima N. Evolution and insights into the structure and function of the DedA superfamily containing TMEM41B and VMP1. J Cell Sci 2021; 134:237813. [PMID: 33771928 DOI: 10.1242/jcs.255877] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
TMEM41B and VMP1 are endoplasmic reticulum (ER)-localizing multi-spanning membrane proteins required for ER-related cellular processes such as autophagosome formation, lipid droplet homeostasis and lipoprotein secretion in eukaryotes. Both proteins have a VTT domain, which is similar to the DedA domain found in bacterial DedA family proteins. However, the molecular function and structure of the DedA and VTT domains (collectively referred to as DedA domains) and the evolutionary relationships among the DedA domain-containing proteins are largely unknown. Here, we conduct a remote homology search and identify a new clade consisting mainly of bacterial proteins of unknown function that are members of the Pfam family PF06695. Phylogenetic analysis reveals that the TMEM41, VMP1, DedA and PF06695 families form a superfamily with a common origin, which we term the DedA superfamily. Coevolution-based structural prediction suggests that the DedA domain contains two reentrant loops facing each other in the membrane. This topology is biochemically verified by the substituted cysteine accessibility method. The predicted structure is topologically similar to that of the substrate-binding region of Na+-coupled glutamate transporter solute carrier 1 (SLC1) proteins. A potential ion-coupled transport function of the DedA superfamily proteins is discussed. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Fumiya Okawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Roghani-Shahraki H, Karimian M, Valipour S, Behjati M, Arefnezhad R, Mousavi A. Herbal therapy as a promising approach for regulation on lipid profiles: A review of molecular aspects. J Cell Physiol 2021; 236:5533-5546. [PMID: 33469926 DOI: 10.1002/jcp.30282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023]
Abstract
Impaired lipid profile is defined as abnormal plasma levels of low-density lipoprotein, triglycerides, and total cholesterol. This disease state is associated with the development and progression of various disorders, such as diabetes mellitus, cardiovascular diseases, and acute myocardial infarction. Globally, all of these disorders are related to a significant rate of death. Therefore, finding a suitable approach for the prevention and treatment of lipid profile-related disorders is in the spotlight. Recently, herbal therapy has been considered a promising therapeutic approach for the treatment of hyperlipidemia or its related disorders due to its safety and efficacy. Hereby, we address the potential benefits of some of these herbal compounds on different aspects of lipid profile and its abnormalities with a special focus on their underlying mechanisms. Using herbal products, such as teas and mushrooms, or their derivatives, Rosmarinus officinalis Linn, Curcuma longa, Green tea, Lippia triphylla, Lippia citriodora, Plantago asiatica L, Vine tea, and Grifola frondosa have been proved to exert several therapeutic impacts on lipid profile and its related disorders, and we would provide a brief review on them in this literature.
Collapse
Affiliation(s)
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Saboora Valipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Mousavi
- Department of Basic Sciences, School of Veterinary Medicine, Semnan University, Iran
| |
Collapse
|
25
|
Chi ZC. Research status and prgoress of nonalcoholic fatty pancreatic disease. Shijie Huaren Xiaohua Zazhi 2020; 28:933-950. [DOI: 10.11569/wcjd.v28.i19.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty pancreatic disease (NAFPD) is a disease characterized by an increase in pancreatic fat accumulation. It is a component of the metabolic syndrome and often coexists with nonalcoholic fatty liver disease. Once the diagnosis is established, it is closely related to acute and chronic pancreatitis, type 2 diabetes mellitus, pancreatic fibrosis, and pancreatic cancer. In recent years, it has been confirmed that NAFPD is closely related to cardiovascular disease, liver fibrosis, and liver cancer. The prevalence of NAFPD ranges between 11% and 69%, and increases with age. It is worth noting that the prevalence in obese children is twice as high as that in non-obese children. The high prevalence rate and complexity of the disease have aroused people's high attention. Therefore, to improve the understanding of NAFPD, fully understand the clinical significance of NAFPD, and further study its pathogenesis, diagnosis, and treatment require the collaboration and joint efforts of multiple disciplines, including hepatopathy, gastroenterology, endocrine metabolism, cardiovascular disease, imaging, pathology, and others. In this paper, we review the clinical significance, pathogenesis, and imaging diagnosis of NAFPD and propose our personal understanding of the key points in future research.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
26
|
Lema I, Araújo JR, Rolhion N, Demignot S. Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie 2020; 178:124-136. [PMID: 32949677 DOI: 10.1016/j.biochi.2020.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Although the jejunum is the main intestinal compartment responsible for lipid digestion and absorption, most of the studies assessing the impact of dietary lipids on the intestinal microbiota have been performed in the ileum, colon and faeces. This lack of interest in the jejunum is due to the much lower number of microbes present in this intestinal region and to the difficulty in accessing its lumen, which requires invasive methods. Recently, several recent publications highlighted that the whole jejunal microbiota or specific bacterial members are able to modulate lipid absorption and metabolism in enterocytes. This information reveals new strategies in the development of bacterial- and metabolite-based therapeutic interventions or nutraceutical recommendations to treat or prevent metabolic-related disorders, including obesity, cardiovascular diseases and malnutrition. This review is strictly focused on the following triad: dietary lipids, the jejunal epithelium and the jejunal microbiota. First, we will describe each member of the triad: the structure and functions of the jejunum, the composition of the jejunal microbiota, and dietary lipid handling by enterocytes and by microorganisms. Then, we will present the mechanisms leading to lipid malabsorption in small intestinal bacterial overgrowth (SIBO), a disease in which the jejunal microbiota is altered and which highlights the strong interactions among this triad. We will finally review the recent literature about the interactions among members of the triad, which should encourage research teams to further explore the mechanisms by which specific microbial strains or metabolites, alone or in concert, can mediate, control or modulate lipid absorption in the jejunum.
