1
|
Mariano E, Lee DY, Lee J, Choi Y, Park J, Han D, Kim JS, Park JW, Namkung S, Hur SJ. A review on the characterization of edible scaffolds for cultured meat: Physical, chemical, biocompatibility, and food safety evaluation methods. Food Chem 2025; 469:142493. [PMID: 39701871 DOI: 10.1016/j.foodchem.2024.142493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Scaffolds are three-dimensional biomaterials that act as structural blueprint for cultured meat precursor cells. The advancement of scaffold fabrication techniques and the development of novel scaffolds specifically designed for cultured meat are evident in numerous scaffold-based cultured meat reports, highlighting the advantages of the scaffolds using different characterization and evaluation techniques encompassing the physical, mechanical, chemical, and biological features of the scaffolds. Considering the potential of scaffolds to be included in cultured meat products, standardization of evaluation techniques could aid in preventing misrepresentation and possible food safety concerns in cultured meat production. Thus, appropriate food safety evaluation methods must be included to properly establish scaffolds as food safe or edible. The standardization of scaffold evaluation methods could aid in increasing the dependability and consumption of scaffold-based cultured meat.
Collapse
Affiliation(s)
- Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
2
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
3
|
Barrino F, Vassallo V, Cammarota M, Lepore M, Portaccio M, Schiraldi C, La Gatta A. A comprehensive in vitro characterization of non-crosslinked, diverse tissue-derived collagen-based membranes intended for assisting bone regeneration. PLoS One 2024; 19:e0298280. [PMID: 39008482 PMCID: PMC11249220 DOI: 10.1371/journal.pone.0298280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 07/17/2024] Open
Abstract
Collagen-based membranes are class III-medical devices widely used in dental surgical procedures to favour bone regeneration. Here, we aimed to provide biophysical and biochemical data on this type of devices to support their optimal use and design/manufacturing. To the purpose, four commercial, non-crosslinked collagen-based-membranes, obtained from various sources (equine tendon, pericardium or cortical bone tissues, and porcine skin), were characterized in vitro. The main chemical, biophysical and biochemical properties, that have significant clinical implications, were evaluated. Membranes showed similar chemical features. They greatly differed in morphology as well as in porosity and density and showed a diverse ranking in relation to these latter two parameters. Samples highly hydrated in physiological medium (swelling-ratio values in the 2.5-6.0 range) and, for some membranes, an anisotropic expansion during hydration was, for the first time, highlighted. Rheological analyses revealed great differences in deformability (150-1500kPa G') also alerting about the marked variation in membrane mechanical behaviour upon hydration. Samples proved diverse sensitivity to collagenase, with the cortical-derived membrane showing the highest stability. Biological studies, using human-bone-derived cells, supported sample ability to allow cell proliferation and to prompt bone regeneration, while no relevant differences among membranes were recorded. Prediction of relative performance based on the findings was discussed. Overall, results represent a first wide panel of chemical/biophysical/biochemical data on collagen-based-membranes that 1) enhances our knowledge of these products, 2) aids their optimal use by providing clinicians with scientific basis for selecting products based on the specific clinical situation and 3) represents a valuable reference for optimizing their manufacturing.
Collapse
Affiliation(s)
- Federico Barrino
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Maria Lepore
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Marianna Portaccio
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Annalisa La Gatta
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
4
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
5
|
Taylor A, Xu J, Rogozinski N, Fu H, Molina Cortez L, McMahan S, Perez K, Chang Y, Pan Z, Yang H, Liao J, Hong Y. Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation. ACS Biomater Sci Eng 2024; 10:3759-3774. [PMID: 38800901 DOI: 10.1021/acsbiomaterials.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Collapse
Affiliation(s)
- Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lia Molina Cortez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Karla Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yan Chang
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Zui Pan
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
6
|
Virijević K, Živanović MN, Nikolić D, Milivojević N, Pavić J, Morić I, Šenerović L, Dragačević L, Thurner PJ, Rufin M, Andriotis OG, Ljujić B, Miletić Kovačević M, Papić M, Filipović N. AI-Driven Optimization of PCL/PEG Electrospun Scaffolds for Enhanced In Vivo Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659385 DOI: 10.1021/acsami.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Here, an artificial intelligence (AI)-based approach was employed to optimize the production of electrospun scaffolds for in vivo wound healing applications. By combining polycaprolactone (PCL) and poly(ethylene glycol) (PEG) in various concentration ratios, dissolved in chloroform (CHCl3) and dimethylformamide (DMF), 125 different polymer combinations were created. From these polymer combinations, electrospun nanofiber meshes were produced and characterized structurally and mechanically via microscopic techniques, including chemical composition and fiber diameter determination. Subsequently, these data were used to train a neural network, creating an AI model to predict the optimal scaffold production solution. Guided by the predictions and experimental outcomes of the AI model, the most promising scaffold for further in vitro analyses was identified. Moreover, we enriched this selected polymer combination by incorporating antibiotics, aiming to develop electrospun nanofiber scaffolds tailored for in vivo wound healing applications. Our study underscores three noteworthy conclusions: (i) the application of AI is pivotal in the fields of material and biomedical sciences, (ii) our methodology provides an effective blueprint for the initial screening of biomedical materials, and (iii) electrospun PCL/PEG antibiotic-bearing scaffolds exhibit outstanding results in promoting neoangiogenesis and facilitating in vivo wound treatment.
Collapse
Affiliation(s)
- Katarina Virijević
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Marko N Živanović
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Dalibor Nikolić
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Nevena Milivojević
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Jelena Pavić
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Ivana Morić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000Belgrade, Serbia
| | - Lidija Šenerović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000Belgrade, Serbia
| | - Luka Dragačević
- Institute of Virology, Vaccines and Sera "Torlak″, 11000Belgrade ,Serbia
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Wien, Austria
| | - Manuel Rufin
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Wien, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Wien, Austria
| | - Biljana Ljujić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000Kragujevac, Serbia
| | - Marina Miletić Kovačević
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000Kragujevac, Serbia
| | - Miloš Papić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000Kragujevac, Serbia
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, 34000Kragujevac, Serbia
- BioIRC─Bioengineering Research and Development Center, 34000Kragujevac,Serbia
| |
Collapse
|
7
|
Shaker A, Khedewy AT, Hassan MA, El-Baky MAA. Thermo-mechanical characterization of electrospun polyurethane/carbon-nanotubes nanofibers: a comparative study. Sci Rep 2023; 13:17368. [PMID: 37833445 PMCID: PMC10575888 DOI: 10.1038/s41598-023-44020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Creating ultrathin, mountable fibers from a wide range of polymeric functional materials has made electrospinning an adequate approach to producing highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between unidirectional and randomly aligned TPU and TPU/MWCNTs nanofibrous structures. The incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.9 to 7.5 MPa. On the other hand, for unidirectionally spun fibers, Young's modulus increased from 17.1 to 18.4 MPa upon the addition of MWCNTs. However, dynamic mechanical analysis revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 to 614 MPa for TPU and TPU/MWCNTs mats, respectively, and a slight increase from 119 to 143 MPa for unidirectional TPU and TPU/MWCNTs mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 to 58.9 MPa and from 6.4 to 12 MPa for the random and aligned fibers, respectively. The glass transition values for all the mats fell in the temperature range of - 60 to - 20 °C. The thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU's polymer structure and that the TPU/MWCNTs nanocomposite exhibited stable thermal degradation properties.
