1
|
Yuan D, Lu Z, Xu X, Liu W. RGD peptide-conjugated polydopamine nanoparticles loaded with doxorubicin for combined chemotherapy and photothermal therapy in thyroid cancer. Discov Oncol 2024; 15:794. [PMID: 39692825 DOI: 10.1007/s12672-024-01682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE To construct polydopamine (PDA)-based nanoparticles (NPs) for combined chemotherapy (CT) and photothermal therapy (PTT) of thyroid tumors by conjugating doxorubicin (DOX) via Schiff base reaction and decorating with RGD peptide. METHODS PDA NPs were synthesized using dopamine hydrochloride (DA) as the raw material and reacted with DOX-PEG-NH2 to obtain PDA-DOX NPs. Subsequently, RGD peptide was coupled with PDA-DOX NPs for modification. Their size, charge, and shape were characterized using DLS and SEM. The assembly of DOX was verified by ultraviolet-visible spectroscopy (UV-Vis), and the release efficiency of DOX under different pH conditions was calculated. The antitumor effect of RGD@PDA-DOX was validated in KTC-1 cells and tumor-bearing nude mice. RESULTS The prepared RGD@PDA-DOX exhibited excellent dispersion, stability, and biocompatibility. PDA-DOX possessed superior photothermal conversion efficiency, capable of rapidly elevating the solution temperature within 5 min. In vitro studies revealed that the inhibitory rate of RGD@PDA-DOX combined with 808 nm laser on KTC-1 cells reached 92% (p < 0.05). In vivo experiments demonstrated that RGD@PDA-DOX exhibits no cytotoxicity. The modification with RGD peptides enables RGD@PDA-DOX to target tumor regions and accumulate over an extended period. Additionally, RGD@PDA-DOX, when combined with an 808 nm laser, significantly inhibits tumor growth. CONCLUSION RGD@PDA-DOX can effectively accumulate in tumor regions and demonstrates excellent anti-tumor efficacy. It may serve as a feasible approach for the effective treatment of thyroid tumors, providing further evidence and data for clinical translation.
Collapse
Affiliation(s)
- Donglan Yuan
- Nuclear Medicine Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Zhiqiang Lu
- Department of Radiotherapy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xindan Xu
- Nuclear Medicine Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Liu
- Nuclear Medicine Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
2
|
Paul V, Pandhi S, Mahato DK, Agarwal A, Tripathi AD. Polyhydroxyalkanoates (PHAs) and its copolymer nanocarrier application in cancer treatment: An overview and challenges. Int J Biol Macromol 2024; 277:134201. [PMID: 39069052 DOI: 10.1016/j.ijbiomac.2024.134201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
In the modern era, nanomedicine has developed novel drug-delivery strategies to improve chemotherapy. Nanotechnological-based treatment approaches for cancer through targeted tumour drug delivery and stimulus-responsive tumour microenvironment have gained tremendous success in oncology. The application of building block materials of these nanomedicines plays a vital role in cancer remediation. Despite successful application in various medical treatments, nanocarriers' lack of biodegradability and biocompatibility makes their use in a clinical context difficult. In addition, the preparation of current drug delivery systems is a major constraint. The current cancer treatment methods aim to destroy diseased tissue, frequently with the use of radiation and chemotherapy. These treatment options are accompanied by a significant level of toxicity, which has excellent potential to further medical issues in the afflicted patient. Polyhydroxyalkanoate (PHA) polymers are biodegradable and biocompatible polyesters that can potentially be used as nanoparticular delivery systems for cancer treatment. Previously, PHA has shown tremendous application as a packaging material in the food and pharma industry. PHA-based nanocarriers are an effective drug delivery system because of their non-immunogenicity, regulated drug release, high drug loading capacity, and targeted drug delivery. This review focuses on creating and using PHA-based nanocarriers in cancer treatment. Despite its many benefits, PHA-based nanocarriers have yet to progress to clinical trials for drug delivery applications due to several issues, including the polymers' hydrophobic nature and high production costs. This review examines these challenges along with existing alternatives.
Collapse
Affiliation(s)
- Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia.
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Aslam A, Masood F, Perveen K, Berger MR, Pervaiz A, Zepp M, Klika KD, Yasin T, Hameed A. Preparation, characterization and evaluation of HPβCD-PTX/PHB nanoparticles for pH-responsive, cytotoxic and apoptotic properties. Int J Biol Macromol 2024; 270:132268. [PMID: 38734336 DOI: 10.1016/j.ijbiomac.2024.132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Paclitaxel (PTX) is a potent anticancer drug. However, PTX exhibits extremely poor solubility in aqueous solution along with severe side effects. Therefore, in this study, an inclusion complex was prepared between PTX and hydroxypropyl-β-cyclodextrin (HPβCD) by solvent evaporation to enhance the drug's solubility. The HPβCD-PTX inclusion complex was then encapsulated in poly-3-hydroxybutyrate (PHB) to fabricate drug-loaded nanoparticles (HPβCD-PTX/PHB NPs) by nanoprecipitation. The HPβCD-PTX/PHB NPs depicted a higher release of PTX at pH 5.5 thus demonstrating a pH-dependent release profile. The cytotoxic properties of HPβCD-PTX/PHB NPs were tested against MCF-7, MDA-MB-231 and SW-620 cell lines. The cytotoxic potential of HPβCD-PTX/PHB NPs was 2.59-fold improved in MCF-7 cells in comparison to free PTX. Additionally, the HPβCD-PTX/PHB NPs improved the antimitotic (1.68-fold) and apoptotic (8.45-fold) effects of PTX in MCF-7 cells in comparison to PTX alone. In summary, these pH-responsive nanoparticles could be prospective carriers for enhancing the cytotoxic properties of PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aqsa Aslam
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farha Masood
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Kousar Perveen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tariq Yasin
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Hameed
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
4
|
Andler R, González-Arancibia F, Vilos C, Sepulveda-Verdugo R, Castro R, Mamani M, Valdés C, Arto-Paz F, Díaz-Barrera A, Martínez I. Production of poly-3-hydroxybutyrate (PHB) nanoparticles using grape residues as the sole carbon source. Int J Biol Macromol 2024; 261:129649. [PMID: 38266847 DOI: 10.1016/j.ijbiomac.2024.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The production of poly-3-hydroxybutyrate (PHB) on an industrial scale remains a major challenge due to its higher production cost compared to petroleum-based plastics. As a result, it is necessary to develop efficient fermentative processes using low-cost substrates and identify high-value-added applications where biodegradability and biocompatibility properties are of fundamental importance. In this study, grape residues, mainly grape skins, were used as the sole carbon source in Azotobacter vinelandii OP cultures for PHB production and subsequent nanoparticle synthesis based on the extracted polymer. The grape residue pretreatment showed a high rate of conversion into reducing sugars (fructose and glucose), achieving up to 43.3 % w w-1 without the use of acid or external heat. The cultures were grown in shake flasks, obtaining a biomass concentration of 2.9 g L-1 and a PHB accumulation of up to 37.7 % w w-1. PHB was characterized using techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The formation of emulsified PHB nanoparticles showed high stability, with a particle size between 210 and 240 nm and a zeta potential between -12 and - 15 mV over 72 h. Owing to these properties, the produced PHB nanoparticles hold significant potential for applications in drug delivery.