Collapse
Affiliation(s)
- Ingrid Lema
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France
| | - João Ricardo Araújo
- Nutrition and Metabolism, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal; Center for Health Technology Services Research (CINTESIS), Oporto, Portugal
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France
| | - Sylvie Demignot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France.
| |
Collapse
|
27
|
Han J, Guo X, Meng XJ, Zhang J, Yamaguchi R, Motoo Y, Yamada S. Acupuncture improved lipid metabolism by regulating intestinal absorption in mice. World J Gastroenterol 2020; 26:5118-5129. [PMID: 32982113 PMCID: PMC7495030 DOI: 10.3748/wjg.v26.i34.5118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), in which abnormal lipid metabolism plays an important role in disease progression, has become a pandemic. Abnormal lipid metabolism, for example an increased fat intake, has been thought to be an initial factor leading to NAFLD. The small intestine is the main site of dietary lipid absorption. A number of clinical trials have shown that acupuncture has positive effects in the regulation of lipid metabolism, which is closely associated with the progression of NAFLD. We therefore hypothesized that, acupuncture can improve the conditions of NAFLD by regulating intestinal absorption of lipid.
AIM To study the role of acupuncture treatment in the improvement of metabolic syndrome secondary to NAFLD by mouse model.
METHODS 8-wk-old male C57BL/6J mice were fed a methionine- and choline-deficient diet for 3 wk. Then, all mice were separated randomly into acupoints group (AG) or non-acupoints group (NG) with high fat diet feeding. Needling treatment was performed at Zu san li, Guan yuan and Yong quan acupoints as acupuncture treatment to AG mice while non-acupoints place to NG mice. Finally, mice were anesthetized with an injection of ketamine-medetomidine and euthanized by exsanguination.
RESULTS An apparent improvement of obesity was found in AG mice after acupuncture treatment. In AG mice, the body weight was much lower (22.6 ± 1.2 g vs 28.1 ± 1.0 g, P < 0.005) in comparison to NG mice. The length of small intestine in AG mice was significantly shorter (26.7 ± 2.3 cm vs 32.7 ± 2.7 cm, P < 0.005). A large amount of chyme was observed in the lumen of the AG small intestine. The expression of microsomal triglyceride transfer protein, apolipoprotein B and apolipoprotein C2 was downregulated. Triacylglycerols (TGs), total cholesterol and nonesterified fatty acid (NEFA) levels of the small intestinal tissue were significantly higher in AG mice, but the serum TGs and NEFA levels were reduced in AG mice.
CONCLUSION These results indicate that acupuncture at Zu san li, Guan yuan and Yong quan suppressed lipid absorption by downregulating the expression of apolipoproteins in the small intestine.
Collapse
Affiliation(s)
- Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Department of Oncology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan
| | - Xiang-Jin Meng
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Jing Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Reimon Yamaguchi
- Department of Dermatology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yoshiharu Motoo
- Department of Oncology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan
| |
Collapse
|
28
|
Korbelius M, Vujic N, Sachdev V, Obrowsky S, Rainer S, Gottschalk B, Graier WF, Kratky D. ATGL/CGI-58-Dependent Hydrolysis of a Lipid Storage Pool in Murine Enterocytes. Cell Rep 2020; 28:1923-1934.e4. [PMID: 31412256 PMCID: PMC6713565 DOI: 10.1016/j.celrep.2019.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
As circulating lipid levels are balanced by the rate of lipoprotein release and clearance from the plasma, lipid absorption in the small intestine critically contributes to the maintenance of whole-body lipid homeostasis. Within enterocytes, excessive triglycerides are transiently stored as cytosolic lipid droplets (cLDs), and their mobilization sustains lipid supply during interprandial periods. Using mice lacking adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) exclusively in the intestine (intestine-specific double KO [iDKO]), we show that ATGL/CGI-58 are not involved in providing substrates for chylomicron synthesis. Massive intestinal cLD accumulation in iDKO mice independent of dietary lipids together with inefficient lipid incorporation into cLDs in the early absorption phase demonstrate the existence of a secretion/re-uptake cycle, corroborating the availability of two diverse cLD pools. This study identified ATGL/CGI-58 as critical players in the catabolism of basolaterally (blood) derived lipids and highlights the necessity to modify the current model of intestinal lipid metabolism.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Sascha Obrowsky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria.