Collapse
Affiliation(s)
- A Shaker
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira T Khedewy
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Hassan
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Abd El-Baky
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
8
|
Maurmann N, França FS, Girón J, Pranke P. Cell Electrospinning: a Review of Materials and Methodologies for Biofabrication. Adv Biol (Weinh) 2023; 7:e2300058. [PMID: 37271854 DOI: 10.1002/adbi.202300058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/22/2023] [Indexed: 06/06/2023]
Abstract
The process of electrohydrodynamic living cell microencapsulation inside a scaffold during the electrospinning (ES) process is called cell electrospinning (CE). Several studies demonstrate the feasibility of using cell electrospinning for biomedical applications, allowing for the direct biofabrication of living cells to be encapsulated in fibers for the formation of active biological scaffolds. In this review, a comprehensive overview of the materials and methodologies used in cell electrospinning, as well as their biomedical application in tissue engineering, is provided. Cell ES represents an innovative technique for automated application in regenerative medicine.
Collapse
Affiliation(s)
- Natasha Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/304G, Porto Alegre, 90.610-000, Brazil
| | - Fernanda S França
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/304G, Porto Alegre, 90.610-000, Brazil
| | - Juliana Girón
- Center for Information Technology Renato Archer, Rodovia Dom Pedro I (SP-65), Km 143,6, Amarais, Campinas, SP, 13069-901, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/304G, Porto Alegre, 90.610-000, Brazil
- Stem Cell Research Institute, Rua dos Andradas, 1464/133, Porto Alegre, 90.020-010, Brazil
| |
Collapse
|
9
|
Tan Y, Fan S, Wu X, Liu M, Dai T, Liu C, Ni S, Wang J, Yuan X, Zhao H, Weng Y. Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization. Int J Biol Macromol 2023; 249:126028. [PMID: 37506787 DOI: 10.1016/j.ijbiomac.2023.126028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Bone tissue engineering scaffolds have made significant progress in treating bone defects in recent decades. However, the lack of a vascular network within the scaffold limits bone formation after implantation in vivo. Recent research suggests that leonurine hydrochloride (LH) can promote healing in full-thickness cutaneous wounds by increasing vessel formation and collagen deposition. Gelatin and Sodium Alginate are both polymers. ATP is a magnesium silicate chain mineral. In this study, a Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel was used as the base material first, and the Gelatin/Sodium Alginate/Nano-Attapulgite composite polymer scaffold loaded with LH was then created using 3D printing technology. Finally, LH was grafted onto the base material by an amide reaction to construct a scaffold loaded with LH to achieve long-term LH release. When compared to pure polymer scaffolds, in vitro results showed that LH-loaded scaffolds promoted the differentiation of BMSCs into osteoblasts, as evidenced by increased expression of osteogenic key genes. The results of in vivo tissue staining revealed that the drug-loaded scaffold promoted both angiogenesis and bone formation. Collectively, these findings suggest that LH-loaded Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel scaffolds are a potential therapeutic strategy and can assist bone regeneration.
Collapse
Affiliation(s)
- Yadong Tan
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Shijie Fan
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Xiaoyu Wu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Menggege Liu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Ting Dai
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Chun Liu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Su Ni
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Jiafeng Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Xiuchen Yuan
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Hongbin Zhao
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China.
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China.
| |
Collapse
|
10
|
Luo K, Wang L, Wang MX, Du R, Tang L, Yang KK, Wang YZ. 4D Printing of Biocompatible Scaffolds via In Situ Photo-crosslinking from Shape Memory Copolyesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44373-44383. [PMID: 37669475 DOI: 10.1021/acsami.3c10747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The complexity of surgical treatments for large-area soft tissue injuries makes placing large implants into injury sites challenging. Aliphatic polyesters are often used for scaffold preparation in tissue engineering owing to their excellent biodegradability and biocompatibility. Scaffolds with shape-memory effect (SME) can also avoid large-volume trauma during the implantation. However, the complexity and diversity of diseases require more adaptable and precise processing methods. Four-dimensional (4D) printing, a booming smart material additive manufacturing technology, provides a new opportunity for developing shape memory scaffolds. With the aim of personalized or patient-adaptable soft tissues such as blood vessels, we developed a feasible strategy for fabricating scaffolds with fine architectures using 4D printing crosslinkable shape memory linear copolyesters using fused deposition modeling (FDM). To overcome the weak bonding strength of each printed layer during FDM, a catalyst-free photo-crosslinkable functional group derived from biocompatible cinnamic acid was embedded into the linear copolyesters as in situ crosslinking points during FDM printing. Under ultraviolet-assisted irradiation, the resulting 4D scaffold models demonstrated excellent SME, desirable mechanical performance, and good stability in a water environment owing to the chemical bonding between each layer. Moreover, the excellent biocompatibility of the scaffold was evaluated in vitro and in vivo. The developed composite scaffolds could be used for minimally invasive soft tissue repair.
Collapse
Affiliation(s)
- Kun Luo
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu 610500, China
| | - Man-Xi Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rui Du
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke-Ke Yang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Wang Z, Wang C, Gao Y, Li Z, Shang Y, Li H. Porous Thermal Insulation Polyurethane Foam Materials. Polymers (Basel) 2023; 15:3818. [PMID: 37765672 PMCID: PMC10537539 DOI: 10.3390/polym15183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Porous thermal insulation materials (PTIMs) are a class of materials characterized by low thermal conductivity, low bulk density and high porosity. The low thermal conductivity of the gas enclosed in their pores allows them to achieve efficient thermal insulation, and are they among the most widely used and effective materials in thermal insulation material systems. Among the PTIMs, polyurethane foam (PUF) stands out as particularly promising. Its appeal comes from its multiple beneficial features, such as low density, low thermal conductivity and superior mechanical properties. Such attributes have propelled its broad application across domains encompassing construction, heterogeneous chemical equipment, water conservation and hydropower, and the aviation and aerospace fields. First, this article outlines the structure and properties of porous thermal insulation PUF materials. Next, it explores the methods of preparing porous thermal insulation PUF materials, evaluating the associated advantages and disadvantages of each technique. Following this, the mechanical properties, thermal conductivity, thermal stability, and flame-retardant characteristics of porous thermal insulation PUF materials are characterized. Lastly, the article provides insight into the prospective development trends pertaining to porous thermal insulation PUF materials.
