1
|
Papait A, Perini G, Palmieri V, Cargnoni A, Vertua E, Pasotti A, Rosa E, De Spirito M, Silini AR, Papi M, Parolini O. Defining the immunological compatibility of graphene oxide-loaded PLGA scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2024; 165:214024. [PMID: 39232353 DOI: 10.1016/j.bioadv.2024.214024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.
Collapse
Affiliation(s)
- Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy.
| | - Giordano Perini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Anna Pasotti
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Enrico Rosa
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
2
|
Zhang L, Ma Y, Wei Z, Wang L. Toxicity of gold nanoparticles complicated by the co-existence multiscale plastics. Front Microbiol 2024; 15:1447046. [PMID: 39268536 PMCID: PMC11392435 DOI: 10.3389/fmicb.2024.1447046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Gold nanoparticles (AuNPs) have been developed as treatment materials for various diseases and shown magnificent potential. By contrast to the broad toxicological studies on the single exposure (AuNPs), how the other health risks modulate the toxicological profile of AuNPs remains to be investigated. Plastics are among the most common health risks in daily life due to the broad utilization of plastic products. Therefore, in this study, we aimed to reveal the toxicological effects induced by co-exposure of gold nanorod (AuR) and polystyrene micro- and nano-plastics (hereinafter, referred to as AuRmPS and AuRnPS, respectively) in mice. Methods Systematic biochemical characterizations were performed to investigate the hepatotoxicity, nephrotoxicity, neurotoxicity, inflammatory responses, alterations in gut microbiota induced by co-exposure, and to analyze the toxicological phenomena from the roles of reactive oxygen species and gut-organ axis. Results It has been found that hepatotoxicity, nephrotoxicity, neurotoxicity, and inflammation were exacerbated in AuRnPS and AuRmPS, and gut microbiota composition was more severely altered in AuRnPS exposure. These results suggest the necessity of reducing plastics exposure in AuNPs-based therapies. Moreover, protection against the nano-sized plastic particles holds higher priority. Conclusion These findings will facilitate the explorations of methods to reduce therapeutic toxicity and improve biosafety for specific treatments by referring to the orders of importance in protecting different organs.
Collapse
Affiliation(s)
- Lan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhiliang Wei
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Maryland, MD, United States
| | - Luyang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Wu TL, Wang BN, Yang AJ, Wang L, You YN, Zhou RQ. C-type lectin 4 of Toxocara canis activates NF-ĸB and MAPK pathways by modulating NOD1/2 and RIP2 in murine macrophages in vitro. Parasitol Res 2024; 123:189. [PMID: 38639821 DOI: 10.1007/s00436-024-08212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 μg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.
Collapse
Affiliation(s)
- Tian-Le Wu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Bing-Nan Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ai-Jia Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lei Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yi-Ning You
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Rong-Qiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
4
|
Camacho-Toledano C, Machín-Díaz I, Lebrón-Galán R, González-Mayorga A, Palomares FJ, Serrano MC, Clemente D. Graphene oxide films as a novel tool for the modulation of myeloid-derived suppressor cell activity in the context of multiple sclerosis. NANOSCALE 2024; 16:7515-7531. [PMID: 38498071 DOI: 10.1039/d3nr05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Isabel Machín-Díaz
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Rafael Lebrón-Galán
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071- Toledo, Spain
| | - Francisco J Palomares
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - Diego Clemente
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071-Toledo, Spain
| |
Collapse
|
5
|
Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant. Int Immunopharmacol 2023; 125:111062. [PMID: 37866317 DOI: 10.1016/j.intimp.2023.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To improve antigen immunogenicity and promote long-lasting immunity, vaccine formulations have been appropriately supplemented with adjuvants. Graphene has been found to enhance the presentation of antigens to CD8+ T cells, as well as stimulating innate immune responses and inflammatory factors. Its properties, such as large surface area, water stability, and high aspect ratio, make it a suitable candidate for delivering biological substances. Graphene-based nanomaterials have recently attracted significant attention as a new type of vaccine adjuvants due to their potential role in the activation of immune responses. Due to the limited functionality of some approved human adjuvants for use, the development of new all-purpose adjuvants is urgently required. Research on the immunological and biomedical use of graphene oxide (GO) indicates that these nanocarriers possess excellent physicochemical properties, acceptable biocompatibility, and a high capacity for drug loading. Graphene-based nanocarriers also could improve the function of some immune cells such as dendritic cells and macrophages through specific signaling pathways. However, GO injection can lead to significant oxidative stress and inflammation. Various surface functionalization protocols have been employed to reduce possible adverse effects of GO, such as aggregation of GO in biological liquids and induce cell death. Furthermore, these modifications enhance the properties of functionalized-GO's qualities, making it an excellent carrier and adjuvant. Shedding light on different physicochemical and structural properties of GO and its derivatives has led to their application in various therapeutic and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of GO.
Collapse
Affiliation(s)
- Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Li X, Chen Y, Xu J, Lynch I, Guo Z, Xie C, Zhang P. Advanced nanopesticides: Advantage and action mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108051. [PMID: 37820512 DOI: 10.1016/j.plaphy.2023.108051] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The use of various chemical substances to control pests, diseases, and weeds in the field is a necessary part of the agricultural development process in every country. While the application of pesticides can improve the quality and yield of crops, plant resistance and the harm caused by pesticide residues to the environment and humans have led to the search for greener and safer pesticide formulations to improve the current situation. In recent years, nanopesticides (NPts) have shown great potential in agriculture due to their high efficiency, low toxicity, targeting, resistance, and controlled slow release demonstrated in the experimental stage. Commonly used approaches to prepare NPts include the use of nanoscale metal materials as active ingredients (AI) (ingredients that can play a role in insecticide, sterilization and weeding) or the construction of carriers based on commonly used pesticides to make them stable in nano-sized form. This paper systematically summarizes the advantages and effects of NPts over conventional pesticides, analyzes the formation and functions of NPts in terms of structure, AI, and additives, and describes the mechanism of action of NPts. Despite the feasibility of NPts use, there is not enough comprehensive research on NPts, which must be supplemented by more experiments in terms of biotoxicology and ecological effects to provide strong support for NPts application.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yiqing Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Changjian Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
8
|
Cheng T, Yan T, Wu J, Wang Q, Zhang H. Yeast β-D-glucan functionalized graphene oxide for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced antitumor immunity. Int J Biol Macromol 2023; 234:123432. [PMID: 36716835 DOI: 10.1016/j.ijbiomac.2023.123432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Immunostimulatory CpG oligodeoxynucleotides (CpG ODNs) show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hindered due to rapid nuclease degradation and insufficient cellular uptake. Transfecting CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy while reduce the potential side effects. Herein, a multifunctional CpG ODNs vector was fabricated through functionalization of graphene oxide (GO) with yeast β-D-glucan, and its potential in cancer immunotherapy was further investigated. GO-β-D-glucan protected CpG ODNs from nuclease digestion. β-D-glucan endowed the delivery system with targeting ability for macrophage due to its recognition with dectin-1. Thus, GO-β-D-glucan enhanced the delivery of CpG ODNs into RAW264.7 cells due to dectin-1-mediated endocytosis. More importantly, β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. GO-β-D-glucan/CpG ODNs inhibited the tumor cells growth more effectively. This work provides a macrophage-targeted CpG ODNs delivery system for cancer immunotherapy. Graphic abstract.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China
| | - Ting Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Wu
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China
| | - Qi Wang
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China.
| | - Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
10
|
Liang L, Yin Y, Guo Z, Liu T, Ouyang Z, Zhou J, Xiao J, Zhao L, Wu H. Sequentially activating macrophages M1 and M2 phenotypes by lipopolysaccharide-containing Mg-Fe layered double hydroxides coating on the Ti substrate. Colloids Surf B Biointerfaces 2023; 222:113066. [PMID: 36525754 DOI: 10.1016/j.colsurfb.2022.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
As cells of innate immunity, macrophages are a class of innate immune cells existing in almost all tissues and play a crucial role in bone repair. However, it remains a challenge to modulate the sequential activation of the deferent phenotypes in macrophage when designing the titanium (Ti) implants. In this study, the Mg-Fe layered double hydroxides (LDHs) was coated on Ti substrate through hydrothermal treatment. Further on lipopolysaccharide (LPS) was introduced onto the LDHs through adsorption and ions exchange. The adsorption efficiency of the coating on LPS reached 72.8% in 24 h due to the anion exchange and electrostatic interactions between the LPS and the LDH layers in deionized water. The LDHs-LPS coating released a large amount of LPS in the early stage, which induced macrophages into M1 phenotype via activating TLR-4 → MyD88 and TLR-4 → Ticam-1/2 signal pathways. Subsequently, the M1 macrophages were transformed into M2 phenotype by regulating the integrin α5β1 of cells by the nanostructures, wetting angle and Mg2+ of the coating. The LDHs-LPS coating endows Ti with the ability of stage immunomodulation, indicating the positive osteoimmunomodulatory property.
Collapse
Affiliation(s)
- Luxin Liang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Yong Yin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Zhenhu Guo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Jixiang Zhou
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
11
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
12
|
Bao L, Cui X, Chen C. Toxicology for Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Hao F, Yan ZY, Yan XP. Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. CHEMOSPHERE 2022; 307:135680. [PMID: 35850215 DOI: 10.1016/j.chemosphere.2022.135680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The diverse applications of porphyrin-based nano-sized metal-organic frameworks (NMOFs) lead to great exposure risks to human and environment. Understanding the cellular biological effects (such as toxicity, distribution, and localization) of porphyrinic NMOFs is a prerequisite to the assessment of their health risk. However, the characteristics of distribution, localization, and immune response induced by porphyrinic NMOFs have not been studied yet. Here, we report the size-dependent biological effects of porphyrinic NMOFs under sublethal dose. Various sizes of PCN-224 (30, 90, and 180 nm) were taken as model porphyrinic NMOFs. We found that 30 nm PCN-224 gave the highest uptake content, followed by 90 and 180 nm PCN-224. The mechanism for uptake was clathrin-mediated for 30 and 90 nm PCN-224, but clathrin- and glycosylphosphatidylinositol-mediated for 180 nm PCN-224. All PCN-224 were localized in lysosome with size-dependent velocity of colocalization transport. 30 nm PCN-224 induced the highest released cytokines than 90 and 180 nm PCN-224 accompanied with the activation of NF-κB pathway. This work reveals the mechanisms for the endocytosis of PCN-224 and the release of cytokine induced by PCN-224, which is helpful for the health risk assessment of NMOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhu-Ying Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
15
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
16
|
Šestáková B, Schröterová L, Bezrouk A, Čížková D, Elkalaf M, Havelek R, Rudolf E, Králová V. The Effect of Chronic Exposure of Graphene Nanoplates on the Viability and Motility of A549 Cells. NANOMATERIALS 2022; 12:nano12122074. [PMID: 35745421 PMCID: PMC9227066 DOI: 10.3390/nano12122074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/07/2022]
Abstract
Graphene and its derivatives are popular nanomaterials used worldwide in many technical fields and biomedical applications. Due to such massive use, their anticipated accumulation in the environment is inevitable, with a largely unknown chronic influence on living organisms. Although repeatedly tested in chronic in vivo studies, long-term cell culture experiments that explain the biological response to these nanomaterials are still scarce. In this study, we sought to evaluate the biological responses of established model A549 tumor cells exposed to a non-toxic dose of pristine graphene for eight weeks. Our results demonstrate that the viability of the A549 cells exposed to the tested graphene did not change as well as the rate of their growth and proliferation despite nanoplatelet accumulation inside the cells. In addition, while the enzymatic activity of mitochondrial dehydrogenases moderately increased in exposed cells, their overall mitochondrial damage along with energy production changes was also not detected. Conversely, chronic accumulation of graphene nanoplates in exposed cells was detected, as evidenced by electron microscopy associated with impaired cellular motility.
Collapse
Affiliation(s)
- Blanka Šestáková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| | - Ladislava Schröterová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
- Correspondence: ; Tel.: +420-495-816-284
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Dana Čížková
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| | - Věra Králová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| |
Collapse
|
17
|
A mutually beneficial macrophages-mediated delivery system realizing photo/immune therapy. J Control Release 2022; 347:14-26. [PMID: 35489548 DOI: 10.1016/j.jconrel.2022.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022]
Abstract
The accumulation of nanomedicines in tumor tissues determines their therapeutic efficacy. We herein exploit the tropism of macrophages to improve the accumulation and retention time of nanomedicine at tumors. Interestingly, macrophages are not merely as transporters, but killers activated by nanomedicine. The system(M@C-HA/ICG) was established by decorating macrophages with hyaluronic acid-modified hollow mesoporous carbon (C) nanoparticles loading indocyanine green (ICG). Notably, C nanoparticles with superior photothermal conversion capability not merely guarantee the efficient delivery of ICG through high drug loading efficiency and inhibiting the premature leaky, but effectually activate the polarization of macrophages. The results exhibited that those activated macrophages could release pro-inflammatory cytokines (NO, TNF-α, IL-12), while M@C-HA/ICG afforded about 2-fold higher tumor accumulation compared with pure nanoparticle C-HA/ICG and produced heat and singlet oxygen (1O2) under irradiation of an 808 nm laser, realizing the combination of photodynamic therapy (PDT), photothermal therapy (PTT) and cytokines-mediated immunotherapy. Specially, we also investigated the relationship of singlet oxygen (1O2) or temperature and tumor-killing activity for understanding the specific effectual procedure of PDT/PTT synergistic therapy. Overall, we firstly established an "all active" delivery system integrating the features of nanomedicine with biological functions of macrophages, providing a novel insight for cell-mediated delivery platform and tumor targeted multimodality anti-cancer therapy.