| |
Collapse
|
29
|
Mendonça Machado N, Torrinhas RS, Sala P, Ishida RK, Guarda IFMS, Moura EGHD, Sakai P, Santo MA, Linetzky Waitzberg D. Type 2 Diabetes Metabolic Improvement After Roux-en-Y Gastric Bypass May Include a Compensatory Mechanism That Balances Fatty Acid β and ω Oxidation. JPEN J Parenter Enteral Nutr 2020; 44:1417-1427. [PMID: 32654184 DOI: 10.1002/jpen.1960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND More than half of patients who undergo Roux-en-Y gastric bypass (RYGB) can experience type 2 diabetes (T2D) remission, but the systemic and gastrointestinal (GI) metabolic mechanisms of this improvement are still elusive. METHODS Paired samples collected before and 3 months after RYGB from 28 women with obesity and T2D were analyzed by metabolomics with gas chromatography coupled to mass spectrometry. Samples include plasma (n = 56) and biopsies of gastric pouch (n = 18), gastric remnant (n = 10), duodenum (n = 16), jejunum (n = 18), and ileum (n = 18), collected by double-balloon enteroscopy. RESULTS After RYGB, improvements in body composition and weight-related and glucose homeostasis parameters were observed. Plasma-enriched metabolic pathways included arginine and proline metabolism, urea and tricarboxylic acid (TCA) cycles, gluconeogenesis, malate-aspartate shuttle, and carnitine synthesis. In GI tissue, we observed alterations of ammonia recycling and carnitine synthesis in gastric pouch, phenylacetate metabolism and trehalose degradation in duodenum and jejunum, ketone bodies in jejunum, and lactose degradation in ileum. Intermediates molecules of the TCA cycle were enriched, particularly in plasma, jejunum, and ileum. Fluctuations of dicarboxylic acids (DCAs) were relevant in several metabolomic tests, and metabolite alterations included aminomalonate and fumaric, malic, oxalic, and succinic acids. The product/substrate relationship between these molecules and its pathways may reflect a compensatory mechanism to balance metabolism. CONCLUSIONS RYGB was associated with systemic and GI metabolic reprogramming. DCA alterations link ω and β fatty acid oxidation to homeostatic mechanisms, including TCA cycle improvement.
Collapse
Affiliation(s)
- Natasha Mendonça Machado
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raquel Susana Torrinhas
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Priscila Sala
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robson Kiyoshi Ishida
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ismael Francisco Mota Siqueira Guarda
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Guimarães Hourneaux de Moura
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Sakai
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marco Aurélio Santo
- Bariatric and Metabolic Surgery Unit, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Arisan ED, Dart A, Grant GH, Arisan S, Cuhadaroglu S, Lange S, Uysal-Onganer P. The Prediction of miRNAs in SARS-CoV-2 Genomes: hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities. Viruses 2020; 12:v12060614. [PMID: 32512929 PMCID: PMC7354481 DOI: 10.3390/v12060614] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the “cytokine storm” and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. We identified seven key miRs, which highlight considerable differences between the SARS-CoV-2 sequences, compared with the other viruses. The level of conservation between the five SARS-CoV-2 sequences was identical but poor compared with the other sequences, with SARS showing the highest degree of conservation. This decrease in similarity could result in reduced levels of transcriptional control, as well as a change in the physiological effect of the virus and associated host-pathogen responses. MERS and the milder symptom viruses showed greater differences and even significant sequence gaps. This divergence away from the SARS-CoV-2 sequences broadly mirrors the phylogenetic relationships obtained from the whole-genome alignments. Therefore, patterns of mutation, occurring during sequence divergence from the longer established human viruses to the more recent ones, may have led to the emergence of sequence motifs that can be related directly to the pathogenicity of SARS-CoV-2. Importantly, we identified 7 key-microRNAs (miRs 8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) with significant links to KEGG pathways linked to viral pathogenicity and host responses. According to Bioproject data (PRJNA615032), SARS-CoV-2 mediated transcriptomic alterations were similar to the target pathways of the selected 7 miRs identified in our study. This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Alwyn Dart
- Institute of Medical and Biomedical Education, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Serdar Arisan
- Department of Urology, Şişli Hamidiye Etfal Research and Training Hospital, 34360 Istanbul, Turkey;
| | - Songul Cuhadaroglu
- Thoracic Surgery Clinic, Memorial Hospital Sisli, Kaptanpasa Mah. Piyalepasa Bulvarı, 434385 Istanbul, Turkey;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
31
|
Morel E. Endoplasmic Reticulum Membrane and Contact Site Dynamics in Autophagy Regulation and Stress Response. Front Cell Dev Biol 2020; 8:343. [PMID: 32548114 PMCID: PMC7272771 DOI: 10.3389/fcell.2020.00343] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy mobilizes a variety of intracellular endomembranes to ensure a proper stress response and the maintenance of cellular homeostasis. While the process of de novo biogenesis of pre-autophagic structures is not yet fully characterized, the role of the endoplasmic reticulum (ER) appears to be crucial in early steps of autophagic process. Here, I review and discuss various aspects of ER and ER-driven membrane contact site requirements and effects on mammalian organelles and endomembrane biogenesis, in particular during the early steps of autophagy-related membrane dynamics.