Collapse
Affiliation(s)
- Zhiguo Wang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Chengzhu Wang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Yuebin Gao
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
| | - Zhao Li
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Yu Shang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; (Z.W.); (C.W.); (Y.S.)
| | - Haifu Li
- Shaanxi Haichuang Industrial Co., Ltd., Xi’an 712034, China;
| |
Collapse
|
12
|
Silva M, Gomes S, Correia C, Peixoto D, Vinhas A, Rodrigues MT, Gomes ME, Covas JA, Paiva MC, Alves NM. Biocompatible 3D-Printed Tendon/Ligament Scaffolds Based on Polylactic Acid/Graphite Nanoplatelet Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2518. [PMID: 37764548 PMCID: PMC10536374 DOI: 10.3390/nano13182518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Three-dimensional (3D) printing technology has become a popular tool to produce complex structures. It has great potential in the regenerative medicine field to produce customizable and reproducible scaffolds with high control of dimensions and porosity. This study was focused on the investigation of new biocompatible and biodegradable 3D-printed scaffolds with suitable mechanical properties to assist tendon and ligament regeneration. Polylactic acid (PLA) scaffolds were reinforced with 0.5 wt.% of functionalized graphite nanoplatelets decorated with silver nanoparticles ((f-EG)+Ag). The functionalization of graphene was carried out to strengthen the interface with the polymer. (f-EG)+Ag exhibited antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), an important feature for the healing process and prevention of bacterial infections. The scaffolds' structure, biodegradation, and mechanical properties were assessed to confirm their suitability for tendon and ligamentregeneration. All scaffolds exhibited surface nanoroughness created during printing, which was increased by the filler presence. The wet state dynamic mechanical analysis proved that the incorporation of reinforcement led to an increase in the storage modulus, compared with neat PLA. The cytotoxicity assays using L929 fibroblasts showed that the scaffolds were biocompatible. The PLA+[(f-EG)+Ag] scaffolds were also loaded with human tendon-derived cells and showed their capability to maintain the tenogenic commitment with an increase in the gene expression of specific tendon/ligament-related markers. The results demonstrate the potential application of these new 3D-printed nanocomposite scaffolds for tendon and ligament regeneration.
Collapse
Affiliation(s)
- Magda Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Susana Gomes
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Cátia Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Daniela Peixoto
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Adriana Vinhas
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - José A. Covas
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Natália M. Alves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
13
|
Rajabi M, Cabral JD, Saunderson S, Ali MA. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration. J Biomed Mater Res A 2023; 111:1468-1481. [PMID: 37066870 DOI: 10.1002/jbm.a.37548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
To date, lack of functional hydrogel inks has limited 3D printing applications in tissue engineering. This study developed a series of photocurable hydrogel inks based on chitooligosaccharide (COS)-polyethylene glycol diacrylate (PEGDA) for extrusion-based 3D printing of bone tissue scaffolds. The scaffolds were prepared by aza-Michael addition of COS and PEGDA followed by photopolymerisation of unreacted PEGDA. The hydrogel inks showed sufficient shear thinning properties required for extrusion 3D printing. The printed scaffolds exhibited excellent shape fidelity and fine microstructure with a resolution of 250 μm. By increasing the COS content, the swelling ratio of the scaffolds decreased, while the compressive strength increased. 3D printed COS-PEGDA scaffolds showed high viability of human bone mesenchymal stem cells in vitro. In addition, scaffolds containing 2 wt% COS showed significantly higher alkaline phosphatase activity, calcium deposition, and bioactivity in simulated body fluid compared to the control (PEGDA). Altogether, 3D printed COS-PEGDA scaffolds represent promising candidates for bone tissue regeneration.
Collapse
Affiliation(s)
- Mina Rajabi
- Faculty of Dentistry, Division of Health Sciences, Centre for Bioengineering & Nanomedicine, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sarah Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Faculty of Dentistry, Division of Health Sciences, Centre for Bioengineering & Nanomedicine, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
15
|
Martins LA, Biosca LT, Gómez-Tejedor JA, Serra JP, Correia DM, Costa CM, Lanceros-Méndez S, Gómez Ribelles JL, Tort-Ausina I. Influence of the Inclusion of Propylene Carbonate Electrolyte Solvent on the Microstructure and Thermal and Mechanical Stability of Poly(l-lactic acid) and Poly(vinylidene fluoride- co-hexafluoropropylene) Battery Separator Membranes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10480-10487. [PMID: 37313120 PMCID: PMC10258845 DOI: 10.1021/acs.jpcc.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Indexed: 06/15/2023]
Abstract
The influence of the inclusion of the organic solvent propylene carbonate (PC) in microporous membranes based on poly(l-lactic acid) (PLLA) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) has been studied based on its relevance for the application of those separator membranes in lithium-ion batteries. The membranes have been produced through solvent casting and characterized with respect to the swelling ratio originated by the uptake of the organic solvent. The organic solvent uptake affects the porous microstructure and crystalline phase of both membrane types. The organic solvent uptake amount affects the crystal size of the membranes as a consequence of the interaction between the solvent and the polymer, since the presence of the solvent modifies the melting process of the polymer crystals due to a freezing temperature depression effect. It is also shown that the organic solvent partially penetrates into the amorphous phase of the polymer, leading to a mechanical plasticizing effect. Thus, the interaction between the organic solvent and the porous membrane is essential to properly tailor membrane properties, which in turn will affect lithium-ion battery performance.
Collapse
Affiliation(s)
- Luis Amaro Martins
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Laura Teruel Biosca
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Antonio Gómez-Tejedor
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical
Research Networking Center
on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - J. P. Serra
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | | | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - José Luis Gómez Ribelles
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical
Research Networking Center
on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Isabel Tort-Ausina
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical
Research Networking Center
on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| |
Collapse
|
16
|
Shaker A, Khedewy A, Hassan M, El-baky MA. Thermo-Mechanical Characterization of Electrospun Polyurethane /Carbon- Nanotubes Nanofibers: A Comparative Study.. [DOI: 10.21203/rs.3.rs-2939166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Creating ultrathin mountable fibers from a wide range of polymeric functional materials have made electrospinning an adequate approach to produce highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between a unidirectional and randomly aligned TPU and TPU/CNT nanofibrous structures. Incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.66 MPa to 5.68 MPa. Conversely, for unidirectionally spun fibers, Young's modulus decreased from 16.68 MPa to 11.63 MPa upon addition of MWCNTs. However, dynamic mechanical analysis (DMA) revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 MPa to 614 MPa for TPU and TPU/CNT mats, respectively, and a slight decrease from 157 MPa to 143 MPa for unidirectional TPU and TPU/CNT mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 MPa to 58.9 MPa and from 6.4 MPa to 12 MPa for the random and aligned fibers, respectively. Thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU’s polymer structure, and the TPU/CNT nanocomposite exhibited stable thermal degradation properties.
Collapse
|
17
|
Gundu S, Sahi AK, Kumari P, Vishwakarma NK, Mahto SK. Assessment of various forms of cellulose-based Luffa cylindrica (mat, flakes and powder) reinforced polydimethylsiloxane composites for oil sorption and organic solvents absorption. Int J Biol Macromol 2023; 240:124416. [PMID: 37060975 DOI: 10.1016/j.ijbiomac.2023.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Oil spillage has damaged public health noticeably and contributed to significant environmental deterioration. As a result, a significant amount of effort has been spent on investigating and developing the sorbent materials capable of separating oil from water. Thus, the sorbent materials that could be effective particularly in oil spill disposal and resolve such environmental issue remain to be explored. We have proposed luffa cylindrica (LC)-polydimethylsiloxane (PDMS) composite forms to remove the oil and organic components that might be hazardous to aquatic organisms. The scaffolds were fabricated using hand lay-up method with various forms of luffa cylindrica i.e., LC mat, flakes and powder. Various characterizations such as scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), effective porosity, surface wettability, mechanical stability, cytotoxicity and sorption behavior with respect to oil, phosphate buffer saline (PBS) and few organic solvents were performed. The results showed that the scaffold in combination with P-L flakes was highly effective in eradicating oil spills and removing harmful components of crude oil. Scaffolds composed of P-L mat, P-L flakes, P-L powder, and PDMS (P) exhibited oil absorption efficacy around 16.09 ± 4.62 %, 24.49 ± 3.55 %, 15.52 ± 2.67 % and 5.52 ± 1.44 %, respectively. We anticipate that the proposed scaffolds have the tremendous potential to provide a solution to this significant environmental remediation issue and to serve as a cost-effective method for removing oil spills and hazardous crude oil components.