Collapse
Affiliation(s)
- R Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile.
| | - F González-Arancibia
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - C Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile; Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - R Sepulveda-Verdugo
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile; Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - R Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - M Mamani
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - C Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - F Arto-Paz
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - A Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - I Martínez
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Uğurlu N, Erdal E, Malekghasemi S, Demirbilek M. Effectiveness of carbonic anhydrase inhibitor loaded nanoparticles in the treatment of diabetic retinopathy. Biomed Phys Eng Express 2023; 10:015002. [PMID: 36758224 DOI: 10.1088/2057-1976/acba9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Diabetic Retinopathy (DRP) is a disease consisting of all the structural and functional changes that develop in the retinal layer of the eye due to diabetes. DRP is the most important cause of blindness between the ages of 20-74 in the world, and the most successful standard treatment option in the treatment of DRP is intravitreal injections. To synthesize acetazolamide loaded nanoparticles to be applied intravitreal treatment of DRP and to examine thein vitroefficacy of the nanoparticles. ACZ loaded PHBV nanoparticles (PHBV-ACZ NPs) formulations were prepared. Nanoparticles with a particle size of 253.20 ± 0.55 nm. A DRP model was established and characterized in HRMEC cells. The effect of the nanoparticles on permeability has been investigated and carrier proteins in BRB due to the development of DRP has been investigated. To establish thein vitroDRP model, HRMEC was stimulated with Recombinant human 165 Vascular Endothelial Growth Factor (VEGF), thereby temporarily reducing the expression levels of endothelial junction proteins, increasing the number of intercellular spaces in the monolayers of HRMECs. It was determined that after the cells were exposed to Carbonic anhydrase inhibitors (CAI) loaded nanoparticles, permeability decreased and protein expression increased.
Collapse
Affiliation(s)
- Nagihan Uğurlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Ophthalmology, Advanced Technologies Application and Research Center, Ankara, Turkey
- Ministry of Health, Ankara City Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Ebru Erdal
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Advanced Technologies Application and Research Center, Ankara, Turkey
| | - Soheil Malekghasemi
- Hacettepe University, Department of Bioengineering, Graduate School of Science and Engineering, Ankara, Turkey
| | - Murat Demirbilek
- Ankara Haci Bayram Veli University, Biology Department, Ankara, Turkey
| |
Collapse
|
6
|
Aslam A, Berger MR, Ullah I, Hameed A, Masood F. Preparation and evaluation of cytotoxic potential of paclitaxel containing poly-3-hydroxybutyrate-co-3-hydroxyvalarate (PTX/PHBV) nanoparticles. BRAZ J BIOL 2023; 83:e275688. [PMID: 37970904 DOI: 10.1590/1519-6984.275688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/18/2023] [Indexed: 11/19/2023] Open
Abstract
Paclitaxel (PTX) is a potent anticancer drug. In the present study, PTX was loaded in poly-3-hydroxybutyrate-co-3-hydroxyvalarate (PHBV) to fabricate the PTX/PHBV (drug-loaded) nanoparticles via the nanoprecipitation method. Blank PHBV nanoparticles were also prepared. The drug-encapsulation efficiency of PTX/PHBV nanoparticles was 45±0.4%. The PTX/PHBV nanoparticles exhibited a pH-sensitive release profile and followed a quasi-Fickian diffusion mechanism. Cytotoxic properties of PHBV and PTX/PHBV nanoparticles were checked against the MCF-7 and Caco-2 cell lines. The PHBV nanoparticle did not inhibit the proliferation of MCF-7 and Caco-2 cell lines, thus depicting their non-toxic and biocompatible nature. On the other hand, the PTX/PHBV nanoparticles demonstrated 1.03-fold higher cytotoxicity and 1.61-fold enhanced apoptosis after treatment with the PTX/PHBV nanoparticles versus free PTX. In summary, the PHBV nanoparticles could be a potential candidate for the delivery of PTX for cancer treatment.