Collapse
Affiliation(s)
- Etienne Morel
- Cell Biology Department, Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| |
Collapse
|
32
|
Grasp55 -/- mice display impaired fat absorption and resistance to high-fat diet-induced obesity. Nat Commun 2020; 11:1418. [PMID: 32184397 PMCID: PMC7078302 DOI: 10.1038/s41467-020-14912-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2020] [Indexed: 12/27/2022] Open
Abstract
The Golgi apparatus plays a central role in the intracellular transport of macromolecules. However, molecular mechanisms of Golgi-mediated lipid transport remain poorly understood. Here, we show that genetic inactivation of the Golgi-resident protein GRASP55 in mice reduces whole-body fat mass via impaired intestinal fat absorption and evokes resistance to high-fat diet induced body weight gain. Mechanistic analyses reveal that GRASP55 participates in the Golgi-mediated lipid droplet (LD) targeting of some LD-associated lipases, such as ATGL and MGL, which is required for sustained lipid supply for chylomicron assembly and secretion. Consequently, GRASP55 deficiency leads to reduced chylomicron secretion and abnormally large LD formation in intestinal epithelial cells upon exogenous lipid challenge. Notably, deletion of dGrasp in Drosophila causes similar defects of lipid accumulation in the midgut. These results highlight the importance of the Golgi complex in cellular lipid regulation, which is evolutionary conserved, and uncover potential therapeutic targets for obesity-associated diseases. The physiological roles of the Golgi reassembly-stacking protein 55 (GRASP55/GORASP55) remain largely elusive. Here, the authors show that the Golgi-resident protein GRASP55 plays a crucial role in lipid homeostasis by regulating intestinal lipid uptake.
Collapse
|
33
|
Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
|
34
|
Araújo JR, Tazi A, Burlen-Defranoux O, Vichier-Guerre S, Nigro G, Licandro H, Demignot S, Sansonetti PJ. Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism. Cell Host Microbe 2020; 27:358-375.e7. [PMID: 32101704 DOI: 10.1016/j.chom.2020.01.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 01/10/2020] [Indexed: 01/25/2023]
Abstract
Despite the recognized capacity of the gut microbiota to regulate intestinal lipid metabolism, the role of specific commensal species remains undefined. Here, we aimed to understand the bacterial effectors and molecular mechanisms by which Lactobacillus paracasei and Escherichia coli regulate lipid metabolism in enterocytes. We show that L-lactate produced by L. paracasei inhibits chylomicron secretion from enterocytes and promotes lipid storage by a mechanism involving L-lactate absorption by enterocytes, its conversion to malonyl-CoA, and the subsequent inhibition of lipid beta-oxidation. In contrast, acetate produced by E. coli also inhibits chylomicron secretion by enterocytes but promotes lipid oxidation by a mechanism involving acetate absorption by enterocytes, its metabolism to acetyl-CoA and AMP, and the subsequent upregulation of the AMPK/PGC-1α/PPARα pathway. Our study opens perspectives for developing specific bacteria- and metabolite-based therapeutic interventions against obesity, atherosclerosis, and malnutrition by targeting lipid metabolism in enterocytes.
Collapse
Affiliation(s)
- João R Araújo
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France
| | - Asmaa Tazi
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France
| | | | | | - Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France
| | - Hélène Licandro
- PAM UMR A 02.102, Université de Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Descartes, CNRS, EPHE, PSL University, Sorbonne Paris Cité, 75006 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France; Collège de France, 75005, Paris, France.
| |
Collapse
|
35
|
Su X, Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. Biol Rev Camb Philos Soc 2020; 95:232-243. [PMID: 31625271 DOI: 10.1111/brv.12561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Yao M, Li Z, Julian McClements D, Tang Z, Xiao H. Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chem 2020; 317:126229. [PMID: 32078989 DOI: 10.1016/j.foodchem.2020.126229] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
The impact of nanoemulsions containing triglycerides with different fatty acid chain lengths on the bioavailability of a highly lipophilic bioactive: 5-demethylnobiletin (5-DN) was investigated. 5-DN was encapsulated in nanoemulsions fabricated using either medium-chain triglycerides (MCT) or long-chain triglycerides (LCT). They were then subjected to in vitro digestion, and the resulting mixed micelles was applied to a Caco-2 cell model. Higher 5-DN bioaccessibility was found for the MCT-nanoemulsion (13%) than for the LCT-nanoemulsion (7%). However, only 30% 5-DN in MCT crossed the Caco-2 monolayer and 50% was metabolized, while 60% 5-DN in LCT crossed the monolayer and only 10% was metabolized. More lipid droplets and chylomicrons were also formed for the LCT nanoemulsions, indicating greater 5-DN transported through lymph. Although MCT gave a higher 5-DN bioaccessibility, the final amount of 5-DN absorbed and transported to the lymph was inferior to that of the LCT formulation.