Collapse
Affiliation(s)
- Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Niraj K Vishwakarma
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
18
|
Shahghasempour L, Hosseinzadeh S, Haddadi A, Kabiri M. Evaluation of Lactobacillus plantarum and PRGF as a new bioactive multi-layered scaffold PU/PRGF/gelatin/PU for wound healing. Tissue Cell 2023; 82:102091. [PMID: 37104974 DOI: 10.1016/j.tice.2023.102091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The effect of tissue engineering strategies in combination with Lactobacillus plantarum and platelet-rich growth factor (PRGF) with the aim of creating an appropriate wound dressing can be useful in wound healing and infection prevention in patients suffering from acute and chronic skin damages. Therefore, in this study, a new approach was employed to create a bioactive multilayer electrospun scaffold composed of polyurethane (PU), PRGF, and gelatin fibers, then human adipose-derived mesenchymal stem cells (hAMSCs), fibroblast cells (HU-02) and L. plantarum were cultured on the scaffold. The physicochemical properties, biocompatibility, and antibacterial activity of the scaffold were evaluated. In addition, the expression of the migration and proliferation genes of fibroblast cells were investigated by real-time PCR (polymerase chain reaction). Mitochondrial activity assays revealed that PRFG and L. plantarum had a significant positive effect on the viability of target co-cultured cells.Fluorescent and SEM (scanning electron microscopy) images presented the cells and bacterial proliferation and adhesion in hydrophilic scaffolds within 21 days. The sustained release of PRGF from scaffolds with a zero-order pattern was confirmed. RT-PCR analysis revealed that PRGF elevated the expression of VEGF genes up to fourfold, but L. plantarum had a better effect on DDR2 gene expression compared to the TCPS group. Antibacterial tests showed that L. plantarum has a bacterial load reduction of more than 70% in CFU/mL. The present scaffold is an appropriate model for cell attachment, migration, proliferation, and infection prevention.
Collapse
Affiliation(s)
- Lida Shahghasempour
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azam Haddadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Caamal-Herrera I, Erreguin-Isaguirre MB, León-Buitimea A, Morones-Ramírez JR. Synthesis and Design of a Synthetic-Living Material Composed of Chitosan, Calendula officinalis Hydroalcoholic Extract, and Yeast with Applications as a Biocatalyst. ACS OMEGA 2023; 8:12716-12729. [PMID: 37065078 PMCID: PMC10099135 DOI: 10.1021/acsomega.2c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Design and development of materials that couple synthetic and living components allow taking advantage of the complexity of biological systems within a controlled environment. However, their design and fabrication represent a challenge for material scientists since it is necessary to synthesize synthetic materials with highly specialized biocompatible and physicochemical properties. The design of synthetic-living materials (vita materials) requires materials capable of hosting cell ingrowth and maintaining cell viability for extended periods. Vita materials offer various advantages, from simplifying product purification steps to controlling cell metabolic activity and improving the resistance of biological systems to external stress factors, translating into reducing bioprocess costs and diversifying their industrial applications. Here, chitosan sponges, functionalized with Calendula officinalis hydroalcoholic extract, were synthesized using the freeze-drying method; they showed small pore sizes (7.58 μm), high porosity (97.95%), high water absorption (1695%), and thermal stability, which allows the material to withstand sterilization conditions. The sponges allowed integration of 58.34% of viable Saccharomyces cerevisiae cells, and the cell viability was conserved 12 h post-process (57.14%) under storage conditions [refrigerating temperature (4 °C) and without a nutrient supply]. In addition, the synthesized vita materials conserved their biocatalytic activity after 7 days of the integration process, which was evaluated through glucose consumption and ethanol production. The results in this paper describe the synthesis of complex vita materials and demonstrate that biochemically modified chitosan sponges can be used as a platform material to host living and metabolically active yeast with diverse applications as biocatalysts.
Collapse
Affiliation(s)
- Isabel
O. Caamal-Herrera
- School
of Chemistry, Autonomous University of Nuevo
Leon (UANL), San Nicolas de los
Garza, Nuevo Leon 66455, Mexico
- Applied
Microbiology Department, NanoBiotechnology Research Group, Research
Center on Biotechnology and Nanotechnology, School of Chemical Sciences, Autonomous University of Nuevo Leon, PIIT, Km 10 Autopista al Aeropuerto Mariano
Escobedo, Apodaca, Nuevo
Leon 66629, Mexico
| | - Mariana B. Erreguin-Isaguirre
- School
of Chemical Engineering Pharmaceutics, Technological
University of San Juan del Rio, Av. La Palma No. 125, Col. Vista Hermosa, San Juan del Rio, Queretaro 76800, Mexico
| | - Angel León-Buitimea
- School
of Chemistry, Autonomous University of Nuevo
Leon (UANL), San Nicolas de los
Garza, Nuevo Leon 66455, Mexico
- Applied
Microbiology Department, NanoBiotechnology Research Group, Research
Center on Biotechnology and Nanotechnology, School of Chemical Sciences, Autonomous University of Nuevo Leon, PIIT, Km 10 Autopista al Aeropuerto Mariano
Escobedo, Apodaca, Nuevo
Leon 66629, Mexico
| | - José R. Morones-Ramírez
- School
of Chemistry, Autonomous University of Nuevo
Leon (UANL), San Nicolas de los
Garza, Nuevo Leon 66455, Mexico
- Applied
Microbiology Department, NanoBiotechnology Research Group, Research
Center on Biotechnology and Nanotechnology, School of Chemical Sciences, Autonomous University of Nuevo Leon, PIIT, Km 10 Autopista al Aeropuerto Mariano
Escobedo, Apodaca, Nuevo
Leon 66629, Mexico
| |
Collapse
|
20
|
Haghani N, Hassanzadeh Nemati N, Khorasani MT, Bonakdar S. Fabrication of polycaprolactone/heparinized nano fluorohydroxyapatite scaffold for bone tissue engineering uses. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Nila Haghani
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Kumari S, Mishra A, Singh D, Li C, Srivastava P. In-vitro Studies on Copper Nanoparticles and Nano-hydroxyapatite Infused Biopolymeric Composite Scaffolds for Bone Bioengineering Applications. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Khajehmohammadi M, Azizi Tafti R, Nikukar H. Effect of porosity on mechanical and biological properties of bioprinted scaffolds. J Biomed Mater Res A 2023; 111:245-260. [PMID: 36205372 DOI: 10.1002/jbm.a.37455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Treatment of tissue defects commonly represents a major problem in clinics due to difficulties involving a shortage of donors, inappropriate sizes, abnormal shapes, and immunological rejection. While many scaffold parameters such as pore shape, porosity percentage, and pore connectivity could be adjusted to achieve desired mechanical and biological properties. These parameters are crucial scaffold parameters that can be accurately produced by 3D bioprinting technology based on the damaged tissue. In the present research, the effect of porosity percentage (40%, 50%, and 60%) and different pore shapes (square, star, and gyroid) on the mechanical (e.g., stiffness, compressive and tensile behavior) and biological (e.g., biodegradation, and cell viability) properties of porous polycaprolactone (PCL) scaffolds coated with gelatin have been investigated. Moreover, human foreskin fibroblast cells were cultured on the scaffolds in the in-vitro procedures. MTT assay (4, 7, and 14 days) was utilized to determine the cytotoxicity of the porous scaffolds. It is revealed that the porous scaffolds produced by the bioprinter did not produce a cytotoxic effect. Among all the porous scaffolds, scaffolds with a pore size of about 500 μm and porosity of 50% showed the best cell proliferation compared to the controls after 14 days. The results demonstrated that the pore shape, porosity percentage, and pore connectivity have an important role in improving the mechanical and biological properties of porous scaffolds. These 3D bioprinted biodegradable scaffolds exhibit potential for future application as polymeric scaffolds in hard tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Habib Nikukar