Collapse
|
18
|
Nienhaus K, Xue Y, Shang L, Nienhaus GU. Protein adsorption onto nanomaterials engineered for theranostic applications. NANOTECHNOLOGY 2022; 33:262001. [PMID: 35294940 DOI: 10.1088/1361-6528/ac5e6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The key role of biomolecule adsorption onto engineered nanomaterials for therapeutic and diagnostic purposes has been well recognized by the nanobiotechnology community, and our mechanistic understanding of nano-bio interactions has greatly advanced over the past decades. Attention has recently shifted to gaining active control of nano-bio interactions, so as to enhance the efficacy of nanomaterials in biomedical applications. In this review, we summarize progress in this field and outline directions for future development. First, we briefly review fundamental knowledge about the intricate interactions between proteins and nanomaterials, as unraveled by a large number of mechanistic studies. Then, we give a systematic overview of the ways that protein-nanomaterial interactions have been exploited in biomedical applications, including the control of protein adsorption for enhancing the targeting efficiency of nanomedicines, the design of specific protein adsorption layers on the surfaces of nanomaterials for use as drug carriers, and the development of novel nanoparticle array-based sensors based on nano-bio interactions. We will focus on particularly relevant and recent examples within these areas. Finally, we conclude this topical review with an outlook on future developments in this fascinating research field.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
19
|
|
20
|
Kang H, Seo E, Oh YS, Jun HS. TGF-β activates NLRP3 inflammasome by an autocrine production of TGF-β in LX-2 human hepatic stellate cells. Mol Cell Biochem 2022; 477:1329-1338. [PMID: 35138513 PMCID: PMC8989865 DOI: 10.1007/s11010-022-04369-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Inflammation contributes to the pathogenesis of liver disease, and inflammasome activation has been identified as a major contributor to the amplification of liver inflammation. Transforming growth factor-beta (TGF-β) is a key regulator of liver physiology, contributing to all stages of liver disease. We investigated whether TGF-β is involved in inflammasome-mediated fibrosis in hepatic stellate cells. Treatment with TGF-β increased priming of NLRP3 inflammasome signaling by increasing NLRP3 levels and activating TAK1-NF-kB signaling. Moreover, TGF-β increased the expression of p-Smad2/3-NOX4 in LX-2 cells and consequently increased ROS content, which is a trigger for NLRP3 inflammasome activation. Elevated expression of NEK7 and active caspase-1 was also shown in TGF-β-induced LX-2 cells, and this level was reduced by (5Z)-oxozeaenol, a TAK inhibitor. Finally, TGF-β-treated cells significantly increased TGF-β secretion levels, and their production was inhibited by IL-1β receptor antagonist treatment. In conclusion, TGF-β may represent an endogenous danger signal to the active NLRP3 inflammasome, by which IL-1β mediates TGF-β expression in an autocrine manner. Therefore, targeting the NLRP3 inflammasome may be a promising approach for the development of therapies for TGF-β-induced liver fibrosis.
Collapse
Affiliation(s)
- Hwansu Kang
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy and Gachon Institute of Pharmaceutical Science, 155 Gaetbeol-ro, Yeonsu-ku, Incheon, 21999, Korea
| | - Eunhui Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy and Gachon Institute of Pharmaceutical Science, 155 Gaetbeol-ro, Yeonsu-ku, Incheon, 21999, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam, 13135, Korea.
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy and Gachon Institute of Pharmaceutical Science, 155 Gaetbeol-ro, Yeonsu-ku, Incheon, 21999, Korea.
- Gachon Medical Research Institute, Gil Hospital, Incheon, Korea.
| |
Collapse
|
21
|
The consequences of particle uptake on immune cells. Trends Pharmacol Sci 2022; 43:305-320. [DOI: 10.1016/j.tips.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
|
22
|
Russo V, El Khatib M, Prencipe G, Cerveró-Varona A, Citeroni MR, Mauro A, Berardinelli P, Faydaver M, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Liverani L, Boccaccini AR, Barboni B. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration. Cells 2022; 11:cells11020266. [PMID: 35053383 PMCID: PMC8773518 DOI: 10.3390/cells11020266] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
- Correspondence:
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
23
|
Park J, Kravchuk P, Krishnaprasad A, Roy T, Kang EH. Graphene Enhances Actin Filament Assembly Kinetics and Modulates NIH-3T3 Fibroblast Cell Spreading. Int J Mol Sci 2022; 23:509. [PMID: 35008935 PMCID: PMC8745492 DOI: 10.3390/ijms23010509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Actin plays critical roles in various cellular functions, including cell morphogenesis, differentiation, and movement. The assembly of actin monomers into double-helical filaments is regulated in surrounding microenvironments. Graphene is an attractive nanomaterial that has been used in various biomaterial applications, such as drug delivery cargo and scaffold for cells, due to its unique physical and chemical properties. Although several studies have shown the potential effects of graphene on actin at the cellular level, the direct influence of graphene on actin filament dynamics has not been studied. Here, we investigate the effects of graphene on actin assembly kinetics using spectroscopy and total internal reflection fluorescence microscopy. We demonstrate that graphene enhances the rates of actin filament growth in a concentration-dependent manner. Furthermore, cell morphology and spreading are modulated in mouse embryo fibroblast NIH-3T3 cultured on a graphene surface without significantly affecting cell viability. Taken together, these results suggest that graphene may have a direct impact on actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Jinho Park
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (J.P.); (P.K.); (A.K.); (T.R.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Pavlo Kravchuk
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (J.P.); (P.K.); (A.K.); (T.R.)
| | - Adithi Krishnaprasad
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (J.P.); (P.K.); (A.K.); (T.R.)
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Tania Roy
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (J.P.); (P.K.); (A.K.); (T.R.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ellen Hyeran Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (J.P.); (P.K.); (A.K.); (T.R.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
24
|
Toxicology for Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_9-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Guo B, Feng X, Wang Y, Wang X, He Y. Biomimetic and immunomodulatory baicalin-loaded graphene oxide-demineralized bone matrix scaffold for in vivo bone regeneration. J Mater Chem B 2021; 9:9720-9733. [PMID: 34787627 DOI: 10.1039/d1tb00618e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of an artificial bone substitute is a potential strategy for repairing bone defects; however, the inadequate consideration of repair-immune system interactions, resulting in significant pathological changes in the microenvironment, is a major barrier to achieving effective regenerative outcomes. Here, we evaluated a biomimetic baicalin (BAI)-incorporating graphene oxide-demineralized bone matrix (GO-BAI/DBM) hybrid scaffold, which was beneficial for bone regeneration. First, by considering that bone is a kind of organic-inorganic composite, a biomimetic GO/DBM bone substitute with enhanced physiochemical and osteoinductive properties was fabricated. Furthermore, inherently therapeutic GO was also used as a drug delivery carrier to achieve the sustained and prolonged release of BAI. Notably, a series of experiments showed that the GO-BAI nanocomposites could transform inflammatory M1 macrophages into pro-healing M2 macrophages, which was beneficial for in vitro angiogenesis and osteogenesis. By using a rat subcutaneous model, it was revealed that the GO-BAI nanocomposites proactively ameliorated the inflammatory response, which was coupled with decreased fibrous encapsulation. Notably, obvious in situ calvarial bone regeneration was achieved using the GO-BAI/DBM hybrid scaffold. These findings demonstrated that the bifunctional GO-BAI/DBM scaffold, by enhancing beneficial cross-talk among bone cells and inflammatory cells, might be utilized as an effective strategy for bone regeneration.