Collapse
Affiliation(s)
- A Aslam
- International Islamic University, SA Centre for Interdisciplinary Research in Basic Sciences, Islamabad, Pakistan
| | - M R Berger
- German Cancer Research Center (DKFZ), Toxicology and Chemotherapy Unit, Heidelberg, Germany
| | - I Ullah
- International Islamic University, SA Centre for Interdisciplinary Research in Basic Sciences, Islamabad, Pakistan
| | - A Hameed
- International Islamic University, SA Centre for Interdisciplinary Research in Basic Sciences, Islamabad, Pakistan
| | - F Masood
- COMSATS University, Germany Department of Biosciences, Islamabad, Pakistan
| |
Collapse
|
7
|
Sharma S, Bhattacharya S, Joshi K, Singh S. A shift in focus towards precision oncology, driven by revolutionary nanodiagnostics; revealing mysterious pathways in colorectal carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16157-16177. [PMID: 37650995 DOI: 10.1007/s00432-023-05331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Multiple molecular mechanisms contribute to the development of colorectal cancer (CRC), with chromosomal instability (CIN) playing a significant role. CRC is influenced by mutations in several important genes, including APC, TP53, KRAS, PIK3CA, BRAF, and SMYD4. The three molecular subtypes of this disease are CIN, MSI-H, and CIMP (CpG-island phenotype). p53 dysfunction and aberrant Wnt signalling are common characteristics of CRC carcinogenesis. Despite advances in conventional therapy, metastatic CRC remains difficult to treat due to toxicity and resistance. Theranostics for cancer could significantly benefit from nanotechnology, as it would enable more targeted, individualised care with fewer side effects. Utilising functionalized nanoparticles has enabled MRI-guided gene therapy, magnetic hyperthermia, chemotherapy, immunotherapy, and photothermal/photodynamic therapy, thereby radically modifying the way cancer is treated. Active targeting using ligands or peptides on nanoparticles improves the delivery of drugs to cancer cells. Nanostructures such as drug peptide conjugates, chitosan nanoparticles, gold nanoparticles, carbon nanotubes, mesoporous silica-based nanoparticles, silver nanoparticles, hybrid lipid-polymer nanoparticles, iron oxide nanoparticles, and quantum dots may enable targeted drug delivery and enhanced therapeutic efficacy against CRC. Nanomedicines are presently being evaluated in clinical trials for the treatment of colorectal cancer, with the promise of more effective and individualised therapies. This article examines current nanomedicine patents for CRC, including the work of Delta-Fly, Merrimack, and Pfenning, Meaning & Partner, among others. In terms of future nanomedicine research and development, ligand production, particle size, and clearance are crucial factors. Lastly, the numerous nanostructures utilized in nanomedicine for targeted drug administration and diagnostics indicate optimistic prospects for enhancing CRC treatment. The successes of nanomedicine research and development for existing colon cancer treatments are also highlighted in this review.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Kajal Joshi
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| |
Collapse
|
8
|
Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of Nanoparticles in Cancer Treatment: A Concise Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2887. [PMID: 37947732 PMCID: PMC10650201 DOI: 10.3390/nano13212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010-2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Sell
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
| | - Ana Rita Lopes
- Faculty of Dental Medicine, Portuguese Catholic University, 3504-505 Viseu, Portugal;
| | - Maria Escudeiro
- Abel Salazar Biomedical Institute, University of Porto, 4050-313 Porto, Portugal;
| | - Bruno Esteves
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Ana R. Monteiro
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| |
Collapse
|
9
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
10
|
Rodríguez-Cendal AI, Gómez-Seoane I, de Toro-Santos FJ, Fuentes-Boquete IM, Señarís-Rodríguez J, Díaz-Prado SM. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication. Int J Mol Sci 2023; 24:11674. [PMID: 37511432 PMCID: PMC10380382 DOI: 10.3390/ijms241411674] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable and biocompatible biopolymer that has gained popularity in the field of biomedicine. This review provides an overview of recent advances and potential applications of PHBV, with special emphasis on drug encapsulation and scaffold construction. PHBV has shown to be a versatile platform for drug delivery, offering controlled release, enhanced therapeutic efficacy, and reduced side effects. The encapsulation of various drugs, such as anticancer agents, antibiotics, and anti-inflammatory drugs, in PHBV nanoparticles or microspheres has been extensively investigated, demonstrating enhanced drug stability, prolonged release kinetics, and increased bioavailability. Additionally, PHBV has been used as a scaffold material for tissue engineering applications, such as bone, cartilage, and skin regeneration. The incorporation of PHBV into scaffolds has been shown to improve mechanical properties, biocompatibility, and cellular interactions, making them suitable for tissue engineering constructs. This review highlights the potential of PHBV in drug encapsulation and scaffold fabrication, showing its promising role in advancing biomedical applications.
Collapse
Affiliation(s)
- Ana Isabel Rodríguez-Cendal
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Iván Gómez-Seoane
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Francisco Javier de Toro-Santos
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Servicio de Reumatología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Isaac Manuel Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), 15008 A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - José Señarís-Rodríguez
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), 15008 A Coruña, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Silvia María Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), 15008 A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
11
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
12
|
Mena-Silva D, Alfaro A, León A, Guajardo-Correa E, Elgueta E, Diaz P, Vilos C, Cardenas H, Denardin JC, Orihuela PA. Zeolite Nanoparticles Loaded with 2-Methoxystradiol as a Novel Drug Delivery System for the Prostate Cancer Therapy. Int J Mol Sci 2023; 24:10967. [PMID: 37446151 DOI: 10.3390/ijms241310967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The estrogen metabolite 2-methoxyestradiol (2ME) is a promissory anticancer drug mainly because of its pro-apoptotic properties in cancer cells. However, the therapeutic use of 2ME has been hampered due to its low solubility and bioavailability. Thus, it is necessary to find new ways of administration for 2ME. Zeolites are inorganic aluminosilicates with a porous structure and are considered good adsorbents and sieves in the pharmaceutical field. Here, mordenite-type zeolite nanoparticles were loaded with 2ME to assess its efficiency as a delivery system for prostate cancer treatment. The 2ME-loaded zeolite nanoparticles showed an irregular morphology with a mean hydrodynamic diameter of 250.9 ± 11.4 nm, polydispersity index of 0.36 ± 0.04, and a net negative surface charge of -34 ± 1.73 meV. Spectroscopy with UV-vis and Attenuated Total Reflectance Infrared Fourier-Transform was used to elucidate the interaction between the 2ME molecules and the zeolite framework showing the formation of a 2ME-zeolite conjugate in the nanocomposite. The studies of adsorption and liberation determined that zeolite nanoparticles incorporated 40% of 2ME while the liberation of 2ME reached 90% at pH 7.4 after 7 days. The 2ME-loaded zeolite nanoparticles also decreased the viability and increased the mRNA of the 2ME-target gene F-spondin, encoded by SPON1, in the human prostate cancer cell line LNCaP. Finally, the 2ME-loaded nanoparticles also decreased the viability of primary cultures from mouse prostate cancer. These results show the development of 2ME-loaded zeolite nanoparticles with physicochemical and biological properties compatible with anticancer activity on the human prostate and highlight that zeolite nanoparticles can be a good carrier system for 2ME.