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
24
|
Visser D, Bakhshi H, Rogg K, Fuhrmann E, Wieland F, Schenke-Layland K, Meyer W, Hartmann H. Green Chemistry for Biomimetic Materials: Synthesis and Electrospinning of High-Molecular-Weight Polycarbonate-Based Nonisocyanate Polyurethanes. ACS OMEGA 2022; 7:39772-39781. [PMID: 36385898 PMCID: PMC9648058 DOI: 10.1021/acsomega.2c03731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Conventional synthesis routes for thermoplastic polyurethanes (TPUs) still require the use of isocyanates and tin-based catalysts, which pose considerable safety and environmental hazards. To reduce both the ecological footprint and human health dangers for nonwoven TPU scaffolds, it is key to establish a green synthesis route, which eliminates the use of these toxic compounds and results in biocompatible TPUs with facile processability. In this study, we developed high-molecular-weight nonisocyanate polyurethanes (NIPUs) through transurethanization of 1,6-hexanedicarbamate with polycarbonate diols (PCDLs). Various molecular weights of PCDL were employed to maximize the molecular weight of NIPUs and consequently facilitate their electrospinnability. The synthesized NIPUs were characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. The highest achieved molecular weight (M w) was 58,600 g/mol. The NIPUs were consecutively electrospun into fibrous scaffolds with fiber diameters in the submicron range, as shown by scanning electron microscopy (SEM). To assess the suitability of electrospun NIPU mats as a possible biomimetic load-bearing pericardial substitute in cardiac tissue engineering, their cytotoxicity was investigated in vitro using primary human fibroblasts and a human epithelial cell line. The bare NIPU mats did not need further biofunctionalization to enhance cell adhesion, as it was not outperformed by collagen-functionalized NIPU mats and hence showed that the NIPU mats possess a great potential for use in biomimetic scaffolds.
Collapse
Affiliation(s)
- Dmitri Visser
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Hadi Bakhshi
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
- Department
of Functional Polymer Systems, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Katharina Rogg
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Ellena Fuhrmann
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Franziska Wieland
- Department
of Functional Polymer Systems, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Katja Schenke-Layland
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- Institute
of Biomedical Engineering, Dept. for Medical Technologies and Regenerative
Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Wolfdietrich Meyer
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
- Department
of Functional Polymer Systems, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Hanna Hartmann
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| |
Collapse
|
25
|
Bioabsorbable, elastomer-coated magnesium alloy coils for treating saccular cerebrovascular aneurysms. Biomaterials 2022; 290:121857. [DOI: 10.1016/j.biomaterials.2022.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
26
|
Speidel AT, Chivers PRA, Wood CS, Roberts DA, Correia IP, Caravaca AS, Chan YKV, Hansel CS, Heimgärtner J, Müller E, Ziesmer J, Sotiriou GA, Olofsson PS, Stevens MM. Tailored Biocompatible Polyurethane-Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial. Adv Healthc Mater 2022; 11:e2201378. [PMID: 35981326 PMCID: PMC7615486 DOI: 10.1002/adhm.202201378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Indexed: 01/28/2023]
Abstract
Polyurethane-based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane-poly(ethylene glycol) (PU-PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one-pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long-term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82-190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU-PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU-based biomaterials for a variety of applications.
Collapse
Affiliation(s)
- Alessondra T. Speidel
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Phillip R. A. Chivers
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Christopher S. Wood
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Derrick A. Roberts
- Key Centre for Polymers and ColloidsSchool of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Inês P. Correia
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - April S. Caravaca
- Laboratory of ImmunobiologyStockholm Center for Bioelectronic MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholm171 77Sweden
| | - Yu Kiu Victor Chan
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Catherine S. Hansel
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Johannes Heimgärtner
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Eliane Müller
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Jill Ziesmer
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetStockholm171 77Sweden
| | - Georgios A. Sotiriou
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetStockholm171 77Sweden
| | - Peder S. Olofsson
- Laboratory of ImmunobiologyStockholm Center for Bioelectronic MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholm171 77Sweden
- Center for Biomedical Science and Bioelectronic MedicineThe Feinstein Institute for Medical ResearchManhassetNY11030USA
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 77Sweden
- Department of MaterialsDepartment of Bioengineeringand Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
27
|
Miceli GC, Palumbo FS, Bonomo FP, Zingales M, Licciardi M. Polybutylene Succinate Processing and Evaluation as a Micro Fibrous Graft for Tissue Engineering Applications. Polymers (Basel) 2022; 14:4486. [PMID: 36365480 PMCID: PMC9655432 DOI: 10.3390/polym14214486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
A microfibrous tubular scaffold has been designed and fabricated by electrospinning using poly (1,4-butylene succinate) as biocompatible and biodegradable material. The scaffold morphology was optimized as a small diameter and micro-porous conduit, able to foster cell integration, adhesion, and growth while avoiding cell infiltration through the graft's wall. Scaffold morphology and mechanical properties were explored and compared to those of native conduits. Scaffolds were then seeded with adult normal human dermal fibroblasts to evaluate cytocompatibility in vitro. Haemolytic effect was evaluated upon incubation with diluted whole blood. The scaffold showed no delamination, and mechanical properties were in the physiological range for tubular conduits: elastic modulus (17.5 ± 1.6 MPa), ultimate tensile stress (3.95 ± 0.17 MPa), strain to failure (57 ± 4.5%) and suture retention force (2.65 ± 0.32 N). The shown degradation profile allows the graft to provide initial mechanical support and functionality while being colonized and then replaced by the host cells. This combination of features might represent a step toward future research on PBS as a biomaterial to produce scaffolds that provide structure and function over time and support host cell remodelling.