Collapse
Affiliation(s)
- Bing Guo
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yue He
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
26
|
Povo-Retana A, Mojena M, Boscá A, Pedrós J, Peraza DA, Valenzuela C, Laparra JM, Calle F, Boscá L. Graphene Particles Interfere with Pro-Inflammatory Polarization of Human Macrophages: Functional and Electrophysiological Evidence. Adv Biol (Weinh) 2021; 5:e2100882. [PMID: 34590442 DOI: 10.1002/adbi.202100882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/09/2021] [Indexed: 02/05/2023]
Abstract
The interaction of two types of fragmented graphene particles (30-160 nm) with human macrophages is studied. Since macrophages have significant phagocytic activity, the incorporation of graphene particles into cells has an effect on the response to functional polarization stimuli, favoring an anti-inflammatory profile. Incubation of macrophages with graphene foam particles, prepared by chemical vapor deposition, and commercially available graphene nanoplatelet particles does not affect cell viability when added at concentrations up to 100 µg mL-1 ; macrophages exhibit differential quantitative responses to each type of graphene particles. Although both materials elicit similar increases in the release of reactive oxygen species, the impact on the transcriptional regulation associated with the polarization profile is different; graphene nanoplatelets significantly modify this transcriptomic profile. Moreover, these graphene particles differentially affect the motility and phagocytosis of macrophages. After the incorporation of both graphene types into the macrophages, they exhibit specific responses in terms of the mitochondrial oxygen consumption and electrophysiological potassium currents at the cell plasma membrane. These data support the view that the physical structure of the graphene particles has an impact on human macrophage responses, paving the way for the development of new mechanisms to modulate the activity of the immune system.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
| | - Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
| | - Alberto Boscá
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM) and Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jorge Pedrós
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM) and Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Diego Alberto Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV, Melchor Fernández Almagro, Madrid, 28029, Spain
| | - José Moisés Laparra
- J. M. Laparra, Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, Madrid, 28049, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM) and Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV, Melchor Fernández Almagro, Madrid, 28029, Spain
| |
Collapse
|
27
|
Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA-A Review. NANOMATERIALS 2021; 11:nano11112889. [PMID: 34835652 PMCID: PMC8625643 DOI: 10.3390/nano11112889] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Graphene family nanomaterials (GFNs), including graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), have manifold potential applications, leading to the possibility of their release into environments and the exposure to humans and other organisms. However, the genotoxicity of GFNs on DNA remains largely unknown. In this review, we highlight the interactions between DNA and GFNs and summarize the mechanisms of genotoxicity induced by GFNs. Generally, the genotoxicity can be sub-classified into direct genotoxicity and indirect genotoxicity. The direct genotoxicity (e.g., direct physical nucleus and DNA damage) and indirect genotoxicity mechanisms (e.g., physical destruction, oxidative stress, epigenetic toxicity, and DNA replication) of GFNs were summarized in the manuscript, respectively. Moreover, the influences factors, such as physicochemical properties, exposure dose, and time, on the genotoxicity of GFNs are also briefly discussed. Given the important role of genotoxicity in GFNs exposure risk assessment, future research should be conducted on the following: (1) developing reliable testing methods; (2) elucidating the response mechanisms associated with genotoxicity in depth; and (3) enriching the evaluation database regarding the type of GFNs, applied dosages, and exposure times.
Collapse
|
28
|
In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets. NANOMATERIALS 2021; 11:nano11092210. [PMID: 34578525 PMCID: PMC8470272 DOI: 10.3390/nano11092210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
(1) Background: Graphene is a two-dimensional atomic structure with a wide range of uses, including for biomedical applications. However, knowledge of its hazards is still limited. This work brings new cytotoxic, cytostatic, genotoxic and immunotoxic data concerning the in vitro exposure of human cell line to two types of graphene platelets (GP). It also contributes to the formation of general conclusions about the health risks of GP exposure. (2) Methods: In vitro exposure of a THP-1 cell line to three concentrations of two GP over 40 h. The cytotoxic potential was assessed by the measurement of LDH and glutathione (ROS) and by a trypan blue exclusion assay (TBEA); the cytostatic and genotoxic potential were assessed by the cytokinesis-block micronucleus (CBMN) test; and the immunotoxic potential was assessed by the measurement of IL-6, IL-10 and TNF-α. (3) Results: We found a significant dose-dependent increase in DNA damage (CBMN). The lowest observed genotoxic effect levels (LOGEL) were 5 µg/mL (GP1) and 30 µg/mL (GP2). We found no significant leaking of LDH from cells, increase in dead cells (TBEA), induction of ROS, increased levels of cytostasis, or changes in IL-6, IL-10 and TNF-α levels. (4) Conclusions: The genotoxicity increased during the short-term in vitro exposure of THP-1 to two GP. No increase in cytotoxicity, immunotoxicity, or cytostasis was observed.
Collapse
|
29
|
Excretory/secretory proteins of adult Toxocara canis induce changes in the expression of proteins involved in the NOD1-RIP2-NF-κB pathway and modulate cytokine production in mouse macrophages. Exp Parasitol 2021; 229:108152. [PMID: 34419413 DOI: 10.1016/j.exppara.2021.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/16/2023]
Abstract
Dog roundworm (Toxocara canis) is the major causative agent of toxocarosis, a parasitic disease of both veterinary and medical importance. Knowledge gaps in fundamental and applied aspects hinder the control of this important zoonotic disease. To have a better understanding of Toxocara infection and host immune responses, mouse macrophages were exposed to excretory/secretory (ES) proteins released by adult worms of T. canis in vitro. The messenger RNA transcription and protein expression of nucleotide-binding oligomerization domain-containing protein 1 (NOD1), receptor interacting protein 2 (RIP2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in macrophages were analysed using quantitative real-time PCR (qRT-PCR) and Western blot. The levels of tumour necrosis factor alpha (TNF-ɑ), interleukin-1 beta (IL-1β) and IL-6 released by the stimulated macrophages were analysed using enzyme-linked immunosorbent assay. It was found that 20 μg/mL ES proteins of adult T. canis induced the expression of NOD1, RIP2 and NF-κB in mouse macrophages at both transcriptional and translational levels after 9 h of incubation in vitro. Incubation with 20 μg/mL ES proteins also modulated the production of pro-inflammatory cytokines TNF-ɑ, IL-1β and IL-6 by the macrophages. Taken together, ES proteins of adult T. canis appeared to be able to affect the macrophage NOD1-RIP2-NF-κB signalling pathway, which might play a role in regulating the production of proinflammatory cytokines. Further investigation of these aspects should lead to a better understanding of immune recognition of and modulation by Toxocara canis in host animals.