Collapse
Affiliation(s)
- Denisse Mena-Silva
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Aline Alfaro
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Andrea León
- Faculty of Chemistry and Food Chemistry, Technische Universitat Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Emanuel Guajardo-Correa
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas y Universidad de Chile, Santiago 8380000, Chile
| | - Estefania Elgueta
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Patricia Diaz
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Cristian Vilos
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Juliano C Denardin
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
- Departamento de Física, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| |
Collapse
|
13
|
Mittal N, Sharma G, Katare OP, Bhadada SK. A Narrative Review on Non-Invasive Drug Delivery of Teriparatide: A Ray of Hope. Crit Rev Ther Drug Carrier Syst 2023; 40:117-140. [PMID: 37585311 DOI: 10.1615/critrevtherdrugcarriersyst.2023045480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In the field of pharmaceutical biotechnology and formulation development, various protein and peptide-based drugs have been used for therapeutic and clinical implications. These are mainly given via parenteral routes like intravenous, subcutaneous or intramuscular delivery. Teriparatide, also known as PTH 1-34, is a U.S. Food & Drug Administartion-approved anabolic drug to treat osteoporosis is currently available in market only as subcutaneous injection. The quest for elimination of needle in case of given peptidal delivery to replace it with alternative routes like nasal, buccal, transdermal and pulmonary pathways has driven meticulous drug research. The pharmaceutical scientists are working on innovation and approaches involving new materials and methods to develop the formulations for protein and peptides by noninvasive routes. Lately, various approaches have been carried out which involve many strategies and technologies to deliver teriparatide via alternative routes. But, physicochemical instability, proteolytic degradation, low bioavailability, etc. are some obstacles to develop suitable delivery system for teriparatide. This review intends to gather the overall developments in delivery systems specific to teriparatide which meant for better convenience and avoids vulnerability of multiple subcutaneous injections. In addition, the article emphasizes on the successes to develop noninvasive technologies and devices, and new milestones for teriparatide delivery.
Collapse
Affiliation(s)
- Neeraj Mittal
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India; Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Om Parkash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
14
|
Baqeri N, Shahsavari S, Dahouee IA, Shirmard LR. Design of slow-release methotrexate drug delivery system using PHBV magnetic nanoparticles and evaluation of its cytotoxicity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Hurtado A, Cano-Vicent A, Tuñón-Molina A, Aparicio-Collado JL, Salesa B, I Serra RS, Serrano-Aroca Á. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Int J Biol Macromol 2022; 219:694-708. [PMID: 35961550 PMCID: PMC9364692 DOI: 10.1016/j.ijbiomac.2022.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/27/2022]
Abstract
A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Jose Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
| | - Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain.
| |
Collapse
|
16
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
17
|
Vijayamma R, Maria HJ, Thomas S, Shishatskaya EI, Kiselev EG, Nemtsev IV, Sukhanova AA, Volova TG. A study of the properties and efficacy of microparticles based on P(
3HB
) and P(
3HB
/
3HV
) loaded with herbicides. J Appl Polym Sci 2022. [DOI: 10.1002/app.51756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Raji Vijayamma
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- International and Inter University Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam India
| | - Hanna J. Maria
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- International and Inter University Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam India
| | - Sabu Thomas
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- International and Inter University Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam India
| | - Ekaterina I. Shishatskaya
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center “Krasnoyarsk Science Center SB RAS” Krasnoyarsk Russia
| | - Evgeniy G. Kiselev
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center “Krasnoyarsk Science Center SB RAS” Krasnoyarsk Russia
| | - Ivan V. Nemtsev
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” Krasnoyarsk Russia
- L.V. Kirensky Institute of Physics Federal Research Center “Krasnoyarsk Science Center SB RAS” Krasnoyarsk Russia
| | - Anna A. Sukhanova
- Scientific Laboratory Reshetnev Siberian State University of Science and Technology Krasnoyarsk Russia
| | - Tatiana G. Volova
- Institute of Fundamental Biology and Biotechnology Siberian Federal University Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center “Krasnoyarsk Science Center SB RAS” Krasnoyarsk Russia
| |
Collapse
|
18
|
Zhang J, Cran MJ. Production of polyhydroxyalkanoate nanoparticles using a green solvent. J Appl Polym Sci 2022. [DOI: 10.1002/app.52319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities Victoria University Melbourne Australia
| | - Marlene J. Cran
- Institute for Sustainable Industries and Liveable Cities Victoria University Melbourne Australia
| |
Collapse
|
19
|
Rivera-Briso AL, Aparicio-Collado JL, Serra RSI, Serrano-Aroca Á. Graphene Oxide versus Carbon Nanofibers in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Films: Degradation in Simulated Intestinal Environments. Polymers (Basel) 2022; 14:348. [PMID: 35054756 PMCID: PMC8781968 DOI: 10.3390/polym14020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial biodegradable polymer with a broad range of promising industrial applications. The effect of incorporation of low amounts (1% w/w) of carbon nanomaterials (CBNs) such as 1D carbon nanofibers (CNFs) or 2D graphene oxide (GO) nanosheets into the PHBV polymer matrix affects its degradation properties, as it is reported here for the first time. The study was performed in simulated gut conditions using two different media: an acidic aqueous medium (pH 6) and Gifu anaerobic medium. The results of this study showed that the incorporation of low amounts of filamentous 1D hydrophobic CNFs significantly increased the degradability of the hydrophobic PHBV after 3 months in simulated intestinal conditions as confirmed by weight loss (~20.5% w/w in acidic medium) and electron microscopy. We can attribute these results to the fact that the long hydrophobic carbon nanochannels created in the PHBV matrix with the incorporation of the CNFs allowed the degradation medium to penetrate at ultrafast diffusion speed increasing the area exposed to degradation. However, the hydrogen bonds formed between the 2D hydrophilic GO nanosheets and the hydrophobic PHBV polymer chains produced a homogeneous composite structure that exhibits lower degradation (weight loss of ~4.5% w/w after three months in acidic aqueous medium). Moreover, the water molecules present in both degradation media can be linked to the hydroxyl (-OH) and carboxyl (-COOH) groups present on the basal planes and at the edges of the GO nanosheets, reducing their degradation potential.
Collapse
Affiliation(s)
- Ariagna L. Rivera-Briso
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
- CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| |
Collapse
|
20
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Prakash P, Lee WH, Loo CY, Wong HSJ, Parumasivam T. Advances in Polyhydroxyalkanoate Nanocarriers for Effective Drug Delivery: An Overview and Challenges. NANOMATERIALS 2022; 12:nano12010175. [PMID: 35010124 PMCID: PMC8746483 DOI: 10.3390/nano12010175] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.
Collapse
Affiliation(s)
- Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh 30450, Perak, Malaysia; (W.-H.L.); (C.-Y.L.)