Collapse
Affiliation(s)
- Giovanni Carlo Miceli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy
| | - Francesco Paolo Bonomo
- Advanced Technology Network Center (ATeN Center), Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Massimiliano Zingales
- Dipartimento di Ingegneria, Viale delle Scienze, Università degli Studi di Palermo, ed.8, 90128 Palermo, Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy
| |
Collapse
|
28
|
Namviriyachote N, Arkatchai S, Rerkasem K, Muangman P. Characteristics and Safety Profiles of a Hydrocolloid Polyester Dressing Incorporated with Herbal Extract: In Vitro, in Vivo and Randomized Clinical Studies. INT J LOW EXTR WOUND 2022:15347346221123639. [PMID: 36069040 DOI: 10.1177/15347346221123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The polyester dressing containing herbal extract had been used for several years. However, some properties had not been investigated. This study examined three parts including in vitro studies, skin irritation in an animal model, and the pilot clinical study in traumatic wounds. In in vitro studies, six different wound dressings consisted of hydrocolloid polyester containing herbal extract (SI-HERB®), hydrofiber (Aquacel®), hydrocolloid polyester (Urgotul®), soft paraffin gauze (Bactigras®), foam (Mepilex®), and biocellulose (Suprasorb® X + PHMB) dressings were comparatively evaluated in physical properties including the fluid absorption, desorption, and fluid drainage ability. The skin irritation test was examined in a rabbit model using SI-HERB® as a tested group. In a clinical study, traumatic patients with leg wounds were randomly assigned to six wound dressings. The primary outcome was the pain level and the secondary outcomes were non-adherence and peri-wound reaction evaluating score. From the study, Bactigras® had the largest pore size but the total area of pore size per field of it was similar to SI-HERB®. There were no significant differences between SI-HERB®, Urgotul®, and Bactigras® in the percentage of absorption and desorption. No dermatologic effect was found in the animal study. In the irritation test on leg wounds, pain level, and peri-wound reaction in hydrocolloid polyester dressing group were significantly lower compared with Aquacel® and Bactigras®. The polyester dressing had the pain level after removal lower than before application while the Mepilex® and Suprasorb® presented that insignificantly increase the pain level. Erythema could be observed in Bactigras®, Aquacel®, and Suprasorb® but the edema scores were not different. A hydrocolloid polyester dressing containing herbal extract had good drainage ability. No skin irritation was reported. Pain scores, removal ability, and peri-wound reaction were also significantly lower with other types of wound dressings. These results suggested that this dressing be an alternative in wound treatment.
Collapse
Affiliation(s)
- Nantaporn Namviriyachote
- Department of Surgery, Faculty of Medicine Siriraj Hospital, 26685Mahidol University, Bangkok, Thailand
| | - Sasiwimon Arkatchai
- Department of Surgery, Faculty of Medicine Siriraj Hospital, 26685Mahidol University, Bangkok, Thailand
| | - Kittipan Rerkasem
- Department of Surgery, Faculty of Medicine, 26682Chiang Mai University, Bangkok, Thailand
- Research Institute for Health Science, 26682Chiang Mai University, Bangkok, Thailand
| | - Pornprom Muangman
- Department of Surgery, Faculty of Medicine Siriraj Hospital, 26685Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
30
|
Sikdar P, Dip TM, Dhar AK, Bhattacharjee M, Hoque MS, Ali SB. Polyurethane (
PU
) based multifunctional materials: Emerging paradigm for functional textiles, smart, and biomedical applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Partha Sikdar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Avik K. Dhar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Md. Saiful Hoque
- Department of Human Ecology University of Alberta Edmonton Alberta Canada
- Department of Textile Engineering Daffodil International University 102 Shukrabad, Dhanmondi Dhaka Bangladesh
| | | |
Collapse
|
31
|
Chen Y, Lin J, Yan W. A Prosperous Application of Hydrogels With Extracellular Vesicles Release for Traumatic Brain Injury. Front Neurol 2022; 13:908468. [PMID: 35720072 PMCID: PMC9201053 DOI: 10.3389/fneur.2022.908468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability worldwide, becoming a heavy burden to the family and society. However, the complexity of the brain and the existence of blood-brain barrier (BBB) do limit most therapeutics effects through simple intravascular injection. Hence, an effective therapy promoting neurological recovery is urgently required. Although limited spontaneous recovery of function post-TBI does occur, increasing evidence indicates that exosomes derived from stem cells promote these endogenous processes. The advantages of hydrogels for transporting drugs and stem cells to target injured sites have been discussed in multitudinous studies. Therefore, the combined employment of hydrogels and exosomes for TBI is worthy of further study. Herein, we review current research associated with the application of hydrogels and exosomes for TBI. We also discuss the possibilities and advantages of exosomes and hydrogels co-therapies after TBI.
Collapse
|
32
|
Kim SE, Kim NE, Park S, Choi JH, Song Y, Tumursukh NE, Youn J, Song JE, Khang G. Evaluation of calcium phosphate-coated polycaprolactone/graphene oxide scaffold with macro- and microporous structure for bone tissue engineering. IN VITRO MODELS 2022; 1:261-272. [PMID: 39871868 PMCID: PMC11756476 DOI: 10.1007/s44164-022-00026-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2025]
Abstract
Objectives This study aimed to fabricate porous PCL/GO scaffolds by adding graphene oxide (GO) which is a hydrophilic material to improve cell affinity of PCL. Calcium phosphate (CaP) coating was performed to enhance the bioactivity of the composite scaffold. The phase separation methods and the salt leaching process were used to impart high porosity and pores of various sizes in the scaffolds. Methods The scaffolds were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), water contact angle test, swelling test, and mechanical tests. For in vitro evaluation, cell morphology and viability test, alkaline phosphatase (ALP) activity, and double-stranded DNA (dsDNA) quantification were performed using mouse bone marrow stem cells (mBMSCs). Results All scaffolds had interconnected pore networks for transporting nutrients, oxygen, and waste products. GO addition and CaP coating improved hydrophilicity, swelling behavior, mechanical properties, and cell proliferation properties of the scaffolds by creating a biomimetic 3D microenvironment. The PCL/GO/CaP scaffold laden with mBMSCs had no clear cytotoxicity and further promoted osteogenic differentiation compared to the groups without GO or CaP. Conclusions Our results suggest that the porous PCL/GO/CaP scaffold showed enhanced hydrophilicity and swelling behavior and exerted beneficial effects on cell proliferation and differentiation. This composite scaffold shows potential for clinical application in bone tissue engineering.
Collapse
Affiliation(s)
- Se Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Sunjae Park
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
- Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur, 60115 Indonesia
| |
Collapse
|
33
|
The Study of Properties and Structure of Polylactide–Graphite Nanoplates Compositions. POLYMER CRYSTALLIZATION 2022. [DOI: 10.1155/2022/4367582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Composites of polylactide containing graphite nanoplates as a filler in the concentration range 1–20 wt% were prepared in methylene chloride using the sonication technique. The thermal characteristics and phase transitions were studied by DSC and TGA methods. The temperatures and heats of glass transition, crystallization, and melting were determined, and the degree of crystallinity during primary and secondary heating was calculated. It is shown that the introduction of graphite nanoplates leads to an increase in the elastic modulus and a decrease in the breaking stress and elongation at break. These changes are especially pronounced at 20% GNP content in the composition, when the corresponding mechanical parameters are characteristics of brittle polymer systems. The study of the electrical properties of the composites showed that the percolation threshold in these materials is close to 7 wt%, which is significantly lower than in the case of spherical particles of comparable density. The SEM study of the filled composites showed a system of pores, which were apparently formed during the evaporation of solvent in the process of their preparation. Diverse structures of PLA/GNP composites films after hot pressure were established by the SEM method.