Collapse
|
30
|
Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch Immunol Ther Exp (Warsz) 2021; 69:20. [PMID: 34327598 DOI: 10.1007/s00005-021-00625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Sole nanomaterials or nanomaterials bound to specific biomolecules have been proposed to regulate the immune system. These materials have now emerged as new tools for eliciting immune-based therapies to treat various cancers. Graphene, graphene oxide (GO) and reduced GO (rGO) are the latest nanomaterials among other carbon nanotubes that have attracted wide interest among medical industry players due to their extraordinary properties, inert-state, non-toxic and stable dispersion in a various solvent. Currently, GO and rGO are utilized in various biomedical application including cancer immunotherapy. This review will highlight studies that have been carried out in elucidating the stimulation of GO and rGO on selected innate and adaptive immune cells and their effect on cancer progression to shed some insights for researchers in the development of various GO- and rGO-based immune therapies against various cancers.
Collapse
|
31
|
Ballesteros S, Domenech J, Velázquez A, Marcos R, Hernández A. Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125471. [PMID: 33647622 DOI: 10.1016/j.jhazmat.2021.125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The biomedical applications of graphene-based nanomaterials (GBN) have significantly grown in the last years. Many of these applications suppose their intravenous exposure and, in this way, GBN could encounter blood cells triggering an immunological response of unknown effects. Consequently, understanding the relationships between GBN and the immune system response should be a prerequisite for its adequate use in biomedicine. In the present study, we have conducted a little explored ex vivo exposure method in order to study the complexity of the secretome given by the interactions between GBN and blood cells. Blood samples from different healthy donors were exposed to three different types of GBN widely used in the biomedical field. In this sense, graphene oxide (GO), graphene nanoplatelets (GNPs), graphene nanoribbons (GNRs) and a panel of 105 proteins representatives of the blood secretome were evaluated. The results show broad changes in both the cytokines number and the expression levels, with important changes in inflammatory response markers. Furthermore, the indirect soft-agar assay was used as a tool to unravel the global functional impact of the found secretome changes. Our results indicate that the GBN-induced altered secretome can modify the natural anchorage-independent growth capacity of HeLa cells, used as a model. As a conclusion, this study describes an innovative approach to study the potential harmful effects of GBN, providing relevant data to be considered in the biomedical context when GBN are planned to be used in patients.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
32
|
Da Silva GH, Franqui LS, Petry R, Maia MT, Fonseca LC, Fazzio A, Alves OL, Martinez DST. Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. Front Immunol 2021; 12:689519. [PMID: 34149731 PMCID: PMC8210669 DOI: 10.3389/fimmu.2021.689519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Two-dimensional (2D) materials have emerged as an important class of nanomaterials for technological innovation due to their remarkable physicochemical properties, including sheet-like morphology and minimal thickness, high surface area, tuneable chemical composition, and surface functionalization. These materials are being proposed for new applications in energy, health, and the environment; these are all strategic society sectors toward sustainable development. Specifically, 2D materials for nano-imaging have shown exciting opportunities in in vitro and in vivo models, providing novel molecular imaging techniques such as computed tomography, magnetic resonance imaging, fluorescence and luminescence optical imaging and others. Therefore, given the growing interest in 2D materials, it is mandatory to evaluate their impact on the immune system in a broader sense, because it is responsible for detecting and eliminating foreign agents in living organisms. This mini-review presents an overview on the frontier of research involving 2D materials applications, nano-imaging and their immunosafety aspects. Finally, we highlight the importance of nanoinformatics approaches and computational modeling for a deeper understanding of the links between nanomaterial physicochemical properties and biological responses (immunotoxicity/biocompatibility) towards enabling immunosafety-by-design 2D materials.
Collapse
Affiliation(s)
- Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Lidiane S. Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| | - Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leandro C. Fonseca
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Oswaldo L. Alves
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
33
|
Borandeh S, Alimardani V, Abolmaali SS, Seppälä J. Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity. Chem Res Toxicol 2021; 34:1386-1402. [PMID: 34041903 PMCID: PMC8382253 DOI: 10.1021/acs.chemrestox.0c00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Graphene family nanomaterials (GFNs) are rapidly emerging for ocular applications due to their outstanding physicochemical properties. Since the eyes are very sensitive organs and the contact between the eyes and GFNs in eye drops, contact lenses, intraocular drug delivery systems and biosensors and even the workers handling these nanomaterials is inevitable, it is necessary to investigate their ocular toxicities and physiological interactions with cells as well as their toxicity mechanisms. The toxicity of GFNs can be extremely affected by their physicochemical properties, including composition, size, surface chemistry, and oxidation level as well as dose and the time of exposure. Up to now, there are several studies on the in vitro and in vivo toxicity of GFNs; however, a comprehensive review on ocular toxicity and applications of GFNs is missing, and a knowledge about the health risks of eye exposure to the GFNs is predominantly unspecified. This review highlights the ocular applications of GFNs and systematically covers the most recent advances of GFNs' physicochemical properties, in vitro and in vivo ocular toxicity, and the possible toxicity mechanisms as well as provides some perspectives on the potential risks of GFNs in material development and biomedical applications.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 7146864685 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 7146864685 Shiraz, Iran
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
34
|
Serrano-Aroca Á, Takayama K, Tuñón-Molina A, Seyran M, Hassan SS, Pal Choudhury P, Uversky VN, Lundstrom K, Adadi P, Palù G, Aljabali AAA, Chauhan G, Kandimalla R, Tambuwala MM, Lal A, Abd El-Aziz TM, Sherchan S, Barh D, Redwan EM, Bazan NG, Mishra YK, Uhal BD, Brufsky A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS NANO 2021; 15:8069-8086. [PMID: 33826850 PMCID: PMC8043205 DOI: 10.1021/acsnano.1c00629] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/04/2023]
Abstract
Therapeutic options for the highly pathogenic human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the current pandemic coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19 have shown little or no effect in the clinic so far. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability, and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g., membrane distortion), characterized by a low risk of antimicrobial resistance. In this Review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 13 enveloped positive-sense single-stranded RNA viruses, including SARS-CoV-2. CBNs with low or no toxicity to humans are promising therapeutics against the COVID-19 pneumonia complex with other viruses, bacteria, and fungi, including those that are multidrug-resistant.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de
Investigación Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, 46001 Valencia,
Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application,
Kyoto University, Kyoto 606-8397,
Japan
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de
Investigación Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, 46001 Valencia,
Spain
| | - Murat Seyran
- Doctoral studies in natural and technical sciences (SPL
44), University of Vienna, Währinger Straße, A-1090
Vienna, Austria
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana
Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal,
India
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian
Statistical Institute, Kolkata 700108, West Bengal,
India
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of
Medicine, University of South Florida, Tampa, Florida 33612,
United States
| | | | - Parise Adadi
- Department of Food Science, University of
Otago, Dunedin 9054, New Zealand
| | - Giorgio Palù
- Department of Molecular Medicine,