Collapse
Affiliation(s)
- Mingfei Yao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Zhonghai Tang
- School of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; School of Food Science and Technology, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
37
|
Manipulating and studying triglyceride droplets in microfluidic devices. Biochimie 2019; 169:88-94. [PMID: 31881257 DOI: 10.1016/j.biochi.2019.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Triglyceride is the main lipid class in nature, found as droplets in both living systems and man-made products (such as manufactured foods and drugs). Characterizing triglyceride droplets in situ in these systems is complex due to many environmental interactions. To answer basic research questions about droplet formation, structuration, stability, or degradation, microfluidic strategies were developed, allowing well-controlled droplets to be formed, manipulated, and studied. In this review, these strategies are described, starting with the presentation of droplet production devices, with applications essentially related to microencapsulation and delivery, then detailing methods to monitor droplet degradation in situ and in real time, finishing with microfluidic platforms allowing the investigation of many aspects of biological lipid droplets simultaneously.
Collapse
|
38
|
Yu Y, Raka F, Adeli K. The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. J Clin Med 2019; 8:jcm8122227. [PMID: 31861086 PMCID: PMC6947520 DOI: 10.3390/jcm8122227] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Both environmental and genetic factors contribute to relative species abundance and metabolic characteristics of the intestinal microbiota. The intestinal microbiota and accompanying microbial metabolites differ substantially in those who are obese or have other metabolic disorders. Accumulating evidence from germ-free mice and antibiotic-treated animal models suggests that altered intestinal gut microbiota contributes significantly to metabolic disorders involving impaired glucose and lipid metabolism. This review will summarize recent findings on potential mechanisms by which the microbiota affects intestinal lipid and lipoprotein metabolism including microbiota dependent changes in bile acid metabolism which affects bile acid signaling by bile acid receptors FXR and TGR5. Microbiota changes also involve altered short chain fatty acid signaling and influence enteroendocrine cell function including GLP-1/GLP-2-producing L-cells which regulate postprandial lipid metabolism.
Collapse
Affiliation(s)
- Yijing Yu
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (Y.Y.); (F.R.)
| | - Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (Y.Y.); (F.R.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (Y.Y.); (F.R.)
- Departments of Laboratory Medicine & Pathobiology and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +416-813-8682
| |
Collapse
|
39
|
Auclair N, Patey N, Melbouci L, Ou Y, Magri-Tomaz L, Sané A, Garofalo C, Levy E, St-Pierre DH. Acylated Ghrelin and The Regulation of Lipid Metabolism in The Intestine. Sci Rep 2019; 9:17975. [PMID: 31784591 PMCID: PMC6884495 DOI: 10.1038/s41598-019-54265-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Acylated ghrelin (AG) is a gastrointestinal (GI) peptide mainly secreted by the stomach that promotes cytosolic lipid droplets (CLD) hypertrophy in adipose tissues and liver. However, the role of AG in the regulation of lipid metabolism in the intestine remains unexplored. This study aimed at determining whether AG influences CLD production and chylomicron (CM) secretion in the intestine. The effects of AG and oleic acid on CLD accumulation and CM secretion were first investigated in cultured Caco-2/15 enterocytes. Intestinal lipid metabolism was also studied in Syrian Golden Hamsters submitted to conventional (CD) or Western (WD) diets for 8 weeks and continuously administered with AG or physiological saline for the ultimate 2 weeks. In cultured Caco-2/15 enterocytes, CLD accumulation influenced CM secretion while AG reduced fatty acid uptake. In WD hamsters, continuous AG treatment amplified chylomicron output while reducing postprandial CLD accumulation in the intestine. The present study supports the intimate relationship between CLD accumulation and CM secretion in the intestine and it underlines the importance of further characterizing the mechanisms through which AG exerts its effects on lipid metabolism in the intestine.
Collapse
Affiliation(s)
- N Auclair
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.,Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - N Patey
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada
| | - L Melbouci
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.,Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - Y Ou
- Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - L Magri-Tomaz
- Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - A Sané
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada
| | - C Garofalo
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada
| | - E Levy
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, University of Montreal, Montreal, H3T 1A8, Quebec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, G1V 0A6, Quebec, Canada
| | - D H St-Pierre
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada. .,Department of Nutrition, University of Montreal, Montreal, H3T 1A8, Quebec, Canada. .,Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada. .,Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, G1V 0A6, Quebec, Canada.