Collapse
|
34
|
Nair KS, James NR. Reinforcement of electrospun polyurethane fibers with resorcinol–formaldehyde resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kiran Sukumaran Nair
- Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Nirmala Rachel James
- Department of Chemistry Indian Institute of Space Science and Technology Thiruvananthapuram Kerala India
| |
Collapse
|
35
|
Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022; 11:e2102087. [PMID: 35137550 PMCID: PMC9081257 DOI: 10.1002/adhm.202102087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Porosity is an important material feature commonly employed in implants and tissue scaffolds. The presence of material voids permits the infiltration of cells, mechanical compliance, and outward diffusion of pharmaceutical agents. Various studies have confirmed that porosity indeed promotes favorable tissue responses, including minimal fibrous encapsulation during the foreign body reaction (FBR). However, increased biofilm formation and calcification is also described to arise due to biomaterial porosity. Additionally, the relevance of host responses like the FBR, infection, calcification, and thrombosis are dependent on tissue location and specific tissue microenvironment. In this review, the features of porous materials and the implications of porosity in the context of medical devices is discussed. Common methods to create porous materials are also discussed, as well as the parameters that are used to tune pore features. Responses toward porous biomaterials are also reviewed, including the various stages of the FBR, hemocompatibility, biofilm formation, and calcification. Finally, these host responses are considered in tissue specific locations including the subcutis, bone, cardiovascular system, brain, eye, and female reproductive tract. The effects of porosity across the various tissues of the body is highlighted and the need to consider the tissue context when engineering biomaterials is emphasized.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
36
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Ghelich P, Kazemzadeh-Narbat M, Najafabadi AH, Samandari M, Memic A, Tamayol A. (Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100073. [PMID: 35935166 PMCID: PMC9355310 DOI: 10.1002/anbr.202100073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | | | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| |
Collapse
|
38
|
Ionic Cross-Linkable Alendronate-Conjugated Biodegradable Polyurethane Films for Potential Guided Bone Regeneration. Macromol Res 2022. [DOI: 10.1007/s13233-022-0014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Attasgah R, Velasco-Rodríguez B, Pardo A, Fernández-Vega J, Arellano-Galindo L, Rosales-Rivera L, Prieto G, Barbosa S, Soltero J, Mahmoudi M, Taboada P. DEVELOPMENT OF FUNCTIONAL HYBRID SCAFFOLDS FOR WOUND HEALING APPLICATIONS. iScience 2022; 25:104019. [PMID: 35340432 PMCID: PMC8941216 DOI: 10.1016/j.isci.2022.104019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hybrid hydrogels composed of chitosan (CS) and hyaluronic acid (HA) and collagen (Coll) were prepared by polyelectrolyte complex self-assembly. These scaffolds displayed a good intermingling of the polymeric chains, with porosities above 80% and good interconnected structures with pore sizes lying between 30–115 μm. The ionic interactions between CS and HA make the scaffolds have larger storage modulus and longer LVR regions than their pure counterparts. Both quantities progressively decrease as the HA and Coll concentrations in the formulation rise. These hybrid hydrogels showed good swelling extents from ca. 420 to ca. 690% and suitable resistance to enzymatic degradation, which was slightly lower for scaffolds containing CS to larger extents or Coll in the formulation. All scaffolds were largely cytocompatible and allowed the proliferation of both mouse fibroblast and human keratinocytes with their infiltration inside, thus becoming optimal matrices for intended tissue engineering applications as well as transdermal drug delivery depots. Hybrid scaffolds were obtained by polyelectrolyte ionic self-assembly Scaffolds were largely porous with suitable pore sizes for cell proliferation Scaffolds showed exceptional swelling and good resistance to enzymatic attack They were nontoxic and enabled cell proliferation and infiltration inside the scaffold
Collapse
|
40
|
Liu C, Feng B, He S, Liu Y, Chen L, Chen Y, Yao Z, Jian M. Preparation and evaluation of a silk fibroin–polycaprolactone biodegradable biomimetic tracheal scaffold. J Biomed Mater Res B Appl Biomater 2022; 110:1292-1305. [PMID: 35061311 DOI: 10.1002/jbm.b.35000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Cai‐Sheng Liu
- School of Medicine South China University of Technology Guangzhou China
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Bo‐Wen Feng
- Department of Child Healthcare Guangzhou Women and Children's Medical Center Guangzhou China
| | - Shao‐Ru He
- School of Medicine South China University of Technology Guangzhou China
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Yu‐Mei Liu
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Liang Chen
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Yan‐Ling Chen
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Zhi‐Ye Yao
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Min‐Qiao Jian
- Department of Pediatrics, Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
41
|
Abstract
There is a tremendous clinical need for synthetic vascular grafts either for bypass procedure or vascular access during hemodialysis. However, currently, there is no small-diameter vascular graft commercially available to meet long-term patency requirement due to frequent thrombus formation and intimal hyperplasia. This chapter describes the fabrication of electrospun small-diameter polycarbonate-urethane (PCU) vascular graft with a biomimetic fibrous structure. Additionally, the surface of the vascular graft is aminated via plasma treatment for the subsequently end-point heparin immobilization to enhance antithrombosis property.
Collapse
|
42
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
43
|
Kumar L, Ahuja D. 3D porous polyurethane (PU)/ triethanolamine modified hydroxyapatite (TEA-HA) nano composite for enhanced bioactivity for biomedical applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Gokyer S, Yilgor E, Yilgor I, Berber E, Vrana E, Orhan K, Monsef YA, Guvener O, Zinnuroglu M, Oto C, Yilgor Huri P. 3D Printed Biodegradable Polyurethaneurea Elastomer Recapitulates Skeletal Muscle Structure and Function. ACS Biomater Sci Eng 2021; 7:5189-5205. [PMID: 34661388 DOI: 10.1021/acsbiomaterials.1c00703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Effective skeletal muscle tissue engineering relies on control over the scaffold architecture for providing muscle cells with the required directionality, together with a mechanical property match with the surrounding tissue. Although recent advances in 3D printing fulfill the first requirement, the available synthetic polymers either are too rigid or show unfavorable surface and degradation profiles for the latter. In addition, natural polymers that are generally used as hydrogels lack the required mechanical stability to withstand the forces exerted during muscle contraction. Therefore, one of the most important challenges in the 3D printing of soft and elastic tissues such as skeletal muscle is the limitation of the availability of elastic, durable, and biodegradable biomaterials. Herein, we have synthesized novel, biocompatible and biodegradable, elastomeric, segmented polyurethane and polyurethaneurea (TPU) copolymers which are amenable for 3D printing and show high elasticity, low modulus, controlled biodegradability, and improved wettability, compared to conventional polycaprolactone (PCL) and PCL-based TPUs. The degradation profile of the 3D printed TPU scaffold was in line with the potential tissue integration and scaffold replacement process. Even though TPU attracts macrophages in 2D configuration, its 3D printed form showed limited activated macrophage adhesion and induced muscle-like structure formation by C2C12 mouse myoblasts in vitro, while resulting in a significant increase in muscle regeneration in vivo in a tibialis anterior defect in a rat model. Effective muscle regeneration was confirmed with immunohistochemical assessment as well as evaluation of electrical activity produced by regenerated muscle by EMG analysis and its force generation via a custom-made force transducer. Micro-CT evaluation also revealed production of more muscle-like structures in the case of implantation of cell-laden 3D printed scaffolds. These results demonstrate that matching the tissue properties for a given application via use of tailor-made polymers can substantially contribute to the regenerative outcomes of 3D printed tissue engineering scaffolds.