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh 30450, Perak, Malaysia; (W.-H.L.); (C.-Y.L.)
| | - Hau Seung Jeremy Wong
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Correspondence: ; Tel.: +60-4-6577888
| |
Collapse
|
22
|
Sinaei N, Zare D, Azin M. Production and characterization of poly 3-hydroxybutyrate-co-3-hydroxyvalerate in wheat starch wastewater and its potential for nanoparticle synthesis. Braz J Microbiol 2021; 52:561-573. [PMID: 33462720 PMCID: PMC8105482 DOI: 10.1007/s42770-021-00430-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are polymers with biodegradable and biocompatible properties accumulated in a wide variety of bacterial strains. In the present study, active sludge, wheat starch wastewater (WSW), and oil wastewater were used for the isolation and screening of PHA-accumulating bacteria. WSW was then implemented as a cheap and economical culture medium for the production of PHAs by the selected isolate. The extracted PHA was characterized, and the capability of produced biopolymer for preparing nanoparticles was evaluated. Based on the results, 96 different bacterial isolates were obtained, of which the strains isolated from WSW demonstrated the highest PHA-accumulation capability. The maximum PHA content of 3.07 g/l (59.50% of dry cell weight) was obtained by strain N6 in 21 h. The selected strain was identified by molecular approaches as Bacillus cereus. Afterward, the physicochemical characterization of an accumulated biopolymer was specified as a PHBV copolymer. Finally, spherical homogenous PHBV nanoparticles with a size of 137 nm were achieved. The PHBV nanoparticles showed a suitable small size and good zeta potential for medical applications. Hence, it can be concluded that isolated wild strain (B. cereus) has the potential exploitation capability for cost-effective PHBV production using the WSW.
Collapse
Affiliation(s)
- Neda Sinaei
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Davood Zare
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| | - Mehrdad Azin
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
23
|
Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 2021; 11:17151-17196. [PMID: 35479695 PMCID: PMC9033233 DOI: 10.1039/d1ra02390j] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
In spite of the fact that petroleum-based plastics are convenient in terms of fulfilling the performance requirements of many applications, they contribute significantly to a number of ecological and environmental problems. Recently, the public awareness of the negative effects of petroleum-based plastics on the environment has increased. The present utilization of natural resources cannot be sustained forever. Furthermore, oil is often subjected to price fluctuations and will eventually be depleted. The increase in the level of carbon dioxide due to the combustion of fossil fuel is causing global warming. Concerns about preservation of natural resources and climate change are considered worldwide motivations for academic and industrial researchers to reduce the consumption and dependence on fossil fuel. Therefore, bio-based polymers are moving towards becoming the favorable option to be utilized in polymer manufacturing, food packaging, and medical applications. This paper represents an overview of the feasibility of both Poly Lactic Acid (PLA) and polyhydroxyalkanoates (PHAs) as alternative materials that can replace petroleum-based polymers in a wide range of industrial applications. Physical, thermal, rheological, and mechanical properties of both polymers as well as their permeability and migration properties have been reviewed. Moreover, PLA's recyclability, sustainability, and environmental assessment have been also discussed. Finally, applications in which both polymers can replace petroleum-based plastics have been explored and provided.
Collapse
Affiliation(s)
- Ahmed Z Naser
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - I Deiab
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - Basil M Darras
- Department of Mechanical Engineering, American University of Sharjah Sharjah UAE
| |
Collapse
|
24
|
Wu M, Zhong C, Zhang Q, Wang L, Wang L, Liu Y, Zhang X, Zhao X. pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma. J Nanobiotechnology 2021; 19:39. [PMID: 33549107 PMCID: PMC7866683 DOI: 10.1186/s12951-021-00783-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
A limitation of current anticancer nanocarriers is the contradiction between multiple functions and favorable biocompatibility. Thus, we aimed to develop a compatible drug delivery system loaded with paclitaxel (PTX) for hepatocellular carcinoma (HCC) therapy. A basic backbone, PTX-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV nanoparticle (PHBV-PTX-NPs), was prepared by emulsion solvent evaporation. As a gatekeeper, the pH-sensitive coating was formed by self-polymerization of dopamine (PDA). The HCC-targeted arginine-glycine-aspartic acid (RGD)-peptide and PDA-coated nanoparticles (NPs) were combined through the Michael addition. Subsequently, the physicochemical properties of RGD-PDA-PHBV-PTX-NPs were characterized by dynamic light scattering-autosizer, transmission electron microscope, fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry and X-ray spectroscopy. As expected, the RGD-PDA-PHBV-PTX-NPs showed robust anticancer efficacy in a xenograft mouse model. More importantly, they exhibited lower toxicity than PTX to normal hepatocytes and mouse in vitro and in vivo, respectively. Taken together, these results indicate that the RGD-PDA-PHBV-PTX-NPs are potentially beneficial for easing conflict between multifunction and biocompatible characters of nanocarriers. ![]()
Collapse
Affiliation(s)
- Mingfang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Lu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Xiaoxue Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China. .,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
25
|
Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles. Polymers (Basel) 2020; 13:polym13010057. [PMID: 33375726 PMCID: PMC7795713 DOI: 10.3390/polym13010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.
Collapse
|
26
|
Physicochemical Characterization of PHBV Nanoparticles Functionalized with Multiple Bioactives Designed to be Theranostics for Lung Cancer. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01912-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Gupta S, Pathak Y, Gupta MK, Vyas SP. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4066-4088. [PMID: 31625408 DOI: 10.1080/21691401.2019.1677680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the second most common gynaecological malignancy. It usually occurs in women older than 50 years, and because 75% of cases are diagnosed at stage III or IV it is associated with poor diagnosis. Despite the chemosensitivity of intraperitoneal chemotherapy, the majority of patients is relapsed and eventually dies. In addition to the challenge of early detection, its treatment presents several challenges like the route of administration, resistance to therapy with recurrence and specific targeting of cancer to reduce cytotoxicity and side effects. In ovarian cancer therapy, nanocarriers help overcome problems of poor aqueous solubility of chemotherapeutic drugs and enhance their delivery to the tumour sites either by passive or active targeting, and thus reducing adverse side effects to the healthy tissues. Moreover, the bioavailability to the tumour site is increased by the enhanced permeability and retention (EPR) mechanism. The present review aims to describe the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors designed against ovarian cancer to overcome the drawbacks of conventional delivery. Conclusively, targeted nanocarriers would optimise the intra-tumour distribution, followed by drug delivery into the intracellular compartment. These features may contribute to greater therapeutic effect.