| |
Collapse
|
40
|
Traber MG, Leonard SW, Ebenuwa I, Violet PC, Wang Y, Niyyati M, Padayatty S, Tu H, Courville A, Bernstein S, Choi J, Shamburek R, Smith S, Head B, Bobe G, Ramakrishnan R, Levine M. Vitamin E absorption and kinetics in healthy women, as modulated by food and by fat, studied using 2 deuterium-labeled α-tocopherols in a 3-phase crossover design. Am J Clin Nutr 2019; 110:1148-1167. [PMID: 31495886 PMCID: PMC6821549 DOI: 10.1093/ajcn/nqz172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Determining the human vitamin E [α-tocopherol (α-T)] requirement is difficult, and novel approaches to assess α-T absorption and trafficking are needed. OBJECTIVE We hypothesized that the dual-isotope technique, using 2 deuterium-labeled [intravenous (IV) d6- and oral d3-] α-T, would be effective in determining α-T fractional absorption. Further, defined liquid meal (DLM) fat or fasting would modulate α-T fractional absorption and lipoprotein transport. METHODS A 3-phase cr ossover design was used. At 0 h, participants received IV d6-α-T and consumed d3-α-T with a 600-kcal DLM (40% or 0% fat) followed by controlled meals or by the 0% fat DLM, a 12-h fast, and then controlled meals. Blood samples and fecal samples were collected at intervals and analyzed by LC-MS. Pharmacokinetic parameters were calculated from plasma tracer concentrations and enrichments. Fractional absorption was calculated from d3- to d6-α-T areas under the curve, from a novel mathematical model, and from the balance method (oral d3-α-T minus fecal d3-α-T excreted). RESULTS Estimated α-T fractional absorption during the 40% fat intervention was 55% ± 3% (mean ± SEM; n = 10), which was 9% less than during the 0% fat intervention (64% ± 3%, n = 10; P < 0.02). Fasting had no apparent effect (56% ± 3%, n = 7), except it slowed plasma oral d3-α-T appearance. Both balance data and model outcomes confirmed that the DLM fat did not potentiate d3-α-T absorption. During the IV emulsion clearance, HDL rapidly acquired d6-α-T (21 ± 2 nmol/L plasma per minute). During the first 8 h postdosing, triglyceride-rich lipoproteins (TRLs) were preferentially d3-α-T enriched relative to LDL or HDL, showing the TRL precursor role. CONCLUSIONS Quantitatively, α-T absorption is not limited by fat absence or by fasting. However, α-T leaves the intestine by a process that is prolonged during fasting and potentiated by eating, suggesting that α-T absorption is highly dependent on chylomicron assembly processes. This trial was registered at clinicaltrials.gov as NCT00862433.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA,School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA,Address correspondence to MGT (e-mail: )
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Wang
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Niyyati
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Padayatty
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber Courville
- Clinical Center Nutrition Department, Oregon State University, Corvallis, OR, USA
| | - Shanna Bernstein
- Clinical Center Nutrition Department, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robert Shamburek
- Cardiovascular Branch, Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheila Smith
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Morishita H, Zhao YG, Tamura N, Nishimura T, Kanda Y, Sakamaki Y, Okazaki M, Li D, Mizushima N. A critical role of VMP1 in lipoprotein secretion. eLife 2019; 8:48834. [PMID: 31526472 PMCID: PMC6748824 DOI: 10.7554/elife.48834] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Lipoproteins are lipid-protein complexes that are primarily generated and secreted from the intestine, liver, and visceral endoderm and delivered to peripheral tissues. Lipoproteins, which are assembled in the endoplasmic reticulum (ER) membrane, are released into the ER lumen for secretion, but its mechanism remains largely unknown. Here, we show that the release of lipoproteins from the ER membrane requires VMP1, an ER transmembrane protein essential for autophagy and certain types of secretion. Loss of vmp1, but not other autophagy-related genes, in zebrafish causes lipoprotein accumulation in the intestine and liver. Vmp1 deficiency in mice also leads to lipid accumulation in the visceral endoderm and intestine. In VMP1-depleted cells, neutral lipids accumulate within lipid bilayers of the ER membrane, thus affecting lipoprotein secretion. These results suggest that VMP1 is important for the release of lipoproteins from the ER membrane to the ER lumen in addition to its previously known functions.
Collapse
Affiliation(s)
- Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yan G Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Norito Tamura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuki Kanda
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Dongfang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Li J, Lu L, Zhang YH, Xu Y, Liu M, Feng K, Chen L, Kong X, Huang T, Cai YD. Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine. Cancer Gene Ther 2019; 27:56-69. [PMID: 31138902 DOI: 10.1038/s41417-019-0105-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is a type of blood cancer characterized by the rapid growth of immature white blood cells from the bone marrow. Therapy resistance resulting from the persistence of leukemia stem cells (LSCs) are found in numerous patients. Comparative transcriptome studies have been previously conducted to analyze differentially expressed genes between LSC+ and LSC- cells. However, these studies mainly focused on a limited number of genes with the most obvious expression differences between the two cell types. We developed a computational approach incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), incremental feature selection (IFS), support vector machine (SVM), Repeated Incremental Pruning to Produce Error Reduction (RIPPER), to identify gene expression features specific to LSCs. One thousand 0ne hudred fifty-nine features (genes) were first identified, which can be used to build the optimal SVM classifier for distinguishing LSC+ and LSC- cells. Among these 1159 genes, the top 17 genes were identified as LSC-specific biomarkers. In addition, six classification rules were produced by RIPPER algorithm. The subsequent literature review on these features/genes and the classification rules and functional enrichment analyses of the 1159 features/genes confirmed the relevance of extracted genes and rules to the characteristics of LSCs.