Collapse
Affiliation(s)
- Seyda Gokyer
- Ankara University, Faculty of Engineering, Department of Biomedical Engineering, Ankara 06560, Turkey
| | - Emel Yilgor
- KUYTAM Surface Science and Technology Center, Koç University, Department of Chemistry, Istanbul 34450, Turkey
| | - Iskender Yilgor
- KUYTAM Surface Science and Technology Center, Koç University, Department of Chemistry, Istanbul 34450, Turkey
| | - Emine Berber
- National Institute of Health and Medical Research, INSERM UMR1121, Biomaterials and Bioengineering, 11 Rue Humann, 67000, Strasbourg, France
| | - Engin Vrana
- National Institute of Health and Medical Research, INSERM UMR1121, Biomaterials and Bioengineering, 11 Rue Humann, 67000, Strasbourg, France.,Spartha Medical, 14B Rue de la Canardiere 67100, Strasbourg, France
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of Dentomaxillofacial Radiology, Ankara 06560, Turkey.,Gazi University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Ankara 06560, Turkey
| | - Yanad Abou Monsef
- Ankara University Faculty of Veterinary Medicine, Department of Pathology, Ankara 06560, Turkey
| | - Orcun Guvener
- Ankara University Faculty of Veterinary Medicine, Department of Anatomy, Ankara 06560, Turkey
| | - Murat Zinnuroglu
- Gazi University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Ankara 06560, Turkey
| | - Cagdas Oto
- Ankara University Faculty of Veterinary Medicine, Department of Anatomy, Ankara 06560, Turkey.,Ankara University Medical Design Research and Application Center MEDITAM, Ankara 06560, Turkey
| | - Pinar Yilgor Huri
- Ankara University, Faculty of Engineering, Department of Biomedical Engineering, Ankara 06560, Turkey.,Ankara University Medical Design Research and Application Center MEDITAM, Ankara 06560, Turkey
| |
Collapse
|
45
|
Asakura T, Ibe Y, Jono T, Matsuda H, Kuwabara N, Naito A. Structural investigations of polyurethane and
silk‐polyurethane
composite fiber studied by
13
C
solid‐state
NMR
spectroscopy. J Appl Polym Sci 2021. [DOI: 10.1002/app.51178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Yusuke Ibe
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Takaki Jono
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Hironori Matsuda
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center Maebashi Gunma Japan
| | - Akira Naito
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| |
Collapse
|
46
|
Wang L, Zeng X, Yan G, Chen X, Luo K, Zhou S, Zhang P, Li J, Wong TW. Biomimetic scaffolds with programmable pore structures for minimum invasive bone repair. NANOSCALE 2021; 13:16680-16689. [PMID: 34590639 DOI: 10.1039/d1nr04124j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the complexity of surgery for large-area bone injuries, implanting a large volume of materials into the injury site remains a big challenge in orthopedics. To solve this difficulty, in this study, a series of biomimetic hydroxyapatite/shape-memory composite scaffolds were designed and synthesized with programmable pore structures, based on poly(ε-caprolactone) (PCL), polytetrahydrofuran (PTMG) and the osteoconductive hydroxyapatite (HA). The obtained scaffolds presented various pore structures, high connectivity, tunable mechanical properties, and excellent shape memory performance. Moreover, the mineralization activity of the developed scaffolds could enhance the formation of hydroxyapatite and they showed good biocompatibility in vitro. The in vivo experiments show that scaffolds could promote the formation of new bone in critical size cranial defects. The programmable porous scaffold biomaterials exhibited potential application promise in bone regeneration.
Collapse
Affiliation(s)
- Li Wang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xiyang Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Guilong Yan
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Xiaohu Chen
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Kun Luo
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Shiyi Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Peicong Zhang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Junfeng Li
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Tuck-Whye Wong
- Advanced Membrane Technology Centre, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| |
Collapse
|
47
|
Liu C, Yang H, Shen NA, Li J, Chen Y, Wang JY. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement. Biomed Mater 2021; 16. [PMID: 34517347 DOI: 10.1088/1748-605x/ac265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
As a novel bone substitute material, zein-based scaffolds (ZS) should have suitable mechanical properties and porosity. ZS has shown good compressive properties matching cancellous bone, but there is still a demand to improve its mechanical properties, especially tensile and bending properties without adding plasticizers. The present study explored two simple and environment-friendly factors for this purpose: fiber reinforcement and quenching. Addition of electrospun zein fibers enhanced all mechanical properties significantly including compressive, tensile, and bending moduli; compressive and bending strengths of ZS with both higher (70-80%) and lower (50-60%) porosities, no matter whether heating treated or not treated. Especially, all these parameters were further enhanced significantly by addition of heating treated fibers. AFM provided evidence that high temperature modification could significantly alter the micro-elastic properties of zein electrospun fibers, i.e., increased stiffness of fibers. Quenching treatment also enhanced compressive, tensile, and bending strengths significantly. Finally, quenching treated ZS were implanted into critical-sized bone defects (15 mm) of the rabbit model to compare the repair efficacy with a commercial β-tricalcium phosphate product. The results demonstrated that there were no remarkable differences in bone reconstructions between these two materials.
Collapse
Affiliation(s)
- Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Hui Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Nai-An Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 201306, China
| | - Yunsu Chen
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 201306, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822.,Jiaxing Yaojiao Medical Device Co. Ltd, 321 Jiachuang Road, Jiaxing 314032, China
| |
Collapse
|
48
|
Efficient inductively heated shape memory polyurethane acrylate network with silane modified nanodiamond@Fe3O4 superparamagnetic nanohybrid. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
50
|
Murugan S, Parcha SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:93. [PMID: 34379204 PMCID: PMC8357662 DOI: 10.1007/s10856-021-06564-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/28/2021] [Indexed: 06/04/2023]
Abstract
A fine-tuned combination of scaffolds, biomolecules, and mesenchymal stem cells (MSCs) is used in tissue engineering to restore the function of injured bone tissue and overcome the complications associated with its regeneration. For two decades, biomaterials have attracted much interest in mimicking the native extracellular matrix of bone tissue. To this aim, several approaches based on biomaterials combined with MSCs have been amply investigated. Recently, hydroxyapatite (HA) nanoparticles have been incorporated with polycaprolactone (PCL) matrix as a suitable substitute for bone tissue engineering applications. This review article aims at providing a brief overview on PCL/HA composite scaffold fabrication techniques such as sol-gel, rapid prototyping, electro-spinning, particulate leaching, thermally induced phase separation, and freeze-drying, as suitable approaches for tailoring morphological, mechanical, and biodegradability properties of the scaffolds for bone tissues. Among these methods, the 3D plotting method shows improvements in pore architecture (pore size of ≥600 µm and porosity of 92%), mechanical properties (higher than 18.38 MPa), biodegradability, and good bioactivity in bone tissue regeneration.
Collapse
Affiliation(s)
- Sivasankar Murugan
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|