University of Padova, Via Gabelli 63, 35121 Padova,
Italy
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and
Pharmaceutical Technology, Yarmouk University-Faculty of
Pharmacy, Irbid 21163, Jordan
| | - Gaurav Chauhan
- School of Engineering and Sciences,
Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501
Sur, 64849 Monterrey, NL, Mexico
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007,
India
- Department of Biochemistry,
Kakatiya Medical College, Warangal-506007, Telangana State,
India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical
Science, Ulster University, Coleraine BT52 1SA, Northern
Ireland, U.K.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical
Care Medicine, Mayo Clinic, Rochester, Minnesota 55905,
United States
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science,
Minia University, El-Minia 61519,
Egypt
- Department of Cellular and Integrative
Physiology, University of Texas Health Science Center at San
Antonio, San Antonio, Texas 78229-3900, United
States
| | - Samendra Sherchan
- Department of Environmental Health Sciences,
School of Public Health and Tropical Medicine, Tulane University of
Louisiana, New Orleans, Louisiana 70112, United
States
| | - Debmalya Barh
- Institute of Integrative
Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur,
WB-721172, India
| | - Elrashdy M. Redwan
- Biological Sciences Department,
Faculty of Science, King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins
Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research
Institute, City for Scientific Research and Technology
Applications, New Borg El-Arab, Alexandria 21934,
Egypt
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence,
School of Medicine, LSU Heath New Orleans, New Orleans,
Louisiana 70112, United States
| | - Yogendra Kumar Mishra
- University of Southern
Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400 Sønderborg,
Denmark
| | - Bruce D. Uhal
- Department of Physiology, Michigan State
University, East Lansing, Michigan 48824, United
States
| | - Adam Brufsky
- University of Pittsburgh
School of Medicine, Department of Medicine, Division of
Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232,
United States
| |
Collapse
|
35
|
Diez-Orejas R, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés MT. Effects of mesoporous SiO 2-CaO nanospheres on the murine peritoneal macrophages/Candidaalbicans interface. Int Immunopharmacol 2021; 94:107457. [PMID: 33752172 DOI: 10.1016/j.intimp.2021.107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
The use of nanoparticles for intracellular drug delivery could reduce the toxicity and side effects of the drug but, the uptake of these nanocarriers could induce adverse effects on cells and tissues after their incorporation. Macrophages play a central role in host defense and are responsible for in vivo nanoparticle trafficking. Assessment of their defense capacity against pathogenic micro-organisms after nanoparticle uptake, is necessary to prevent infections associated with nanoparticle therapies. In this study, the effects of hollow mesoporous SiO2-CaO nanospheres labeled with fluorescein isothiocyanate (FITC-NanoMBGs) on the function of peritoneal macrophages was assessed by measuring their ability to phagocytize Candidaalbicans expressing a red fluorescent protein. Two macrophage/fungus ratios (MOI1 and MOI5) were used and two experimental strategies were carried out: a) pretreatment of macrophages with FITC-NanoMBGs and subsequent fungal infection; b) competition assays after simultaneous addition of fungus and nanospheres. Macrophage pro-inflammatory phenotype markers (CD80 expression and interleukin 6 secretion) were also evaluated. Significant decreases of CD80+ macrophage percentage and interleukin 6 secretion were observed after 30 min, indicating that the simultaneous incorporation of NanoMBG and fungus favors the macrophage non-inflammatory phenotype. The present study evidences that the uptake of these nanospheres in all the studied conditions does not alter the macrophage function. Moreover, intracellular FITC-NanoMBGs induce a transitory increase of the fungal phagocytosis by macrophages at MOI 1 and after a short time of interaction. In the competition assays, as the intracellular fungus quantity increased, the intracellular FITC-NanoMBG content decreased in a MOI- and time-dependent manner. These results have confirmed that macrophages clearly distinguish between inert material and the live yeast in a dynamic intracellular incorporation. Furthermore, macrophage phagocytosis is a critical determinant to know their functional state and a valuable parameter to study the nanomaterial / macrophages / Candida albicans interface.
Collapse
Affiliation(s)
- R Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - J M Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - M T Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
36
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
37
|
Zhang Y, Zhang G, Wang G, Wu L, Monteiro-Riviere NA, Li Y. The synergistic strategies for the immuno-oncotherapy with photothermal nanoagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1717. [PMID: 33825343 DOI: 10.1002/wnan.1717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Immuno-oncotherapy has shown great promise for the cure of late-stage and metastatic cancer. Great efforts have tried to improve the overall response rate (ORR) and to reduce the immune-related adverse events (irAEs). Antigen presentation, T cell activation and killing are interlocking and distinct steps to initiate effective anti-tumor immune responses. Aiming to overcome the tumor immune evasion whose mechanisms include limited release of neoantigen, suppressed infiltration of antigen-presenting cells (APCs) and T cells, and the expression of immune checkpoints (ICPs), combinational therapeutic strategies have shown great potential by activating the anti-tumor immune responses together with deactivating immunosuppressive conditions simultaneously. In this direction, photothermal therapy (PTT) has attracted attention due to the efficient ablation of tumor cells, of which the released immunogenic tumor debris can activate host immune responses. The combination of immunoadjuvants and/or ICP inhibitors can boost the anti-tumor immune responses, realizing PTT-synergized immuno-oncotherapy. In this regard, numerous multifunctional nanomaterials have been designed with integration of photothermal and immuno-oncotherapeutic agents into one package via well-designed surface modification and functionalization. This review summarizes the recent studies on the synergistic strategies for the immuno-oncotherapy based on photothermal nanoagents and the mechanisms that trigger the systemic anti-tumor immune responses and PTT-synergized immuno-oncotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guocheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, USA
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
38
|
Chen B, Han J, Chen S, Xie R, Yang J, Zhou T, Zhang Q, Xia R. MicroLet-7b Regulates Neutrophil Function and Dampens Neutrophilic Inflammation by Suppressing the Canonical TLR4/NF-κB Pathway. Front Immunol 2021; 12:653344. [PMID: 33868293 PMCID: PMC8044834 DOI: 10.3389/fimmu.2021.653344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a heterogeneous syndrome caused by a dysregulated host response during the process of infection. Neutrophils are involved in the development of sepsis due to their essential role in host defense. COVID-19 is a viral sepsis. Disfunction of neutrophils in sepsis has been described in previous studies, however, little is known about the role of microRNA-let-7b (miR-let-7b), toll-like receptor 4 (TLR4), and nuclear factor kappa B (NF-κB) activity in neutrophils and how they participate in the development of sepsis. In this study, we investigated the regulatory pathway of miR-let-7b/TLR4/NF-κB in neutrophils. We also explored the downstream cytokines released by neutrophils following miR-let-7b treatment and its therapeutic effects in cecal ligation and puncture (CLP)-induced septic mice. Six-to-eight-week-old male C57BL/6 mice underwent CLP following treatment with miR-let-7b agomir. Survival (n=10), changes in liver and lungs histopathology (n=4), circulating neutrophil counts (n=4), the liver-body weight ratio (n=4–7), and the lung wet-to-dry ratio (n=5–6) were recorded. We found that overexpression of miR-let-7b could significantly down-regulate the expression of human-derived neutrophilic TLR4 at a post-transcriptional level, a decreased level of proinflammatory factors including interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and an upregulation of anti-inflammatory factor IL-10 in vitro. After miR-let-7b agomir treatment in vivo, neutrophil recruitment was inhibited and thus the injuries of liver and lungs in CLP-induced septic mice were alleviated (p=0.01 and p=0.04, respectively), less weight loss was reduced, and survival in septic mice was also significantly improved (p=0.013). Our study suggested that miR-let-7b could be a potential target of sepsis.