Collapse
Affiliation(s)
- JiaRui Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.,School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - YaoChen Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, P. R. China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, 510507, P. R. China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, P. R. China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, P. R. China
| | - XiangYin Kong
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
43
|
Seessle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Compositional Changes Among Triglycerides and Phospholipids During FATP4 Sensitization with Palmitate Lead to ER Stress in Cultured Cells. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Wolfgang Stremmel
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Walee Chamulitrat
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| |
Collapse
|
44
|
D'Aquila T, Zembroski AS, Buhman KK. Diet Induced Obesity Alters Intestinal Cytoplasmic Lipid Droplet Morphology and Proteome in the Postprandial Response to Dietary Fat. Front Physiol 2019; 10:180. [PMID: 30890954 PMCID: PMC6413465 DOI: 10.3389/fphys.2019.00180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary fat absorption by the small intestine is an efficient, multistep process that regulates the uptake and delivery of essential nutrients and energy. Fatty acids taken up by enterocytes, the absorptive cells of the small intestine, are resynthesized into triacylglycerol (TAG) and either secreted in chylomicrons or temporarily stored in cytoplasmic lipid droplets (CLDs). Proteins that associate with CLDs are thought to regulate the dynamics of TAG storage and mobilization. It is currently unclear what effect diet induced obesity (DIO) has on the balance between dietary fat storage and secretion. Specifically, there is limited knowledge of how DIO affects the level and diversity of proteins that associate with CLDs and regulate CLD dynamics. In the current study, we characterize CLDs from lean and DIO mice through histological and proteomic analyses. We demonstrate that DIO mice have larger intestinal CLDs compared to lean mice in response to dietary fat. Additionally, we identified 375 proteins in the CLD fraction isolated from enterocytes of lean and DIO mice. We identified a subgroup of lipid related proteins that are either increased or unique to the DIO CLD proteome. These proteins are involved in steroid synthesis, TAG synthesis, and lipolysis. This analysis expands our knowledge of the effect of DIO on the process of dietary fat absorption in the small intestine (D’Aquila, 2016).
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
45
|
Fuentes M, Santander N, Cortés V. Insulin increases cholesterol uptake, lipid droplet content, and apolipoprotein B secretion in CaCo-2 cells by upregulating SR-BI via a PI3K, AKT, and mTOR-dependent pathway. J Cell Biochem 2019; 120:1550-1559. [PMID: 30278109 DOI: 10.1002/jcb.27410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/24/2023]
Abstract
The actions of insulin on intestinal cholesterol absorption and lipoprotein secretion are not well understood. Herein, we determined the effects of insulin on the levels of cholesterol transporter scavenger receptor, class B, type I (SR-BI), cellular cholesterol uptake, intracellular lipid accumulation, and lipoprotein secretion in a cellular model of human intestinal epithelium. METHODS CaCo-2 cells were cultured to postconfluency in Transwell filters and stimulated with glucose (25 mM) in the presence or absence of insulin (100 nM) at their basolateral surface. SR-BI mRNA and protein levels were quantified by quantitative reverse transcription-PCR and immunoblot, respectively. Polarized localization of SR-BI was determined by cell surface proteins biotinylation and streptavidin precipitation. Activities of PI3K, AKT, mTOR, and SR-BI were pharmacologically antagonized. Cholesterol uptake was assessed by NBD-cholesterol incorporation. Apolipoprotein (apo) B concentration was quantified by ELISA. Subcellular localization of neutral lipids (BODIPY) and SR-BI (immunofluorescence) was determined by confocal microscopy. RESULTS In polarized CaCo-2 cells, insulin increased SR-BI at the mRNA and protein levels. SR-BI was exclusively present at apical cell surface, as indicated by biotinylation and confocal microscopy analysis. Glucose did not modify SR-BI abundance or subcellular localization. Effects of insulin on SR-BI levels were abrogated by PI3K, AKT, or mTOR pharmacological antagonism. Cholesterol uptake, neutral lipid abundance, and apo B secretion were increased by insulin in CaCo-2 cells, and these effects were prevented by SR-BI pharmacological antagonism with block lipid transport-1. CONCLUSIONS insulin promotes cholesterol uptake, intracellular lipid store, and apo B-containing lipoproteins secretion by SR-BI-dependent mechanisms in a model of human intestinal epithelium.
Collapse
Affiliation(s)
- Marcela Fuentes
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys 2018; 655:1-11. [PMID: 30077544 DOI: 10.1016/j.abb.2018.08.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023]
Abstract
The esterification of a fatty acyl moiety to diacylglycerol to form triacylglycerol (TAG) is catalysed by two diacylglycerol O-acyltransferases (DGATs) encoded by genes belonging to two distinct gene families. The enzymes are referred to as DGAT1 and DGAT2 in order of their identification. Both proteins are transmembrane proteins localized in the endoplasmic reticulum. Their membrane topologies are however significantly different. This difference is hypothesized to give the two isozymes different abilities to interact with other proteins and organelles and access to different pools of fatty acids, thereby creating a distinction between the enzymes in terms of their role and contribution to lipid metabolism. DGAT1 is proposed to have dual topology contributing to TAG synthesis on both sides of the ER membrane and esterifying only the pre-formed fatty acids. There is evidence to suggest that DGAT2 translocates to the lipid droplet (LD), associates with other proteins, and synthesizes cytosolic and luminal apolipoprotein B associated LD-TAG from both endogenous and exogenous fatty acids. The aim of this review is to differentiate between the two DGAT enzymes by comparing the genes that encode them, their proposed topologies, the proteins they interact with, and their roles in lipid metabolism.