Collapse
Affiliation(s)
- Swati Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh , Noida , India
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida Health , Tampa , FL , USA.,Faculty of Pharmacy, University of Airlangga , Surabaya , Indonesia
| | - Manish K Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), Gual Pahari, TERI Gram , Gurugram , India
| | - Suresh P Vyas
- Department of Pharmaceutical Sciences, Dr H.S. Gour University , Sagar , India
| |
Collapse
|
28
|
Balakrishna Pillai A, Jaya Kumar A, Kumarapillai H. Biosynthesis of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly(ethylene glycol) blends. 3 Biotech 2020; 10:32. [PMID: 31988826 PMCID: PMC6946779 DOI: 10.1007/s13205-019-2017-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023] Open
Abstract
The study described poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation in Bacillus aryabhattai PHB10 for the first time and evaluated the polymer induced cytotoxicity in-vitro with PHBV/poly(ethylene glycol) (PEG) blends. The B. aryabhattai strain produced 2.8 g/L PHBV, equivalent to 71.15% of cell dry mass in a medium supplemented with propionic acid, after 48 h incubation. The optimum temperature and pH for the copolymer accumulation was 31 °C and 7, respectively. The gas chromatography-mass spectrometry and nuclear magnetic resonance analyses confirmed the polymer obtained as PHBV. The differential scanning calorimetry analysis revealed that the melting point of the material as 90 °C and its thermal stability up to 220 °C. The average molecular weight (Mn) and polydispersity index of the sample was estimated by gel permeation chromatography analysis and observed as 128.508 kDa and 2.82, respectively. The PHBV showed tensile strength of 10.3 MPa and elongation at break of 13.3%. The PHBV and their blends with PEG were tested for cytotoxicity on human keratinocytes (HaCaT cells) and the cells incubated with PHBV/PEG2kDa blends were 99% viable, whereas with the PHBV alone showed comparatively higher cytotoxicity. The significant improvement in the cell viability of PHBV/PEG2kDa blends indicates its potential as a candidate for skin graft applications.
Collapse
Affiliation(s)
- Aneesh Balakrishna Pillai
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P. O., Thiruvananthapuram, Kerala 695014 India
| | - Arjun Jaya Kumar
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P. O., Thiruvananthapuram, Kerala 695014 India
| | - Harikrishnan Kumarapillai
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P. O., Thiruvananthapuram, Kerala 695014 India
| |
Collapse
|
29
|
Rivera-Briso AL, Aachmann FL, Moreno-Manzano V, Serrano-Aroca Á. Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int J Biol Macromol 2020; 143:1000-1008. [DOI: 10.1016/j.ijbiomac.2019.10.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
|
30
|
Handali S, Moghimipour E, Rezaei M, Ramezani Z, Dorkoosh FA. PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer. Pharm Dev Technol 2019; 25:206-218. [PMID: 31648589 DOI: 10.1080/10837450.2019.1684945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used agents in the first-line chemotherapy for colon cancer. However, clinical use of 5-FU is limited because of the low efficacy of drug uptake and systemic toxic effects. Therefore, there is a critical need to find better drug delivery systems in order to improve the efficacy of the drug. In the present study, we have developed a novel combination drug delivery system based on PHBV/PLGA NPs for delivery of 5-FU to cancer cells. NPs were prepared by the double emulsion method and their optimization of preparation was evaluated using Box-Behnken design (BBD) of response surface methodology (RSM). 5-FU loaded NPs were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and Fourier transformed infra-red spectroscopy (FT-IR). SEM image implied that NPs were spherical in shape and the results of DSC, TGA, and FT-IR suggest that 5-FU was encapsulated into NPs. The obtained results revealed that 5-FU loaded PHBV/PLGA NPs induced significant higher cell death at concentration much lower than free 5-FU. Results of hemolysis assay indicated that the NPs were hemo-compatible. In vivo anti-tumor studies showed that 5-FU loaded NPs reduced tumor volume significantly in comparison with free 5-FU. As the first example of using PHBV/PLGA as nano-drug delivery system with enhanced anti-tumor activities, this study establishes PHBV/PLGA as a novel promising drug delivery platform for treatment of colon cancer.
Collapse
Affiliation(s)
- Somayeh Handali
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ramezani
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Lungu II, Grumezescu AM, Volceanov A, Andronescu E. Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules 2019; 24:E3547. [PMID: 31574993 PMCID: PMC6804091 DOI: 10.3390/molecules24193547] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
The disadvantages that come with traditional cancer treatments, such as chemotherapy and radiotherapy, generated a research shift toward nanotechnology. However, even with the important advancements regarding cancer therapy, there are still serious stepping stones that need to be addressed. The use of both nanotechnology and nanomedicine has generated significant improvements in nano-sized materials development and their use as therapeutic, diagnosis, and imaging agents. The biological barriers that come from the healthy body, as well from the tumorous sites, are important parameters that need to be taken into consideration when designing drug delivery systems. There are several aspects of extreme importance such as the tumor microenvironment and vasculature, the reticuloendothelial system, the blood-brain barrier, the blood-tumor barrier, and the renal system. In order to achieve an effective system for cancer therapy, several characteristics of the nanoparticles have been outlined. Moreover, this review has also focused on the different types of nanoparticles that have been studied over the years as potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Iulia Ioana Lungu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
- National Institute of Laser, Plasma and Radiation Physics (NILPRP), Bucharest-Magurele, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| |
Collapse
|
32
|
Álvarez-Álvarez L, Barral L, Bouza R, Farrag Y, Otero-Espinar F, Feijóo-Bandín S, Lago F. Hydrocortisone loaded poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for topical ophthalmic administration: Preparation, characterization and evaluation of ophthalmic toxicity. Int J Pharm 2019; 568:118519. [DOI: 10.1016/j.ijpharm.2019.118519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
|
33
|
MgO nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol anticancer drug. PLoS One 2019; 14:e0214900. [PMID: 31415561 PMCID: PMC6695098 DOI: 10.1371/journal.pone.0214900] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/21/2019] [Indexed: 11/19/2022] Open
Abstract
Novel Magnesium Oxide (MgO) nanoparticles (NPs) modified with the polymer polyethylene glycol (PEG) were synthesized as carrier for the anticancer drug 2-Methoxyestradiol (2ME) to improve its clinical application. The functionalized NPs were characterized by Infrared spectroscopy with Fourier transform to elucidate the vibration modes of this conjugate, indicating the formation of the MgO-PEG-2ME nanocomposite. The studies of absorption and liberation determined that MgO-PEG-2ME NPs incorporated 98.51 % of 2ME while liberation of 2ME was constant during 7 days at pH 2, 5 and 7.35. Finally, the MgO-PEG-2ME NPs decreased the viability of the prostate cancer cell line LNCap suggesting that this nanocomposite is suitable as a drug delivery system for anticancer prostate therapy.