Collapse
Affiliation(s)
- Binzhen Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Han
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaoheng Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rufeng Xie
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Tongming Zhou
- Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
40
|
Zhang L, Ouyang S, Zhang H, Qiu M, Dai Y, Wang S, Wang Y, Ou J. Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy. Exp Ther Med 2021; 21:462. [PMID: 33747194 DOI: 10.3892/etm.2021.9893] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Graphene is a two-dimensional structured material with a hexagonal honeycomb lattice composed of carbon atoms. The biological effects of graphene oxide (GO) have been extensively investigated, as it has been widely used in biological research due to its increased hydrophilicity/biocompatibility. However, the exact mechanisms underlying GO-associated lung toxicity have not yet been fully elucidated. The aim of the present study was to determine the role of GO in lung injury induction, as well as its involvement in oxidative stress, inflammation and autophagy. The results revealed that lower concentrations of GO (5 and 10 mg/kg) did not cause significant lung injury, but the administration of GO at higher concentrations (50 and 100 mg/kg) induced lung edema, and increased lung permeability and histopathological lung changes. High GO concentrations also induced oxidative injury and inflammatory reactions in the lung, demonstrated by increased levels of oxidative products [malondialdehyde(MDA) and 8-hydroxydeoxyguanosine (8-OHdG)] and inflammatory factors (TNF-α, IL-6, IL-1β and IL-8). The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CLQ) inhibited autophagy in the lung and attenuated GO-induced lung injury, as demonstrated by a reduced lung wet-to-dry weight ratio, lower levels of protein in the bronchoalveolar lavage fluid, and a reduced lung injury score. Furthermore, 3-MA and CLQ significantly reduced the levels of MDA, 8-OHdG and inflammatory factors in lung tissue, suggesting that autophagy also mediates the development of oxidative injury and inflammation in the lung. Finally, autophagy was directly inhibited in BEAS-2B cells by short hairpin RNA-mediated autophagy protein 5 (ATG5) knockdown, which were then treated with GO. Cell viability, as well as the extent of injury (indicated by lactate dehydrogenase level) and oxidative stress were determined. The results revealed that ATG5 knockdown-induced autophagic inhibition significantly decreased cellular injury and oxidative stress, suggesting that autophagy induction is a key event that leads to lung injury during exposure to GO. In conclusion, the findings of the present study indicated that GO causes lung injury in a dose-dependent manner by inducing autophagy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Shuge Ouyang
- Cambridge International Exam Centre in Shanghai Experimental School, Shanghai 200092, P.R. China
| | - Hongbo Zhang
- Chongming Branch of Xinhua Hospital Affiliated to The Medical College of Shanghai Jiaotong University, Shanghai 202150, P.R. China
| | - Mingke Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yuxin Dai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yang Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jingmin Ou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
41
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Liu Z, He J, Zhu T, Hu C, Bo R, Wusiman A, Hu Y, Wang D. Lentinan-Functionalized Graphene Oxide Is an Effective Antigen Delivery System That Modulates Innate Immunity and Improves Adaptive Immunity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39014-39023. [PMID: 32805921 DOI: 10.1021/acsami.0c12078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) and lentinan have received great attention because of their utility in biomedical applications. Graphene oxide is utilized in drug- and vaccine-delivery systems due to its biocompatibility, large surface area, and outstanding adsorption capability, while lentinan has immunity-enhancing effects. In this study, we synthesized and characterized GO grafted with lentinan (LNT) as an adjuvant and investigated how to impact the immune responses. Lentinan-modified GO (GO-LNT) facilitated antigen uptake in macrophages and improved the efficiency of antigen application in vitro. Furthermore, in vivo, compared with GO/OVA, GO-LNT/OVA decreased the release rate of ovalbumin (OVA) to sustain long-term immune responses and boost the levels of IgG and IgG subtypes. Hence, we can infer that the effects of GO-LNT were a result of the increased amounts of antigen uptake by cells. Overall, our studies demonstrated that GO-LNT could suffice for a safe and effective vaccine-delivery system as well as an excellent adjuvant that both elicits a long-term immune memory response and potentiates cellular and humoral immunity.