Collapse
Affiliation(s)
- Bhumika Bhatt-Wessel
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - T William Jordan
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - John H Miller
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand.
| |
Collapse
|
47
|
Chaudhry R, Viljoen A, Wierzbicki AS. Pharmacological treatment options for severe hypertriglyceridemia and familial chylomicronemia syndrome. Expert Rev Clin Pharmacol 2018; 11:589-598. [PMID: 29842811 DOI: 10.1080/17512433.2018.1480368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A spectrum of disorders, ranging from rare severe cases of homozygous null lipoprotein lipase deficiency (LPLD)-familial chylomicronemia syndrome (FCS) to heterozygous missense LPLD or polygenic causes, result in hypertriglyceridemia and pancreatitis. The effects of mutations are exacerbated by environmental factors such as diet, pregnancy, and insulin resistance. Areas covered: In this review, authors discuss chronic treatment of FCS by ultra-low fat diets allied with the use of fibrates, omega-3 fatty acids, niacin, statins, and insulin-sensitizing therapies depending on the extent of residual lipoprotein lipase (LPL) activity; novel therapies in development target triglyceride (TG)-rich lipoprotein particle clearance. Previously, a gene therapy approach to LPL-alipogene tiparvovec showed that direct targeting of LPL function reduced pancreatitis events. An antisense oligonucleotide to apolipoprotein-C3, volanesorsen has been shown to decrease TGs by 70-80% and possibly to reduce rates of pancreatitis admissions. Studies are underway to validate its long-term efficacy and safety. Other approaches investigating the role of LPL modulating proteins such as angiopoietin-like petide-3 (ANGPTL3) are under consideration. Expert opinion: Current therapeutic options are not sufficient for management of many cases of FCS. The availability of antisense anti-apoC3 therapies and, in the future, ANGPTL3 therapies may remedy this.
Collapse
Affiliation(s)
- Rabia Chaudhry
- a Specialist Registrar Chemical Pathology/Metabolic Medicine , Lister Hospital , Stevenage , Hertfordshire , UK
| | - Adie Viljoen
- b Consultant in Metabolic Medicine/Chemical Pathology , East Hertfordshire Hospitals, Lister Hospital , Stevenage , Hertfordshire , UK
| | - Anthony S Wierzbicki
- c Department of Metabolic Medicine/Chemical Pathology , Guy's and St Thomas' Hospitals , London , UK
| |
Collapse
|
48
|
de Boer JF, Kuipers F, Groen AK. Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends Endocrinol Metab 2018; 29:123-133. [PMID: 29276134 DOI: 10.1016/j.tem.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are a subject of intense investigation and are being unraveled in increasing detail. In addition, insight into the complex interactions between cholesterol and bile acid metabolism has increased considerably in the last couple of years. This review provides an overview of the mechanisms involved in cholesterol uptake and excretion, with a particular emphasis on the most recent progress in this field. Special attention is given to the transintestinal cholesterol excretion (TICE) pathway, which was recently demonstrated to have a remarkably high transport capacity and to be sensitive to pharmacological modulation.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Vascular Medicine, University of Amsterdam Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
50
|
Mirheydari M, Mann EK, Kooijman EE. Interaction of a model apolipoprotein, apoLp-III, with an oil-phospholipid interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:396-406. [PMID: 29030246 DOI: 10.1016/j.bbamem.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023]
Abstract
Lipid droplets are "small" organelles that play an important role in de novo synthesis of new membrane, and steroid hormones, as well as in energy storage. The way proteins interact specifically with the oil-(phospho-)lipid monolayer interface of lipid droplets is a relatively unexplored but crucial question. Here, we use our home built liquid droplet tensiometer to mimic intracellular lipid droplets and study protein-lipid interactions at this interface. As model neutral lipid binding protein, we use apoLp-III, an amphipathic α-helix bundle protein. This domain is also found in proteins from the perilipin family and in apoE. Protein binding to the monolayer is studied by the decrease in the oil/water surface tension. Previous work used POPC (one of the major lipids found on lipid droplets) to form the phospholipid monolayer on the triolein surface. Here we expand this work by incorporating other lipids with different physico-chemical properties to study the effect of charge and lipid head-group size. This study sheds light on the affinity of this important protein domain to interact with lipids.
Collapse
Affiliation(s)
- Mona Mirheydari
- Physics Department, Kent State University, Kent, OH 44242, United States.
| | - Elizabeth K Mann
- Physics Department, Kent State University, Kent, OH 44242, United States
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| |
Collapse
|