Collapse
|
34
|
Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Unsaturated Poly(Hydroxyalkanoates) for the Production of Nanoparticles and the Effect of Cross-Linking on Nanoparticle Features. MATERIALS 2019; 12:ma12060868. [PMID: 30875886 PMCID: PMC6471160 DOI: 10.3390/ma12060868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/11/2023]
Abstract
A biodegradable poly(3-R-hydroxyalkanoate) synthesized by Pseudomonas mediterranea was investigated as a biomaterial to obtain colloidal drug delivery systems. Using a nanoprecipitation method, nanoparticles with a mean size of 155 nm and a negative surface charge were formed. They can be freeze-dried by adding hydroxypropyl-β-cyclodextrin as a cryoprotectant, and they have been shown to efficiently load both a hydrophilic (calcein) and a lipophilic (Nile red) model probe. Since this polymer contains terminal double bonds in the side chains, cross-linking conditions were tested. In particular, under the action of UV rays or irradiation with an incandescent yellow lamp, this polymer tended to cross-link.
Collapse
|
36
|
Musumeci T, Cupri S, Bonaccorso A, Impallomeni G, Ballistreri A, Puglisi G, Pignatello R. Technology assessment of new biodegradable poly(R-3-hydroxybutyrate-co
-1,4-butylene adipate) copolymers for drug delivery. J Appl Polym Sci 2018. [DOI: 10.1002/app.47233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Teresa Musumeci
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
- NANO- i - Research Centre on Ocular Nanotechnology; University of Catania; Catania Italy
| | - Sarha Cupri
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
| | - Angela Bonaccorso
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
| | - Giuseppe Impallomeni
- Consiglio Nazionale delle Ricerche - Istituto per i Polimeri, Compositi e Biomateriali; I-95125, Catania Italy
| | - Alberto Ballistreri
- Dipartimento di Scienze del Farmaco, Sezione di Chimica; Università degli Studi di Catania; I-95125, Catania Italy
| | - Giovanni Puglisi
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
- NANO- i - Research Centre on Ocular Nanotechnology; University of Catania; Catania Italy
| | - Rosario Pignatello
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
- NANO- i - Research Centre on Ocular Nanotechnology; University of Catania; Catania Italy
| |
Collapse
|
37
|
A novel method for the simultaneous determination of 5-fluorouracil and oxaliplatin in new biodegradable PHBV/PLGA nanoparticles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1538-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Farrag Y, Ide W, Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R. Starch films loaded with donut-shaped starch-quercetin microparticles: Characterization and release kinetics. Int J Biol Macromol 2018; 118:2201-2207. [PMID: 30012488 DOI: 10.1016/j.ijbiomac.2018.07.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Starch films loaded with donut-shaped starch-quercetin microparticles were prepared from two different botanical origins. The quercetin release kinetics through the films were studied. The donut-shaped starch-quercetin microparticles were prepared by thermal aqueous-alcoholic treatment. The quercetin loading percentage and therefore the antioxidant activity were higher for the microparticles from legume than those of cereal origins. The starch-quercetin microparticles also showed higher thermal stability than the starch granules. The starch films were produced using the solution casting method. The films with more microparticles content showed higher thermal stability. In-vitro release studies of the quercetin through the films were performed in aqueous-ethanolic medium. The quercetin released reached the equilibrium in 1 to 4 days for the films of cereal starch and in more than a week for the films of legume origin. The release data were fitted to Peppas-Sahlin model that suggests the release kinetics were controlled mainly by fickian diffusion. The produced biofilms can be utilized mainly for active food packaging applications.
Collapse
Affiliation(s)
- Yousof Farrag
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Walther Ide
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Belén Montero
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Maite Rico
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain.
| |
Collapse
|
39
|
Rivera-Briso AL, Serrano-Aroca Á. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers (Basel) 2018; 10:E732. [PMID: 30960657 PMCID: PMC6403723 DOI: 10.3390/polym10070732] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.
Collapse
Affiliation(s)
- Ariagna L Rivera-Briso
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 65, 46008 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
40
|
Li J, Yao S, Wang K, Lu Z, Su X, Li L, Yuan C, Feng J, Yan S, Kong B, Song K. Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 2018; 109:1958-1969. [PMID: 29617063 PMCID: PMC5989858 DOI: 10.1111/cas.13605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 01/30/2023] Open
Abstract
Photodynamic therapy (PDT) is considered an innovative and attractive modality to treat ovarian cancer. In the present study, a biodegradable polymer poly (ethylene glycol) (PEG)‐poly (lactic acid)(PLA)‐folate (FA‐PEG‐PLA) was prepared in order to synthesize an active‐targeting, water‐soluble and pharmacomodulated photosensitizer nanocarrier. Drug‐loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which hypocrellin B (HB)/FA‐PEG‐PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (P < .05). To evaluate the targeting ability of the HB/FA‐PEG‐PLA micelles, a cellular uptake study in vitro was carried out, which showed significantly enhanced uptake of HB/FA‐PEG‐PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR−). The enhanced uptake of HB/FA‐PEG‐PLA micelles to cancer cells resulted in a more effective post‐PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA‐PEG‐PLA micelles by SKOV3 cells were also observed in vivo after ip injection of folate‐targeted micelles in tumor‐bearing ascitic ovarian cancer animals. Drug levels in ascitic tumor tissues were increased 20‐fold (P < .001), which underscored the effect of a regional therapy approach with folate targeting. Furthermore, the HB‐loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results showed that our newly developed PDT photosensitizer HB/FA‐PEG‐PLA micelles have a high drug‐loading capacity, good biocompatibility, controlled drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Kai Wang
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Zaijun Lu
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Xuantao Su
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Li Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Cunzhong Yuan
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Jinbo Feng
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shi Yan
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
41
|
Bahari Javan N, Jafary Omid N, Moosavi Hasab N, Rezaie Shirmard L, Rafiee-Tehrani M, Dorkoosh F. Preparation, statistical optimization and in vitro evaluation of pramipexole prolonged delivery system based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Bayrami S, Esmaili Z, SeyedAlinaghi S, Jamali Moghadam SR, Bayrami S, Akbari Javar H, Rafiee Tehrani M, Dorkoosh FA. Fabrication of long-acting insulin formulation based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles: preparation, optimization, characterization, and in vitro evaluation. Pharm Dev Technol 2018; 24:176-188. [PMID: 29557733 DOI: 10.1080/10837450.2018.1452936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepide Bayrami
- Faculty of Bioscience, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Babu A, Amreddy N, Muralidharan R, Pathuri G, Gali H, Chen A, Zhao YD, Munshi A, Ramesh R. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci Rep 2017; 7:14674. [PMID: 29116098 PMCID: PMC5676784 DOI: 10.1038/s41598-017-15012-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