Collapse
Affiliation(s)
- Zhenguang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Cong Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruonan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuanliang Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
43
|
Lin H, Ji DK, Lucherelli MA, Reina G, Ippolito S, Samorì P, Bianco A. Comparative Effects of Graphene and Molybdenum Disulfide on Human Macrophage Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002194. [PMID: 32743979 DOI: 10.1002/smll.202002194] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Graphene and other 2D materials, such as molybdenum disulfide, have been increasingly used in electronics, composites, and biomedicine. In particular, MoS2 and graphene hybrids have attracted a great interest for applications in the biomedical research, therefore stimulating a pertinent investigation on their safety in immune cells like macrophages, which commonly engulf these materials. In this study, M1 and M2 macrophage viability and activation are mainly found to be unaffected by few-layer graphene (FLG) and MoS2 at doses up to 50 µg mL-1 . The uptake of both materials is confirmed by transmission electron microscopy, inductively coupled plasma mass spectrometry, and inductively coupled plasma atomic emission spectroscopy. Notably, both 2D materials increase the secretion of inflammatory cytokines in M1 macrophages. At the highest dose, FLG decreases CD206 expression while MoS2 decreases CD80 expression. CathB and CathL gene expressions are dose-dependently increased by both materials. Despite a minimal impact on the autophagic pathway, FLG is found to increase the expression of Atg5 and autophagic flux, as observed by Western blotting of LC3-II, in M1 macrophages. Overall, FLG and MoS2 are of little toxicity in human macrophages even though they are found to trigger cell stress and inflammatory responses.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, Université de Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
- CNRS, Université de Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
44
|
Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids Surf B Biointerfaces 2020; 193:111104. [DOI: 10.1016/j.colsurfb.2020.111104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/05/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
|
45
|
Han M, Zhu L, Mo J, Wei W, Yuan B, Zhao J, Cao C. Protein Corona and Immune Responses of Borophene: A Comparison of Nanosheet-Plasma Interface with Graphene and Phosphorene. ACS APPLIED BIO MATERIALS 2020; 3:4220-4229. [PMID: 35025423 DOI: 10.1021/acsabm.0c00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Borophene has emerged as a type of two-dimensional monoelemental nanomaterials with excellent drug loading capacity and photothermal properties. Here, we demonstrated the adsorption of plasma proteins onto borophene nanosheets (B NSs) and the promoted immune responses of macrophage by the B NS-corona complex. We discovered that plasma proteins changed the surface identities of B NSs. Using proteomics analysis, 46.5% of the proteins bound to B NSs (94 plasma proteins) were immune-relevant proteins. Uptake of B NSs by phagolysosomes was observed, and the plasma corona promoted the uptake. In comparison with graphene and phosphorene, we found that 32 plasma proteins appeared on all of the three nanosheets. The proportion of immune-relevant proteins in graphene-corona and phosphorene-corona was 41.3% and 75.6%, respectively. The components of the adsorbed immune-relevant proteins show diversity, which influence the immune responses of these nanosheets. Phosphorene-corona showed the most remarkable immunoregulatory behavior in these nanosheets. For the first time, we compared the highly complex protein corona at the nanosheet-plasma interface of three key 2D monoelemental nanosheets. Our study helps to understand the interaction between borophene and biological systems and provides a theoretical basis for the development and application of borophene in the biomedical field.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.,State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Longqian Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jianbin Mo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
46
|
Baimanov D, Wu J, Chu R, Cai R, Wang B, Cao M, Tao Y, Liu J, Guo M, Wang J, Yuan X, Ji C, Zhao Y, Feng W, Wang L, Chen C. Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS 2 Nanosheets. ACS NANO 2020; 14:5529-5542. [PMID: 32283010 DOI: 10.1021/acsnano.9b09744] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) nanosheets (NSs) have a large surface area, high surface free energy, and ultrathin structure, which enable them to more easily penetrate biological membranes and promote adsorption of drugs and proteins. NSs are capable of adsorbing a large amount of blood proteins to form NSs-protein corona complexes; however, their inflammatory effects are still unknown. Therefore, we investigated the pro-inflammatory effect of 2D model nanosheet structures, molybdenum disulfide (MoS2), and the MoS2 NSs-protein complexes with four abundant proteins in human blood, i.e., human serum albumin (HSA), transferrin (Tf), fibrinogen (Fg), and immunoglobulin G (IgG). The interactions between the NSs and the proteins were analyzed by quantifying protein adsorption, determining binding affinity, and correlating structural changes in the protein corona with the uptake of NSs by macrophages and the subsequent inflammatory response. Although all of the NSs-protein complexes induced inflammation, IgG-coated and Fg-coated NSs triggered much stronger inflammatory effects by producing and releasing more cytokines. Among the four proteins, IgG possessed the highest proportion of β-sheets and led to fewer secondary structure changes on the MoS2 nanosheets. This can facilitate uptake and produce a stronger pro-inflammatory response in macrophages due to the recognition of an NSs-IgG complex by Fc gamma receptors and the subsequent activation of the NF-κB pathways. Our results demonstrate that the blood protein components contribute to the inflammatory effects of nanosheets and provide important insights for the nanosafety evaluation and the rational design of nanomedicines in the future.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxuan Chu
- Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjing Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Tao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
47
|
Mechanistic Understanding of Cell Recognition and Immune Reaction via CR1/CR3 by HAP- and SiO 2-NPs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7474807. [PMID: 32382571 PMCID: PMC7195653 DOI: 10.1155/2020/7474807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Nanodrug carrier will eventually enter the blood when intravenously injected or in other ways. Meanwhile, a series of toxic effects were caused to the body with the formation of nanoparticle protein corona. In our studies, we try to reveal the recognition mechanism of nanoparticle protein corona by monocyte and the damage effect on immune cells by activated complement of hydroxyapatite nanoparticles (HAP-NPs) and silicon dioxide nanoparticles (SiO2-NPs). So expressions of TLR4/CR1/CR were analyzed by flow cytometry (FCM) in order to illuminate the recognition mechanism of nanoparticle protein corona by monocyte. And the expression of ROS, cytokines, adhesion molecules, and arachidonic acid was measured when THP-1 and HUVECs were stimulated by NP-activated complement. The results showed that HAP-NPs can be recognized by the opsonin receptor (iC3b/CR3) model, while plasma protein, opsonin receptor, and Toll-like receptors are all likely launch cell recognition of SiO2-NPs. And it was considerate that NP-activated complement can damage THP-1 and HUVECs, including oxidative stress, inflammation, and increased vascular permeability. So the surface of nanodrug carrier can be modified to avoid being clear and reduce the efficacy according to the three receptors (TLR4/CR1/CR3).
Collapse
|
48
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
49
|
Nanomaterials and Their Negative Effects on Human Health. APPLICATIONS OF NANOMATERIALS IN HUMAN HEALTH 2020. [PMCID: PMC7305518 DOI: 10.1007/978-981-15-4802-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mesostructured silica, dendrimers, and allotropes of carbon were exhaustively used in biomedical, cosmetics, semiconductors, and food industry applications. Considering the huge prospect of nanomaterials, their potential hazards on exposure to humans and their related ecotoxicological effects needs to be summarized. Nanoparticles with size below 100 nm could pass into the lung and then to blood through inhalation, ingestion, and skin contact. As nanotechnology innovation is expected to achieve $ 2231 million by 2025, humans will be exposed ever increasingly in day-to-day life and in industries. In this review, the latest synthetic methodology of silica, dendrimers, and CNTs, their biological applications (in vitro and in vivo) related to toxicity were discussed. In terms of structured silica, the toxic and non-toxic effect induced by specific templates (cetylpyridinium bromide, cetyltrimethylammonium bromide, dipalmitoylphosphatidylcholine, C16L-tryptophan, C16-L-histidine, and C16-L-poline) that are used to generate mesoporous silica, silica nanoparticle sizes (25, 50, 60, 115, and 500 nm), and silane functionalization (NH2 and COOH) were discussed. The recent applications of different generations (G3, G4, G5, and G6) of amphiphilic Janus dendrimers were discussed along with toxicity effect of different charged dendrimers (cationic and anionic) and effect of PEGylation. Recent synthesis, advantages, and disadvantages of carbon nanotubes (CNTs) were presented for structures like single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The influence of diameter of SWCNTs (linear and short), thickness (thin and thick), effect of oxidation, metal oxide species (TiO2, Fe, and Au), and biocompatible polymers (polyethylene glycol, bisphosphonate, and alendronate) were shown in relation to molecular pathways in animal cells.
Collapse
|
50
|
|