In this study, we report the efficacy of RGD (arginine-glycine-aspartic acid) peptide-modified polylactic acid-co-glycolic acid (PLGA)-Chitosan nanoparticle (CSNP) for integrin αvβ3 receptor targeted paclitaxel (PTX) delivery in lung cancer cells and its impact on normal cells. RGD peptide-modified chitosan was synthesized and then coated onto PTX-PLGA nanoparticles prepared by emulsion-solvent evaporation. PTX-PLGA-CSNP-RGD displayed favorable physicochemical properties for a targeted drug delivery system. The PTX-PLGA-CSNP-RGD system showed increased uptake via integrin receptor mediated endocytosis, triggered enhanced apoptosis, and induced G2/M cell cycle arrest and more overall cytotoxicity than its non-targeted counterpart in cancer cells. PTX-PLGA-CSNP-RGD showed less toxicity in lung fibroblasts than in cancer cells, may be attributed to low drug sensitivity, nevertheless the study invited close attention to their transient overexpression of integrin αvβ3 and cautioned against corresponding uptake of toxic drugs, if any at all. Whereas, normal human bronchial epithelial (NHBE) cells with poor integrin αvβ3 expression showed negligible toxicity to PTX-PLGA-CSNP-RGD, at equivalent drug concentrations used in cancer cells. Further, the nanoparticle demonstrated its capacity in targeted delivery of Cisplatin (CDDP), a drug having physicochemical properties different to PTX. Taken together, our study demonstrates that PLGA-CSNP-RGD is a promising nanoplatform for integrin targeted chemotherapeutic delivery to lung cancer.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Ranganayaki Muralidharan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Gopal Pathuri
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Hariprasad Gali
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Allshine Chen
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA. .,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA. .,Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
44
|
Kou L, Yao Q, Sivaprakasam S, Luo Q, Sun Y, Fu Q, He Z, Sun J, Ganapathy V. Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB 0,+ to deliver chemotherapeutic agents for colon cancer therapy. Drug Deliv 2017; 24:1338-1349. [PMID: 28911246 PMCID: PMC8241000 DOI: 10.1080/10717544.2017.1377316] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl--coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl-) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy. Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.
Collapse
Affiliation(s)
- Longfa Kou
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qing Yao
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qiuhua Luo
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinghua Sun
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin Sun
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
45
|
Structural and functional identification of vasculogenic mimicry in vitro. Sci Rep 2017; 7:6985. [PMID: 28765613 PMCID: PMC5539303 DOI: 10.1038/s41598-017-07622-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) describes a process by which cancer cells establish an alternative perfusion pathway in an endothelial cell-free manner. Despite its strong correlation with reduced patient survival, controversy still surrounds the existence of an in vitro model of VM. Furthermore, many studies that claim to demonstrate VM fail to provide solid evidence of true hollow channels, raising concerns as to whether actual VM is actually being examined. Herein, we provide a standardized in vitro assay that recreates the formation of functional hollow channels using ovarian cancer cell lines, cancer spheres and primary cultures derived from ovarian cancer ascites. X-ray microtomography 3D-reconstruction, fluorescence confocal microscopy and dye microinjection conclusively confirm the existence of functional glycoprotein-rich lined tubular structures in vitro and demonstrate that many of structures reported in the literature may not represent VM. This assay may be useful to design and test future VM-blocking anticancer therapies.
Collapse
|
46
|
Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:12-22. [PMID: 28554072 DOI: 10.1016/j.jphotobiol.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 12/30/2022]
Abstract
Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment.
Collapse
|
47
|
Bahari Javan N, Montazeri H, Rezaie Shirmard L, Jafary Omid N, Barbari GR, Amini M, Ghahremani MH, Rafiee-Tehrani M, Abedin Dorkoosh F. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide. Eur J Pharm Sci 2017; 101:167-181. [DOI: 10.1016/j.ejps.2017.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 01/28/2023]
|
48
|
Jun D, Guomin Z, Mingzhu P, Leilei Z, Dagang L, Rui Z. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs. Carbohydr Polym 2017; 168:255-262. [PMID: 28457448 DOI: 10.1016/j.carbpol.2017.03.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
Nanocellulose reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were prepared using melt compounding. The effects of nanocellulose types (CNCs and CNFs) and nanocellulose content (1, 2, 3, 4, 5, 6 and 7wt%) on the crystallization, thermal and mechanical properties of PHBV composites were systematically compared in this study. The thermal stability of PHBV composites was improved by both CNCs and CNFs. CNFs with a higher thermal stability leaded to a higher thermal stability of PHBV composites. Both CNCs and CNFs induced a reduction in the crystalline size of PHBV spherulites. Furthermore, CNCs could act as a better nucleating agent for PHBV than did CNFs. CNCs and CNFs showed reinforcing effects in PHBV composites. At the equivalent content of nanocellulose, CNCs led to a higher tensile modulus of PHBV composites than did CNFs. 1wt% CNCs/PHBV composites exhibited the most optimum mechanical properties.
Collapse
Affiliation(s)
- Du Jun
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhao Guomin
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Pan Mingzhu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhuang Leilei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Dagang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhang Rui
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
49
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
50
|
Peñaloza JP, Márquez-Miranda V, Cabaña-Brunod M, Reyes-Ramírez R, Llancalahuen FM, Vilos C, Maldonado-Biermann F, Velásquez LA, Fuentes JA, González-Nilo FD, Rodríguez-Díaz M, Otero C. Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines. J Nanobiotechnology 2017; 15:1. [PMID: 28049488 PMCID: PMC5210312 DOI: 10.1186/s12951-016-0241-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.
Collapse
Affiliation(s)
- Juan P. Peñaloza
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
- Escuela de Bioquímica, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Echaurren #183, 8370071 Santiago, Chile
| | - Mauricio Cabaña-Brunod
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
- Escuela de Bioquímica, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
- Escuela de Bioquímica, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Felipe M. Llancalahuen
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
- Escuela de Bioquímica, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Vilos
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Echaurren #183, 8370071 Santiago, Chile
| | | | - Luis A. Velásquez
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Juan A. Fuentes
- Laboratorio de Genética y Patógenesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Fernando D. González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Echaurren #183, 8370071 Santiago, Chile
| | - Maité Rodríguez-Díaz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Otero
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|